Sample records for situ solid-state reaction

  1. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    PubMed

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.

    PubMed

    Blasco, Teresa

    2010-12-01

    This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.

  3. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    PubMed

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monitoring Cocrystal Formation via In Situ Solid-State NMR.

    PubMed

    Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A

    2014-10-02

    A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.

  5. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  6. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-05-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1-3 contain four types of 21 helical chains. While the Nd(III) ions are bridged through μ2-HIDC2- and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  7. Effect of ceramic nanoparticles on the solid-state reaction mechanism of dolomite-zirconium oxide followed by neutron thermodiffraction measurements

    NASA Astrophysics Data System (ADS)

    Serena, S.; Caballero, A.; Turrillas, X.; Martin, D.; Sainz, M. A.

    2009-05-01

    Calcium zirconate-magnesium oxide material was obtained by solid-state reaction from mixed dolomite (CaMg(CO3)2) and zirconia (m-ZrO2) nanopowders. The nanopowders were obtained by high-energy milling, which produced an increase of the superficial free energy of the particles. The role of nanoparticles in the reaction process of monoclinic-zirconia and dolomite was analysed for the first time using neutron thermodiffraction and differential thermal analysis-thermogravimetric techniques. The neutron thermodiffraction of this mixture provides a clear description in situ of the different decomposition and reaction processes that occur in the nanopowders mixture. The results make it possible to analyze the effect of the nanoparticles on the reaction behaviour of these materials.

  8. Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Nitta, Kiyofumi; Oshita, Kazuyuki; Fujimori, Takashi; Ina, Toshiaki

    2017-05-01

    We conducted in situ X-ray absorption fine structure (in situ XAFS) analysis at the Cs K-edge to investigate the chemical kinetics of Cs species during reaction in an alkali-activated municipal solid waste incineration fly ash (MSWIFA) and pyrophyllite-based system. Understanding the kinetics of Cs is essential to the design of appropriate conditions for Cs stabilization. In situ XAFS analysis of four pastes, prepared from NaOHaq, sodium silicate solution, pyrophyllite, and MSWIFA with the addition of CsCl, was conducted in custom-built reaction cells at four curing temperatures (room temperature, 60 °C, 80 °C, 105 °C) for approximately 34 h. The results indicated that the change in Cs species during reaction at room temperature was small, while changes at higher temperatures were faster and more extreme, with the fastest conversion to pollucite occurring at 105 °C. Further analysis using a leaching test and a simple reaction model for Cs species during reaction showed that the pollucite formation rate was dependent on the curing temperature and had a significant negative correlation with Cs leaching. The activation energy of pollucite formation was estimated to be 31.5 kJ/mol. These results revealed that an important change in the chemical state of Cs occurs during reaction in the system.

  9. Core-Shell Fe1- xS@Na2.9PS3.95Se0.05 Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density.

    PubMed

    Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin

    2018-03-27

    High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.

  10. In Situ Imaging the Oxygen Reduction Reactions of Solid State Na-O2 Batteries with CuO Nanowires as the Air Cathode.

    PubMed

    Liu, Qiunan; Yang, Tingting; Du, Congcong; Tang, Yongfu; Sun, Yong; Jia, Peng; Chen, Jingzhao; Ye, Hongjun; Shen, Tongde; Peng, Qiuming; Zhang, Liqiang; Huang, Jianyu

    2018-06-13

    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu 2 O and then to Cu; in the latter, NaO 2 formed first, followed by its disproportionation to Na 2 O 2 and O 2 . Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO 2 . Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na-O 2 batteries.

  11. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    PubMed

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  12. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    NASA Astrophysics Data System (ADS)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  13. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy [Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ HEXRD and XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao

    In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less

  14. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy [Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ HEXRD and XANES

    DOE PAGES

    Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao; ...

    2016-12-07

    In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less

  15. In–situ Spatiotemporal Chemical Reactions at Water-Solid Interfacial Processes using Microelectrode Techniques: from Biofilm to Metal Corrosion

    EPA Science Inventory

    Recent developments in microscale sensors allows the non-destructive and in–situ measurement of both the absolute and changes in chemical concentrations in engineered and natural aquatic systems. Microelectrodes represent a unique tool for studying in–situ chemical reactions in b...

  16. Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels

    DOE PAGES

    Chen, Renjie; Jungjohann, Katherine L.; Mook, William M.; ...

    2017-03-23

    In the alloyed and compound contacts between metal and semiconductor transistor channels we see that they enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. We report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In 0.53Ga 0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit amore » solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. Here, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.« less

  17. Distinguishing molecular environments in supported Pt catalysts and their influences on activity and selectivity

    NASA Astrophysics Data System (ADS)

    Jones, Louis Chin

    This thesis entails the synthesis, automated catalytic testing, and in situ molecular characterization of supported Pt and Pt-alloy nanoparticle (NP) catalysts, with emphasis on how to assess the molecular distributions of Pt environments that are affecting overall catalytic activity and selectivity. We have taken the approach of (a) manipulating nucleation and growth of NPs using oxide supports, surfactants, and inorganic complexes to create Pt NPs with uniform size, shape, and composition, (b) automating batch and continuous flow catalytic reaction tests, and (c) characterizing the molecular environments of Pt surfaces using in situ infrared (IR) spectroscopy and solid-state 195Pt NMR. The following will highlight the synthesis and characterization of Ag-doped Pt NPs and their influence on C 2H2 hydrogenation selectivity, and the implementation of advanced solid-state 195Pt NMR techniques to distinguish how distributions of molecular Pt environments vary with nanoparticle size, support, and surface composition.

  18. In situ solid-state electrochemistry of mass-selected ions at well-defined electrode–electrolyte interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    2016-11-07

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  19. In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.

    PubMed

    Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska

    2016-07-14

    A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes.

  20. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  1. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    PubMed

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Kinetics of lisinopril intramolecular cyclization in solid phase monitored by Fourier transform infrared microscopy.

    PubMed

    Widjaja, Effendi; Tan, Wei Jian

    2008-08-01

    The solid-state intramolecular cyclization of lisinopril to diketopiperazine was investigated by in situ Fourier transform infrared (FT-IR) microscopy. Using a controllable heating cell, the isothermal transformation was monitored in situ at 147.5, 150, 152.5, 155, and 157.5 degrees C. The collected time-dependent FT-IR spectra at each isothermal temperature were preprocessed and analyzed using a multivariate chemometric approach. The pure component spectra of the observable component (lisinopril and diketopiperazine) were resolved and their time-dependent relative contributions were also determined. Model-free and various model fitting methods were implemented in the kinetic analysis to estimate the activation energy of the intramolecular cyclization reaction. Arrhenius plots indicate that the activation energy is circa 327 kJ/mol.

  3. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    NASA Astrophysics Data System (ADS)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  4. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  5. Dipolar induced para-hydrogen-induced polarization.

    PubMed

    Buntkowsky, Gerd; Gutmann, Torsten; Petrova, Marina V; Ivanov, Konstantin L; Bommerich, Ute; Plaumann, Markus; Bernarding, Johannes

    2014-01-01

    Analytical expressions for the signal enhancement in solid-state PHIP NMR spectroscopy mediated by homonuclear dipolar interactions and single pulse or spin-echo excitation are developed and simulated numerically. It is shown that an efficient enhancement of the proton NMR signal in solid-state NMR studies of chemisorbed hydrogen on surfaces is possible. Employing typical reaction efficacy, enhancement-factors of ca. 30-40 can be expected both under ALTADENA and under PASADENA conditions. This result has important consequences for the practical application of the method, since it potentially allows the design of an in-situ flow setup, where the para-hydrogen is adsorbed and desorbed from catalyst surfaces inside the NMR magnet. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Novel symmetrical coralloid Cu 3D superstructures: Solid-state synthesis from a Cu-carboxylate MOF and their in-situ thermal conversion

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shen, Yongming; Bai, Junfeng; Wang, Chunzhao

    2009-08-01

    We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu 3( btc) 2] ( btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. This method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs.

  7. A study of suppressed formation of low-conductivity phases in doped Li 7La 3Zr 2O 12 garnets by in situ neutron diffraction

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...

    2015-09-28

    Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  8. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide.

    PubMed

    Tsuchiya, Takashi; Tsuruoka, Tohru; Terabe, Kazuya; Aono, Masakazu

    2015-02-24

    In situ and nonvolatile tuning of photoluminescence (PL) has been achieved based on graphene oxide (GO), the PL of which is receiving much attention because of various potential applications of the oxide (e.g., display, lighting, and nano-biosensor). The technique is based on in situ and nonvolatile tuning of the sp(2) domain fraction to the sp(3) domain fraction (sp(2)/sp(3) fraction) in GO through an electrochemical redox reaction achieved by solid electrolyte thin films. The all-solid-state variable PL device was fabricated by GO and proton-conducting mesoporous SiO2 thin films, which showed an extremely low PL background. The device successfully tuned the PL peak wavelength in a very wide range from 393 to 712 nm, covering that for chemically tuned GO, by adjusting the applied DC voltage within several hundred seconds. We also demonstrate the sp(2)/sp(3) fraction tuning using a conductive atomic force microscope. The device achieved not only writing, but also erasing of the sp(2)/sp(3)-fraction-tuned nanodomain (both directions operation). The combination of these techniques is applicable to a wide range of nano-optoelectronic devices including nonvolatile PL memory devices and on-demand rewritable biosensors that can be integrated into nano- and microtips which are transparent, ultrathin, flexible, and inexpensive.

  9. Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction.

    PubMed

    Wang, Wenquan; Li, Wenmo; Xu, Hongyong

    2017-07-11

    The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.

  10. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    NASA Astrophysics Data System (ADS)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  11. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    PubMed

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  12. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO2 Cathode in a Working All-Solid-State Battery.

    PubMed

    Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan

    2017-03-29

    We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.

  13. Solid-supported nitroso hetero Diels-Alder reactions. 1. Acylnitroso dienophiles: scope and limitations.

    PubMed

    Krchnák, Viktor; Moellmann, Ute; Dahse, Hans-Martin; Miller, Marvin J

    2008-01-01

    Polymer-supported acylnitroso dienophiles were prepared and used in hetero Diels-Alder (HDA) reactions with a variety of dienes. The transient acylnitroso dienophiles were prepared in situ from immobilized hydroxamates, which were attached to solid supports via several linkers each cleavable by different cleavage reagents, and served for the synthesis of both N-unsubstituted and N-derivatized HDA adducts. Model compounds were used to (i) optimize reaction conditions for solid-supported HDA reactions, (ii) evaluate the outcome of the reactions with various dienes, (iii) compare relative reactivities of dienes, and (iv) assess the stability of HDA adducts toward cleavage conditions typically used in solid-phase syntheses. Cleaved products were submitted to biological assays, and the results are reported. The accompanying paper, focused on complementary arylnitroso HDA reactions, includes a comparison of both HDA reactions.

  14. Production of aligned microfibers and nanofibers and derived functional monoliths

    DOEpatents

    Hu, Michael Z [Knoxville, TN; DePaoli, David W [Knoxville, TN; Kuritz, Tanya [Kingston, TN; Omatete, Ogbemi [New Port Richey, FL

    2007-08-14

    The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.

  15. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less

  16. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    DOE PAGES

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...

    2015-04-20

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less

  17. Solid-state dewetting of thin Au films studied with real-time, in situ spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Magnozzi, M.; Bisio, F.; Canepa, M.

    2017-11-01

    We report the design and testing of a small, high vacuum chamber that allows real-time, in situ spectroscopic ellipsometry (SE) measurements; the chamber was designed to be easily inserted within the arms of a commercial ellipsometer. As a test application, we investigated the temperature-induced solid-state dewetting of thin (20 to 8 nm) Au layers on Si wafers. In situ SE measurements acquired in real time during the heating of the samples reveal features that can be related to the birth of a localized surface plasmon resonance (LSPR), and demonstrate the presence of a temperature threshold for the solid-state dewetting.

  18. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.

    PubMed

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei

    2013-09-11

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.

  19. Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang

    2013-08-14

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less

  20. Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte

    DOE PAGES

    Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...

    2016-09-08

    Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less

  1. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions.

    PubMed

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  2. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-04-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  3. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent in situ studies on model electrochemical components as well as operando studies performed by our groups at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to illustrate that AP-XPS is both a chemically and an electrically specific tool since photoelectrons carry information on both the local chemistry and electrical potentials. The applications of AP-XPS to oxygen electrocatalysis shown in this Account span well-defined studies of (1) the oxide/oxygen gas interface, (2) the oxide/water vapor interface, and (3) operando measurements of half and full electrochemical cells. Using specially designed model devices, we can expose and isolate the electrode or interface of interest to the incident X-ray beam and AP-XPS analyzer to relate the electrical potentials to the composition/chemical state of the key components and interfaces. We conclude with an outlook on new developments of AP-XPS end stations, which may provide significant improvement in the observation of dynamics over a wide range of time scales, higher spatial resolution, and improved characterization of boundary or interface layers (solid/solid and liquid/solid).

  4. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer.

    PubMed

    Tsukasaki, Hirofumi; Mori, Yota; Otoyama, Misae; Yubuchi, So; Asano, Takamasa; Tanaka, Yoshinori; Ohno, Takahisa; Mori, Shigeo; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-04-18

    Sulfide-based all-solid-state lithium batteries are a next-generation power source composed of the inorganic solid electrolytes which are incombustible and have high ionic conductivity. Positive electrode composites comprising LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) and 75Li 2 S·25P 2 S 5 (LPS) glass electrolytes exhibit excellent charge-discharge cycle performance and are promising candidates for realizing all-solid-state batteries. The thermal stabilities of NMC-LPS composites have been investigated by transmission electron microscopy (TEM), which indicated that an exothermal reaction could be attributed to the crystallization of the LPS glass. To further understand the origin of the exothermic reaction, in this study, the precipitated crystalline phase of LPS glass in the NMC-LPS composite was examined. In situ TEM observations revealed that the β-Li 3 PS 4 precipitated at approximately 200 °C, and then Li 4 P 2 S 6 and Li 2 S precipitated at approximately 400 °C. Because the Li 4 P 2 S 6 and Li 2 S crystalline phases do not precipitate in the single LPS glass, the interfacial contact between LPS and NMC has a significant influence on both the LPS crystallization behavior and the exothermal reaction in the NMC-LPS composites.

  5. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis.

    PubMed

    Haikal, Rana R; Wang, Xia; Hassan, Youssef S; Parida, Manas R; Murali, Banavoth; Mohammed, Omar F; Pellechia, Perry J; Fontecave, Marc; Alkordi, Mohamed H

    2016-08-10

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multitopic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity toward hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited-state lifetime of the covalently immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  6. Communication: H-atom reactivity as a function of temperature in solid parahydrogen: The H + N2O reaction

    NASA Astrophysics Data System (ADS)

    Mutunga, Fredrick M.; Follett, Shelby E.; Anderson, David T.

    2013-10-01

    We present low temperature kinetic measurements for the H + N2O association reaction in solid parahydrogen (pH2) at liquid helium temperatures (1-5 K). We synthesize 15N218O doped pH2 solids via rapid vapor deposition onto an optical substrate attached to the cold tip of a liquid helium bath cryostat. We then subject the solids to short duration 193 nm irradiations to generate H-atoms produced as byproducts of the in situ N2O photodissociation, and monitor the subsequent reaction kinetics using rapid scan FTIR. For reactions initiated in solid pH2 at 4.3 K we observe little to no reaction; however, if we then slowly reduce the temperature of the solid we observe an abrupt onset to the H + N2O → cis-HNNO reaction at temperatures below 2.4 K. This abrupt change in the reaction kinetics is fully reversible as the temperature of the solid pH2 is repeatedly cycled. We speculate that the observed non-Arrhenius behavior (negative activation energy) is related to the stability of the pre-reactive complex between the H-atom and 15N218O reagents.

  7. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    PubMed Central

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  9. The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy

    NASA Astrophysics Data System (ADS)

    Steimer, S. S.; Lampimäki, M.; Coz, E.; Grzinic, G.; Ammann, M.

    2014-03-01

    Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a Scanning Transmission X-ray Microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid-water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the time scale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.

  10. The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy

    NASA Astrophysics Data System (ADS)

    Steimer, S. S.; Lampimäki, M.; Coz, E.; Grzinic, G.; Ammann, M.

    2014-10-01

    Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a scanning transmission X-ray microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain near-edge X-ray absorption fine structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid-water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the timescale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.

  11. Novel symmetrical coralloid Cu 3D superstructures: Solid-state synthesis from a Cu-carboxylate MOF and their in-situ thermal conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lingyun, E-mail: lychen@cqu.edu.c; Shen Yongming; Bai Junfeng, E-mail: bjunfeng@nju.edu.c

    2009-08-15

    We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu{sub 3}(btc){sub 2}] (btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. Thismore » method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs. - Graphical abstract: Novel symmetrical coralloid Cu 3D superstructures were synthesized by thermolysis of the [Cu{sub 3}(btc){sub 2}] (btc=benzene-1,3,5-tricarboxylato) MOF microcrystals in a one-end closed horizontal tube furnace (OCTF).« less

  12. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  13. Microstructure and growth kinetics of nickel silicide ultra-thin films synthesized by solid-state reactions

    NASA Astrophysics Data System (ADS)

    Coia, Cedrik

    The objective of the thesis is to develop a detailed fundamental understanding of the thermally induced solid-state reactions that lead to the formation of the NiSi. We use in situ synchrotron x-ray diffraction as well as wafer curvature measurements to monitor reactions as they occur during the annealing treatment. These analyses are complemented by ex situ transmission electron microscopy, Rutherford backscattering spectroscopy, and secondary ions mass spectroscopy. The solid-state reactions between 4 to 500 nm-thick Ni films and Si (001) are considerably more complex than previously believed. In addition to the commonly observed phases listed above, we observe the formation of three additional compounds---θ-Ni2Si, Ni31Si12 and Ni3Si2---before the complete transformation of the reacted film into NiSi. These compounds are found to co-exist laterally (within the same layer) with delta-Ni2Si and/or NiSi. The metastable compound θ-Ni2Si, which formation results from texture inheritance and rapid growth through vacancy diffusion, is present in all samples and forms at the same temperature (300+/-10°C) regardless of the initial Ni thickness. Indeed, this compound forms rapidly during ramps anneals, apparently consuming all the delta-Ni2Si for initial Ni films thickness of up to 10 nm. Its disappearance is also rapid and is correlated to both the growth of NiSi and to a surprising return of the orthorhombic delta-Ni 2Si. The formation sequence is therefore not monotonic in composition in contrast to what is usually expected in solid-state reactions. An investigation of the effect of alloying elements (Pt and Co) and impurities (B, P, As, F, N) on the Ni-Si reactions enables us to determine that nucleation plays a limiting role in the growth of metastable θ-Ni2Si and that the template provided by delta-Ni2Si is crucial in promoting this nucleation. Furthermore, reactions with amorphized and amorphous substrates indicate that the possibility of epitaxy with the Si substrate is not a necessary condition for θ-Ni2Si to form. Activated CMOS dopants and alloying impurities delay the growth of all Ni-rich compounds and eventually suppress the formation of θ-Ni2Si possibly because of a limited solubility. Impurities implanted without subsequent re-crystallization anneals stabilize the compound partly through the presence of an amorphous interface, at least at the beginning of the reaction. A quantitative investigation of the growth kinetics of θ-Ni 2Si on undoped Si(001) reveals two distinct stages which are well described by a model incorporating 2D nucleation-controlled growth at the silicide/Si interface and the non-planar diffusion-controlled penetration of θ-Ni 2Si in the overlying delta-Ni2Si grains. Despite the very good fit of the model to our data, we cannot rule out the possibility that the second stage consists of a 1D diffusion-controlled planar growth during which the composition of the non-stoichiometric θ-Ni2Si changes. In F-doped samples, the second stage corresponds to a 1D diffusion-controlled growth in the absence of delta-Ni2Si and Ni, suggesting a possible compositional change during growth. The results presented in this thesis show that thanks to the use of powerful in situ monitoring techniques we have observed the kinetic competition between different growing compounds in the early stages of their growth. This competition has been predicted by many growth models, yet to our knowledge it has not been observed so far. We also have shown that this competition can lead to the lateral co-existence of several compounds in the same layer whereas most solid-state reaction models assume or require a layer-by-layer co-existence scheme. Finally, we show that the combination of (i) strong interfacial concentration gradients, (ii) structural similarities between delta-Ni 2Si, NiSi and θ-Ni2Si, and (iii) the ability of the latter to sustain vacancies and to nucleate in concentration gradients lead to a very peculiar reaction pathway, which results in a striking non-sequential succession of compounds. Our results therefore bear an important interest on the fundamental material science point of view in addition to the technological points of view given their pertinence for the SALICIDE process used to implement the Ni-Si contact metallurgy in the CMOS technology. (Abstract shortened by UMI.)

  14. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE.

    PubMed

    Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona

    2007-04-01

    The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.

  15. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  16. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?

    PubMed

    Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-07-23

    Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.

  17. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  18. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2015-12-29

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  19. Structure Evolution and Reactivity of the Sc(2- x)V xO3+δ (0 ≤ x ≤ 2.0) System.

    PubMed

    Lussier, Joey A; Simon, Fabian J; Whitfield, Pamela S; Singh, Kalpana; Thangadurai, Venkataraman; Bieringer, Mario

    2018-05-07

    Solid oxide fuel cells (SOFCs) are solid-state electrochemical devices that directly convert chemical energy of fuels into electricity with high efficiency. Because of their fuel flexibility, low emissions, high conversion efficiency, no moving parts, and quiet operation, they are considered as a promising energy conversion technology for low carbon future needs. Solid-state oxide and proton conducting electrolytes play a crucial role in improving the performance and market acceptability of SOFCs. Defect fluorite phases are some of the most promising fast oxide ion conductors for use as electrolytes in SOFCs. We report the synthesis, structure, phase diagram, and high-temperature reactivity of the Sc (2- x) V x O 3+δ (0 ≤ x ≤ 2.00) oxide defect model system. For all Sc (2- x) V x O 3.0 phases with x ≤ 1.08 phase-pure bixbyite-type structures are found, whereas for x ≥ 1.68 phase-pure corundum structures are reported, with a miscibility gap found for 1.08 < x < 1.68. Structural details obtained from the simultaneous Rietveld refinements using powder neutron and X-ray diffraction data are reported for the bixbyite phases, demonstrating a slight V 3+ preference toward the 8b site. In situ X-ray diffraction experiments were used to explore the oxidation of the Sc (2- x) V x O 3.0 phases. In all cases ScVO 4 was found as a final product, accompanied by Sc 2 O 3 for x < 1.0 and V 2 O 5 when x > 1.0; however, the oxidative pathway varied greatly throughout the series. Comments are made on different synthesis strategies, including the effect on crystallinity, reaction times, rate-limiting steps, and reaction pathways. This work provides insight into the mechanisms of solid-state reactions and strategic guidelines for targeted materials synthesis.

  20. Chemical degradation of proteins in the solid state with a focus on photochemical reactions.

    PubMed

    Mozziconacci, Olivier; Schöneich, Christian

    2015-10-01

    Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Bai, Hai Yang; Zhang, Ming; Zhao, J. H.; Zhang, X. Y.; Wang, W. K.

    1999-04-01

    An in situ low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena in various metal-metal and metal-amorphous Si nanometer-scale compositionally modulated multilayers (ML's). The temperature-dependent interdiffusivities are obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. Activation enthalpies and preexponential factors for the interdiffusion in the Fe-Ti, Ag-Bi, Fe-Mo, Mo-Si, Ni-Si, Nb-Si, and Ag-Si ML's are determined. Activation enthalpies and preexponential factors for the interdiffusion in the ML's are very small compared with that in amorphous alloys and crystalline solids. The relation between the atomic-size difference and interdiffusion in the ML's are investigated. The observed interdiffusion characteristics are compared with that in amorphous alloys and crystalline α-Zr, α-Ti, and Si. The experimental results suggest that a collective atomic-jumping mechanism govern the interdiffusion in the ML's, the collective proposal involving 8-15 atoms moving between extended nonequilibrium defects by thermal activation. The role of the interdiffusion in the solid-state reaction in the ML's is also discussed.

  2. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    NASA Astrophysics Data System (ADS)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  3. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.

    2005-01-01

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  4. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.

    2010-07-13

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  5. In situ analysis of capacity fade in thin-film anodes for high performance Li-ion all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec

    There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.

  6. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less

  7. Part 3. a novel stereocontrolled, in situ, solution- and solid-phase, Aza Michael approach for high-throughput generation of tetrahydroaminoquinoline-derived natural-product-like architectures.

    PubMed

    Prakesch, Michael; Srivastava, Stuti; Leek, Donald M; Arya, Prabhat

    2006-01-01

    With the goal of rapidly accessing tetrahydroquinoline-based natural-product-like polycyclic architectures, herein, we report an unprecedented, in situ, stereocontrolled Aza Michael approach in solution and on the solid phase. The mild reaction conditions required to reach the desired target are highly attractive for the use of this method in library generation. To our knowledge, this approach has not been used before, and it opens a novel route leading to a wide variety of tetrahydroquinoline-derived bridged tricyclic derivatives.

  8. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    PubMed

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  9. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs.

    PubMed

    O'Brien, Laura E; Timmins, Peter; Williams, Adrian C; York, Peter

    2004-10-29

    The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130 degrees C, 138 degrees C, 140 degrees C and 150 degrees C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two CH bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid-gas-solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol(-1) to 368 kJ mol(-1) for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.

  10. Two new Cu{sup I} compounds with zwitterionic tetrazolate ligand: In situ synthesis, crystal structures, luminescence and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian-Yong; Xing, Yuan-Yuan; Wang, Qing-Wei

    2015-12-15

    Two 2D new Cu(I) coordination polymers, namely [Cu{sub 2}(mpTZ){sub 2}Br{sub 2}]·H{sub 2}O (1), and [Cu{sub 2}(mpTZ){sub 2}N{sub 3}]ClO{sub 4} (2) (mpTZ=N-methyl-4-pyridinium tetrazolate) have been synthesized under solvothermal conditions, in which the mpTZ ligands and Cu{sup I} ions were obtained through in situ [2+3] cycloaddition reaction and reduction reaction of Cu{sup II} salts, respectively. Both compounds have been structural characterized by single crystal X-ray diffraction, FT-IR, PXRD and EA. Compound 1 exhibits a 2D neutral coordination network, in which the Cu{sup I} ions are bridged by η{sub 3}−1, 2, 4-tetrazolate into 2D sheet. In compound 2, the Cu{sup I} ions aremore » linked by azide (in µ{sub 3}−1, 1, 3 bridging mode) and tetrazolate (in η{sub 3}−1, 2, 3 bridging mode) anions into 2D positively charged sheet, extended along the bc plane. Both compounds 1 and 2 exhibit intense bluish green luminescence in the solid state. Photocatalytic performances of the two compounds for the degradation of methylene blue (MB) under visible light were also investigated and the MB degradation in the presence of 1 was nearly complete (99%) after 150 min. - Graphical abstract: Two Cu{sup I}CPs have been solvothermally synthesized through the in situ [2+3] cycloaddition and metal reduction reaction. Both compounds exhibit intense luminescence and high photocatalytic degradation under visible light. - Highlights: • Two new Cu{sup I}-based CPs are solvothermally synthesized through in situ [2+3] cycloaddition reaction and metal reduction reaction. • Both compounds exhibit strong luminescence and photocatalytic degradation of methylene blue (MB) under visible light. • The MB degradation in the presence of 1 is nearly complete (99%) after 150 min.« less

  11. Two novel zinc(II) coordination polymers constructed from in situ amidation ligands

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Yang; Fu, Yao; Fu, Jian-Tao; Xu, Jia-Ning; Luo, Ya-Nan; Yang, Yan-Yan; Qu, Xiao-Shu; Zhang, Jing; Lu, Shu-Lai

    2018-04-01

    Two novel coordination compounds, [Zn(Hbimh) (H2O)]·H2O (1) and [Zn(Hbimh)]·(4,4ʹ-bpy)0.5 (2) (H3bimh = benzimidazole-5,6-hydrazide, 4,4ʹ-bpy = 4,4ʹ-bipyridine), have been prepared from the hydrothermal in situ amidation cyclization reactions of H3bimdc (H3bimdc = benzimidazole-5,6-dicarboxylic acid) and hydrazine hydrate (N2H4·H2O). Compound 1 exhibits a one-dimensional (1D) hexagon channel structure. Compound 2 is a three-dimensional (3D) framework structure, with 4,4ʹ-bpy fill the channels. We also obtained the ligand H3bimh. The compounds were characterized by IR, PXRD, TGA and elemental analysis. The fluorescence properties in the solid state at room temperature were also investigated.

  12. In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J Y; Zhong, L; Wang, C M

    2010-12-09

    We report the creation of a nanoscale electrochemical device inside a transmission electron microscope—consisting of a single tin dioxide (SnO{sub 2}) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO{sub 2}) cathode—and the in situ observation of the lithiation of the SnO{sub 2} nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfitmore » stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.« less

  13. Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry.

    PubMed

    Kawaura, Hiroyuki; Harada, Masashi; Kondo, Yasuhito; Kondo, Hiroki; Suganuma, Yoshitake; Takahashi, Naoko; Sugiyama, Jun; Seno, Yoshiki; Yamada, Norifumi L

    2016-04-20

    We report the first operando measurement of solid electrolyte interphase (SEI) formation at an electrode using in situ neutron reflectometry. The results revealed the growth of the SEI and intercalation of ions during the charge reaction. Furthermore, we propose a way of evaluating the charge used for the SEI formation.

  14. Method of producing particulate-reinforced composites and composties produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

  15. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less

  16. Insights into the discrepant luminescence for BaSiO3 :Eu2+ phosphors prepared by solid-state reaction and precipitation reaction methods.

    PubMed

    Xu, Jiao; Zhao, Yang; Chen, Jingjing; Mao, Zhiyong; Yang, Yanfang; Wang, Dajian

    2017-09-01

    Two synthesis routes, solid-state reaction and precipitation reaction, were employed to prepare BaSiO 3 :Eu 2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid-state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO 3 :Eu 2+ phosphors was performed by evaluation of X-ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO 3 :Eu 2+ phosphor, while the green emission was ascribed to a small amount of Ba 2 SiO 4 :Eu 2+ compound that was present in the solid-state reaction sample. This work clarifies the luminescence properties of Eu 2+ ions in BaSiO 3 and Ba 2 SiO 4 hosts. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Compression selective solid-state chemistry

    NASA Astrophysics Data System (ADS)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  18. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.

    PubMed

    Ma, Cheng; Cheng, Yongqiang; Yin, Kuibo; Luo, Jian; Sharafi, Asma; Sakamoto, Jeff; Li, Juchuan; More, Karren L; Dudney, Nancy J; Chi, Miaofang

    2016-11-09

    Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li 7-3x Al x La 3 Zr 2 O 12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li + , resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.

  19. Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho-Bunquin, Jeffrey; Ferrandon, Magali; Sohn, Hyuntae

    For this research, well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO 2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV–vis, and solid-state (SS) NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H 2 and TEM techniques revealed highly dispersed (methylcyclopentadienyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO 2, 1). In addition, computational modeling suggests that the surface reaction of (MeCp)PtMe 3 with Zn(II)-modified SiO 2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as indicated by NH 3-TPD and DNP-enhanced 17O{more » 1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal the probable formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-hydride sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 99%) with excellent tolerance of reduction-sensitive functional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.« less

  20. Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho-Bunquin, Jeffrey; Ferrandon, Magali; Sohn, Hyuntae

    Well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV-Vis, and solid-state (SS)NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H2 and TEM techniques revealed highly dispersed (methylcyclopentadi-enyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO2, 1). In addition, computational modelling suggests that the surface reaction of (MeCp)PtMe3 with Zn(II)-modified SiO2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as confirmed by NH3-TPD and DNP-enhanced 17O{1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal themore » formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-H sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 100%) with excellent tolerance of reduction-sensitive func-tional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.« less

  1. Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica

    DOE PAGES

    Camacho-Bunquin, Jeffrey; Ferrandon, Magali; Sohn, Hyuntae; ...

    2018-02-27

    For this research, well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO 2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV–vis, and solid-state (SS) NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H 2 and TEM techniques revealed highly dispersed (methylcyclopentadienyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO 2, 1). In addition, computational modeling suggests that the surface reaction of (MeCp)PtMe 3 with Zn(II)-modified SiO 2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as indicated by NH 3-TPD and DNP-enhanced 17O{more » 1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal the probable formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-hydride sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 99%) with excellent tolerance of reduction-sensitive functional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.« less

  2. Structural Transformation of LiFePO4 during Ultrafast Delithiation.

    PubMed

    Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; Saulnier, Mathieu; Dufresne, Eric M; Liang, Guoxian; Schougaard, Steen B

    2017-12-21

    The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4 ) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.

  3. Structural Transformation of LiFePO 4 during Ultrafast Delithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan

    The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less

  4. Structural Transformation of LiFePO 4 during Ultrafast Delithiation

    DOE PAGES

    Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; ...

    2017-12-05

    The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less

  5. In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries.

    PubMed

    Wang, Chengwei; Gong, Yunhui; Dai, Jiaqi; Zhang, Lei; Xie, Hua; Pastel, Glenn; Liu, Boyang; Wachsman, Eric; Wang, Howard; Hu, Liangbing

    2017-10-11

    The garnet-based solid state electrolyte (SSE) is considered a promising candidate to realize all solid state lithium (Li) metal batteries. However, critical issues require additional investigation before practical applications become possible, among which high interfacial impedance and low interfacial stability remain the most challenging. In this work, neutron depth profiling (NDP), a nondestructive and uniquely Li-sensitive technique, has been used to reveal the interfacial behavior of garnet SSE in contact with metallic Li through in situ monitoring of Li plating-stripping processes. The NDP measurement demonstrates predictive capabilities for diagnosing short-circuits in solid state batteries. Two types of cells, symmetric Li/garnet/Li (LGL) cells and asymmetric Li/garnet/carbon-nanotubes (LGC), are fabricated to emulate the behavior of Li metal and Li-free Li metal anodes, respectively. The data imply the limitation of Li-free Li metal anode in forming reliable interfacial contacts, and strategies of excessive Li and better interfacial engineering need to be investigated.

  6. Time-Resolved and Operando XAS Studies on Heterogeneous Catalysts - From the Gas Phase Towards Reactions in Supercritical Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Baiker, Alfons

    2007-02-02

    x-ray absorption spectroscopy is a well-suited technique to uncover the structure of heterogeneous catalysts under reaction conditions. Different aspects of in situ cell design suitable for dynamic and catalytic studies are discussed. In addition, criteria are presented that allow estimating the influence external and internal mass transfer. Starting with studies on gas-solid reactions, including structure-activity relationships, this concept is extended to liquid-solid reactions, reactions at high pressure and in supercritical fluids. The following examples are discussed in more detail: partial oxidation of methane over Pt-Rh/Al2O3, reduction of a Cu/ZnO catalyst, alcohol oxidation over Bi-promoted Pd/Al2O3 in liquid phase and overmore » Pd/Al2O3 in supercritical CO2, and batch reactions (e.g. CO2-fixation over zinc-based catalysts)« less

  7. Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanatzidis, Mercouri G.

    The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less

  8. Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases

    DOE PAGES

    Kanatzidis, Mercouri G.

    2017-03-09

    The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less

  9. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    NASA Astrophysics Data System (ADS)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which presents opportunities for the new kinds of ex situ and in situ experiments performed in this thesis. Ex situ experiments involved reducing powder samples at SOFC operating temperatures under hydrogen gas and characterizing them via electron microscopy and X-ray diffraction (XRD). For the in situ experiments, powders were heated, then reduced at temperature, and catalyst exsolution was observed in real-time. Pechini-synthesized cerium oxide substituted with 2-5 mol% Pd was studied using in situ X-ray heating experiments at Argonne National Laboratory's Advanced Photon Source. In these experiments, the powder was subjected to several cycles of reduction and oxidation at 800°C, and Pd metal formation was confirmed through the appearance of Pd peaks in the X-ray spectra. Next, Fe- and Ru-substituted lanthanum strontium chromite (LSCrFeRu14) synthesized by solid state reaction was characterized with ex situ and in situ microscopy. Transmission electron microscopy (TEM) in situ heating experiments were conducted to observe Ru nanoparticle evolution under the reducing conditions of the TEM vacuum chamber. LSCrFeRu14 was heated to 750°C and observed over ˜ 90 min at temperature during which time nanoparticle formation, coarsening, and di?usion were observed. Experiments on both materials sought to understand the conditions and timing of nanoparticle formation in the anode, which is not necessarily apparent from electrochemical data. Reducing the operating temperature of SOFCs from the current state-of-the-art range of 700-800°C to ≤ 650°C has many advantages, among them increased long-term stability, reduced balance of plant costs, fewer interconnect/seal material issues, and decreased start-up times. In order to maintain good performance at reduced temperature, these intermediate temperature SOFCs require new materials including highly active alternatives to micron-scale Ni-YSZ composite anodes. The present work focuses on the development of IT-SOFCs with Sr0.8La 0.2TiO3 (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  10. Synthesis and Structure of Hypervalent Iodine(III) Reagents Containing Phthalimidate and Application to Oxidative Amination Reactions.

    PubMed

    Kiyokawa, Kensuke; Kosaka, Tomoki; Kojima, Takumi; Minakata, Satoshi

    2015-11-09

    A new class of hypervalent iodine reagents containing phthalimidate was synthesized, and structurally characterized by X-ray analysis. The benziodoxole-based reagent displays satisfactory solubility in common organic solvents and is reasonably stable in solution as well as in the solid state. The reagent was used for the oxidative amination of the C(sp(3))-H bond of N,N-dimethylanilines. In addition, the reagent was also applicable to oxidative amination with rearrangement of trialkylamines as well as enamines that were prepared in situ from secondary amines and aldehydes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production.

    PubMed

    Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2013-10-28

    Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.

  12. High-Pressure Synthesis: A New Frontier in the Search for Next-Generation Intermetallic Compounds.

    PubMed

    Walsh, James P S; Freedman, Danna E

    2018-06-19

    The application of high pressure adds an additional dimension to chemical phase space, opening up an unexplored expanse bearing tremendous potential for discovery. Our continuing mission is to explore this new frontier, to seek out new intermetallic compounds and new solid-state bonding. Simple binary elemental systems, in particular those composed of pairs of elements that do not form compounds under ambient pressures, can yield novel crystalline phases under compression. Thus, high-pressure synthesis can provide access to solid-state compounds that cannot be formed with traditional thermodynamic methods. An emerging approach for the rapid exploration of composition-pressure-temperature phase space is the use of hand-held high-pressure devices known as diamond anvil cells (DACs). These devices were originally developed by geologists as a way to study minerals under conditions relevant to the earth's interior, but they possess a host of capabilities that make them ideal for high-pressure solid-state synthesis. Of particular importance, they offer the capability for in situ spectroscopic and diffraction measurements, thereby enabling continuous reaction monitoring-a powerful capability for solid-state synthesis. In this Account, we provide an overview of this approach in the context of research we have performed in the pursuit of new intermetallic compounds. We start with a discussion of pressure as a fundamental experimental variable that enables the formation of intermetallic compounds that cannot be isolated under ambient conditions. We then introduce the DAC apparatus and explain how it can be repurposed for use as a synthetic vessel with which to explore this phase space, going to extremes of pressure where no chemist has gone before. The remainder of the Account is devoted to discussions of recent experiments we have performed with this approach that have led to the discovery of novel intermetallic compounds in the Fe-Bi, Cu-Bi, and Ni-Bi systems, with a focus on the cutting-edge methods that made these experiments possible. We review the use of in situ laser heating at high pressure, which led to the discovery of FeBi 2 , the first binary intermetallic compound in the Fe-Bi system. Our work in the Cu-Bi system is described in the context of in situ experiments carried out in the DAC to map its high-pressure phase space, which revealed two intermetallic phases (Cu 11 Bi 7 and CuBi). Finally, we review the discovery of β-NiBi, a novel high-pressure phase in the Ni-Bi system. We hope that this Account will inspire the next generation of solid-state chemists to boldly explore high-pressure phase space.

  13. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata; Jayachandran, M.

    2013-04-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl2·6H2O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiangman; Dong, Xiao; Wang, Yajie

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Moreover, following this route produces a pure cis-isomer and more surprisingly, predictsmore » that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.« less

  15. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  16. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  17. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE PAGES

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; ...

    2017-05-03

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  18. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less

  19. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  20. In Situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries

    DOE PAGES

    Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; ...

    2016-05-03

    Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situmore » conditions. Using a LiCoO 2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO 2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO 2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.« less

  1. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    PubMed

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  2. IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.

    2011-03-27

    Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state,more » or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.« less

  3. Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad; Kartini, Evvy, E-mail: kartini@batan.go.id

    2016-02-08

    The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound ofmore » Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.« less

  4. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  5. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

  6. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    PubMed

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The effect of B{sub 2}O{sub 3} flux on growth NLBCO superconductor by solid state reaction and wet-mixing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.

    The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less

  8. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  9. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  10. In situ electrochemical-electron spin resonance investigations of multi-electron redox reaction for organic radical cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia

    2016-02-29

    Organic radical batteries (ORBs) bearing robust radical polymers as energy storage species, are emerging promisingly with durable high energy and power characteristics by unique tunable redox properties. Here we report the development and application of in situ electrochemical-electron spin resonance (ESR) methodologies to identify the charge transfer mechanism of Poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) based organic radical composite cathodes in the charge-discharge process of lithium half cells. The in situ experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstratemore » a two-electron redox reaction of PTMA. Moreover, two different local environments of radical species are found in the composite electrode that includes both concentrated and isolated radicals. These two types of radicals show similarities during the redox reaction process while behave quite differently in the non-faradic reaction of ion sorption/desorption on the electrode surface.« less

  11. Lithium storage in structurally tunable carbon anode derived from sustainable source

    DOE PAGES

    Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...

    2017-09-01

    Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less

  12. Pressure-induced polymerization of acetylene: Structure-directed stereoselectivity and a possible route to graphane

    DOE PAGES

    Sun, Jiangman; Dong, Xiao; Wang, Yajie; ...

    2017-05-02

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Moreover, following this route produces a pure cis-isomer and more surprisingly, predictsmore » that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.« less

  13. Gate-Induced Metal–Insulator Transition in MoS 2 by Solid Superionic Conductor LaF 3

    DOE PAGES

    Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin; ...

    2018-03-23

    Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less

  14. In situ insights into shock-driven reactive flow

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana

    2017-06-01

    Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.

  15. X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB{sub 2} semi-solid forged composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, James; Mandal, Animesh

    X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less

  16. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    USGS Publications Warehouse

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to distinguish whether solid bitumen, either in situ or removed and concentrated from the rock matrix, was formed via the TCA or TRS process. ?? 2008 Elsevier Ltd.

  17. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to lessmore » than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.« less

  18. Mössbauer characterization and in situ monitoring of thermal decomposition of potassium ferrate(VI), K2FeO4 in static air conditions.

    PubMed

    Machala, Libor; Zboril, Radek; Sharma, Virender K; Filip, Jan; Schneeweiss, Oldrich; Homonnay, Zoltán

    2007-04-26

    Solid orthorhombic crystals of potassium ferrate(VI) (K(2)FeO(4)) of a high-chemical purity (>99.0%) were characterized by low-temperature (1.5-5 K), high-temperature (463-863 K), and in-field (1.5 K/3 T) Mössbauer spectroscopy. Potassium ferrate(VI) reveals a Néel magnetic transition temperature (TN) of approximately 3.8 K and a saturation hyperfine magnetic field of 13.8 T at 1.5 K. Spectral line intensities recorded below TN in an external magnetic field of 3 T manifest a perfect antiferromagnetic ordering. For the in situ monitoring of the thermal behavior of K(2)FeO(4), high-temperature Mössbauer data were combined with those obtained from thermogravimetry, differential scanning calorimetry, and variable-temperature X-ray diffraction measurements. Such in situ approach allowed the identification of the reaction products and intermediates and yielded the first experimental evidence for the participation of CO2 in the decomposition process. As the primary conversion products, KFeO(2) and two potassium oxides in equivalent molar ratio, KO2 and K(2)O, were suggested. However, the KO2 phase is detectable with difficulty as it reacts very quickly with CO2 from air resulting in the formation of K(2)CO(3). The presented decomposition model is consistent with thermogravimetric data giving the mass loss of 8.0%, which corresponds to the participation of 1/6 mol of CO2 and liberation of 3/4 mol of O2 per 1 mol of K(2)FeO(4) (K(2)FeO(4) + 1/6CO2 --> KFeO(2) + 1/3K(2)O + 1/6K(2)CO(3) + 3/4O2). An explanation of the multistage reaction mechanism has an important practical impact for the optimization of the solid-state synthesis of potassium ferrate(VI).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Franklin

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less

  20. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

  1. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE PAGES

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; ...

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  2. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin

    Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less

  4. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy.

    PubMed

    Otaki, Takashi; Tanabe, Yuta; Kojima, Takashi; Miura, Masaru; Ikeda, Yukihiro; Koide, Tatsuo; Fukami, Toshiro

    2018-05-05

    In recent years, to guarantee a quality-by-design approach to the development of pharmaceutical products, it is important to identify properties of raw materials and excipients in order to determine critical process parameters and critical quality attributes. Feedback obtained from real-time analyses using various process analytical technology (PAT) tools has been actively investigated. In this study, in situ monitoring using low-frequency (LF) Raman spectroscopy (10-200 cm -1 ), which may have higher discriminative ability among polymorphs than near-infrared spectroscopy and conventional Raman spectroscopy (200-1800 cm -1 ), was investigated as a possible application to PAT. This is because LF-Raman spectroscopy obtains information about intermolecular and/or lattice vibrations in the solid state. The monitoring results obtained from Furosemide/Nicotinamide cocrystal indicate that LF-Raman spectroscopy is applicable to in situ monitoring of suspension and fluidized bed granulation processes, and is an effective technique as a PAT tool to detect the conversion risk of cocrystals. LF-Raman spectroscopy is also used as a PAT tool to monitor reactions, crystallizations, and manufacturing processes of drug substances and products. In addition, a sequence of conversion behaviors of Furosemide/Nicotinamide cocrystals was determined by performing in situ monitoring for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less

  6. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less

  7. Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.

    PubMed

    Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei

    2015-02-07

    Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.

  8. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.

    PubMed

    Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Huang, Yu-Ting; Hu, Jung-Chih; Chen, Lien-Tai; Hsin, Cheng-Lun; Wu, Wen-Wei

    2013-06-07

    Copper silicide has been studied in the applications of electronic devices and catalysts. In this study, Cu3Si/Si nanowire heterostructures were fabricated through solid state reaction in an in situ transmission electron microscope (TEM). The dynamic diffusion of the copper atoms in the growth process and the formation mechanism are characterized. We found that two dimensional stacking faults (SF) may retard the growth of Cu3Si. Due to the evidence of the block of edge-nucleation (heterogeneous) by the surface oxide, center-nucleation (homogeneous) is suggested to dominate the silicidation. Furthermore, the electrical transport properties of various silicon channel length with Cu3Si/Si heterostructure interfaces and metallic Cu3Si NWs have been investigated. The observations not only provided an alternative pathway to explore the formation mechanisms and interface properties of Cu3Si/Si, but also suggested the potential application of Cu3Si at nanoscale for future processing in nanotechnology.

  9. Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm.

    PubMed

    Li, Yunxiang; Ouyang, Shuxin; Xu, Hua; Wang, Xin; Bi, Yingpu; Zhang, Yuanfang; Ye, Jinhua

    2016-10-03

    Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C 3 N 4 , a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C 3 N 4 -based photocatalyst to effectively convert photocatalytic generation of H 2 O 2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C 3 N 4 -based photocatalyst as an in situ and robust H 2 O 2 generator, and surface-decorated Fe 3+ as a trigger of H 2 O 2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C 3 N 4 , which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.

  10. Mineralization of Carbon Dioxide: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Soong, Y; Carney, C

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrialmore » process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2« less

  11. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  12. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Qiyue; Stach, Eric A.; Gao, Fan

    2015-02-10

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, η-Cu₆Sn₅ → ε-Cu₃Sn → δ-Cu₄₁Sn₁₁ for nanowires with a long Cu segment and η-Cu₆Sn₅ → ε-Cu₃Sn → γ-Cu₃Sn with amore » short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu₃ and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.« less

  13. Synthesis and characterizaton of inorganic materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shanmugam, Rengarajan

    Development of low-cost energy storage devices is critical for wide-scale implementation of intermittent renewable energy technologies and improving the electricity grid. Commercial devices remain prohibitively expensive or lack the performance specifications for a wider market reach. Na-ion batteries would perfectly suited for these large-scale applications as the raw materials (such as soda ash, salt, etc.) are plentiful, inexpensive and geographically unconstrained. However, extensive materials research on insertion electrodes is required for better understanding of the electrochemical and structural properties and engineering high performance Na-ion batteries. This thesis research involves exploratory study on new insertion materials with various crystallographic structure-types and extensive characterization of promising new inorganic compositions. Tunnel-type materials, sodium nickel phosphate-Na4Ni7(PO4)6, and sodium cobalt titanate- Na0.8Co0.4Ti1.6O4, were investigated to capitalize on the intrinsic structural stability offered by framework materials. Sol-gel and solid-state reaction synthetic techniques were employed for inorganic powder synthesis. Galvanostatic and potentiostatic testing confirm reversible sodium insertion/de-insertion reactions albeit with inadequate electrochemical characteristics (high voltage hysteresis> 1V). Subsequent efforts involved investigating layer-structured materials supporting fast ionic transport for better electrochemical performance. P2-sodium nickel titanate, Na2/3[Ni1/3Ti2/3]O2 (P2NT), with prismatic sodium co-ordination, was synthesized by solid-state technique. The 'bifunctional' oxide contains Ni2+/4+ and Ti4+/3+ redox couples with redox potentials of 3.6 V, 0.7 V vs. Na/Na+, respectively. This bifunctional approach would simplify electrode processing and provide cost reduction opportunities in battery manufacturing. The structural changes monitored using ex-situ XRD demonstrate a favorably broad solid-solution domain. Manganese substitution, to form P2-Na2/3[Ni1/3Mn1/3Ti1/3]O2 (P2NMT), provides an enhanced high-current performance due to faster interfacial kinetics and accelerated charge carrier transport as shown by impedance spectroscopy and DC testing. Structural properties of P2NT material were studied using neutron diffraction and atomisitic simulations. Rietveld refinement shows that Naf sites have lower site occupancy than Nae sites due to unfavorable repulsive interactions from inline transition metal atoms. Buckingham and Morse-type models accurately predicted the experimental lattice parameters. The energy landscape was explored using energy minimization runs on disordered supercells. The simulated density maps are in agreement with the experiment densities with evidence of stacking fault formation. O3-sodium nickel titanate, Na0.9[Ni0.45Ti0.55]O2 (O3NT) with octahedral sodium co-ordination was synthesized by solid-state reaction technique. The influence of titanium on the poor cycleability of the O3-type electrodes was investigated. Ex-situ XRD shows two phase regions, comprised of O3+P3 phases, and a solid solution region, comprised of P3 phase. O3NT provides an excellent capacity retention of 99% for 115 cycles at C/2 rate. The good cycleability is attributed to the relative invariance of net impedance during electrode cycling using impedance spectroscopy.

  14. 40 CFR 256.63 - Requirements for public participation in the permitting of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE... solid waste disposal facility the State shall hold a public hearing to solicit public reaction and...

  15. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    PubMed

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions - A Sum Frequency Generation Vibrational Spectroscopy Study

    DOE PAGES

    Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N.; ...

    2015-12-11

    The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). In this paper, we have studied a common electrolyte, 1.0 M LiPF 6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials wheremore » electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC 2H 5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. Finally, these findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general.« less

  17. Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer

    USGS Publications Warehouse

    McGuire, Jennifer T.; Long, David T.; Klug, Michael J.; Haack, Sheridan K.; Hyndman, David W.

    2002-01-01

    This study evaluates the biogeochemical changes that occur when recharge water comes in contact with a reduced aquifer. It specifically addresses (1) which reactions occur in situ, (2) the order in which these reactions will occur if terminal electron acceptors (TEAs) are introduced simultaneously, (3) the rates of these reactions, and (4) the roles of the aqueous and solid-phase portions of the aquifer. Recharge events of waters containing various combinations of O2, NO3, and SO4 were simulated at a shallow sandy aquifer contaminated with waste fuels and chlorinated solvents using modified push−pull tests to quantify rates. In situ rate constants for aerobic respiration (14.4 day -1), denitrification (5.04−7.44 day-1), and sulfate reduction (4.32−6.48 day-1) were estimated. Results show that when introduced together, NO3 and SO4can be consumed simultaneously at similar rates. To distinguish the role of aqueous phase from that of the solid phase of the aquifer, groundwater was extracted, amended with NO3 and SO4, and monitored over time. Results indicate that neither NO3 nor SO4 was reduced during the course of the aqueous-phase study, suggesting that NO3 and SO4 can behave conservatively in highly reduced water. It is clear that sediments and their associated microbial communities are important in driving redox reactions.

  18. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.

  19. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  20. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    NASA Astrophysics Data System (ADS)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  1. Superstructure ZrV2O7 nanofibres: thermal expansion, electronic and lithium storage properties.

    PubMed

    Li, Qidong; Zhao, Yanming; Kuang, Quan; Fan, Qinghua; Dong, Youzhong; Liu, Xudong

    2016-11-30

    ZrV 2 O 7 has attracted much attention as a negative thermal expansion (NTE) material due to its isotropic negative structure. However, rarely has investigation of the lithium storage behaviors been carried out except our first report on it. Meanwhile, the electrochemical behaviors and energy storage characteristics have not been studied in depth and will be explored in this article. Herein, we report on the synthesis, characterization and lithium intercalation mechanism of superstructure ZrV 2 O 7 nanofibres that were prepared through a facile solution-based method with a subsequent annealing process. The thermal in situ XRD technique combined with the Rietveld refinement method is adopted to analyze the change in the temperature-dependent crystal structure. Benefiting from the nanostructured morphology and relatively high electronic conductivity, it presents acceptable cyclic stability and rate capability. According to the operando evolution of the XRD patterns obtained from electrochemical in situ measurements, the Li intercalation mechanism of the solid solution process with a subsequent conversion reaction can be concluded. Finally, the amorphous state of the electrodes after the initial fully discharged state can effectively enhance the electrochemical performances.

  2. In situ control of synchronous germanide/silicide reactions with Ge/Si core/shell nanowires to monitor formation and strain evolution in abrupt 2.7 nm channel length

    DOE PAGES

    Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei; ...

    2017-05-22

    The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less

  3. In situ control of synchronous germanide/silicide reactions with Ge/Si core/shell nanowires to monitor formation and strain evolution in abrupt 2.7 nm channel length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei

    The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less

  4. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-01

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  5. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy.

    PubMed

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-06

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  6. Experiment and Theory for Nuclear Reactions in Nano-Materials Show e14 - e16 Solid-State Fusion Reactions

    NASA Astrophysics Data System (ADS)

    George, Russ

    2005-03-01

    Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.

  7. Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste.

    PubMed

    Lee, Jechan; Choi, Dongho; Tsang, Yiu Fai; Oh, Jeong-Ik; Kwon, Eilhann E

    2017-05-01

    This study proposes a strategic principle to enhance the thermal efficiency of pyrolysis of municipal solid waste (MSW). An environmentally sound energy recovery platform was established by suppressing the formation of harmful organic compounds evolved from pyrolysis of MSW. Using CO 2 as reaction medium/feedstock, CO generation was enhanced through the following: 1) expediting the thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of the MSWs and 2) directly reacting VOCs with CO 2 . This particular influence of CO 2 on pyrolysis of the MSWs also led to the in-situ mitigation of harmful organic compounds (e.g., benzene derivatives and polycyclic aromatic hydrocarbons (PAHs)) considering that CO 2 acted as a carbon scavenger to block reaction pathways toward benzenes and PAHs in pyrolysis. To understand the fundamental influence of CO 2 , simulated MSWs (i.e., various ratios of biomass to polymer) were used to avoid any complexities arising from the heterogeneous matrix of MSW. All experimental findings in this study suggested the foreseeable environmental application of CO 2 to energy recovery from MSW together with disposal of MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrogenation properties of Li{sub x}Sr{sub 1−x}AlSi studied by quantum-chemical methods (0≤x≤1) and in-situ neutron powder diffraction (x=1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian

    2015-01-15

    In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less

  9. Microfluidic multiplexing of solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit

    2017-12-01

    Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.

  10. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  11. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less

  12. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals.

    PubMed

    Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom

    2017-11-17

    Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.

  14. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  15. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  16. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.

  17. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  18. Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles.

    PubMed

    Tarábková, Hana; Bastl, Zdeněk; Janda, Pavel

    2014-12-09

    Interactions of gaseous (ambient) nanobubbles (10-100 nm diameter) with different hydrophobic materials-Teflon, polystyrene, paraffin, and basal plane highly ordered pyrolytic graphite (HOPG)-are studied by AFM in situ and ex situ. Exactly identical surface locations are examined before and after exposure to ambient gas nanobubbles in deionized water and compared for nanomorphological changes. While freely flooded/immersed surfaces, regularly occupied by nanobubbles, do not exhibit resolvable alterations, significant surface rearrangement is found on whole flooded area after mild pressure drop (10 kPa) applied on the solid-liquid interface. Nanopattern and its characteristic dimension appear to be material specific and solely reflect surface-nanobubble interaction. Mild, nonswelling, noncorrosive conditions (20 °C, deionized water) prevent intervention of chemical reaction and high-energy-demanding processes. Experimental results, in accordance with the presented model, indicate that the mild pressure drop triggers expansion of pinned nanobubbles, imposing local tensile stress on the solid surface. Consequently, nanobubbles should be considered as large-area nanoscale patterning elements.

  19. Single-Stroke Synthesis of Tin Sulphide/Oxide Nanocomposites Within Engineering Thermoplastic and Their Humidity Response.

    PubMed

    Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh

    2018-05-01

    SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

  20. TAMOAS: In Situ Gasometry in the Atmosphere with Solid Electrolyte Sensors on BEXUS-19

    NASA Astrophysics Data System (ADS)

    Bronowski, A.; Clemens, R.; Jaster, T.; Kosel, F.; Matyash, I.; Westphal, A.

    2015-09-01

    A student experiment developed for testing gas sensors in the stratosphere is described. The setup consists of a measurement electronic running miniaturized in situ amperiometric gas sensors based on different solid state electrolytes dedicated for oxygen, ozone and atomic oxygen. The experiment took place at Esrange Space Center in October 2014. The setup was attached to the high-altitude balloon BEXUS-19 and reached an altitude of 27 km at night. The primary objective was to test the prototype sensors and to gain data during flight.

  1. Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State.

    PubMed

    Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo

    2016-11-04

    The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).

  2. Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy.

    PubMed

    Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D

    2014-12-22

    Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.

  3. Solid State Pathways towards Molecular Complexity in Space

    NASA Astrophysics Data System (ADS)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  4. Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.

    PubMed

    Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi

    2011-12-16

    Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.

  5. ORGANIC REACTIONS IN THE SOLID STATE AND IN SOLID SOLUTIONS.

    DTIC Science & Technology

    on the reactions of phthalic acid and acetanilide , various acyl anilides, and ring-substituted acetanilides . Exploratory experiments were also...performed between ring-substituted acetanilides and succinic, glutaric, maleic and fumaric acids. The influence of imidazole as a catalyst of the...transacylation reaction of phthalic anhydride and acetanilide is also reported. (Author)

  6. The kinetics and mechanism of nanoconfined molten salt reactions: trimerization of potassium and rubidium dicyanamide.

    PubMed

    Yancey, Benjamin; Vyazovkin, Sergey

    2015-04-21

    This study highlights the effect of the aggregate state of a reactant on the reaction kinetics under the conditions of nanoconfinement. Our previous work (Phys. Chem. Chem. Phys., 2014, 16, 11409) has demonstrated considerable deceleration of the solid state trimerization of sodium dicyanamide in organically modified silica nanopores. In the present study we use FTIR, NMR, pXRD, TGA and DSC to analyze the kinetics and mechanism of the liquid state trimerization of potassium and rubidium dicyanamide under similar conditions of nanoconfinement. It is found that nanoconfinement accelerates dramatically the kinetics of the liquid state trimerization, whereas it does not appear to affect the reaction mechanism. Kinetic analysis indicates that the acceleration is associated with an increase in the preexponential factor. Although nanoconfinement has the opposite effects on the respective kinetics of solid and liquid state trimerization, both effects are linked to a change in the preexponential factor. The results obtained are consistent with our hypothesis that the effects differ because nanoconfinement may promote disordering of the solid and ordering of the liquid reaction media.

  7. In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Li; Zhang, Longfei; Hao, Weiwei; Wang, Haibo; Qu, Qunting; Zheng, Honghe

    2014-03-01

    Graphene-decorated LiFePO4 composite is synthesized for the first time through in-situ pyrolysis and catalytic graphitization, in which glucose and a trace amount of FeSO4 are employed as the graphene source and catalyst precursor, respectively. Under Ar/H2 (95:5) atmosphere at 750 °C, FeSO4 is thermally reduced to Fe nano-particles (Fe NPs) and glucose is pyrolyzed to carbon fragments first, followed by the in-situ growth of graphene sheets directly on the LiFePO4 nano-particles (LFP NPs) surface through the realignment of carbon fragments under the catalytic effect of the Fe NPs. The graphene sheets not only form a compact and uniform coating layer throughout the LFP NPs, but also stretch out and cross-link into a conducting network around the LFP particles. The LiFePO4@graphene composite displays a high reversible specific capacity of 167.7 mAh g-1 at 0.1C rate, superb rate performance with discharge capacity of 94.3 mAh g-1 at 100C rate and much prolonged cycle life. The remarkable electrochemical improvement is attributed to both electric and ionic conductivity increase as a result of in-situ grown graphene coatings along the LFP surface and the graphene network intrinsically connecting to the LFP particles.

  8. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  9. In-situ surface science studies of the interaction between sulfur dioxide and two-dimensional palladium loaded-cerium/zirconium mixed metal oxide model catalysts

    NASA Astrophysics Data System (ADS)

    Romano, Esteban Javier

    2005-07-01

    Cerium and zirconium oxides are important materials in industrial catalysis. Particularly, the great advances attained in the past 30 years in controlling levels of gaseous pollutants released from internal combustion engines can be attributed to the development of catalysts employing these materials. Unfortunately, oxides of sulfur are known threats to the longevity of many catalytic systems by irreversibly interacting with catalytic materials. In this work, polycrystalline cerium-zirconium mixed-metal-oxide (MMO) solid solutions were synthesized. High resolution x-ray photoelectron spectroscopy (XPS) spectral data was collected and examined for revelation of the surface species that form on these metal oxides after in-situ exposures to sulfur dioxide. The model catalysts were exposed to sulfur dioxide using a custom modified in-situ reaction cell and platen heater. The results of this study demonstrate the formation of sulfate and sulfite surface sulfur species. Temperature and compositional dependencies were displayed, with higher temperatures and ceria molar ratios displaying a larger propensity for forming surface sulfur species. In addition to analysis of sulfur photoemission, the photoemission regions of oxygen, zirconium, and cerium were examined for the materials used in this study before and after the aforementioned treatments with sulfur dioxide. The presence of surface hydroxyl groups was observed and metal oxidation state changes were probed to further enhance the understanding of sulfur dioxide adsorption on the synthesized materials. Palladium loaded mixed-metal oxides were synthesized using a unique solid-state methodology to probe the effect of palladium addition on sulfur dioxide adsorption. The addition of palladium to this model system is shown to have a strong effect on the magnitude of adsorption for sulfur dioxide on some material/exposure condition combinations. Ceria/zirconia sulfite and sulfate species are identified on the palladium-loaded MMO materials with adsorption sites located on the exposed oxide sites.

  10. Silicide/Silicon Heterointerfaces, Reaction Kinetics and Ultra-short Channel Devices

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    Nickel silicide is one of the electrical contact materials widely used on very large scale integration (VLSI) of Si devices in microelectronic industry. This is because the silicide/silicon interface can be formed in a highly controlled manner to ensure reproducibility of optimal structural and electrical properties of the metal-Si contacts. These advantages can be inherited to Si nanowire (NW) field-effect transistors (FET) device. Due to the technological importance of nickel silicides, fundamental materials science of nickel silicides formation (Ni-Si reaction), especially in nanoscale, has raised wide interest and stimulate new insights and understandings. In this dissertation, in-situ transmission electron microscopy (TEM) in combination with FET device characterization will be demonstrated as useful tools in nano-device fabrication as well as in gaining insights into the process of nickel silicide formation. The shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) has been demonstrated by controlled reaction with Ni leads on an in-situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 ºC. NiSi2 is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (microA/microm) and a maximum transconductance of 430 (microS/microm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of (17 nm -- 3.6 microm). Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs, and that limits transport parameter extraction from SB-FETs using the conventional field-effect transconductance measurements. In addition to application of silicide in Si NW devices, the fundamental materials science of Ni-Si reaction is also of interest, and in-situ TEM has been shown to be a useful tool in obtaining dynamical phase transformation information and therefore providing insights into the new phase formation process. By using in-situ TEM techniques, a new gold catalyzed solid-liquid-solid (SLS) silicide phase growth mechanism in Si NWs is observed for the first time, which shows the liquid mediating growth can be also used in synthesis of metallic silicide nanowires. SLS is analogous to the VLS in both being liquid-mediated, but is fundamentally different in terms of nucleation and mass transport. In our SLS growth at 700 ºC, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through Si NW into the pre-existing Au particle at the tip. Upon supersaturation of both Ni and Si in Au, octahedral shape of Ni disilicide phase nucleates in the middle of the Au liquid alloy, which thereafter sweeps through the Si NW and transform Si into NiSi2. Dissolution of Si by Au(Si,Ni) liquid mediating layer and growth of NiSi2 are shown to proceed in different manners. Using in-situ TEM technique, we also have the chance to present direct evidence that Si (111) twin boundaries and Si grain boundaries on Si NW surface can be efficient heterogeneous nucleation site for the silicide growth. By analyzing the nucleation site favorability, unlike other typical FCC materials like Cu or Si, we infer (111) twin defects in NiSi2 may have high interfacial energy. These results may provide valuable insights into the MOSFET source/drain (S/D) contact silicide formation process when defects are either unintentionally formed during the process or intentionally introduced to engineering the strain along the channel.

  11. Pressure-Induced Polymerization of Acetylene: Structure-Directed Stereoselectivity and a Possible Route to Graphane.

    PubMed

    Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang

    2017-06-01

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    PubMed

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  13. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  14. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  15. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide.

    PubMed

    Kirkegaard, Marie C; Miskowiec, Andrew; Ambrogio, Michael W; Anderson, Brian B

    2018-05-21

    We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.

  16. Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries.

    PubMed

    Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng

    2018-05-23

    Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  18. Rechargeable sodium all-solid-state battery

    DOE PAGES

    Zhou, Weidong; Li, Yutao; Xin, Sen; ...

    2017-01-03

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  19. Rechargeable Sodium All-Solid-State Battery

    PubMed Central

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C. PMID:28149953

  20. Growing large columnar grains of CH3NH3PbI3 using the solid-state reaction method enhanced by less-crystallized nanoporous PbI2 films

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing

    2017-03-01

    Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.

  1. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Stach, Eric A.; Zhou, Guangwen

    2015-03-01

    The Cu-Sn metallurgical soldering reaction in two-segmented Cu-Sn nanowires is studied by in situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction results in a Cu-Sn solid solution for small Sn/Cu length ratio while Cu-Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires to ~500 °C, two phase transformation pathways occur, η-Cu6Sn5 --> ε-Cu3Sn --> δ-Cu41Sn11 for nanowires with a long Cu segment and η-Cu6Sn5 --> ε-Cu3Sn --> γ-Cu3Sn with a short Cu segment. The evolution of Kirkendall voids in the nanowires demonstrates that Cu diffuses faster than Sn in IMCs. Void growth results in the nanowire breakage that shuts off the inter-diffusion of Cu and Sn and thus leads to changes in the phase transformation pathway in the IMCs.

  2. Unravelling the low thermal expansion coefficient of cation-substituted YBaCo 4O 7+δ

    DOE PAGES

    Manthiram, Arumugam; Huq, Ashfia; Kan, Wang Hay; ...

    2016-01-12

    With an aim to understand the origin of the low thermal expansion coefficients (TECs), cation substituted YBaCo 4O 7-type oxides have been investigated by in-situ neutron diffraction, bond valence sum (BVS), thermogravimetric analysis, and dilatometry. The compositions YBaCo 4O 7+δ, Y 0.9ln 0.1BaCo 3ZnO 7+δ, and Y 0.9ln 0.1BaCo 3Zn 0.6Fe 0.4O 7+δ) were synthesized by solid-state reaction at 1200 °C. Here, Rietveld refinement of the joint synchrotron X-ray and neutron diffraction data shows that the Zn and Fe dopants have different preferences to substitute the Co ions in the 6c and 2a sites.

  3. Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and processes in liquids

    DOE PAGES

    Velmurugan, Jeyavel; Kalinin, Sergei V.; Kolmakov, Andrei; ...

    2016-02-11

    Here, noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid–solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imagingmore » with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.« less

  4. Stepwise assembly of a semiconducting coordination polymer [Cd8S(SPh)14(DMF)(bpy)]n and its photodegradation of organic dyes.

    PubMed

    Xu, Chao; Hedin, Niklas; Shi, Hua-Tian; Xin, ZhiFeng; Zhang, Qian-Feng

    2015-04-14

    Chalcogenolate clusters can be interlinked with organic linkers into semiconducting coordination polymers with photocatalytic properties. Here, discrete clusters of Cd8S(SPh)14(DMF)3 were interlinked with 4,4'-bipyridine into a one dimensional coordination polymer of [Cd8S(SPh)14(DMF)(bpy)]n with helical chains. A stepwise mechanism for the assembly of the coordination polymer in DMF was revealed by an ex situ dynamic light scattering study. The cluster was electrostatically neutral and showed a penta-supertetrahedral structure. During the assembly each cluster was interlinked with two 4,4'-bipyridine molecules, which replaced the two terminal DMF molecules of the clusters. In their solid-state forms, the cluster and the coordination polymer were semiconductors with wide band gaps of 3.08 and 2.80 ev. They photocatalytically degraded rhodamine B and methylene blue in aqueous solutions. The moderate conditions used for the synthesis could allow for further in situ studies of the reaction-assembly of related clusters and coordination polymers.

  5. Solid state synthesis of poly(dichlorophosphazene)

    DOEpatents

    Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.

    2001-01-01

    A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.

  6. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    NASA Astrophysics Data System (ADS)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  7. Prebiotic significance of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.

    2005-09-01

    The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.

  8. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  9. Diffusion and reactivity of ground-state nitrogen atoms N(4S) between 3 and 15 K: application to the hydrogen abstraction reaction from methane under non-energetic conditions

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Krim, Lahouari

    2015-07-01

    We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.

  10. Theoretical and computer models of detonation in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less

  11. Atomic Layer Deposition of the Solid Electrolyte LiPON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan -Fu

    We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiO tBu), H 2O, trimethylphosphate (TMP), and plasma N 2 ( PN 2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN 2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen aremore » polycrystalline. Lastly, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.« less

  12. Atomic Layer Deposition of the Solid Electrolyte LiPON

    DOE PAGES

    Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan -Fu; ...

    2015-07-09

    We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiO tBu), H 2O, trimethylphosphate (TMP), and plasma N 2 ( PN 2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN 2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen aremore » polycrystalline. Lastly, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.« less

  13. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    PubMed

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  14. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.

    Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less

  15. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide

    DOE PAGES

    Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.; ...

    2018-05-10

    Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less

  16. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  17. Design of a Geothermal Downhole Magnetic Flowmeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  18. Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.

    PubMed

    Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong

    2017-11-01

    High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-11-01

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2017-04-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  1. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  2. X-ray chemical analyzer for field applications

    DOEpatents

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  3. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    PubMed

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  4. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lulu; Su, Dong; Zhu, Shangqian

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  5. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGES

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; ...

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  6. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    PubMed

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  7. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths

    PubMed Central

    Akiva-Tal, Anat; Kababya, Shifi; Balazs, Yael S.; Glazer, Lilah; Berman, Amir; Sagi, Amir; Schmidt, Asher

    2011-01-01

    Bioavailable calcium is maintained by some crustaceans, in particular freshwater crayfish, by stabilizing amorphous calcium carbonate (ACC) within reservoir organs—gastroliths, readily providing the Ca2+ needed to build a new exoskeleton. Despite the key scientific and biomedical importance of the in situ molecular-level picture of biogenic ACC and its stabilization in a bioavailable form, its description has eluded efforts to date. Herein, using multinuclear NMR, we accomplish in situ molecular-level characterization of ACC within intact gastroliths of the crayfish Cherax quadricarinatus. In addition to the known CaCO3, chitin scaffold and inorganic phosphate (Pi), we identify within the gastrolith two primary metabolites, citrate and phosphoenolpyruvate (PEP) and quantify their abundance by applying solution NMR techniques to the gastrolith “soluble matrix.” The long-standing question on the physico-chemical state of ACC stabilizing, P-bearing moieties within the gastrolith is answered directly by the application of solid state rotational-echo double-resonance (REDOR) and transferred-echo double-resonance (TEDOR) NMR to the intact gastroliths: Pi and PEP are found molecularly dispersed throughout the ACC as a solid solution. Citrate carboxylates are found < 5 Å from a phosphate (intermolecular C⋯P distance), an interaction that must be mediated by Ca2+. The high abundance and extensive interactions of these molecules with the ACC matrix identify them as the central constituents stabilizing the bioavailable form of calcium. This study further emphasizes that it is imperative to characterize the intact biogenic CaCO3. Solid state NMR spectroscopy is shown to be a robust and accessible means of determining composition, internal structure, and molecular functionality in situ. PMID:21873244

  8. The interaction of small particles and thin films of metals with gases. I - A brief review of the early stages of oxide formation

    NASA Technical Reports Server (NTRS)

    Poppa, H.

    1976-01-01

    Existing work on gas-solid reactions making use of thin film technologies is reviewed. The discussion concentrates on two major areas of gas-metal interactions: chemisorption and the early stages of oxidation of metals (characterized by a non-volatile reaction product) and catalytic surface reactions (featuring volatile reaction products). A brief survey of oxide formation on metals is presented. Here it is of importance to distinguish between reactions on continuous thin film substrates and reactions on particulate deposits. Small particle-gas interactions also affect the nucleation, growth and sintering processes of thin films. It is shown that various combinations of UHV and high resolution electron microscopy techniques, which include in situ experimentation, can provide the appropriate tools for studying angstrom particle chemistry.

  9. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less

  10. Electrochemical properties of copper-based compounds with polyanion frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, Yoshifumi; Hata, Shoma; Suzuki, Kota

    The copper-based polyanion compounds Li{sub 6}CuB{sub 4}O{sub 10} and Li{sub 2}CuP{sub 2}O{sub 7} were synthesized using a conventional solid-state reaction, and their electrochemical properties were determined. Li{sub 6}CuB{sub 4}O{sub 10} showed reversible capacity of 340 mA g{sup −1} at the first discharge–charge process, while Li{sub 2}CuP{sub 2}O{sub 7} showed large irreversible capacity and thus low charge capacity. Ex situ X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements revealed that the electrochemical Li{sup +} intercalation/deintercalation reaction in Li{sub 6}CuB{sub 4}O{sub 10} occurred via reversible Cu{sup 2+}/Cu{sup +} reduction/oxidation reaction. These differences in their discharge/charge mechanisms are discussed basedmore » on the strength of the Cu–O covalency via their inductive effects. - Graphical abstract: Electrochemical properties for Cu-based polyanion compounds were investigated. The electrochemical reaction mechanisms are strongly affected by their Cu–O covalentcy. - Highlights: • Electrochemical properties of Cu-based polyanion compounds were investigated. • The Li{sup +} intercalation/deintercalation reaction progressed in Li{sub 6}CuB{sub 4}O{sub 10}. • The electrochemical displacement reaction progressed in Li{sub 2}CuP{sub 2}O{sub 7}. • The strength of Cu–O covalency affects the reaction mechanism.« less

  11. Characterization of MoVTeNbO x catalysts during oxidation reactions using in situ/operando techniques: A review

    DOE PAGES

    Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...

    2017-04-08

    The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less

  12. Characterization of MoVTeNbO x catalysts during oxidation reactions using in situ/operando techniques: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Soe; Diao, Weijian; Baroi, Chinmoy

    The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less

  13. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  14. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.

    PubMed

    Skrdla, Peter J; Robertson, Rebecca T

    2005-06-02

    Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.

  15. Communication: Low-energy free-electron driven molecular engineering: In situ preparation of intrinsically short-lived carbon-carbon covalent dimer of CO

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Sajeev, Y.

    2017-02-01

    Molecular modification induced through the resonant attachment of a low energy electron (LEE) is a novel approach for molecular engineering. In this communication, we explore the possibility to use the LEE as a quantum tool for the in situ preparation of short lived molecules. Using ab initio quantum chemical methods, this possibility is best illustrated for the in situ preparation of the intrinsically short-lived carbon-carbon covalent dimer of CO from a glyoxal molecule. The chemical conversion of glyoxal to the covalent dimer of CO is initiated and driven by the resonant capture of a near 11 eV electron by the glyoxal molecule. The resulting two-particle one-hole (2p-1h) negative ion resonant state (NIRS) of the glyoxal molecule undergoes a barrierless radical dehydrogenation reaction and produces the covalent dimer of CO. The autoionization electron spectra from the 2p-1h NIRS at the dissociation limit of the dehydrogenation reaction provides access to the electronic states of the CO dimer. The overall process is an example of a catalytic electron reaction channel.

  16. Mixed polyanion glass cathodes: Glass-state conversion reactions

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; ...

    2015-11-10

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model hasmore » been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.« less

  17. The Synthesis of LiMnxFe1−xPO4/C Cathode Material through Solvothermal Jointed with Solid-State Reaction

    PubMed Central

    He, Xiangming; Wang, Jixian; Dai, Zhongjia; Wang, Li; Tian, Guangyu

    2016-01-01

    LiMnxFe1−xPO4/C material has been synthesized through a facile solid-state reaction under the condition of carbon coating, using solvothermal-prepared LiMnPO4 and LiFePO4 as precursors and sucrose as a carbon resource. XRD and element distribution analysis reveal completed solid-state reaction of precursors. LiMnxFe1−xPO4/C composites inherit the morphology of precursors after heat treatment without obvious agglomeration and size increase. LiMnxFe1−xPO4 solid solution forms at low temperature around 350 °C, and Mn2+/Fe2+ diffuse completely within 1 h at 650 °C. The LiMnxFe1−xPO4/C (x < 0.8) composite exhibits a high-discharge capacity of over 120 mAh·g−1 (500 Wh·kg−1) at low C-rates. This paves a way to synthesize the crystal-optimized LiMnxFe1−xPO4/C materials for high performance Li-ion batteries. PMID:28773887

  18. A novel solid state photocatalyst for living radical polymerization under UV irradiation

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.

    2016-02-01

    This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.

  19. Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato.

    PubMed

    Acevedo, Nuria C; Schebor, Carolina; Buera, Pilar

    2008-06-01

    Non-enzymatic browning (NEB) development was studied in dehydrated potato at 70°C. It was related to the macroscopic and molecular properties and to water-solid interactions over a wide range of water activities. Time resolved (1)H NMR, thermal transitions and water sorption isotherms were evaluated. Although non-enzymatic browning could be detected in the glassy state; colour development was higher in the supercooled state. The reaction rate increased up to a water content of 26g/100g of solids (aw=0.84) and then decreased at higher water contents, concomitantly with the increase of water proton mobility. The joint analyses of NEB kinetics, water sorption isotherm and proton relaxation behaviour made it evident that the point at which the reaction rate decreased, after a maximum value, could be related to the appearance of highly mobile water. The results obtained in this work indicate that the prediction of chemical reaction kinetics can be performed through the integrated analysis of water sorption, water and solids mobility and the physical state of the matrix. Copyright © 2007 Elsevier Ltd. All rights reserved.

  20. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells.

    PubMed

    Bessler, Wolfgang G; Vogler, Marcel; Störmer, Heike; Gerthsen, Dagmar; Utz, Annika; Weber, André; Ivers-Tiffée, Ellen

    2010-11-14

    This article presents a literature review and new results on experimental and theoretical investigations of the electrochemistry of solid oxide fuel cell (SOFC) model anodes, focusing on the nickel/yttria-stabilized zirconia (Ni/YSZ) materials system with operation under H(2)/H(2)O atmospheres. Micropatterned model anodes were used for electrochemical characterization under well-defined operating conditions. Structural and chemical integrity was confirmed by ex situ pre-test and post-test microstructural and chemical analysis. Elementary kinetic models of reaction and transport processes were used to assess reaction pathways and rate-determining steps. The comparison of experimental and simulated electrochemical behaviors of pattern anodes shows quantitative agreement over a wide range of operating conditions (p(H(2)) = 8×10(2) - 9×10(4) Pa, p(H(2)O) = 2×10(1) - 6×10(4) Pa, T = 400-800 °C). Previously published experimental data on model anodes show a strong scatter in electrochemical performance. Furthermore, model anodes exhibit a pronounced dynamics on multiple time scales which is not reproduced in state-of-the-art models and which is also not observed in technical cermet anodes. Potential origin of these effects as well as consequences for further steps in model anode and anode model studies are discussed.

  1. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions.

    PubMed

    Li, Tao; Jevric, Martyn; Hauptmann, Jonas R; Hviid, Rune; Wei, Zhongming; Wang, Rui; Reeler, Nini E A; Thyrhaug, Erling; Petersen, Søren; Meyer, Jakob A S; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Qiu, Xiaohui; Hu, Wenping; Liu, Yunqi; Solomon, Gemma C; Kjaergaard, Henrik G; Bjørnholm, Thomas; Nielsen, Mogens Brøndsted; Laursen, Bo W; Nørgaard, Kasper

    2013-08-14

    A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules. The electrical switching behavior of a less-studied molecular switch, dihydroazulene/vinylheptafulvene, is described, which is used as a test case. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Completely Solid-State Tunable Ti:Sapphire Laser System

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.

    1994-01-01

    Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.

  3. Non-invasive NMR stratigraphy of a multi-layered artefact: an ancient detached mural painting.

    PubMed

    Di Tullio, Valeria; Capitani, Donatella; Presciutti, Federica; Gentile, Gennaro; Brunetti, Brunetto Giovanni; Proietti, Noemi

    2013-10-01

    NMR stratigraphy was used to investigate in situ, non-destructively and non-invasively, the stratigraphy of hydrogen-rich layers of an ancient Nubian detached mural painting. Because of the detachment procedure, a complex multi-layered artefact was obtained, where, besides layers of the original mural painting, also the materials used during the procedure all became constitutive parts of the artefact. NMR measurements in situ enabled monitoring of the state of conservation of the artefact and planning of minimum representative sampling to validate results obtained in situ by solid-state NMR analysis of the samples. This analysis enabled chemical characterization of all organic materials. Use of reference compounds and prepared specimens assisted data interpretation.

  4. Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.

    2013-10-01

    The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)4], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO2) at conditions relevant to geologic carbon sequestration (35 °C and 100 bar) were studied by in-situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO2. For neat scCO2, no reaction was observed in 24 hr for either mineral. When water was added to the scCO2, a thin water film formed on the minerals’ surfaces, and the reaction rates and extents increased as themore » water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO2, was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO2 co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO3•3H2O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO2 following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration.« less

  5. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor.

    PubMed

    Tang, Xiaohui; Lui, Yu Hui; Merhi, Abdul Rahman; Chen, Bolin; Ding, Shaowei; Zhang, Bowei; Hu, Shan

    2017-12-27

    To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br - and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br - /Br 3 - reaction. The observed Br - /Br 3 - redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.

  6. A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride

    DOE PAGES

    Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh; ...

    2017-05-30

    Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less

  7. A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh

    Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less

  8. The study of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Yu, Peng

    Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic phase and fiber-like Al 3Ni-Al eutectic were found in the sintered Al-MMC sample. (Abstract shortened by UMI.)

  9. The structure, thermal expansion and phase transition properties of Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} (x = 0, 1.0, 2.0) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.Z.; Hao, L.J.; Wu, M.M.

    Graphical abstract: A polymorph with Gd{sub 2}Mo{sub 3}O{sub 12}-type structure (space group: Pba2) for negative thermal expansion material Ho{sub 2}Mo{sub 3}O{sub 12} is observed above 700 °C, this polymorphism could be effectively supressed by W-substiution for Mo, the give the temperature dependence of Pba2 phase contents for Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} (x = 0.0, 1.0, 2.0). - Highlights: • The solid solution Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} was investigated by in situ X-ray diffraction. • It is found that the substitution slightly influence thermal expansion property. • A polymorph of Ho{sub 2}Mo{sub 3}O{sub 12} with Pba2 space group wasmore » observed above 700 °C. • The W-substitution for Mo effectively suppresses this transformation. - Abstract: Three solid solutions of Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12}(x = 0, 1.0, 2.0) were prepared by solid state reaction method, the temperature dependent in-situ X-ray diffraction and thermal analysis were performed to investigate their structure and thermal expansion. All samples have orthorhombic structure(space group Pbcn# 60) with negative thermal expansion at the room temperature. the substitution of W for Mo enlarges the lattice constant and slightly influences the negative thermal expansion. An irreversible phase transformation to the Pba2 phase(Tb{sub 2}Mo{sub 3}O{sub 12} structure) was observed at high temperature for Mo-rich samples. This ploymorphism could be effectively suppressed by the W-substitution for Mo, this phenomenon could be explained by the lower electronegativity of W{sup 6+} than Mo{sup 6+}.« less

  10. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion.

    PubMed

    Liu, Xu; Lu, Ming; Guo, Zhefei; Huang, Lin; Feng, Xin; Wu, Chuanbin

    2012-03-01

    To explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME). Carbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ. CBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased. By in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.

  11. Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.

    PubMed

    Lim, Hyunseob; Yilmaz, Eda; Byon, Hye Ryung

    2012-11-01

    Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.

  12. In situ analytical techniques for battery interface analysis.

    PubMed

    Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe

    2018-02-05

    Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.

  13. Influence of physical state on the ozonolysis of shikimic acid

    NASA Astrophysics Data System (ADS)

    Steimer, Sarah; Krieger, Ulrich; Lampimäki, Markus; Peter, Thomas; Ammann, Markus

    2014-05-01

    Atmospheric aerosols are an important focus of environmental research due to their effect on climate, air quality and human health. They undergo continuous transformation, changing their physical and chemical properties. Recent findings show that secondary organic aerosol (SOA) particles can form amorphous solids and semi-solids under atmospheric conditions [1]. Since such physical states are highly viscous, diffusivity within the bulk decreases. The decrease in mass transport could slow down chemical reactions, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for reaction of thin protein films with ozone [2], formation of organonitrogen from ammonia uptake to α-pinene secondary organic material [3] and reaction of SOA-coated benzo[a]pyrene with ozone [4]. In this study, we investigated the influence of physical state on the ozonolysis of shikimic acid. Said carboxylic acid is a constituent of biomass burning aerosols and used here as a proxy for oxygenated organic material. Its viscosity was adjusted by varying the humidity of the system between 0% and 92% RH, assuming correlation between the two parameters since water acts as a plasticizer. The system was probed with three complementary techniques: an electrodynamic balance (EDB), measuring the response of single particles to changes in humidity, coated wall flow tube measurements, where uptake of ozone is measured via loss from the gas phase and in situ X-ray microspectroscopy on single particles, where oxidation of the bulk can be observed. Additionally, a kinetic model was used to facilitate data analysis. EDB measurements showed clear evidence of humidity dependent glass formation and correlation of water content and water diffusivity. The dependence of the ozonolysis on relative humidity was observed with both flow tube and microspectroscopy measurements. The coated wall flow tube experiments showed a long term, gradually changing ozone uptake over more than 15 hours, the magnitude of which varied over nearly two orders between lowest and highest humidity. It was possible to separate the uptake into two distinct kinetic regimes, the first of which displayed a Langmuir-Hinshelwood type behavior regarding the ozone gas phase concentration. Microspectroscopy showed that the speed at which the characteristic double bond peak of shikimic acid disappeared was humidity dependent. The measured dependence of the reaction kinetics on humidity supports the hypothesis that the uptake coefficient is highly dependent on the diffusion coefficients of ozone and/or shikimic acid in the organic film. [1] Virtanen, A., et al., An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010. 467(7317): p. 824-827. [2] Shiraiwa, M., et al., Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 11003-11008. [3] Kuwata, M. and Martin, S. T., Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 109(43): p. 17354-17359. [4] Zhou, S., et al., Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013. 165: p. 391-406.

  14. In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com

    2014-05-01

    Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graetz J.; Meng, Y.S.; McGilvray, T.

    Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is onemore » of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic liquid. To this end, we have developed a novel in situ instrumental system combining analytical electron microscopy with advanced spectroscopy to probe the dynamic phenomena in an all solid-state nano-battery. In situ electron microscopy is a versatile technique that yields insights into challenging questions that could not be obtained using other techniques. However, in order to fully exploit the capabilities, a very carefully thought-out plan of action is essential. It is important to recognize that this is not just a simple characterization tool, but a collection of tools that make up a complete experimental set-up: the choice of FIB operation conditions, specimen holder for biasing, grid materials and design as well as microscope environment must be thoroughly considered before performing an experiment.« less

  16. Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yang, Jun; NuLi, Yanna; Wang, Jiulin

    2011-05-01

    Hedgehog-like LiCoPO4 with hierarchical microstructures is first synthesized via a simple solvothermal process in water-benzyl alcohol mixed solvent at 200 °C. Morphology and crystalline structure of the samples are characterized by scanning electron microscope, transmission electron microscopy and X-ray diffraction. The hedgehog-like LiCoPO4 microstructures in the size of about 5-8 μm are composed of large numbers of nanorods in diameter of ca. 40 nm and length of ca. 1 μm, which are coated with a carbon layer of ca. 8 nm in thickness by in situ carbonization of glucose during the solvothermal reaction. As a 5 V positive electrode material for rechargeable lithium battery, the hedgehog-like LiCoPO4 delivers an initial discharge capacity of 136 mAh g-1 at 0.1 C rate and retains its 91% after 50 cycles, showing much better electrochemical performances than sub-micrometer LiCoPO4 synthesized by conventional high-temperature solid-state reaction.

  17. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln2(Hpdc)2(C2O4)(H2O)4]n·2nH2O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H3pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H3pdc was decomposed into (ox)2- with Cu(II)-Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P21/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1-4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities.

  18. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed

    Yaremko, M L; Kelemen, P R; Kutza, C; Barker, D; Westbrook, C A

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible.

  19. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOEpatents

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  20. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  1. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    PubMed

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  2. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  3. "First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).

    PubMed

    Hess, Franziska; Farkas, Attila; Seitsonen, Ari P; Over, Herbert

    2012-03-15

    First principles-based kinetic Monte Carlo (kMC) simulations are performed for the CO oxidation on RuO(2) (110) under steady-state reaction conditions. The simulations include a set of elementary reaction steps with activation energies taken from three different ab initio density functional theory studies. Critical comparison of the simulation results reveals that already small variations in the activation energies lead to distinctly different reaction scenarios on the surface, even to the point where the dominating elementary reaction step is substituted by another one. For a critical assessment of the chosen energy parameters, it is not sufficient to compare kMC simulations only to experimental turnover frequency (TOF) as a function of the reactant feed ratio. More appropriate benchmarks for kMC simulations are the actual distribution of reactants on the catalyst's surface during steady-state reaction, as determined by in situ infrared spectroscopy and in situ scanning tunneling microscopy, and the temperature dependence of TOF in the from of Arrhenius plots. Copyright © 2012 Wiley Periodicals, Inc.

  4. Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming

    Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less

  5. A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes.

    PubMed

    Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia; Zeng, Xian-Xiang; Li, Jin-Yi; Li, Cong-Ju; Wan, Li-Jun; Wen, Rui; Guo, Yu-Guo

    2018-02-05

    Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR.

    PubMed

    Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L

    2006-06-15

    The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.

  7. In situ Mössbauer investigation of iron oxide catalyst in water gas shift reaction - Impact of oxyreduction potential and temperature

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Mitov, I.

    2010-03-01

    The aim of the study is to obtain the exact state of iron oxide catalyst active phase in reaction conditions, as well as the correlation between the active phase and catalytic properties of iron-containing catalysts. In situ Mössbauer spectroscopy is the major investigation technique. It is established that the change of reaction conditions (temperature and gas reaction mixture) lead to redistribution of the relative weight of spectra components and influence mainly tetrahedrally and octahedrally coordinated cations in Fe3O4 phase. It was concluded, that the active sites of the catalyst in studied reaction are probably pairs of Fe3++Fe2+-(Fe2.5+) ions, i.e. the mixed valance iron ions. The obtained catalytic activity can be explained with combination of the natural thermo-activated and catalytically induced electron exchange and better synchronizing of oxidation and reduction steps of the catalytic reaction.

  8. Probing and mapping electrode surfaces in solid oxide fuel cells.

    PubMed

    Blinn, Kevin S; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A; Liu, Meilin

    2012-09-20

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen (1-7). The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion(2). Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation(8-12). It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition(8, 10, 13, 14) ("coking") and sulfur poisoning(11, 15) and the manner in which surface modifications stave off this degradation(16). The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated(17-22). In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode.

  9. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated17-22. In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode. PMID:23023264

  10. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    NASA Astrophysics Data System (ADS)

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-07-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.

  11. Hydrazine reduction of transition metal oxides - In situ characterization using X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Littrell, D. M.; Tatarchuk, B. J.

    1986-01-01

    The transition metal oxides (TMOs) V2O5, FeO3, Co3O4, NiO, CuO, and ZnO were exposed to hydrazine at various pressures. The metallic surfaces were surveyed by in situ X-ray photoelectron spectroscopy to determine the irrelative rate of reduction by hydrazine. The most easily reducible oxide, CuO, could be reduced to the metallic state at room temperature and 10 to the -6th torr. The reaction is first order with respect to CuO, with an activation energy of about 35 kJ/mol. Two types of adsorption were seen to occur at 295 K: (1) a reversible component in which the measured N:Cu ratio increased to 0.60 at hydrazine pressures up to 0.5 torr, and (2) an irreversible component, with a N:Cu ratio of 0.28, which could not be removed by extended vacuum pumping. The results of this study are useful for the identification of TMO's that can be used as solid neatallizers of hydrazine spills, and for the preparation of metal surfaces for electroplating and evaporative thin-film coating.

  12. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  13. Field induced metastable ferroelectric phase in Pb 0.97La 0.03(Zr 0.90Ti 0.10) 0.9925O 3 ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuchi, I. V.; Chung, C. C.; Fancher, C. M.

    2017-11-06

    Pb 0.97La 0.03(Zr 0.9T i0.1)0.9925O3 (PLZT 3/90/10) ceramics prepared by solid-state reaction with the compositions near the antiferroelectric/ferroelectric (FE/AFE) phase boundary were studied. From the polarization–electric field P(E) dependence and ex situ X-ray study, an irreversible electric field induced AFE-to-FE phase transition is verified at room temperature. Dielectric and in situ temperature dependent X-ray analysis evidence that the phase transition sequence in PLZT 3/90/10-based ceramics can be readily altered by poling. A first order antiferroelectric-paraelectric (AFE-to-PE) transition occurred at ~190 °C in virgin sample and at ~180 °C in poled sample. In addition, a FE-to-AFE transition occurs in the poledmore » ceramic at much lower temperatures (~120 °C) with respect to the Curie range (~190 °C). The temperature-induced FE-to-AFE transition is diffuse and takes place in a broad temperature range of 72–135 °C. Lastly, the recovery of AFE is accompanied by an enhancement in the piezoelectric properties.« less

  14. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE PAGES

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.; ...

    2017-10-27

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  15. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  16. Esterification of pseudoephedrine hydrochloride by citric acid in a solid dose pharmaceutical preparation.

    PubMed

    Goel, Alok; Zhao, Zhicheng; Sørensen, Dan; Zhou, Jay; Zhang, Fa

    2016-09-10

    Esterification of pseudoephedrine hydrochloride (PSE) by citric acid was observed in a solid dose pharmaceutical preparation at room temperature and accelerated stability condition (40°C/75% relative humidity). The esterification of PSE with citric acid was confirmed by a solid-state binary reaction in the presence of minor level of water at elevated temperature to generate three isomeric esters. The structures of the pseudoephedrine citric acid esters were elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy (NMR). Occurrence of esterification in solid state, instead of amidation which is generally more favorable than esterification, is likely due to remaining HCl salt form of solid pseudoephedrine hydrochloride to protect its amino group from amidation with citric acid. In contrast, the esterification was not observed from solution reaction between PSE and citric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Quantification In Situ of Crystalline Cholesterol and Calcium Phosphate Hydroxyapatite in Human Atherosclerotic Plaques by Solid-State Magic Angle Spinning NMR

    PubMed Central

    Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.

    2010-01-01

    Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882

  18. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.

    PubMed

    Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu

    2018-04-04

    Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

  19. Transnitrilation from Dimethylmalononitrile to Aryl Grignard and Lithium Reagents: A Practical Method for Aryl Nitrile Synthesis.

    PubMed

    Reeves, Jonathan T; Malapit, Christian A; Buono, Frederic G; Sidhu, Kanwar P; Marsini, Maurice A; Sader, C Avery; Fandrick, Keith R; Busacca, Carl A; Senanayake, Chris H

    2015-07-29

    An electrophilic cyanation of aryl Grignard or lithium reagents, generated in situ from the corresponding aryl bromides or iodides, by a transnitrilation with dimethylmalononitrile (DMMN) was developed. DMMN is a commercially available, bench-stable solid. The transnitrilation with DMMN avoids the use of toxic reagents and transition metals and occurs under mild reaction conditions, even for extremely sterically hindered substrates. The transnitrilation of aryllithium species generated by directed ortho-lithiation enabled a net C-H cyanation. The intermediacy of a Thorpe-type imine adduct in the reaction was supported by isolation of the corresponding ketone from the quenched reaction. Computational studies supported the energetic favorability of retro-Thorpe fragmentation of the imine adduct.

  20. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  1. Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Terabe, Kazuya; Yang, Rui; Aono, Masakazu

    2016-11-01

    Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential. For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics. Synaptic plasticity in the human brain is achieved in neuromorphic devices.

  2. Two dimensional, transient catalytic combustion of CO-air on platinum

    NASA Technical Reports Server (NTRS)

    Sinha, N.; Bruno, C.; Bracco, F. V.

    1985-01-01

    The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.

  3. Trend-Analysis of Solid-State Structures: Low-Energy Conformational 'Reactions' Involving Directed and Coupled Movements in Half-Sandwich Compounds [CpFe(CO){C(=O)R}PPh3].

    PubMed

    Brunner, Henri; Tsuno, Takashi

    2018-05-01

    Invited for this month's cover picture are Prof. Dr. Henri Brunner from the University of Regensburg (Germany) and Prof. Dr. Takashi Tsuno from Nihon University (Japan). The cover picture shows the conformational reaction of JIDLUD→FIHTUL. The order of sample points of solid-state structures reveals information concerning low-energy, directed, and coupled movements in molecules. Read the full text of their Communication at https://doi.org/10.1002/open.201800007.

  4. Surface-mediated nucleation in the solid-state polymorph transformation of terephthalic acid.

    PubMed

    Beckham, Gregg T; Peters, Baron; Starbuck, Cindy; Variankaval, Narayan; Trout, Bernhardt L

    2007-04-18

    A molecular mechanism for nucleation for the solid-state polymorph transformation of terephthalic acid is presented. New methods recently developed in our group, aimless shooting and likelihood maximization, are employed to construct a model for the reaction coordinate for the two system sizes studied. The reaction coordinate approximation is validated using the committor probability analysis. The transformation proceeds via a localized, elongated nucleus along the crystal edge formed by fluctuations in the supramolecular synthons, suggesting a nucleation and growth mechanism in the macroscopic system.

  5. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    PubMed

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  6. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus

    2005-05-15

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for goodmore » mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.« less

  7. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system

    DOE PAGES

    Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...

    2017-01-20

    Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Guoqiang; Wu, Feng; Zhan, Chun

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less

  9. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes.

    PubMed

    Wang, Dawei; Kou, Ronghui; Ren, Yang; Sun, Cheng-Jun; Zhao, Hu; Zhang, Ming-Jian; Li, Yan; Huq, Ashifia; Ko, J Y Peter; Pan, Feng; Sun, Yang-Kook; Yang, Yong; Amine, Khalil; Bai, Jianming; Chen, Zonghai; Wang, Feng

    2017-10-01

    Nickel-rich layered transition metal oxides, LiNi 1- x (MnCo) x O 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7 Mn 0.15 Co 0.15 O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Kou, Ronghui; Ren, Yang

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationicmore » ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.« less

  11. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Kou, Ronghui; Ren, Yang

    Nickel-rich layered transition metal oxides, LiNi 1-x(MnCo) xO 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7Mn 0.15Co 0.15O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strongmore » temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  12. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE PAGES

    Wang, Dawei; Kou, Ronghui; Ren, Yang; ...

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi 1-x(MnCo) xO 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7Mn 0.15Co 0.15O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strongmore » temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  13. A triple helical calcium-based coordination polymer with strong blue fluorescent emission

    NASA Astrophysics Data System (ADS)

    Yu, Liang-Cai; Chen, Zhen-Feng; Liang, Hong; Zhou, Chun-Shan; Li, Yan

    2005-08-01

    A hydrothermal reaction of 1,3-dicyanobenzene and Ca(OH)2 yielded a triple helical calcium-based coordination polymer of the formula, C20H25Ca2.50O18.50 (1). The 1,3-benzenecarboxylate anion, found in the final product was generated in situ during the synthesis by the hydrolysis of 1,3-dicyanobenzene. X-ray diffraction study shows that the complex 1 crystallizes in the monoclinic system, C2/c space group, a=15.5701(5), b=21.4445(7), c=17.1601(6) Å, β=111.7400(7)°, V=5322.1(3) Å3, Z=8, Dc=1.651 Mg/m3. The calcium atoms show differences in the coordination environments. Complex 1 emits strong blue fluorescent light (λem(max)=419 nm) when it is excited by UV light (λex(max)=316 nm) in the solid state at room temperature.

  14. Kinetics of intercalation of fluorescent probes in magnesium–aluminium layered double hydroxide within a multiscale reaction–diffusion framework

    PubMed Central

    Saliba, Daniel

    2016-01-01

    We report the synthesis of magnesium–aluminium layered double hydroxide (LDH) using a reaction–diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium–aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698034

  15. Tube Formation in Nanoscale Materials

    PubMed Central

    2008-01-01

    The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities. PMID:20592945

  16. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang

    2018-03-01

    A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.

  17. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  18. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  19. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.

    PubMed

    Liu, Haizhou; Bruton, Thomas A; Doyle, Fiona M; Sedlak, David L

    2014-09-02

    Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4(•-)) and hydroxyl radical (HO(•)) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.

  20. In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxides and Aquifer Materials

    PubMed Central

    2015-01-01

    Persulfate (S2O82–) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4•–) and hydroxyl radical (HO•) over time scales of several weeks at rates that were 2–20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants. PMID:25133603

  1. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.

  2. The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: new data processing and presentation approach.

    PubMed

    Monyoncho, Evans A; Zamlynny, Vlad; Woo, Tom K; Baranova, Elena A

    2018-05-29

    Infrared spectroscopy is a powerful non-destructive technique for the identification and quantification of organic molecules widely used in scientific studies. For many years, efforts have been made to adopt this technique for the in situ monitoring of reactions. From these efforts, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was developed three decades ago. Unfortunately, because of the complexity of data processing and interpretation, PM-IRRAS had been avoided in lieu of the single potential alteration infrared spectroscopy (SPAIRS) and subtractively normalized interfacial Fourier transform infrared (SNIFTIR). In this work, we present a new approach for PM-IRRAS data processing and presentation, which provides more insight into in situ and surface studies besides dramatically improving the S/N. In this new approach, we recommend three complementary methods of data treatment (eqn (7), (9) and (10)) as the new protocols for presenting PM-IRRAS data. These equations are robust in visualising the surface processes at the solid-liquid and solid-gas interphases. Eqn (7) contrasts the surface adsorbed species with respect to the isotropic background with or without the influence of the applied potential. Eqn (9) highlights the surface potential-driven changes between the sample and the reference spectra. Eqn (10) focuses on the bulk-phase (solution/gas and surface species) potential-driven changes between the sample and the reference spectra, and hence it can be used to track the production of species, which desorb from the surface upon their formation. Examples of ethanol electro-oxidation reaction are provided as a test system for in situ studies and PVP deposited on glassy carbon for thin-film studies to illustrate the utility of the new PM-IRRAS data handling protocol, which is poised to improve the understanding of the chemistry and physics of surface processes.

  3. Hydroamination reactions of alkynes with ortho-substituted anilines in ball mills: synthesis of benzannulated N-heterocycles by a cascade reaction.

    PubMed

    Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim

    2015-04-20

    It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chemical looping fluidized-bed concentrating solar power system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen

    A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced inmore » the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.« less

  5. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  6. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.

    PubMed

    Susman, Mariano D; Feldman, Yishai; Bendikov, Tatyana A; Vaskevich, Alexander; Rubinstein, Israel

    2017-08-31

    Oxidation and corrosion reactions have a major effect on the application of non-noble metals. Kinetic information and simple theoretical models are often insufficient for describing such processes in metals at the nanoscale, particularly in cases involving formation of internal voids (nano Kirkendall effect, NKE) during oxidation. Here we study the kinetics of solid-state oxidation of chemically-grown copper nanoparticles (NPs) by in situ localized surface plasmon resonance (LSPR) spectroscopy during isothermal annealing in the range 110-170 °C. We show that LSPR spectroscopy is highly effective in kinetic studies of such systems, enabling convenient in situ real-time measurements during oxidation. Change of the LSPR spectra throughout the oxidation follows a common pattern, observed for different temperatures, NP sizes and substrates. The well-defined initial Cu NP surface plasmon (SP) band red-shifts continuously with oxidation, while the extinction intensity initially increases to reach a maximum value at a characteristic oxidation time τ, after which the SP intensity continuously drops. The characteristic time τ is used as a scaling parameter for the kinetic analysis. Evolution of the SP wavelength and extinction intensity during oxidation at different temperatures follows the same kinetics when the oxidation time is normalized to τ, thus pointing to a general oxidation mechanism. The characteristic time τ is used to estimate the activation energy of the process, determined to be 144 ± 6 kJ mol -1 , similar to previously reported values for high-temperature Cu thermal oxidation. The central role of the NKE in the solid-state oxidation process is revealed by electron microscopy, while formation of Cu 2 O as the major oxidation product is established by X-ray diffraction, XPS, and electrochemical measurements. The results indicate a transition of the oxidation mechanism from a Valensi-Carter (VC) to NKE mechanism with the degree of oxidation. To interpret the optical evolution during oxidation, Mie scattering solutions for metal core-oxide shell spherical particles are computed, considering formation of Kirkendall voids. The model calculations are in agreement with the experimental results, showing that the large red-shift of the LSPR band during oxidation is the result of Kirkendall voiding, thus establishing the major role of the NKE in determining the optical behavior of such systems.

  7. Revealing the Reaction Mechanism of Na–O 2 Batteries using Environmental Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Won -Jin; Luo, Langli; Jung, Hun -Gi

    Due to its high energy efficiency, sodium-oxygen (Na-O 2) batteries have been extensively studied recently. One of the critical challenges for the development of the Na-O 2 battery is the elucidation of the reaction mechanism, the reaction products, and thestructural and chemical evolution of reaction product as well as their correlation with the battery performance. Herein, in-situ TEM was employed to probe the reaction mechanism and the structural evolution of the discharge products in Na-O 2 batteries. The discharge product is featured by the formation of both cubic and conformal NaO 2. It has been noticed that the impingement ofmore » reaction product (NaO 2) can lead to the coarsening of the particle through coalescence. We also investigated the stability of the discharge product, noticing that the reaction product NaO 2 is stable in the case of solid electrolyte. Here, the present work provide unprecedented insight for the development of the Na-O 2 batteries.« less

  8. Revealing the Reaction Mechanism of Na–O 2 Batteries using Environmental Transmission Electron Microscopy

    DOE PAGES

    Kwak, Won -Jin; Luo, Langli; Jung, Hun -Gi; ...

    2018-01-15

    Due to its high energy efficiency, sodium-oxygen (Na-O 2) batteries have been extensively studied recently. One of the critical challenges for the development of the Na-O 2 battery is the elucidation of the reaction mechanism, the reaction products, and thestructural and chemical evolution of reaction product as well as their correlation with the battery performance. Herein, in-situ TEM was employed to probe the reaction mechanism and the structural evolution of the discharge products in Na-O 2 batteries. The discharge product is featured by the formation of both cubic and conformal NaO 2. It has been noticed that the impingement ofmore » reaction product (NaO 2) can lead to the coarsening of the particle through coalescence. We also investigated the stability of the discharge product, noticing that the reaction product NaO 2 is stable in the case of solid electrolyte. Here, the present work provide unprecedented insight for the development of the Na-O 2 batteries.« less

  9. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue

    2018-03-01

    A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.

  10. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-12-24

    "Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  12. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less

  13. Hot atoms in cosmic chemistry.

    PubMed

    Rossler, K; Jung, H J; Nebeling, B

    1984-01-01

    High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.

  14. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  15. Solid electrolyte: The key for high-voltage lithium batteries

    DOE PAGES

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; ...

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  16. An Ultrastable Heterobimetallic Uranium(IV)/Vanadium(III) Solid Compound Protected by a Redox-Active Phosphite Ligand: Crystal Structure, Oxidative Dissolution, and First-Principles Simulation.

    PubMed

    Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-05

    The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.

  17. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR.

    PubMed

    Li, R; Rajan, R; Wong, W C V; Reid, D G; Duer, M J; Somovilla, V J; Martinez-Saez, N; Bernardes, G J L; Hayward, R; Shanahan, C M

    2017-12-14

    Non-enzymatic glycation of extracellular matrix with (U- 13 C 5 )-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH 3 -CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understanding harmful tissue changes.

  18. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    DOE PAGES

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; ...

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less

  19. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed Central

    Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231

  20. Kinetic concepts of thermally stimulated reactions in solids

    NASA Astrophysics Data System (ADS)

    Vyazovkin, Sergey

    Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.

  1. Residual thermal stresses in a solid sphere cast from a thermosetting material

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  2. Importance of tunneling in H-abstraction reactions by OH radicals. The case of CH4 + OH studied through isotope-substituted analogs

    NASA Astrophysics Data System (ADS)

    Lamberts, T.; Fedoseev, G.; Kästner, J.; Ioppolo, S.; Linnartz, H.

    2017-03-01

    We present a combined experimental and theoretical study focussing on the quantum tunneling of atoms in the reaction between CH4 and OH. The importance of this reaction pathway is derived by investigating isotope substituted analogs. Quantitative reaction rates needed for astrochemical models at low temperature are currently unavailable both in the solid state and in the gas phase. Here, we study tunneling effects upon hydrogen abstraction in CH4 + OH by focusing on two reactions: CH4 + OD → CH3 + HDO and CD4 + OH → CD3 + HDO. The experimental study shows that the solid-state reaction rate RCH4 + OD is higher than RCD4 + OH at 15 K. Experimental results are accompanied by calculations of the corresponding unimolecular and bimolecular reaction rate constants using instanton theory taking into account surface effects. For the work presented here, the unimolecular reactions are particularly interesting as these provide insight into reactions following a Langmuir-Hinshelwood process. The resulting ratio of the rate constants shows that the H abstraction (kCH4 + OD) is approximately ten times faster than D-abstraction (kCD4 + OH) at 65 K. We conclude that tunneling is involved at low temperatures in the abstraction reactions studied here. The unimolecular rate constants can be used by the modeling community as a first approach to describe OH-mediated abstraction reactions in the solid phase. For this reason we provide fits of our calculated rate constants that allow the inclusion of these reactions in models in a straightforward fashion.

  3. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  4. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE PAGES

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; ...

    2017-09-11

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  5. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    USGS Publications Warehouse

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  6. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity

    DOE PAGES

    Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; ...

    2016-10-26

    Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (Li xSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited,more » layer-by-layer lithiation of the Si at the Li xSi/Si interface.« less

  7. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOEpatents

    Khait, Klementina

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  8. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  9. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOEpatents

    Khait, Klementina

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  10. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, Klementina

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  11. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Lu, Dongping; Bowden, Mark

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less

  12. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE PAGES

    Kelly, B. G.; Loether, A.; Unruh, K. M.; ...

    2017-02-01

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  13. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B. G.; Loether, A.; Unruh, K. M.

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  14. Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation

    PubMed Central

    Khan, Abdulaziz M.; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W.; Elbaz, Ayman M.; Sarathy, S. Mani; Tao, Franklin (Feng)

    2017-01-01

    Abstract Sodium‐based catalysts (such as Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X‐ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient‐pressure X‐ray photoelectron spectroscopy (AP‐XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800 °C, and these species are useful for various gas‐phase hydrocarbon reactions, including the selective transformation of methane to ethane. PMID:28650565

  15. Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation

    DOE PAGES

    Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; ...

    2017-07-24

    Sodium-based catalysts (such as Na 2 WO 4) were proposed to selectively catalyze OH radical formation from H 2O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2WO 4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2O 2 species,more » which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800°C, and these species are useful for various gasphase hydrocarbon reactions, including the selective transformation of methane to ethane.« less

  16. In situ characterization of uranium and americium oxide solid solution formation for CRMP process: first combination of in situ XRD and XANES measurements.

    PubMed

    Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André

    2015-04-14

    Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

  17. Mayenite Synthesized Using the Citrate Sol-Gel Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show themore » presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.« less

  18. In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li2Mg2P3O9N: Evidence for a Hidden Phase Transition.

    PubMed

    Liu, Jue; Whitfield, Pamela S; Saccomanno, Michael R; Bo, Shou-Hang; Hu, Enyuan; Yu, Xiqian; Bai, Jianming; Grey, Clare P; Yang, Xiao-Qing; Khalifah, Peter G

    2017-07-12

    Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2 Mg 2 P 3 O 9 N was synthesized by ion exchange from a Na 2 Mg 2 P 3 O 9 N precursor. Impedance spectroscopy measurements indicate that Li 2 Mg 2 P 3 O 9 N has a room temperature Li-ion conductivity of about 10 -6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2 Mg 2 P 3 O 9 N at this temperature. The structure of Li 2 Mg 2 P 3 O 9 N was determined from ex situ synchrotron and time-of-flight neutron diffraction data to retain the P2 1 3 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2 Mg 2 P 3 O 9 N. The two Li-ion sites are found to be very substantially displaced (∼0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2 Mg 2 P 3 O 9 N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li + /Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2-x Li x Mg 2 P 3 O 9 N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2 Mg 2 P 3 O 9 N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. In addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.

  19. In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li 2Mg 2P 3O 9N: Evidence for a Hidden Phase Transition

    DOE PAGES

    Liu, Jue; Whitfield, Pamela S.; Saccomanno, Michael R.; ...

    2017-06-06

    Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2Mg 2P 3O 9N was synthesized in this paper by ion exchange from a Na 2Mg 2P 3O 9N precursor. Impedance spectroscopy measurements indicate that Li 2Mg 2P 3O 9N has a room temperature Li-ion conductivity of about 10 –6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2Mg 2P 3O 9N at this temperature. The structure of Li 2Mg 2P 3O 9N was determined from ex situ synchrotron and time-of-flight neutronmore » diffraction data to retain the P2 13 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2Mg 2P 3O 9N. The two Li-ion sites are found to be very substantially displaced (~0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2Mg 2P 3O 9N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li +/Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2–xLi xMg 2P 3O 9N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2Mg 2P 3O 9N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. Finally, in addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.« less

  20. In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li 2Mg 2P 3O 9N: Evidence for a Hidden Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Whitfield, Pamela S.; Saccomanno, Michael R.

    Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2Mg 2P 3O 9N was synthesized in this paper by ion exchange from a Na 2Mg 2P 3O 9N precursor. Impedance spectroscopy measurements indicate that Li 2Mg 2P 3O 9N has a room temperature Li-ion conductivity of about 10 –6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2Mg 2P 3O 9N at this temperature. The structure of Li 2Mg 2P 3O 9N was determined from ex situ synchrotron and time-of-flight neutronmore » diffraction data to retain the P2 13 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2Mg 2P 3O 9N. The two Li-ion sites are found to be very substantially displaced (~0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2Mg 2P 3O 9N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li +/Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2–xLi xMg 2P 3O 9N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2Mg 2P 3O 9N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. Finally, in addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.« less

  1. Functional Nanopores: A Solid-state Concept for Artificial Reaction Compartments and Molecular Factories.

    PubMed

    Puebla-Hellmann, Gabriel; Mayor, Marcel; Lörtscher, Emanuel

    2016-01-01

    On the road towards the long-term goal of the NCCR Molecular Systems Engineering to create artificial molecular factories, we aim at introducing a compartmentalization strategy based on solid-state silicon technology targeting zeptoliter reaction volumes and simultaneous electrical contact to ensembles of well-oriented molecules. This approach allows the probing of molecular building blocks under a controlled environment prior to their use in a complex molecular factory. Furthermore, these ultra-sensitive electrical conductance measurements allow molecular responses to a variety of external triggers to be used as sensing and feedback mechanisms. So far, we demonstrate the proof-of-concept by electrically contacting self-assembled mono-layers of alkane-dithiols as an established test system. Here, the molecular films are laterally constrained by a circular dielectric confinement, forming a so-called 'nanopore'. Device yields above 85% are consistently achieved down to sub-50 nm nanopore diameters. This generic platform will be extended to create distributed, cascaded reactors with individually addressable reaction sites, including interconnecting micro-fluidic channels for electrochemical communication among nanopores and sensing sites for reaction control and feedback. In this scientific outlook, we will sketch how such a solid-state nanopore concept can be used to study various aspects of molecular compounds tailored for operation in a molecular factory.

  2. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction.

    PubMed

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-12-01

    Mixed holmium cobaltite-chromite HoCo 0.5 Cr 0.5 O 3 with orthorhombic perovskite structure (structure type GdFeO 3 , space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo 0.5 Cr 0.5 O 3 , which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO 6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co 3+ ions and insulator-metal transition occurring in HoCo 0.5 Cr 0.5 O 3 .

  3. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-07-01

    Mixed holmium cobaltite-chromite HoCo0.5Cr0.5O3 with orthorhombic perovskite structure (structure type GdFeO3, space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo0.5Cr0.5O3, which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co3+ ions and insulator-metal transition occurring in HoCo0.5Cr0.5O3.

  4. Bridging the gap between homogeneous and heterogeneous catalysis: ortho/para H(2) conversion, hydrogen isotope scrambling, and hydrogenation of olefins by Ir(CO)Cl(PPh(3))(2).

    PubMed

    Matthes, Jochen; Pery, Tal; Gründemann, Stephan; Buntkowsky, Gerd; Sabo-Etienne, Sylviane; Chaudret, Bruno; Limbach, Hans-Heinrich

    2004-07-14

    Some transition metal complexes are known to catalyze ortho/para hydrogen conversion, hydrogen isotope scrambling, and hydrogenation reactions in liquid solution. Using the example of Vaska's complex, we present here evidence by NMR that the solvent is not necessary for these reactions to occur. Thus, solid frozen solutions or polycrystalline powdered samples of homogeneous catalysts may become heterogeneous catalysts. Comparative liquid- and solid-state studies provide novel insight into the reaction mechanisms.

  5. Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhenchao; Shi, Hui; Wan, Chuan

    Alkylation of phenolic compounds in the liquid phase is of fundamental and practical importance to the conversion of biomass-derived feedstocks into fuels and chemicals. In this work, the reaction mechanism for phenol alkylation with cyclohexanol and cyclohexene has been investigated on a commercial HBEA zeolite by in situ 13C MAS NMR, using decalin as the solvent. From the variable temperature 13C MAS NMR measurements of phenol and cyclohexanol adsorption on HBEA from decalin solutions, it is shown that the two molecules have similar adsorption strength in the HBEA pore. Phenol alkylation with cyclohexanol, however, becomes significantly measurable only after cyclohexanolmore » is largely converted to cyclohexene via dehydration. This is in contrast to the initially rapid alkylation of phenol when using cyclohexene as the co-reactant. 13C isotope scrambling results demonstrate that the electrophile, presumably cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the co-reactant, but requires re-adsorption of the alcohol dehydration product, cyclohexene, when cyclohexanol dimer is the dominant surface species (e.g., at 0.5 M cyclohexanol concentration) that is unable to generate carbenium ion. At the initial reaction stage of phenol-cyclohexanol alkylation on HBEA, the presence of the cyclohexanol dimer species hinders the adsorption of cyclohexene at the Brønsted acid site and the subsequent activation of the more potent electrophile (carbenium ion). Isotope scrambling data also show that intramolecular rearrangement of cyclohexyl phenyl ether, the O-alkylation product, does not significantly contribute to the formation of C-alkylation products.« less

  6. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.

  7. Low gravity synthesis of polymers with controlled molecular configuration

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.

    1975-01-01

    Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.

  8. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  9. Sustainable Engineering and Improved Recycling of PET for High-Value Applications: Transforming Linear PET to Lightly Branched PET with a Novel, Scalable Process

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Torkelson, John

    2009-03-01

    A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).

  10. Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts.

    PubMed

    Tang, Wei; Dayeh, Shadi A; Picraux, S Tom; Huang, Jian Yu; Tu, King-Ning

    2012-08-08

    We demonstrate the shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) by a controlled reaction with Ni leads on an in situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 °C. NiSi(2) is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (μA/μm) and a maximum transconductance of 430 (μS/μm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of 17 nm to 3.6 μm. Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs, and that limits transport parameter extraction from SB-FETs using conventional field-effect transconductance measurements.

  11. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  12. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    PubMed Central

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-01-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478

  13. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6

    NASA Astrophysics Data System (ADS)

    Morris, Samuel A.; Bignami, Giulia P. M.; Tian, Yuyang; Navarro, Marta; Firth, Daniel S.; Čejka, Jiří; Wheatley, Paul S.; Dawson, Daniel M.; Slawinski, Wojciech A.; Wragg, David S.; Morris, Russell E.; Ashbrook, Sharon E.

    2017-10-01

    The assembly-disassembly-organization-reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.

  14. Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-01

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.

  15. Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquid extraction.

    PubMed

    Carro, Antonia M; González, Paula; Lorenzo, Rosa A

    2013-06-28

    Pressurized liquid extraction (PLE) is an exhaustive technique used for the extraction of analytes from solid samples. Temperature, pressure, solvent type and volume, and the addition of other reagents notably influence the efficiency of the extraction. The analytical applications of this technique can be improved by coupling with appropriate derivatization reactions. The aim of this review is to discuss the recent applications of the sequential combination of PLE with derivatization and the approaches that involve simultaneous extraction and in situ derivatization. The potential of the latest developments to the trace analysis of environmental, food and biological samples is also analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Thermosensitive In Situ Gel Based on Solid Dispersion for Rectal Delivery of Ibuprofen.

    PubMed

    Liu, Yangdan; Wang, Xin; Liu, Youping; Di, Xin

    2018-01-01

    The objective of this study was to develop a thermosensitive in situ gel based on solid dispersions (SDs) for rectal delivery of ibuprofen (IBU). Thermosensitive (poloxamer 407) and mucoadhesive (hydroxypropylmethyl cellulose E5 and sodium alginate) polymers were used to prepare the in situ gel and the sol-gel transition temperature (T sol-gel ) and gel strength were optimized. The in vitro release performance and in vivo pharmacokinetic properties of the in situ gel after their rectal administration to rabbits were investigated. Compared with the solid suppository, the cumulative release of the IBU SDs loaded in situ gel was significantly increased. The in vivo pharmacokinetics indicated that in situ gel had a higher peak plasma concentration (C max ) and area under the curve (AUC (0-∞) ) in plasma than the solid suppositories. Histopathology results showed that the IBU in situ gel given at a dose of 15 mg/kg did not produce any irritation. In conclusion, this study suggested that the in situ gel could be an effective rectal formulation for IBU.

  17. In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka

    Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less

  18. In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift

    DOE PAGES

    Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka; ...

    2018-04-04

    Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less

  19. A new route for the synthesis of submicron-sized LaB{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lihong, Bao; Wurentuya,; Wei, Wei

    Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less

  20. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  1. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes

    DOE PAGES

    Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre; ...

    2015-10-26

    Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in-situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S-filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbonmore » proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li 2S/S interface. Density of states (DOS) calculations further confirmed this hypothesis. In-situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li 2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C-S nanocomposites for high specific energy Li-S batteries. As a result, the proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in-situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the on-going problems in battery technology.« less

  2. Unraveling the Structure of Mn-Promoted Co/TiO2 Fischer-Tropsch Catalysts by In Situ X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandjean, Didier; Morales, Fernando; Mens, Ad

    2007-02-02

    Combination of in situ X-ray absorption spectroscopy (XAFS) at the Co and Mn K-edges with electron microscopy (STEM-EELS) has allowed to unravel the complex structure of a series of unpromoted and Mn promoted TiO2-supported cobalt Fischer-Tropsch catalysts prepared by homogeneous deposition precipitation (HDP), both in their calcined and reduced states. After calcination the catalysts are generally composed of large Co3O4 aggregates (13-20 nm) and a MnO2-type phase that is either dispersed on the TiO2 surface or, for the major part, covering the Co3O4 particles. Additionally Mn is also forming a spinel-type Co3-xMnxO4 solid solution at the surface of the Co3O4more » particles. In pure Co or when small amount of this spinel-type phase are formed during calcination, reduction in H2 at 350 deg. C produces Co0 particles of variable sizes (3.5-15 nm) otherwise Co reduction is limited to the Co2+ state. Manganese that exists entirely in a Mn2+ state in the reduced catalysts is forming (1) a highly dispersed Ti2MnO4-type phase at the TiO2 surface, (2) a less dispersed MnO phase close to the cobalt particles that coexists with (3) a rock salt-type Mn1-xCoxO solid solution. Similarly, large amount of spinel solid solution in the calcined state favors the formation of Mn1-xCoxO-type solid solution during reduction showing that one of the main roles of the Mn promoter is to limit Co reducibility.« less

  3. Solid-state reaction of iron on β-SiC

    NASA Astrophysics Data System (ADS)

    Kaplan, R.; Klein, P. H.; Addamiano, A.

    1985-07-01

    The solid-state reaction between Fe and β-SiC has been studied using Auger-electron and electron-energy-loss spectroscopies and ion sputter profiling. Fe films from submonolayer coverage to 1000 Å thickness were grown in ultrahigh vacuum, and annealed at temperatures up to 550 °C. Auger line-shape changes occurred even for initial Fe coverage at 190 °C, indicating substantial bond alteration in the SiC substrate. A 1000-Å film was largely consumed by reaction with Si and C diffused from the substrate during a 500 °C anneal, and exhibited both Fe silicide and carbide throughout most of its original volume and free C present as graphite primarily at the surface. As an aid in identifying the reaction products studied in this work, Auger line shapes were first determined for the SiLVV peak in Fe silicide and for the CKLL transition in Fe carbide.

  4. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters.

    PubMed

    Sacci, Robert L; Black, Jennifer M; Balke, Nina; Dudney, Nancy J; More, Karren L; Unocic, Raymond R

    2015-03-11

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.

  5. Surface-Activated Coupling Reactions Confined on a Surface.

    PubMed

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density-functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.

  6. Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices.

    PubMed

    Bahou, Mohammed; Das, Prasanta; Lee, Yu-Fang; Wu, Yu-Jong; Lee, Yuan-Pern

    2014-02-14

    The quantum solid para-hydrogen (p-H2) has emerged as a new host for matrix isolation experiments. Among several unique characteristics, the diminished cage effect enables the possibility of producing free radicals via either photolysis in situ or bimolecular reactions of molecules with atoms or free radicals that are produced in situ from their precursors upon photo-irradiation. Many free radicals that are unlikely to be produced in noble-gas matrices can be produced readily in solid p-H2. In addition, protonated species can be produced upon electron bombardment of p-H2 containing a small proportion of the precursor during deposition. The application of this novel technique to generate protonated polycyclic aromatic hydrocarbons (PAH) and their neutral counterparts demonstrates its superiority over other methods. The technique of using p-H2 as a matrix host has opened up many possibilities for the preparation of free radicals and unstable species and their spectral characterization. Many new areas of applications and fundamental understanding concerning the p-H2 matrix await further exploration.

  7. High temperature hydrothermal vent fluids in Yellowstone Lake: Observations and insights from in-situ pH and redox measurements

    NASA Astrophysics Data System (ADS)

    Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.

    2017-09-01

    ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.

  8. Enhanced hydrogen release by catalyzed hydrolysis of sodium borohydride-ammonia borane mixtures: a solution-state 11B NMR study.

    PubMed

    Hannauer, J; Demirci, U B; Geantet, C; Herrmann, J M; Miele, P

    2011-03-07

    Hydrolysis of mixtures consisting of sodium borohydride NaBH(4) (SB) and ammonia borane NH(3)BH(3) (AB) was studied in the absence/presence of a Co catalyst. The kinetics of the H(2) evolutions was measured. The reactions were followed in situ by solution-state (11)B NMR and the hydrolysis by-products characterized by NMR, XRD and IR. It is demonstrated that the combination of the two compounds gives a synergetic effect. SB rapidly reduces the Co catalyst precursor and the NH(4)(+) ions from AB contribute in the dispersion of the in situ formed Co nanoparticles. As a result, the kinetics of H(2) evolution is greatly improved. For instance, a hydrogen generation rate of 29.6 L min(-1) g(-1)(Co) was found for a mixture consisting of 81 wt% NH(3)BH(3), 9 wt% NaBH(4) and 10 wt% CoCl(2). By (11)B NMR, it was showed that the reaction mechanisms are quite trivial. As soon as the Co catalyst forms in situ, SB, rather than AB, hydrolyzes until it is totally converted. Then, the overall hydrolysis continues with that of AB. Both reactions follow a bimolecular Langmuir-Hinshelwood mechanism; no reaction intermediates were observed during the process. In fact, SB and AB convert directly into B(OH)(4)(-), which comes in equilibrium with a polyborate compound identified as B(3)O(3)(OH)(4)(-). All of these results are discussed herein.

  9. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    PubMed

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    PubMed

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    NASA Astrophysics Data System (ADS)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  12. Preparing, Characterizing, and Investigating Luminescent Properties of a Series of Long-Lasting Phosphors in a SrO-Al[subscript 2]O[subscript 3] System: An Integrated and Inquiry-Based Experiment in Solid State Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ma, Yan-Zi; Jia, Li; Ma, Kai-Guo; Wang, Hai-Hong; Jing, Xi-Ping

    2017-01-01

    An integrated and inquiry-based experiment on solid state chemistry is applied to an inorganic chemistry lab course to provide insight into the characteristics of the solid phase reaction. In this experiment, students have the opportunity to synthesize long-lasting phosphors with formula xSrO·yAl[subscript 2]O[subscript 3]:Eu[superscript 2+],…

  13. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058

  14. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy.

    PubMed

    Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  15. Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications.

    PubMed

    Wu, Yen-Ting; Huang, Chun-Wei; Chiu, Chung-Hua; Chang, Chia-Fu; Chen, Jui-Yuan; Lin, Ting-Yi; Huang, Yu-Ting; Lu, Kuo-Chang; Yeh, Ping-Hung; Wu, Wen-Wei

    2016-02-10

    Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated β-Pt2Si/Si/θ-Ni2Si, β-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

  16. Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells

    NASA Astrophysics Data System (ADS)

    Lemont, S.; Billaud, D.

    Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.

  17. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  18. Low Energy Nuclear Reactions: A Millennium Status Report

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2000-03-01

    This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document

  19. Production of phytase by Mucor racemosus in solid-state fermentation.

    PubMed

    Bogar, Barbara; Szakacs, George; Pandey, Ashok; Abdulhameed, Sabu; Linden, James C; Tengerdy, Robert P

    2003-01-01

    Phytase production was studied by three Mucor and eight Rhizopus strains by solid-state fermentation (SSF) on three commonly used natural feed ingredients (canola meal, coconut oil cake, wheat bran). Mucor racemosus NRRL 1994 (ATCC 46129) gave the highest yield (14.5 IU/g dry matter phytase activity) on coconut oil cake. Optimizing the supplementation of coconut oil cake with glucose, casein and (NH(4))(2)SO(4), phytase production in solid-state fermentation was increased to 26 IU/g dry matter (DM). Optimization was carried out by Plackett-Burman and central composite experimental designs. Using the optimized medium phytase, alpha-amylase and lipase production of Mucor racemosus NRRL 1994 was compared in solid-state fermentation and in shake flask (SF) fermentation. SSF yielded higher phytase activity than did SF based on mass of initial substrate. Because this particular isolate is a food-grade fungus that has been used for sufu fermentation in China, the whole SSF material (crude enzyme, in situ enzyme) may be used directly in animal feed rations with enhanced cost efficiency.

  20. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  1. Reduction reactions and densification during in situ TEM heating of iron oxide nanochains

    NASA Astrophysics Data System (ADS)

    Bonifacio, Cecile S.; Das, Gautom; Kennedy, Ian M.; van Benthem, Klaus

    2017-12-01

    The reduction reactions and densification of nanochains assembled from γ-Fe2O3 nanoparticles were investigated using in situ transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during in situ TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L2,3 absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from Fe2O3 over Fe3O4, FeO to metallic Fe. Phase transitions during the in situ heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.

  2. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.

  3. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  4. Coupled charge migration and fluid mixing in reactive fronts

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves

    2017-04-01

    Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501

  5. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.

    PubMed

    Chang, Chen-Wei; Webb, Colin

    2017-03-01

    Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using the fungus Trichoderma longibrachiatum was implemented as a simultaneous microbial pretreatment and in-situ enzyme production method for fungal autolysis and further enzyme hydrolysis of fermented solids. Suspending the fermented solids in water at 50°C led to the highest hydrolysis yields of 226mg/g reducing sugar and 7.7mg/g free amino nitrogen (FAN). The resultant feedstock was shown to be suitable for the production of various products including ethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Barium Hydroxide-Ammonium Thiocyanate Reaction: A Titrimetric Continuous Variations Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1979-01-01

    Presents an experiment for inorganic, organic, or physical chemistry students utilizing acid-base titrimetry to study the stoichiometric of a solid state reaction. Time involved ranges from one to three, three-hour lab periods. (Author/SA)

  7. Conventional and Microwave Joining of Silicon Carbide Using Displacement Reactions

    NASA Technical Reports Server (NTRS)

    Kingsley, J.; Yiin, T.; Barmatz, M.

    1995-01-01

    Microwave heating was used to join Silicon Carbide rods using a thin TiC /Si tape interlayer . Microwaves quickly heated the rods and tape to temperatures where solid-state displacement reactions between TiC and Si occurred.

  8. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study.

    PubMed

    Bukhtiyarov, A V; Prosvirin, I P; Saraev, A A; Klyushin, A Yu; Knop-Gericke, A; Bukhtiyarov, V I

    2018-06-07

    Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.

  9. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li 3OX (X=Cl, Br)

    DOE PAGES

    Li, Shuai; Zhu, Jinlong; Wang, Yonggang; ...

    2015-12-10

    Lithium-rich Anti-perovskite (LiRAP), with general formula Li 3OX (X = Cl, Br, I), and recently reported as superionic conductors with 3-dimensional Li + migrating channels, is emerging as a promising candidate for solid electrolyte of all-solid-state LIBs. But, it is still difficult to fabricate pure LiRAP due to the difficulty of the phase formation and moisture-sensitive nature of the products. In this work, we thoroughly studied the formation mechanism of Li 3OCl and Li 3OBr in various solid state reaction routes. We developed different experimental strategies in order to improve the syntheses, in purposes of improved phase stability and large-scalemore » production of LiRAP. One feasible method is to use strongly reductive agents Li metal or LiH to eliminate OH species. The results show that LiH is more effective than Li metal because of negatively charged H - and uniform reaction. The other well-established method is using Li 2O and LiX mixture as reagents to preventing OH phase at the beginning, and using protected ball milling to make fine powders and hence active the reaction. Finally, IR spectroscopy, thermal analyses and first-principle calculation were performed to give indications on the reaction pathway.« less

  10. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  11. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1996-01-01

    Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.

  12. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    NASA Technical Reports Server (NTRS)

    Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  13. Synthesisofc-lifepo4 composite by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  14. Nanowire liquid pumps

    NASA Astrophysics Data System (ADS)

    Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju

    2013-04-01

    The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.

  15. A new glycation product ‘norpronyl-lysine,’ and direct characterization of cross linking and other glycation adducts: NMR of model compounds and collagen

    PubMed Central

    Bullock, Peter T. B.; Reid, David G.; Ying Chow, W.; Lau, Wendy P. W.; Duer, Melinda J.

    2014-01-01

    NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products. PMID:27919030

  16. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties.

    PubMed

    Liang, Yucang; Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-04

    Crystalline ZnO -ROH and ZnO -OR (R = Me, Et, i Pr, n Bu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)₂ deriving from the reaction of Zn[N(SiMe₃)₂]₂ with ROH and of the freshly prepared Zn(OR)₂ under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO -ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO -OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)₂ generated ZnO -R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.

  17. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties

    PubMed Central

    Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-01

    Crystalline ZnO-ROH and ZnO-OR (R = Me, Et, iPr, nBu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)2 deriving from the reaction of Zn[N(SiMe3)2]2 with ROH and of the freshly prepared Zn(OR)2 under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO-ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO-OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)2 generated ZnO-R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons’ movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties. PMID:29300343

  18. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules

    PubMed Central

    Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.

    2014-01-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059

  19. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    PubMed

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.

  20. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    NASA Astrophysics Data System (ADS)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  1. Design and validation of an advanced entrained flow reactor system for studies of rapid solid biomass fuel particle conversion and ash formation reactions

    NASA Astrophysics Data System (ADS)

    Wagner, David R.; Holmgren, Per; Skoglund, Nils; Broström, Markus

    2018-06-01

    The design and validation of a newly commissioned entrained flow reactor is described in the present paper. The reactor was designed for advanced studies of fuel conversion and ash formation in powder flames, and the capabilities of the reactor were experimentally validated using two different solid biomass fuels. The drop tube geometry was equipped with a flat flame burner to heat and support the powder flame, optical access ports, a particle image velocimetry (PIV) system for in situ conversion monitoring, and probes for extraction of gases and particulate matter. A detailed description of the system is provided based on simulations and measurements, establishing the detailed temperature distribution and gas flow profiles. Mass balance closures of approximately 98% were achieved by combining gas analysis and particle extraction. Biomass fuel particles were successfully tracked using shadow imaging PIV, and the resulting data were used to determine the size, shape, velocity, and residence time of converting particles. Successful extractive sampling of coarse and fine particles during combustion while retaining their morphology was demonstrated, and it opens up for detailed time resolved studies of rapid ash transformation reactions; in the validation experiments, clear and systematic fractionation trends for K, Cl, S, and Si were observed for the two fuels tested. The combination of in situ access, accurate residence time estimations, and precise particle sampling for subsequent chemical analysis allows for a wide range of future studies, with implications and possibilities discussed in the paper.

  2. 77 FR 76457 - Howard Hughes Medical Institute, et al.; Notice of Consolidated Decision on Applications for Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... chemical state and their catalytic activity in various chemical reactions, by investigating solid... instrument. The unique features of this instrument include its small volume (0.045 L) reaction cell in which...

  3. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    PubMed

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  4. PROTON GENERATION BY DISSOLUTION OF INTRINSIC OR AUGMENTED ALUMINOSILICATE MINERALS FOR IN SITU CONTAMINANT REMEDIATION BY ZERO-VALENCE-STATE IRON

    EPA Science Inventory

    Metallic, or zero-valence-state, iron is being incorporated into permeable reactive subsurface barriers for remediating a variety of contaminant plume types. The remediation occurs via reductive processes that are associated with surface corrosion of the iron metal. Reaction rate...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Huajun; Gao, Tao; Li, Xiaogang

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less

  6. High power rechargeable magnesium/iodine battery chemistry

    DOE PAGES

    Tian, Huajun; Gao, Tao; Li, Xiaogang; ...

    2017-01-10

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less

  7. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less

  8. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    NASA Astrophysics Data System (ADS)

    Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.

    2013-11-01

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  9. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    PubMed

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  10. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models.

    PubMed

    Surampalli, Gurunath; K Nanjwade, Basavaraj; Patil, P A

    2015-01-01

    The aim of this study was to corroborate the effects of naringin, a P-glycoprotein inhibitor, on the intestinal absorption and pharmacokinetics of candesartan (CDS) from candesartan cilexetil (CAN) solid dispersions using in-situ rat models. Intestinal transport and absorption studies were examined by in-situ single pass perfusion and closed-loop models. We evaluated the intestinal membrane damage in the presence of naringin by measuring the release of protein and alkaline phosphatase (ALP). We noticed 1.47-fold increase in Peff of CDS from freeze-dried CAN-loaded solid dispersions with naringin (15 mg/kg, w/w) when compared with freeze-dried solid dispersion without naringin using in-situ single pass intestinal perfusion model. However, no intestinal membrane damage was observed in the presence of naringin. Our findings from in-situ closed-loop pharmacokinetic studies showed 1.34-fold increase in AUC with elevated Cmax and shortened tmax for freeze-dried solid dispersion with naringin as compared to freeze-dried solid dispersion without naringin. This study demonstrated that increased solubilization (favored by freeze-dried solid dispersion) and efflux pump inhibition (using naringin), the relative bioavailability of CDS can be increased, suggesting an alternative potential for improving oral bioavailability of CAN.

  11. Direct detection and characterization of bioinorganic peroxo moieties in a vanadium complex by 17O solid-state NMR and density functional theory.

    PubMed

    Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana

    2018-07-01

    Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln{sub 2}(Hpdc){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 4}]{sub n}·2nH{sub 2}O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H{sub 3}pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H{sub 3}pdc was decomposed into (ox){sup 2−} with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2{sub 1}/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groupsmore » to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H{sub 3}pdc was decomposed into (ox){sup 2−} with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence.« less

  13. Enzyme Engineering for In Situ Immobilization.

    PubMed

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  14. In Situ FTIR and NMR Spectroscopic Investigations on Ruthenium-Based Catalysts for Alkene Hydroformylation.

    PubMed

    Kubis, Christoph; Profir, Irina; Fleischer, Ivana; Baumann, Wolfgang; Selent, Detlef; Fischer, Christine; Spannenberg, Anke; Ludwig, Ralf; Hess, Dieter; Franke, Robert; Börner, Armin

    2016-02-18

    Homogeneous ruthenium complexes modified by imidazole-substituted monophosphines as catalysts for various highly efficient hydroformylation reactions were characterized by in situ IR spectroscopy under reaction conditions and NMR spectroscopy. A proper protocol for the preformation reaction from [Ru3 (CO)12] is decisive to prevent the formation of inactive ligand-modified polynuclear complexes. During catalysis, ligand-modified mononuclear ruthenium(0) carbonyls were detected as resting states. Changes in the ligand structure have a crucial impact on the coordination behavior of the ligand and consequently on the catalytic performance. The substitution of CO by a nitrogen atom of the imidazolyl moiety in the ligand is not a general feature, but it takes place when structural prerequisites of the ligand are fulfilled. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation.

    PubMed

    Takanabe, Kazuhiro; Khan, Abdulaziz M; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W; Elbaz, Ayman M; Sarathy, S Mani; Tao, Franklin Feng

    2017-08-21

    Sodium-based catalysts (such as Na 2 WO 4 ) were proposed to selectively catalyze OH radical formation from H 2 O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2 WO 4 , which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2 O 2 species, which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800 °C, and these species are useful for various gas-phase hydrocarbon reactions, including the selective transformation of methane to ethane. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Non-invasive in situ identification and band assignments of diazepam, flunitrazepam and methadone hydrochloride with FT-near-infrared spectroscopy.

    PubMed

    Ali, Hassan Refat H

    2011-03-20

    Near-infrared spectroscopy (NIR) has evolved into an important rapid, direct and non-invasive technique in drugs analysis. In this study, the suitability of NIR spectroscopy to identify two benzodiazepine derivatives, diazepam and flunitrazepam, and a synthetic opiate, methadone hydrochloride, inside USP vials and probe the solid-state form of diazepam presents in tablets has been explored. The results show the potential of NIR spectroscopy for rapid, in situ and non-destructive identification of drugs. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer.

    PubMed

    Huang, Hao; Karlsson, Christoffer; Strømme, Maria; Gogoll, Adolf; Sjödin, Martin

    2017-04-19

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows a spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an Interdigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  18. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  19. Lead-germanium ohmic contact on to gallium arsenide formed by the solid phase epitaxy of germanium: A microstructure study

    NASA Astrophysics Data System (ADS)

    Radulescu, Fabian

    2000-12-01

    Driven by the remarkable growth in the telecommunication market, the demand for more complex GaAs circuitry continued to increase in the last decade. As a result, the GaAs industry is faced with new challenges in its efforts to fabricate devices with smaller dimensions that would permit higher integration levels. One of the limiting factors is the ohmic contact metallurgy of the metal semiconductor field effect transistor (MESFET), which, during annealing, induces a high degree of lateral diffusion into the substrate. Because of its limited reaction with the substrate, the Pd-Ge contact seems to be the most promising candidate to be used in the next generation of MESFET's. The Pd-Ge system belongs to a new class of ohmic contacts to compound semiconductors, part of an alloying strategy developed only recently, which relies on solid phase epitaxy (SPE) and solid phase regrowth to "un-pin" the Fermi level at the surface of the compound semiconductor. However, implementing this alloy into an integrated process flow proved to be difficult due to our incomplete understanding of the microstructure evolution during annealing and its implications on the electrical properties of the contact. The microstructure evolution and the corresponding solid state reactions that take place during annealing of the Pd-Ge thin films on to GaAs were studied in connection with their effects on the electrical properties of the ohmic contact. The phase transformations sequence, transition temperatures and activation energies were determined by combining differential scanning calorimetry (DSC) for thermal analysis with transmission electron microscopy (TEM) for microstructure identification. In-situ TEM annealing experiments on the Pd/Ge/Pd/GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape recordings. With the exception of the Pd-GaAs interactions, it was found that four phase transformations occur during annealing of the Pd:Ge thin films on top of GaAs. The microstructural information was correlated with specific ohmic contact resistivity measurements performed in accordance with the transmission line method (TLM) and these results demonstrated that the Ge SPE growth on top of GaAs renders the optimal electrical properties for the contact. By using the focused ion beam (FIB) method to produce microcantilever beams, the residual stress present in the thin film system was studied in connection with the microstructure. Although, the PdGe/epi-Ge/GaAs seemed to be the optimal microstructural configuration, the presence of PdGe at the interface with GaAs did not damage the contact resistivity significantly. These results made it difficult to establish a charge transport mechanism across the interface but they explained the wide processing window associated with this contact.

  20. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    PubMed

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Diels-Alder Trapping of Photochemically Generated o-Quinodimethane Intermediates: An Alternative Route to Photocured Polymer Film Development

    NASA Technical Reports Server (NTRS)

    Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.

    2004-01-01

    Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.

  2. Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832

  3. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    PubMed

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo

    The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less

  5. Cationic copper (I) complexes with bulky 1,4-diaza-1,3-butadiene ligands - Synthesis, solid state structure and catalysis

    NASA Astrophysics Data System (ADS)

    Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.

    2013-05-01

    We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.

  6. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  7. Putting Cocrystal Stoichiometry to Work: A Reactive Hydrogen-Bonded "Superassembly" Enables Nanoscale Enlargement of a Metal-Organic Rhomboid via a Solid-State Photocycloaddition.

    PubMed

    Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R

    2018-04-11

    Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.

  8. Non-covalent interactions of a drug molecule encapsulated in a hybrid silica gel.

    PubMed

    Paul, Geo; Steuernagel, Stefan; Koller, Hubert

    2007-12-28

    The drug molecule Propranolol has been encapsulated by a sol-gel process in an organic-inorganic hybrid matrix by in-situ self-assembly; the 2D HETCOR solid state NMR spectroscopy provides direct proof of the intimate spatial relationship between the host matrix and guest drug molecules.

  9. In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite

    NASA Astrophysics Data System (ADS)

    Lin, Yingxi; Zhang, Haiyan; Deng, Wentao; Zhang, Danfeng; Li, Na; Wu, Qibai; He, Chunhua

    2018-04-01

    For the development of wearable electronic devices, it is crucial to develop energy storage components combining high-capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in-situ "growth and wrapping" method. The electrode contains polyaniline deposited on a carbon woven fabric and wrapped with a graphene-based envelop. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few layer graphene wrapping layer provides for a conductive network, which effectively enhances the cycling stability as 88.9% of the starting capacitance is maintained after 5000 charge/discharge cycles. Furthermore, the assembled device delivers a high areal capacity (of 790 F cm-2) at the current density of 1 A cm-2, a high areal energy (28.21 uWh cm-2) at the power densities of 0.12 mW cm-2 and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.

  10. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.

    PubMed

    Hou, Guangmei; Ma, Xiaoxin; Sun, Qidi; Ai, Qing; Xu, Xiaoyan; Chen, Lina; Li, Deping; Chen, Jinghua; Zhong, Hai; Li, Yang; Xu, Zhibin; Si, Pengchao; Feng, Jinkui; Zhang, Lin; Ding, Fei; Ci, Lijie

    2018-06-06

    The electrode-electrolyte interface stability is a critical factor influencing cycle performance of All-solid-state lithium batteries (ASSLBs). Here, we propose a LiF- and Li 3 N-enriched artificial solid state electrolyte interphase (SEI) protective layer on metallic lithium (Li). The SEI layer can stabilize metallic Li anode and improve the interface compatibility at the Li anode side in ASSLBs. We also developed a Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 -poly(ethylene oxide) (LAGP-PEO) concrete structured composite solid electrolyte. The symmetric Li/LAGP-PEO/Li cells with SEI-protected Li anodes have been stably cycled with small polarization at a current density of 0.05 mA cm -2 at 50 °C for nearly 400 h. ASSLB-based on SEI-protected Li anode, LAGP-PEO electrolyte, and LiFePO 4 (LFP) cathode exhibits excellent cyclic stability with an initial discharge capacity of 147.2 mA h g -1 and a retention of 96% after 200 cycles.

  11. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli

    Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  12. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphousmore » LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  13. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  14. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    PubMed Central

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  15. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE PAGES

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; ...

    2016-08-30

    Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  16. A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoLong; Zhong, Zheng

    2017-08-01

    In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.

  17. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.

  18. Enhanced photoluminescence of SrWO{sub 4}:Eu{sup 3+} red phosphor synthesized by mechanochemically assisted solid state metathesis reaction method at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Anthuvan John, E-mail: quantajohn@gmail.com; Banu, I. B. Shameem

    2015-06-24

    Optically efficient europium activated alkaline earth metal tungstate nano phosphor (SrWO{sub 4}) with different doping concentrations have been synthesized by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The XRD and Raman spectra results indicated that the prepared powders exhibit a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 854 cm{sup −1}, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO{sub 4}]{sup 2−} tetrahedron groups. Analysis of the emission spectra with different Eu{sup 3+} concentrations revealed that the optimum dopant concentration for SrWO{sub 4}: x Eu{sup 3+} phosphormore » is about 8 mol% of Eu{sup 3+}.The red emission intensity of the SSM prepared SrWO{sub 4}: 0.08Eu{sup 3+} phosphors are 2 times greater than that of the commercial Y{sub 2}O{sub 2}S: Eu{sup 3+} red phosphor prepared by the conventional solid state reaction method. All the results indicate that the phosphor is a promising red phosphor pumped by NUV InGaN chip for fabricating WLED.« less

  19. Determination of outer layer and bulk dehydration kinetics of trehalose dihydrate using atomic force microscopy, gravimetric vapour sorption and near infrared spectroscopy.

    PubMed

    Jones, Matthew D; Beezer, Anthony E; Buckton, Graham

    2008-10-01

    Knowledge of the kinetics of solid state reactions is important when considering the stability of many medicines. Potentially, such reactions could follow different kinetics on the surface of particles when compared with their interior, yet solid state processes are routinely followed using only bulk characterisation techniques. Atomic force microscopy (AFM) has previously been shown to be a suitable technique for the investigation of surface processes, but has not been combined with bulk techniques in order to analyse surface and bulk kinetics separately. This report therefore describes the investigation of the outer layer and bulk kinetics of the dehydration of trehalose dihydrate at ambient temperature and low humidity, using AFM, dynamic vapour sorption (DVS) and near infrared spectroscopy (NIR). The use of AFM enabled the dehydration kinetics of the outer layers to be determined both directly and from bulk data. There were no significant differences between the outer layer dehydration kinetics determined using these methods. AFM also enabled the bulk-only kinetics to be analysed from the DVS and NIR data. These results suggest that the combination of AFM and bulk characterisation techniques should enable a more complete understanding of the kinetics of certain solid state reactions to be achieved. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  20. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    PubMed

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  1. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    DOE PAGES

    Wang, Ping; Means, Nicholas; Shekhawat, Dushyant; ...

    2015-09-24

    Chemical-looping technology is one of the promising CO 2 capture technologies. It generates a CO 2 enriched flue gas, which will greatly benefit CO 2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter) and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coalmore » may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA) has been widely used for the development of oxygen carriers (e.g., oxide reactivity). Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.« less

  2. In Situ High Temperature High Pressure MAS NMR Study on the Crystallization of AlPO 4 -5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.

    2016-01-28

    A damped oscillating crystallization process of AlPO4-5 at the presence of small amount of water is demonstrated by in situ high temperature high pressure multinuclear MAS NMR. Crystalline AlPO4-5 is formed from an intermediate semicrystalline phase via continuous rearrangement of the local structure of amorphous precursor gel. Activated water catalyzes the rearrangement via repeatedly hydrolysis and condensation reaction. Strong interactions between organic template and inorganic species facilitate the ordered rearrangement. During the crystallization process, excess water, phosphate, and aluminums are expelled from the precursor. The oscillating crystallization reflects mass transportation between the solid and liquid phase during the crystallization process.more » This crystallization process is also applicable to AlPO4-5 crystallized in the presence of a relatively large amount of water.« less

  3. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Qi; Graduate School of Chinese Academy of Sciences, Beijing 100049; Li Daping

    2009-04-15

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l{sup -1} d{sup -1} and 3.84 g COD l{sup -1} d{sup -1}, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factorsmore » affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t{sup -1} TS d{sup -1} and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t{sup -1} TS d{sup -1} and the inhibition was enhanced with the increase of TON loading.« less

  4. When is an imine not an imine? Unusual reactivity of a series of Cu(II) imine-pyridine complexes and their exploitation for the Henry reaction.

    PubMed

    Cooper, Christine J; Jones, Matthew D; Brayshaw, Simon K; Sonnex, Benjamin; Russell, Mark L; Mahon, Mary F; Allan, David R

    2011-04-14

    In this paper we report the synthesis and solid-state structures for a series of pyridine based Cu(II) complexes and preliminary data for the asymmetric Henry reaction. Interestingly, the solid-state structures indicate the incorporation of an alcohol into one of the imine groups of the ligand, forming a rare α-amino ether group. The complexes have been studied via single crystal X-ray diffraction, EPR spectroscopy and mass spectrometry. Intriguingly, it has been observed that the alcohol only adds to one of the imine moieties. Density functional theory (DFT) calculations have also been employed to rationalise the observed structures. The Cu(II) complexes have been tested in the asymmetric Henry reaction (benzaldehyde + nitromethane or nitroethane) with ee's up to 84% being achieved as well as high conversions and modest diastereoselectivities. © The Royal Society of Chemistry 2011

  5. Low Energy Nuclear Reactions: Status at the Beginning of the New Millenium

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2001-03-01

    This talk will summarize some of the more convincing recent experiments that show that ^4He,^3He (including impossible to explain changes in the ^4He/^3He isotopic ratio), nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. But progress is being made. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available

  6. Photochemistry and Transmission Pump-Probe Spectroscopy of 2-Azidobiphenyls in Aqueous Nanocrystalline Suspensions: Simplified Kinetics in Crystalline Solids.

    PubMed

    Chung, Tim S; Ayitou, Anoklase J-L; Park, Jin H; Breslin, Vanessa M; Garcia-Garibay, Miguel A

    2017-04-20

    Aqueous nanocrystalline suspensions provide a simple and efficient medium for performing transmission spectroscopy measurements in the solid state. In this Letter we describe the use of laser flash photolysis methods to analyze the photochemistry of 2-azidobiphenyl and several aryl-substituted derivatives. We show that all the crystalline compounds analyzed in this study transform quantitatively into carbazole products via a crystal-to-crystal reconstructive phase transition. While the initial steps of the reaction cannot be followed within the time resolution of our instrument (ca. 8 ns), we detected the primary isocarbazole photoproducts and analyzed the kinetics of their formal 1,5-H shift reactions, which take place in time scales that range from a few nanoseconds to several microseconds. It is worth noting that the high reaction selectivity observed in the crystalline state translates into a clean and simple kinetic process compared to that in solution.

  7. Setting the Record Straight: Bottom-Up Carbon Nanostructures via Solid-State Reactions

    NASA Astrophysics Data System (ADS)

    Jordan, Robert Stanley

    Chapter 1 describes the development and spectroscopic investigation of a novel synthetic route to N = 8 armchair graphene nanoribbons from polydiacetylene polymers. Four distinct diphenyl polydiacetylene polymers are produced from the crystal-phase topochemical polymerization of their corresponding diphenyl-1,4-butadiynes. These polydiacetylene polymers are transformed into spectroscopically indistinguishable N = 8 armchair graphene nanoribbons via simple heating in the bulk, solid-state. The stepwise transformation of polydiacetylenes to graphene nanoribbons is examined in detail by the use of complementary spectroscopic methods, namely solid-state nuclear magnetic resonance, infrared, Raman and X-ray photoelectron spectroscopy. The final morphology and width of the nanoribbons is established through the use of high-resolution transmission electron microscopy. Chapter 2 chronicles the implementation of a similar approach to N = 12 armchair graphene nanoribbons from a dinaphthyl substituted polydiacetylene polymer. The mild nature of the process and pristine structure of the nanoribbons is again confirmed with the use of spectroscopic and microscopic methods. The chapter concludes with preliminary electrical measurements of the nanoribbons confirming that they are indeed conductive. Chapter 3 details the development of a synthetic route to diaryl trans-enediynes as structural models of individual reactive units within a polydiacetylene polymer. The trans-enediynes described are found to undergo three distinct annulation reactions depending on reaction conditions. Finally, the synthetic routes developed are utilized to access diethynyl [5]helicenes and phenanthrenes which fueled studies on the mechanism of the Bergman polymerization reaction.

  8. A Solvent-Free Baeyer-Villiger Lactonization for the Undergraduate Organic Laboratory: Synthesis of Gamma-T-Butyl-Epsilon-Caprolactone

    ERIC Educational Resources Information Center

    Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.

    2005-01-01

    The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.

  9. The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine

    ERIC Educational Resources Information Center

    Berry, David E.; Carrie, Philippa; Fawkes, Kelli L.; Rebner, Bruce; Xing, Yao

    2010-01-01

    This experiment describes the reaction of palladium(II) chloride with 1,5-bis(diphenylphosphino)pentane by grinding the two powders together in the solid state. The product is the precursor for the metalation reaction at one of the methylene carbon atoms of the ligand's backbone. The final product is known to be a catalyst for Suzuki-Miyaura…

  10. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    ERIC Educational Resources Information Center

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  11. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Decès-Petit, Cyrille; Kesler, Olivera

    Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 °C in H 2/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 mΩ cm 2 h -1 at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode.

  12. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    PubMed

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    PubMed Central

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  14. Initial and steady-state Ru growth by atomic layer deposition studied by in situ Angle Resolved X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.

    2017-10-01

    The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.

  15. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  16. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  17. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-06-23

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.

  18. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  19. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  20. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas

    NASA Astrophysics Data System (ADS)

    Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi

    2015-10-01

    Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.

  1. Global distribution of secondary organic aerosol particle phase state

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.

    2016-12-01

    Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.

  2. LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger

    2017-09-01

    A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.

  3. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    PubMed

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  4. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    NASA Astrophysics Data System (ADS)

    Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.

    2009-11-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  5. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    PubMed

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  6. Solid-to-solid oxidation of a vanadium(IV) to a vanadium(V) compound: chemisty of a sulfur-containing siderophore.

    PubMed

    Chatterjee, Pabitra B; Crans, Debbie C

    2012-09-03

    Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.

  7. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  8. The Application of High-Resolution Electron Microscopy to Problems in Solid State Chemistry: The Exploits of a Peeping TEM.

    ERIC Educational Resources Information Center

    Eyring, LeRoy

    1980-01-01

    Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)

  9. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  10. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100.

    PubMed

    El Maghraby, Gamal Mohamed; Elzayat, Ehab Mostafa; Alanazi, Fars Kaed

    2014-03-01

    Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m) was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels.

  11. Probing solid catalysts under operating conditions: electrons or X-rays?

    PubMed

    Thomas, John Meurig; Hernandez-Garrido, Juan-Carlos

    2009-01-01

    Seeing is believing: In light of recent advances, the pros and cons of using electrons and X-rays for in situ studies of catalysts are analyzed: by using X-rays the structure of bound reactants at steady state are obtained from extended X-ray adsorption fine structure spectroscopy (EXAFS) data (see graph), thereby affording mechanistic insights.

  12. Time-dependent deformation of gas shales - role of rock framework versus reservoir fluids

    NASA Astrophysics Data System (ADS)

    Hol, Sander; Zoback, Mark

    2013-04-01

    Hydraulic fracturing operations are generally performed to achieve a fast, drastic increase of permeability and production rates. Although modeling of the underlying short-term mechanical response has proven successful via conventional geomechanical approaches, predicting long-term behavior is still challenging as the formation interacts physically and chemically with the fluids present in-situ. Recent experimental work has shown that shale samples subjected to a change in effective stress deform in a time-dependent manner ("creep"). Although the magnitude and nature of this behavior is strongly related to the composition and texture of the sample, also the choice of fluid used in the experiments affects the total strain response - strongly adsorbing fluids result in more, recoverable creep. The processes underlying time-dependent deformation of shales under in-situ stresses, and the long-term impact on reservoir performance, are at present poorly understood. In this contribution, we report triaxial mechanical tests, and theoretical/thermodynamic modeling work with the aim to identify and describe the main mechanisms that control time-dependent deformation of gas shales. In particular, we focus on the role of the shale solid framework versus the type and pressure of the present pore fluid. Our experiments were mainly performed on Eagle Ford Shale samples. The samples were subjected to cycles of loading and unloading, first in the dry state, and then again after equilibrating them with (adsorbing) CO2 and (non-adsorbing) He at fluid pressures of 4 MPa. Stresses were chosen close to those persisting under in-situ conditions. The results of our tests demonstrate that likely two main types of deformation mechanisms operate that relate to a) the presence of microfractures as a dominating feature in the solid framework of the shale, and b) the adsorbing potential of fluids present in the nanoscale voids of the shale. To explain the role of adsorption in the observed compaction creep, we postulate a serial coupling between 1) stress-driven desorption of the fluid species, 2) diffusion of the desorbed species out of the solid, and 3) consequent shrinkage. We propose a model in which the total shrinkage of the solid (Step 3) that is measured as bulk compaction, is driven by a change in stress state (Step 1), and evolves in time controlled by the diffusion characteristics of the system (Step 2). Our experimental and modeling study shows that both the nature of the solid framework of the shale, as well as the type and pressure of pore fluids affect the long-term in-situ mechanical behavior of gas shale reservoirs.

  13. Microbial Reduction of Fe(III) and U(VI) in Aquifers: Simulations Exploring Coupled Effects of Heterogeneity and Fe(II) Sorption

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Fang, Y.; Roden, E. E.; Brooks, S. C.; Chien, Y.; Murray, C. J.

    2004-05-01

    Uranium is a significant groundwater contaminant at many former mining and processing sites. In its oxidized state, U(VI) is soluble and mobile, although strongly retarded by sorption to natural iron oxide surfaces. It has been demonstrated that commonly occurring subsurface microorganisms can reduce uranium and other metals when provided sufficient carbon as an electron donor. Reduced U(IV) precipitates as a solid phase; therefore biostimulation provides a potential strategy for in situ removal from contaminated groundwater. However, these biogeochemical reactions occur in the context of a complex heterogeneous environment in which flow and transport dynamics and abiotic reactions can have significant impacts. We have constructed a high-resolution numerical model of groundwater flow and multicomponent reactive transport that incorporates heterogeneity in hydraulic conductivity and initial Fe(III) distribution, microbial growth and transport dynamics, and effects of sorption or precipitation of biogenic Fe(II) on availability of Fe(III) as an electron acceptor. The biogeochemical reaction models and their parameters are based on laboratory experiments; the heterogeneous field-scale property distributions are based on interpretations of geophysical and other observations at a highly characterized field site. The model is being run in Monte Carlo mode to examine the controls that these factors exert on 1) the initial distribution of sorbed uranium in an oxic environment and 2) the reduction and immobilization of uranium upon introduction of a soluble electron donor.

  14. Mechanisms of neptunium redox reactions in nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Bryan, Samuel A.; Casella, Amanda J.

    First transuranium element neptunium (Np) exhibits complicated behavior in acidic solutions because it can adopt wide range of oxidation states typically from +3 to +6 and coordinate large variety of ligands. In particular, accurate determination of Np redox potentials in nitric acid solutions is challenging due to overlapping chemical and electrochemical reactions leading to significant experimental uncertainties. Furthermore, over past decades spectrophotometry has been extensively applied to identify and characterize Np solution species in different oxidation states. However, relevant spectral database of Np in nitric acid solutions that can serve for the reference purposes has yet to be established duemore » to the experimental difficulty to isolate and stabilize Np species in pure oxidation states without compromising solution optical properties. This work demonstrates that combination of voltammetry and controlled-potential in situ thin-layer spectropotentiometry overcomes these challenges so that Np species in pure +3, +4, +5, or +6 oxidation states were electrochemically generated in the systematically varied 0.1 – 5 M nitric acid solutions, and corresponding vis-NIR spectral signatures were obtained. In situ optical monitoring of the interconversion between adjacent Np oxidation states resulted in elucidation of the mechanisms of the involved redox reactions, in-depth understanding of the relative stability of the Np oxidation states, and allowed benchmarking of the redox potentials of the NpO22+/NpO2+, NpO2+/Np4+ and Np4+/Np3+ couples. Notably, the NpO2+/Np4+ couple was distinguished from the proximal Np4+/Np3+ process overcoming previous concerns and challenges encountered in accurate determination of the respective potentials.« less

  15. An advanced model framework for solid electrolyte intercalation batteries.

    PubMed

    Landstorfer, Manuel; Funken, Stefan; Jacob, Timo

    2011-07-28

    Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011

  16. High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.

    PubMed

    Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu

    2018-06-08

    Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

  17. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  18. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  19. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda

    2012-05-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as amore » starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.« less

  1. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In situ creation of reactive polymer nanoparticles and resulting polymer layers formed at the interfaces of liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin

    2017-02-01

    We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.

  3. Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition.

    PubMed

    Zheng, Yuanxia; Hong, Sungwook; Psofogiannakis, George; Rayner, G Bruce; Datta, Suman; van Duin, Adri C T; Engel-Herbert, Roman

    2017-05-10

    Atomic layer deposition (ALD) has matured into a preeminent thin film deposition technique by offering a highly scalable and economic route to integrate chemically dissimilar materials with excellent thickness control down to the subnanometer regime. Contrary to its extensive applications, a quantitative and comprehensive understanding of the reaction processes seems intangible. Complex and manifold reaction pathways are possible, which are strongly affected by the surface chemical state. Here, we report a combined modeling and experimental approach utilizing ReaxFF reactive force field simulation and in situ real-time spectroscopic ellipsometry to gain insights into the ALD process of Al 2 O 3 from trimethylaluminum and water on hydrogenated and oxidized Ge(100) surfaces. We deciphered the origin for the different peculiarities during initial ALD cycles for the deposition on both surfaces. While the simulations predicted a nucleation delay for hydrogenated Ge(100), a self-cleaning effect was discovered on oxidized Ge(100) surfaces and resulted in an intermixed Al 2 O 3 /GeO x layer that effectively suppressed oxygen diffusion into Ge. In situ spectroscopic ellipsometry in combination with ex situ atomic force microscopy and X-ray photoelectron spectroscopy confirmed these simulation results. Electrical impedance characterizations evidenced the critical role of the intermixed Al 2 O 3 /GeO x layer to achieve electrically well-behaved dielectric/Ge interfaces with low interface trap density. The combined approach can be generalized to comprehend the deposition and reaction kinetics of other ALD precursors and surface chemistry, which offers a path toward a theory-aided rational design of ALD processes at a molecular level.

  4. Natural Carbonation of Peridotite and Applications for Carbon Storage

    NASA Astrophysics Data System (ADS)

    Streit, E.; Kelemen, P.; Matter, J.

    2009-05-01

    Natural carbonation of peridotite in the Samail Ophiolite of Oman is surprisingly rapid and could be further enhanced to provide a safe, permanent method of CO2 storage through in situ formation of carbonate minerals. Carbonate veins form by low-temperature reaction between peridotite and groundwater in a shallow weathering horizon. Reaction with peridotite drives up the pH of the water, and extensive travertine terraces form where this groundwater emerges at the surface in alkaline springs. The potential sink for CO2 in peridotite is enormous: adding 1wt% CO2 to the peridotite in Oman could consume 1/4 of all atmospheric carbon, and several peridotite bodies of comparable size exist throughout the world. Thus carbonation rate and cost, not reservoir size, are the limiting factors on the usefulness of in situ mineral carbonation of peridotite for carbon storage. The carbonate veins in Oman are much younger than previously believed, yielding average 14C ages of 28,000 years. Age data plus estimated volumes of carbonate veins and terraces suggest 10,000 to 100,000 tons per year of CO2 are consumed by these peridotite weathering reactions in Oman. This rate can be enhanced by drilling, hydraulic fracture, injecting CO2-rich fluid, and increasing reaction temperature. Drilling and hydraulic fracture can increase volume of peridotite available for reaction. Additional fracture may occur due to the solid volume increase of the carbonation reaction, and field observations suggest that such reaction-assisted fracture may be responsible for hierarchical carbonate vein networks in peridotite. Natural carbonation of peridotite in Oman occurs at low pCO2, resulting in partial carbonation of peridotite, forming magnesite and serpentine. Raising pCO2 increases carbonation efficiency, forming of magnesite + talc, or at complete carbonation, magnesite + quartz, allowing ˜30wt% CO2 to be added to the peridotite. Increasing the temperature to 185°C can improve the reaction rate by a factor of more than 100,000. Thermal modeling suggests that after an initial heating stage, CO2-rich fluids injected at relatively low temperature can be heated by exothermic carbonation reactions, offsetting diffusive heat loss to maintain optimal temperatures for rapid carbonation without additional energy input. With these enhancements, in situ carbonation could consume more than 1 billion tons of CO2 per cubic kilometer of peridotite per year. Costs associated with this method include drilling, hydraulic fracture, initial heating, CO2 capture and transport, fluid injection and monitoring. The techniques for drilling, fracture and injection are routinely used by oil companies. Compared with other carbon storage methods, in situ mineral carbonation has several advantages. It offers permanent storage that is safer and easier to monitor than storage of CO2-rich fluids in porous underground reservoirs or in the ocean. It may also be less costly than ex situ mineral carbonation, which requires quarrying and transportation of peridotite, grinding and heat treatment, reactions in pressure vessels at elevated temperature, production of catalysts, and disposal of carbonated material. An alternative method, carbonation by reaction of offshore peridotite with shallow seawater rather than CO2-rich fluids, would consume less CO2, but would avoid the costs of CO2 capture and transport inherent in other CCS methods. Drilling to depths where rocks are already close to the optimal carbonation temperature would avoid pre-heating costs and circulate water by thermal convection rather than pumping fluids.

  5. In situ carbonation of peridotite for CO2 storage

    PubMed Central

    Kelemen, Peter B.; Matter, Jürg

    2008-01-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low-temperature alteration can be enhanced to develop a significant sink for atmospheric CO2. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of ≈26,000 years, and are not 30–95 million years old as previously believed. These data and reconnaissance mapping show that ≈104 to 105 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and, in particular, increased temperature at depth. After an initial heating step, CO2 pumped at 25 or 30 °C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume >1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe, and permanent method to capture and store atmospheric CO2.

  6. Effect of Particle Size Upon Pt/SiO 2 Catalytic Cracking of n-Dodecane Under Supercritical Conditions: in situ SAXS and XANES Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi

    The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO 2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability ofmore » the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.« less

  7. Reactions of vanadium dioxide molecules with acetylene: infrared spectra of VO2(η(2)-C2H2)(x) (x = 1, 2) and OV(OH)CCH in solid neon.

    PubMed

    Zhou, Xiaojie; Chen, Mohua; Zhou, Mingfei

    2013-07-03

    Reactions of vanadium dioxide molecules with acetylene have been studied by matrix isolation infrared spectroscopy. Reaction intermediates and products are identified on the basis of isotopic substitutions as well as density functional frequency calculations. Ground state vanadium dioxide molecule reacts with acetylene in forming the side-on-bonded VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes spontaneously on annealing in solid neon. The VO2(η(2)-C2H2) complex is characterized to have a (2)B2 ground state with C2v symmetry, whereas the VO2(η(2)-C2H2)2 complex has a (2)A ground state with C2 symmetry. The VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes are photosensitive. The VO2(η(2)-C2H2) complex rearranges to the OV(OH)CCH molecule upon UV-vis light excitation.

  8. Simple synthetic route to manganese-containing nanowires with the spinel crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lei; Zhang, Yan; Hudak, Bethany M.

    This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less

  9. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon.

  10. In situ dissolution analysis of pharmaceutical dosage forms using coherent anti-Stokes Raman scattering (CARS) microscopy

    NASA Astrophysics Data System (ADS)

    Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, C. J.

    2014-02-01

    A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were collected every 1.12s for the duration of the dissolution experiment. Hyperspectral CARS images were obtained pre- and postdissolution by rapidly imaging while sweeping the wavelength of the OPO in discrete steps so that each frame in the data stack corresponds to a vibrational frequency. An image-processing routine projects this hyperspectral data into a single image wherein each compound appears with a unique color. Dissolution was conducted using theophylline and cimetidine-naproxen co-amorphous mixture. After 15 minutes of theophylline dissolution, hyperspectral imaging showed a conversion of theophylline anhydrate to the monohydrate, confirmed by a peak shift in the CARS spectra. CARS dissolution images showed that monohydrate crystal growth began immediately and reached a maximum with complete surface coverage at about 300s. This result correlated with the UV dissolution data where surface crystal growth on theophylline compacts resulted in a rapidly reducing dissolution rate during the first 300s. Co-amorphous cimetidinenaproxen didn't appear to crystallize during dissolution. We observed solid-state conversions on the compact's surface in situ during dissolution. Hyperspectral CARS imaging allowed visual discrimination between the solid-state forms on the compact's surface. In the case of theophylline we were able to correlate the solid-state change with a change in dissolution rate.

  11. Rapid solid-state metathesis route to transition-metal doped titanias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu

    2015-12-15

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganesemore » doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.« less

  12. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  13. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    PubMed

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  14. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding

    PubMed Central

    Chen, Tao; Wang, Haojun

    2017-01-01

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening. PMID:28878190

  15. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2017-03-24

    A novel strategy was presented for the synthesis and application of functionalized silica monolithic as artificial receptor of gallic acid at micro-pipette tip. A sol-gel process was used to prepare the sorbent. In this in-situ polymerization reaction, tetraethyl orthosilicate (TEOS), 3-aminopropyl trimethoxysilane (APTMS), gallic acid and thiourea were used, respectively, as cross-linker, functionalized monomer, template and precursor to make crack-free and non-fragile structure. Such durable and inexpensive in-situ monolithic was successfully employed as useful tool for highly efficient extraction of gallic acid from orange juice samples. The effective parameters in extraction recovery were investigated and optimum conditions were obtained using experimental design methodology. Applying HPLC-UV for separation quantification at optimal conditions, the gallic acid was efficiently extracted without significant matrix interference. Good linearity for gallic acid in the range of 0.02-5.0mgL -1 with correlation coefficients of R 2 >0.999 revealed well applicability of the method for trace analysis. Copyright © 2017. Published by Elsevier B.V.

  16. Syntheses, structure and magnetic properties of two vanadate garnets Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Nannan; College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108; He, Zhangzhen, E-mail: hcz1988@hotmail.com

    2015-08-15

    Two vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesized by a high-temperature solid-state reaction. The compounds are found to crystallize in the cubic system with a space group Ia-3d, which exhibit a typical garnet structural framework. Magnetic measurements show that Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) exhibit similar magnetic behaviors, in which Ca{sub 5}Co{sub 4}V{sub 6}O{sub 24} possesses an antiferromagnetic ordering at T{sub N}=~6 K while Ca{sub 5}Ni{sub 4}V{sub 6}O{sub 24} shows an antiferromagnetic ordering at T{sub N}=~7 K. - Graphical abstract: Garnet vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesizedmore » by a high-temperature solid-state reaction. Structural features and magnetic behaviors are also investigated. - Highlights: • New type of garnet vanadates Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) are synthesized by a high-temperature solid-state reaction. • Structural features are confirmed by single crystal samples. • Magnetic behaviors are firstly investigated in the systems.« less

  17. On the Maillard reaction of meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.

    2006-08-01

    We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.

  18. Separation of uranium from (U, Th)O 2 and (U, Pu)O 2 by solid state reactions route

    NASA Astrophysics Data System (ADS)

    Keskar, Meera; Mudher, K. D. Singh; Venugopal, V.

    2005-01-01

    Solid state reactions of UO 2, ThO 2, PuO 2 and their mixed oxides (U, Th)O 2 and (U, Pu)O 2 were carried out with sodium nitrate upto 900 °C, to study the formation of various phases at different temperatures, which are amenable for easy dissolution and separation of the actinide elements in dilute acid. Products formed by reacting unsintered as well as sintered UO 2 with NaNO 3 above 500 °C were readily soluble in 2 M HNO 3, whereas ThO 2 and PuO 2 did not react with NaNO 3 to form any soluble products. Thus reactions of mixed oxides (U, Th)O 2 and (U, Pu)O 2 with NaNO 3 were carried out to study the quantitative separation of U from (U, Th)O 2 and (U, Pu)O 2. X-ray diffraction, X-ray fluorescence, thermal analysis and chemical analysis techniques were used for the characterization of the products formed during the reactions.

  19. A long-term bench-scale investigation of permanganate consumption by aquifer materials.

    PubMed

    Xu, Xiuyuan; Thomson, Neil R

    2009-11-20

    In situ chemical oxidation (ISCO) applications using permanganate involve the injection or release of permanganate into the subsurface to destroy various target contaminants. Naturally occurring reduced components associated with aquifer materials can exert a significant oxidant demand thereby reducing the amount of permanganate available for the destruction of contaminants as well as reducing the overall rate of oxidation. Quantification of this natural oxidant demand (NOD) is a requirement for site-specific assessment and the design of cost-effective oxidant delivery systems. To further our understanding of the interaction between permanganate and aquifer materials, aerobic and anaerobic aquifer materials from eight representative sites throughout North America were tested in a series of systematic bench-scale experiments. Various permanganate to aquifer solids mass loading ratios at different initial permanganate concentrations in well-mixed batch reactors were monitored for >300 days. All NOD temporal profiles demonstrated an initial fast consumption rate followed by a persistent slower consumption rate. The data generated show that the mass loading ratio, the initial permanganate concentration, and the nature and quantity of reduced aquifer material species are the main factors controlling permanganate consumption rates. A higher initial permanganate concentration or a larger mass loading ratio produced a larger fast NOD consumption rate and generated a corresponding higher maximum NOD value. Hence, both the NOD temporal profile and the maximum NOD are not single-valued but are heavily dependent on the experimental conditions. Predictive relationships were developed to estimate the maximum NOD and the NOD at 7 days based on aquifer material properties. The concentration of manganese oxides deposited on the aquifer solids was highly correlated with the mass of permanganate consumed suggesting that passivation of NOD reaction sites occurred due to the formation of manganese oxide coating on the grains. A long-term NOD kinetic model was developed assuming a single fast and slow reacting oxidizable aquifer material species, passivation of NOD reaction sites, and the presence of an autocatalytic reaction. The developed model was able to successfully capture the observed NOD temporal profiles, and can be used to estimate in situ NOD behavior using batch reactor experimental data. The use of batch tests to provide data representative of in situ conditions should be used with caution.

  20. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries.

    PubMed

    Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won

    2017-12-13

    Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.

  1. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants

  2. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Long; Alamillo, Ricardo; Elliott, William A.

    Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less

  3. Synthesis and Characterization of a Perovskite Barium Zirconate (BaZrO[subscript 3]): An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thananatthanachon, Todsapon

    2016-01-01

    In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…

  4. In-situ Characterization of Cu/CeO 2 Nanocatalysts during CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lili; Yao, Siyu; Liu, Zongyuan

    Here, a combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to carry out an in-situ characterization of Cu/CeO 2 nanocatalysts during the hydrogenation of CO 2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria-nanorods (NR) and nanospheres (NS). At atmospheric pressures, the hydrogenation of CO 2 on the copper-ceria catalysts produced mainly CO through the reverse-water gas shift reaction (RWGS) and a negligible amount of methanol. The Cu/CeO 2-NR catalyst displayed the higher activity, which demonstrates thatmore » the RWGS is a structure sensitive reaction. In-situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions with the copper being fully reduced and a partial Ce 4+ to Ce 3+ transformation occurring. A more effective CO 2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO 2(110) terminations are probably the main reasons for the better performance of the Cu/CeO 2-NR catalyst in the RWGS reaction.« less

  5. In-situ Characterization of Cu/CeO 2 Nanocatalysts during CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

    DOE PAGES

    Lin, Lili; Yao, Siyu; Liu, Zongyuan; ...

    2018-05-28

    Here, a combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to carry out an in-situ characterization of Cu/CeO 2 nanocatalysts during the hydrogenation of CO 2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria-nanorods (NR) and nanospheres (NS). At atmospheric pressures, the hydrogenation of CO 2 on the copper-ceria catalysts produced mainly CO through the reverse-water gas shift reaction (RWGS) and a negligible amount of methanol. The Cu/CeO 2-NR catalyst displayed the higher activity, which demonstrates thatmore » the RWGS is a structure sensitive reaction. In-situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions with the copper being fully reduced and a partial Ce 4+ to Ce 3+ transformation occurring. A more effective CO 2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO 2(110) terminations are probably the main reasons for the better performance of the Cu/CeO 2-NR catalyst in the RWGS reaction.« less

  6. Reactions between atomic chlorine and pyridine in solid para-hydrogen: infrared spectrum of the 1-chloropyridinyl (C5H5N-Cl) radical.

    PubMed

    Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern

    2013-02-07

    With infrared absorption spectra we investigated the reaction between Cl atom and pyridine (C(5)H(5)N) in a para-hydrogen (p-H(2)) matrix. Pyridine and Cl(2) were co-deposited with p-H(2) at 3.2 K; a planar C(5)H(5)N-Cl(2) complex was identified from the observed infrared spectrum of the Cl(2)/C(5)H(5)N/p-H(2) matrix. Upon irradiation at 365 nm to generate Cl atom in situ and annealing at 5.1 K for 3 min to induce secondary reaction, the 1-chloropyridinyl radical (C(5)H(5)N-Cl) was identified as the major product of the reaction Cl + C(5)H(5)N in solid p-H(2); absorption lines at 3075.9, 1449.7, 1200.6, 1148.8, 1069.3, 1017.4, 742.9, and 688.7 cm(-1) were observed. The assignments are based on comparison of observed vibrational wavenumbers and relative IR intensities with those predicted using the B3PW91/6-311++G(2d, 2p) method. The observation of the preferential addition of Cl to the N-site of pyridine to form C(5)H(5)N-Cl radical but not 2-, 3-, or 4-chloropyridine (ClC(5)H(5)N) radicals is consistent with the reported theoretical prediction that formation of the former proceeds via a barrierless path.

  7. Infrared identification of the σ-complex of Cl-C6H6 in the reaction of chlorine atom and benzene in solid para-hydrogen.

    PubMed

    Bahou, Mohammed; Witek, Henryk; Lee, Yuan-Pern

    2013-02-21

    The reaction of a chlorine atom with benzene (C6H6) is important in organic chemistry, especially in site-selective chlorination reactions, but its product has been a subject of debate for five decades. Previous experimental and theoretical studies provide no concrete conclusion on whether the product is a π- or σ-form of the Cl-C6H6 complex. We took advantage of the diminished cage effect of para-hydrogen (p-H2) to produce Cl in situ to react with C6H6 (or C6D6) upon photolysis of a Cl2/C6H6 (or C6D6)/p-H2 matrix at 3.2 K. The infrared spectrum, showing intense lines at 1430.5, 833.6, 719.8, 617.0, and 577.4 cm(−1), and several weaker ones for Cl-C6H6, and the deuterium shifts of observed new lines unambiguously indicate that the product is a 6-chlorocyclohexadienyl radical, i.e., the σ-complex of Cl-C6H6. Observation of the σ-complex rather than the π-complex indicates that the σ-complex is more stable in solid p-H2 at 3.2 K. The spectral information is crucial for further investigations of the Cl + C6H6 reaction either in the gaseous or solution phase.

  8. Comparisons of predicted steady-state levels in rooms with extended- and local-reaction bounding surfaces

    NASA Astrophysics Data System (ADS)

    Hodgson, Murray; Wareing, Andrew

    2008-01-01

    A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.

  9. Electrochemical performance and durability of carbon supported Pt catalyst in contact with aqueous and polymeric proton conductors.

    PubMed

    Andersen, Shuang Ma; Skou, Eivind

    2014-10-08

    Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g., sulfuric acid), and a solid polymer electrolyte (e.g., Nafion). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon supported platinum catalyst in four different electrode structures: catalyst powder (CP), catalyst ionomer electrode (CIE), half membrane electrode assembly (HMEA), and full membrane electrode assembly (FMEA) in both ex situ and in situ experiments under a simulated start/stop cycle. We found that the catalyst performance and stability are very much influenced by the presence of the Nafion ionomers. The proton conducting phase provided by the ionomer and the self-assembled electrode structure render the catalysts a higher utilization and better stability. This is probably due to an enhanced dispersion, an improved proton-catalyst interface, the restriction of catalyst particle aggregation, and the improved stability of the ionomer phase especially after the lamination. Therefore, an innovative electrode HMEA design for ex-situ catalyst characterization is proposed. The electrode structure is identical to the one used in a real fuel cell, where the protons transport takes place solely through solid state proton conducting phase.

  10. Energy-saving approaches to solid state street lighting

    NASA Astrophysics Data System (ADS)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  11. Highly efficient red-emitting BaMgBO3F:Eu3+,R+ (R: Li, Na, K, Rb) phosphor for near-UV excitation synthesized via glass precursor solid-state reaction

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kenji; Akai, Tomoko

    2017-09-01

    Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.

  12. Metastable solidification of hypereutectic Co 2Si-CoSi composition: Microstructural studies and in-situ observations

    DOE PAGES

    Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias; ...

    2017-09-18

    Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less

  13. Metastable solidification of hypereutectic Co 2Si-CoSi composition: Microstructural studies and in-situ observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias

    Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less

  14. Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Langli; Liu, Bin; Song, Shidong

    The capacity, Coulombic efficiency, rate, and cyclability of a Li-O2 battery critically depend on the electrode reaction mechanism and the structure/morphology of the reaction product as well as their spatial and temporal evolution1-8, which are all further complicated by the choice of different electrolyte. For the case of aprotic cell, the discharge product, Li2O2, is formed through solution and surface mechanisms9,10, but little is known on the formation mechanism of the perplexing morphology of the reaction product11-15. For the case of Li-O2 battery using solid electrolyte, neither electrode reaction mechanism nor the nature of the reaction production is known. Herein,more » we reveal the full cycle reaction pathway for Li-O2 batteries and its correlation with the nature of the reaction product. Using an aberration-corrected environmental TEM under oxygen environment, we captured, for the first time, the morphology and phase evolution on the carbon nanotube (CNT) cathode of a working solid-state Li-O2 nano-battery16 and directly correlated these features with electrochemical reaction. We found that the oxygen reduction reaction on CNTs initially produces LiO2, which subsequently evolves to Li2O2 and O2 through disproportionation reaction. Surprisingly it is just the releasing of O2 that inflates the particles to a hollow structure with a Li2O outer surface layer and Li2O2 inner-shell, demonstrating that, in general, accommodation of the released O2 coupled with the Li+ ion diffusion and electron transport paths across both spatial and temporal scales critically governs the morphology of the discharging/charging product in Li-O2 system. We anticipate that the direct observation of Li-O2 reaction mechanisms and their correlation with the morphology of the reaction product set foundation for quantitative understanding/modeling of the electrochemical processes in the Li-O2 system, enabling rational design of both solid-state and aprotic Li-O2 batteries.« less

  15. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  16. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  17. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NOx by NH3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kispersky, Vincent F.; Kropf, A. Jeremy; Ribeiro, Fabio H.

    2012-01-01

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO x by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states.more » XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.« less

  18. Solid-state 13C NMR studies of a large fossil gymnosperm from the Yallourn Open Cut, Latrobe Valley, Australia

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1989-01-01

    A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.

  19. A Specific Nucleophilic Ring-Opening Reaction of Aziridines as a Unique Platform for the Construction of Hydrogen Polysulfides Sensors

    DOE PAGES

    Chen, Wei; Rosser, Ethan W.; Zhang, Di; ...

    2015-05-11

    Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less

  20. Online investigations on ozonation products of pyrene and benz[ a]anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    The reaction products of ozone with pyrene and benz[ a]anthracene absorbed on azelaic acid particles under the pseudo-first-order reaction conditions have been investigated with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The pyrene and benz[ a]anthracene particles with the initial concentrations of ˜1 mg m -3 are respectively exposed to ˜22 ppm ozone in a reaction chamber with a volume of ˜180 L. The time-of-flight mass spectra of the particulate ozonides are obtained. The assignments of the mass spectra reveal that 4-carboxy-5-phenanthrene-carboxyaldehyde (71%) and hydroxypyrene (23%) are the main solid state ozonides of pyrene, while 2-(2-formyl)phenyl-3-naphthoic acid (35%), hydroxybenz[ a]anthrone (30%), and benz[ a]anthracene-7,12-dione (18%) are the main solid state ozonides of benz[ a]anthracene. The pathways of the ozonations are proposed in the paper.

Top