In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.
Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming
2015-12-30
The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Bauer, Sondes; Lazarev, Sergey; Molinari, Alan; Breitenstein, Andreas; Leufke, Philipp; Kruk, Robert; Hahn, Horst; Baumbach, Tilo
2014-03-01
A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X-ray reflectivity, in situ two-dimensional reciprocal space mapping of symmetric X-ray diffraction and acquisition of time-resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two-dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time-resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.
Dynamical diffraction imaging (topography) with X-ray synchrotron radiation
NASA Technical Reports Server (NTRS)
Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.
1989-01-01
By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.
Chesman, Anthony S R; Yang, Mei; Mallick, Bert; Ross, Tamsyn M; Gass, Ian A; Deacon, Glen B; Batten, Stuart R; Mudring, Anja-Verena
2012-01-04
The complexes (N(4444))(3)[Ln(dcnm)(6)] (Ln = La-Nd, Sm; N(4444) = tetrabutylammonium) display a decrease in the melting point upon fast cooling from a melt, which is shown by in situ synchrotron based X-ray powder diffraction to be due to the formation of a second, less thermodynamically stable, polymorph. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Meller, Nicola; Kyritsis, Konstantinos; Hall, Christopher
2009-10-01
We apply in-situ synchrotron X-ray diffraction to study the transformation of calcium monosulfoaluminate 14-hydrate Ca 4Al 2O 6(SO 4)·14H 2O [monosulfate-14] to hydrogarnet Ca 3Al 2(OH) 12 on the saturated water vapor pressure curve up to 250 °C. We use an aqueous slurry of synthetic ettringite Ca 6Al 2(SO 4) 3(OH) 12·26H 2O as the starting material; on heating, this decomposes at about 115 °C to form monosulfate-14 and bassanite CaSO 4·0.5H 2O. Above 170 °C monosulfate-14 diffraction peaks slowly diminish in intensity, perhaps as a result of loss of crystallinity and the formation of an X-ray amorphous meta-monosulfate. Hydrogarnet nucleates only at temperatures above 210 °C. Bassanite transforms to β-anhydrite (insoluble anhydrite) at about 230 °C and this transformation is accompanied by a second burst of hydrogarnet growth. The transformation pathway is more complex than previously thought. The mapping of the transformation pathway shows the value of rapid in-situ time-resolved synchrotron diffraction.
Structure determination of an integral membrane protein at room temperature from crystals in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ
2015-05-14
The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
NASA Technical Reports Server (NTRS)
Kuriyama, Masao
1988-01-01
Synchrotron radiation sources are now available throughout the world. The use of hard X-ray radiation from these sources for materials science is described with emphasis on diffraction imaging for material characterization. With the availability of synchrotron radiation, real-time in situ measurements of dynamic microstructural phenomena have been started. This is a new area where traditional application of X-rays has been superseded. Examples are chosen from limited areas and are by no means exhaustive. The new emerging information will, no doubt, have great impact on materials science and engineering.
Lu, L.; Huang, J. W.; Fan, D.; ...
2016-08-29
In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less
Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.
2014-01-01
A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003
NASA Astrophysics Data System (ADS)
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.
Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less
Toward in situ x-ray diffraction imaging at the nanometer scale
NASA Astrophysics Data System (ADS)
Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami
2008-08-01
We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.
NASA Astrophysics Data System (ADS)
Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim
2017-10-01
Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yue; Hrubiak, Rostislav; Rod, Eric
An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less
Meng, Yue; Hrubiak, Rostislav; Rod, Eric; ...
2015-07-17
An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yue; Hrubiak, Rostislav; Rod, Eric
An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areasmore » including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.
2014-01-01
In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.
NASA Astrophysics Data System (ADS)
Mallinson, P. M.; Claridge, J. B.; Rosseinsky, M. J.; Ibberson, R. M.; Wright, J. P.; Fitch, A. N.; Price, T.; Iddles, D. M.
2007-11-01
In situ synchrotron x-ray powder diffraction has been used to study the kinetics of cation ordering and disordering in the microwave dielectric electroceramic Ba3CoNb2O9 with a time resolution of 15s. The method enables the order/disorder temperature (To /d) in this material of 1430°C to be directly observed. The changes in the rate and degree of cation ordering and in the growth of ordered domains between samples ordered from standard precursor material and then subsequently reordered following an annealing period above To /d show that small changes in precursor order state and phase assemblage strongly influence the final domain size.
NASA Astrophysics Data System (ADS)
Yuan, Chaosheng; Chu, Kunkun; Li, Haining; Su, Lei; Yang, Kun; Wang, Yongqiang; Li, Xiaodong
2016-09-01
Pressure-induced crystallization of Choline chloride/Urea (ChCl/Urea) deep eutectic solvent (DES) has been investigated by in-situ Raman spectroscopy and synchrotron X-ray diffraction. The results indicated that high pressure crystals appeared at around 2.6 GPa, and the crystalline structure was different from that formed at ambient pressure. Upon increasing the pressure, the Nsbnd H stretching modes of Urea underwent dramatic change after liquid-solid transition. It appears that high pressures may enhance the hydrogen bonds formed between ChCl and Urea. P versus T phase diagram of ChCl/Urea DES was constructed, and the crystallization mechanism of ChCl/Urea DES was discussed in view of hydrogen bonds.
Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F
2010-10-01
We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.
NASA Astrophysics Data System (ADS)
Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.
2003-01-01
Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.
2015-01-01
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.
Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J
2015-09-01
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.
2015-10-15
The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei
2014-03-01
In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.
In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors
NASA Astrophysics Data System (ADS)
Takahasi, Masamitu
2018-05-01
The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geandier, G.; Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette; LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse
2010-10-15
We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains usingmore » x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.« less
Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...
2015-04-16
Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronalmore » annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO 2 and ThO 2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO 2 and ThO 2.« less
Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.
Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T
2013-06-01
This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, C.; Marx, A.; Epp, S. W.
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Mueller, C.; Marx, A.; Epp, S. W.; ...
2015-08-18
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences
2014-03-15
In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less
Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J
2015-09-01
We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.
Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films
NASA Astrophysics Data System (ADS)
Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.
2002-06-01
The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.
Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.; ...
2017-02-20
The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. Furthermore, these experimental resultsmore » can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.
2016-04-01
High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region andmore » region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.« less
Sample environment for in situ synchrotron corrosion studies of materials in extreme environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.
A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoringmore » the oxidation of metallic zirconium during exposure to steam at 350°C. Finally, the in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.« less
Sample environment for in situ synchrotron corrosion studies of materials in extreme environments
Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.; ...
2016-10-25
A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoringmore » the oxidation of metallic zirconium during exposure to steam at 350°C. Finally, the in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.« less
Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; ...
2016-02-23
Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. We employed two different build strategies; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planesmore » was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.« less
Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.
2013-01-01
An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Sun, T.; Fezzaa, K.
Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less
In Situ Assessment of Lattice in an Al-Li Alloy
NASA Technical Reports Server (NTRS)
Beaudoin, A. J.; Obstalecki, M.; Tayon, W.; Hernquist, M.; Mudrock, R.; Kenesei, P.; Lienert, U.
2013-01-01
The lattice strains of individual grains are measured in an Al-Li alloy, AA 2195, using high-energy X-ray diffraction at a synchrotron source. The diffraction of individual grains in this highly textured production alloy was isolated through use of a depth-defining aperture. It is shown that hydrostatic stress, and in turn the stress triaxiality, can vary significantly from grain to grain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereloma, E.; Zhang, L.; Liss, K.-D.
2011-06-01
In this work we compare and contrast the stability of retained austenite during tensile testing of Nb-Mo-Al transformation-induced plasticity steel subjected to different thermomechanical processing schedules. The obtained microstructures were characterised using optical metallography, transmission electron microscopy and X-ray diffraction. The transformation of retained austenite to martensite under tensile loading was observed by in-situ high energy X-ray diffraction at 1ID / APS. It has been shown that the variations in the microstructure of the steel, such as volume fractions of present phases, their morphology and dimensions, play a critical role in the strain-induced transition of retained austenite to martensite.
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fei; Wu, Yuan; Lou, Hongbo
Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Mavredaki; A Neville; K Sorbie
2011-12-31
The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylicmore » acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.« less
Polymorphism in a high-entropy alloy
Zhang, Fei; Wu, Yuan; Lou, Hongbo; ...
2017-06-01
Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less
An in situ X ray diffraction study of the kinetics of the Ni2SiO4 olivine-spinel transformation
NASA Technical Reports Server (NTRS)
Rubie, D. C.; Tsuchida, Y.; Yagi, T.; Utsumi, W.; Kikegawa, T.
1990-01-01
The kinetics of the olivine-spinel transformation in Ni2SiO4 were investigated in an in situ X-ray diffraction experiments in which synchrotron radiation was used as an X-ray source. The starting material was Ni2SO4 olivine which was hot-pressed in situ at 980 C and 2.5 GPa; during the transformation, X-ray diffraction patterns were collected at intervals of 30 or 120 sec. The kinetic data were analyzed using Cahn's (1956) model. The activation energy for growth at 3.6-3.7 GPa was estimated as 438 + or - 199 kJ/mol. It is shown that, in order to make significant extrapolations of the kinetic data to a geological scale, the dependence of the rates of both nucleation and growth on temperature and pressure must be evaluated separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, S.; Thurston, T.R.; Jisrawi, N.M.
The authors describe synchrotron based X-ray diffraction techniques and issues related to in situ studies of intercalation processes in battery electrodes. They then demonstrate the utility of this technique, through a study of two batches of Li{sub x}Mn{sub 2}O{sub 4} cathode materials. The structural evolution of these spinel materials was monitored in situ during the initial charge of these electrodes in actual battery cells. Significant differences were observed in the two batches, particularly in the intercalation range of x = 0.45 to 0.20. The first-order structural transitions in this region indicated coexistence of two cubic phases in the batch 2more » material, whereas the batch 1 material showed suppressed two-phase coexistence. Batch 2 cells also indicated structural evolution in the low-potential region below 3.0 V in contrast to the batch 1 material. Differences in structural evolution between batches of Li{sub x}Mn{sub 2}O{sub 4} could have important ramifications in their cycle life and stability characteristics.« less
Determination of the solubility of tin indium oxide using in situ and ex x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, G. B.; Mason, T. O.; Okasinski, J. S.
A novel approach to determine the thermodynamic solubility of tin in indium oxide via the exsolution from tin overdoped nano-ITO powders is presented. High-energy, in situ and ex situ synchrotron X-ray diffraction was utilized to study the solubility limit at temperatures ranging from 900 C to 1375 C. The tin exsolution from overdoped nanopowders and the formation of In{sub 4}Sn{sub 3}O{sub 12} were observed in situ during the first 4-48 h of high-temperature treatment. Samples annealed between 900 C and 1175 C were also studied ex situ with heat treatments for up to 2060 h. Structural results obtained from Rietveldmore » analysis include compositional phase analysis, atomic positions, and lattice parameters. The tin solubility in In{sub 2}O{sub 3} was determined using the phase analysis compositions from X-ray diffraction and the elemental compositions obtained from X-ray fluorescence. Experimental complications that can lead to incorrect tin solubility values in the literature are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Fei; Jadhav, Nitin; Buchovecky, Eric
2016-03-14
We have performed X-ray synchrotron micro-diffraction measurements to study the processes controlling the formation of hillocks and whiskers in Sn layers on Cu. The studies were done in real-time on Sn layers that were electro-deposited immediately before the X-ray measurements were started. This enabled a region of the sample to be monitored from the as-deposited state until after a hillock feature formed. In addition to measuring the grain orientation and deviatoric strain (via Laue diffraction), the X-ray fluorescence was monitored to quantify the evolution of the Sn surface morphology and the formation of intermetallic compound (IMC) at the Sn-Cu interface.more » The results capture the simultaneous growth of the feature and the corresponding film stress, grain orientation, and IMC formation. The observations are compared with proposed mechanisms for whisker/hillock growth and nucleation.« less
Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
Styles, Mark J; Rowles, Matthew R; Madsen, Ian C; McGregor, Katherine; Urban, Andrew J; Snook, Graeme A; Scarlett, Nicola V Y; Riley, Daniel P
2012-01-01
This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.
NASA Astrophysics Data System (ADS)
Antonov, Stoichko; Sun, Eugene; Tin, Sammy
2018-06-01
Detailed ex-situ electron microscopy and atom probe tomography (APT) were combined with in-situ synchrotron diffraction to systematically quantify the chemical, morphological, and lattice instabilities that occur during aging of a polycrystalline high-refractory content Ni-base superalloy. The morphological changes and splitting phenomenon associated with the secondary γ' precipitates were related to a combination of discrete chemical composition variations at the secondary γ'/γ interfaces and additional chemical energy arising from γ precipitates that form within the secondary γ' particles. The compositional phase inhomogeneities led to the precipitation of finely dispersed tertiary γ' particles within the γ matrix and secondary γ particles within the secondary γ' precipitates, which, along with surface grooving of the secondary γ' particles, likely due to a spike in the lattice misfit at the particle interfaces, contributed to the splitting of the precipitates during aging.
Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal
2017-09-01
For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew L.; Smith, Jesse; Sinogeikin, Stanislav
2017-12-01
We report real-time observations of a phase transition in the ionic solid CaF2 , a model A B2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
NASA Astrophysics Data System (ADS)
Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander
2018-03-01
This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.
Kalita, Patricia E.; Specht, Paul Elliot; Root, Seth; ...
2017-12-21
Here, we report real-time observations of a phase transition in the ionic solid CaF 2, a model AB 2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2012-06-13
Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.
Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine
Burnley, Pamela C
2015-07-01
Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less
Pressure-induced anomalies and structural instability in compressed β-Sb 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yongtao; Zhang, Wei; Li, Xuefei
2018-01-01
Here, we have discovered a new high-pressure phase of Sb 2 O 3 , and reported pressure-induced anomalies in orthorhombic β-Sb 2 O 3 (valentinite) by the combination of synchrotron in situ X-ray diffraction and first-principles theoretical calculations up to 40.5 GPa.
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...
2017-03-21
Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less
Investigation of high-energy ion-irradiated MA957 using synchrotron radiation under in-situ tension
Mo, Kun; Yun, Di; Miao, Yinbin; ...
2016-01-02
In this paper, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 μm in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 μm from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing ofmore » the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner.« less
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...
2016-05-16
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA
NASA Astrophysics Data System (ADS)
Guilera, G.; Rey, F.; Hernández-Fenollosa, J.; Cortés-Vergaz, J. J.
2013-04-01
A new multi-purpose in-situ cell and its control system have been developed for synchrotron-based techniques as are X-Ray Absorption spectroscopy (XAS) and X-Ray Diffraction (XRD). The cell is made of a stainless steel 'body' and three different exchangeable 'heads' to tackle different scientific areas that include solid-gas catalysis, solid-liquid catalysis and electrocatalysis. The different versions of the cell are herein described and their functionality is exemplified by some case studies.
NASA Astrophysics Data System (ADS)
Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel
2017-01-01
The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.
Song, Wenwen; Bleck, Wolfgang
2017-01-01
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692
Ma, Yan; Song, Wenwen; Bleck, Wolfgang
2017-09-25
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Bie, B. X.; Li, Q. H.
2017-06-01
In situ synchrotron x-ray imaging and diffraction are used to investigate deformation of a rolled magnesium alloy under uniaxial compression at room and elevated temperatures along two different directions. The loading axis (LA) is either perpendicular or parallel to the normal direction, and these two cases are referred to as LA⊥ and LAk loading, respectively. Multiscale measurements including stressestrain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously. Due to initial texture, f1012g extension twinning is predominant in the LA⊥ loading, while dislocation motion prevails in the LAk loading. With increasing temperature, fewer f1012g extension twins aremore » activated in the LA⊥ samples, giving rise to reduced strain homogenization, while pyramidal slip becomes readily activated, leading to more homogeneous deformation for the LAk loading. The difference in the strain hardening rates is attributed to that in strain field homogenization for these two loading directions« less
Experimental measurement of lattice strain pole figures using synchrotron x rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.P.; Bernier, J.V.; Park, J.-S.
This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm{sup 2} monochromatic (50 keV) xmore » ray beam. Entire Debye rings of data were collected for multiple lattice planes ({l_brace}hkl{r_brace}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys.« less
NASA Astrophysics Data System (ADS)
Chen, Liucheng; Li, Haining; Zhu, Xiang; Su, Lei; Yang, Kun; Yuan, Chaosheng; Yang, Guoqiang; Li, Xiaodong
2017-06-01
In situ crystalization of 1-decyl-3-methylimidazolium tetrafluoroborate ([C10MIM][BF4]) from melt has been investigated under high pressure up to 3.4 GPa at room temperature by using Raman spectroscopy and synchrotron X-ray diffraction measurement. Raman spectral analysis indicated that [C10MIM][BF4] experienced two successive phase transitions at about 0.3 GPa and 1.6 GPa. And the polymorphism was also discussed in view of the conformational isomerism of [C10MIM]+ cation between gauche and trans conformers. Notably, liquid-crystal and crystal-crystal phase transitions were further confirmed by synchrotron X-ray diffraction measurement. Moreover, it also indicated that high structural flexibility of the cations with long alkyl chain might have effect on the degree of disorder of pressure-induced crystallization for ionic liquids.
NASA Astrophysics Data System (ADS)
Sasaki, Takuo; Takahasi, Masamitu
2017-06-01
In this study, we analyzed the influence of indium supply on the growth dynamics of gold-catalyzed InGaAs nanowires by in situ synchrotron X-ray diffraction. A high In/Ga supply ratio results in strong size inhomogeneity of Au particles and interrupts the nanowire growth at a certain point of time. Based on the experimental results, we discussed the state of Au catalysts with high indium content during the nanowire growth. We found that a growth temperature below the eutectic temperature is essential to avoid the growth interruption and maintain the nanowire growth. The high In/Ga ratio necessitates accurate size control of Au particles before growth for further improvement of the nanowire growth.
Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu
2009-09-01
Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.
In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.
Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A
2014-06-01
The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.
NASA Astrophysics Data System (ADS)
Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.
2014-12-01
Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (< 6 GPa); (2) Though at each condition potentially complicated by charge disordering process, isothermal compression curves remains simple and reproducible; (3) During cooling, the reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.
NASA Astrophysics Data System (ADS)
Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.
2015-06-01
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.
Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D
2015-06-01
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargarella, P., E-mail: piter@ufscar.br; Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo; Pauly, S.
The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.
{ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.
Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}
NASA Astrophysics Data System (ADS)
Ge, Mingyuan; Liu, Wenjun; Bock, David; De Andrade, Vincent; Yan, Hanfei; Huang, Xiaojing; Marschilok, Amy; Takeuchi, Esther; Xin, Huolin; Chu, Yong S.
2016-09-01
The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever increasing source brightness, which have significantly advanced ex-situ and in-situ research for energy materials, such as lithium-ion batteries. However, the strong beam-matter interaction arisen from the high beam flux can significantly modify the material structure. The parasitic beam-induced effect inevitably interferes with the intrinsic material property, which brings difficulties in interpreting experimental results, and therefore requires comprehensive evaluation. Here we present a quantitative in-situ study of the beam-effect on one electrode material Ag2VO2PO4 using four different X-ray probes with different radiation dose rate. The material system we reported exhibits interesting and reversible radiation-induced thermal and chemical reactions, which was further evaluated under electron microscopy to illustrate the underlying mechanism. The work we presented here will provide a guideline in using synchrotron X-rays to distinguish the materials' intrinsic behavior from extrinsic structure changed induced by X-rays, especially in the case of in-situ and operando study where the materials are under external field of either temperature or electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. Q.; Sun, X.; Lee, S. J.
In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less
Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska
2016-07-14
A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaoli; Li, Fangfei; Zhou, Qiang
Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less
Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; ...
2016-02-17
Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less
Shining a light on planetary processes using synchrotron techniques
NASA Astrophysics Data System (ADS)
Brand, H. E. A.; Kimpton, J. A.
2017-12-01
The Australian Synchrotron is a world-class national research facility that uses accelerator technology to produce X-rays and infrared for research. It is available for researchers from all institutions and disciplines. This contribution is intended to inform the community of the current capabilities at the facility using examples drawn from planetary research across the beamlines. Examples will include: formation of jarosite minerals with a view to Mars; studies of Micrometeorites; and large volume CT imaging of geological samples. A suite of new beamlines has been proposed for the growth of the facility and one of these, ADS, the Advanced Diffraction and Scattering beamline, is intended to be a high energy X-ray diffraction beamline capable of reaching extreme conditions and carrying out challenging in situ experiments. There is an opportunity to develop complex new sample environments which could be of relevance to shock metamorphic processes and this will form part of the discussion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.
Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating {ital in} {ital situ} in battery cells. Two technologically relevant electrode materials were examined; an {ital AB}{sub 2}-type anode in a nickel{endash}metal{endash}hydride cell and a LiMn{sub 2}O{sub 4} cathode in a Li-ion {open_quote}{open_quote}rocking chair{close_quote}{close_quote} cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studiesmore » of battery electrode materials is discussed. {copyright} {ital 1996 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Brown, L. D.; Abdulaziz, R.; Jervis, R.; Bharath, V. J.; Atwood, R. C.; Reinhard, C.; Connor, L. D.; Simons, S. J. R.; Inman, D.; Brett, D. J. L.; Shearing, P. R.
2015-09-01
The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride-potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O2- ions away from the UO2 working electrode could impede the electrochemical reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baier, S.; Rochet, A.; Hofmann, G.
2015-06-15
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less
NASA Astrophysics Data System (ADS)
Brand, H. E. A.; Scarlett, N. V. Y.; Wilson, S. A.; Frierdich, A. J.; Grey, I. E.
2016-12-01
Jarosites and related minerals are critical to a range of mineral processing and research applications. They are used in the removal of iron species from smelting processes; they occur in metal bioleaching systems, and they are present in acid mine drainage environments. There has been a recent resurgence in interest in jarosites since their detection on Mars. In this context, the presence of jarosite has been recognised as a likely indicator of liquid water at the surface of Mars in the past & it is thought that their study will provide insight into the environmental history of Mars. Acid sulfate soils cover large areas of the Australian coastline and are likely to be a major constituent of the Martian environment. The oxidation of acid sulfate soils, coupled with potential release of heavy metals and acidic groundwaters, can have serious consequences for fragile ecosystems. Understanding these sediments will provide insight into the biogeochemical processes that affect the lifetimes of transient mineral species on Earth, and may be used to better understand soil acidification, contaminant mobility at sites affected by acid and metalliferous drainage, and even constrain past weathering and putative biosignatures on Mars. Knowledge of the behaviour of jarosite minerals under the actual conditions that they are found in is crucial to understanding their potential environmental impacts on both Earth and Mars. To this end, we are engaged in a program to study the formation, stability and alteration of natural and synthetic jarosite minerals using a complementary suite of in situ synchrotron and neutron techniques. There are 3 sections to this work that will introduce the experimental techniques and sample environments that make these measurements possible: Studying the nucleation and growth of jarosites under laboratory conditions. The experimentation consisted of time-resolved synchrotron small angle X-ray scattering and X-ray diffraction. Studying the stability of natural & synthetic jarosites with temperature and pressure using synchrotron and neutron diffraction. Parallel neutron and X-ray imaging at OPAL and the Australian Synchrotron, combined with synchrotron pseudo-microdiffraction to map the mineralogy and structural relationships within naturally occurring jarosite nodules.
Rapid time-resolved diffraction studies of protein structures using synchrotron radiation
NASA Astrophysics Data System (ADS)
Bartunik, Hans D.; Bartunik, Lesley J.
1992-07-01
The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.
Structural Mineral Physics at Extreme Conditions
NASA Astrophysics Data System (ADS)
Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.
2017-12-01
Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.
In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2
NASA Astrophysics Data System (ADS)
Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas
2017-06-01
The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.
Yang, Zhi; Gu, Qinfen; Hemar, Yacine
2013-08-14
The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
NASA Astrophysics Data System (ADS)
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
Compact low power infrared tube furnace for in situ X-ray powder diffraction
NASA Astrophysics Data System (ADS)
Doran, A.; Schlicker, L.; Beavers, C. M.; Bhat, S.; Bekheet, M. F.; Gurlo, A.
2017-01-01
We describe the development and implementation of a compact, low power, infrared heated tube furnace for in situ powder X-ray diffraction experiments. Our silicon carbide (SiC) based furnace design exhibits outstanding thermal performance in terms of accuracy control and temperature ramping rates while simultaneously being easy to use, robust to abuse and, due to its small size and low power, producing minimal impact on surrounding equipment. Temperatures in air in excess of 1100 °C can be controlled at an accuracy of better than 1%, with temperature ramping rates up to 100 °C/s. The complete "add-in" device, minus power supply, fits in a cylindrical volume approximately 15 cm long and 6 cm in diameter and resides as close as 1 cm from other sensitive components of our experimental synchrotron endstation without adverse effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. Q.; Sun, X.; McBreen, J.
The authors have utilized synchrotron x-ray radiation to perform ''in situ'' x-ray diffraction studies on Li{sub 1-x}CoO{sub 2} and Li{sub 1-x}NiO{sub 2} cathodes. A C/10 charging rate was used for a Li/Li{sub 1-x}CoO{sub 2} cell. For the Li/Li{sub 1-x}NiO{sub 2} cells, C/13 and C/84 rates were applied. The in situ XRD data were collected during the first charge from 3.5 to 5.2 V. For the Li{sub 1-x}CoO{sub 2} cathode, in the composition range of x = 0 to x = 0.5, a new intermediate phase H2a was observed in addition to the two expected hexagonal phases H1 and H2. Inmore » the region very close to x = 0.5, some spectral signatures for the formation of a monoclinic phase M1 were also observed. Further, in the x = 0.8 to x = 1 region, the formation of a CdI{sub 2} type hexagonal phase has been confirmed. However, this new phase is transformed from a CdCl{sub 2} type hexagonal phase, rather than from a monoclinic phase M2 as previously reported in the literature. For the Li{sub 1-x}NiO{sub 2} system, by taking the advantage of the high resolution in 2{theta} angles through the synchrotron based XRD technique, they were able to identify a two-phase coexistence region of hexagonal phase H1 and H2, which has been mistakenly indexed as a single phase region for monoclinic phase M1. Interesting similarities and differences between these two systems are also discussed.« less
In situ investigations of phase transformations in Fe-sheathed MgB2 wires
NASA Astrophysics Data System (ADS)
Grivel, J.-C.; Pinholt, R.; Andersen, N. H.; Kovác, P.; Husek, I.; Homeyer, J.
2006-01-01
The phase evolution inside Fe-sheathed wires containing precursor powders consisting of a mixture of Mg and B has been studied in situ by means of x-ray diffraction with hard synchrotron radiation (90 keV). Mg was found to disappear progressively during the heating stage. At 500 °C, the intensity of the Mg diffraction lines is reduced by about 20%. This effect is partly attributable to MgO formation. The MgB2 phase was detected from 575 °C. Fe2B was forming at the interface between the sheath and the ceramic core at sintering temperatures of 780 and 700 °C, but not at 650 °C. The formation rate of this phase is strongly dependent on the heat treatment temperature. Its presence can be readily detected as soon as the average interface reaction thickness exceeds 150-200 nm.
NASA Astrophysics Data System (ADS)
Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert
2016-01-01
A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.
High-energy synchrotron x-ray techniques for studying irradiated materials
Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...
2015-03-20
High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less
Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
NASA Astrophysics Data System (ADS)
Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
Synthesis and time-resolved structural characterization of framework and mineral sulfides
NASA Astrophysics Data System (ADS)
Cahill, Christopher Langley
A new class of open-framework organic/inorganic hybrid materials based on In-S chemistry has been discovered. The compounds therein exhibit unprecedented structural diversity compared to known porous sulfides, primarily due to variation in framework building units. Further, large increases in pore dimensions (vs. zeolites, for example) are observed as these materials consist of comer and edge linked clusters, e.g. In10S20, In9S17, In4S10 and In6S 15. Choice of organic structure directing agents (templates) and careful control of reaction conditions (temperature, pH) both in the In-S and Ge-S systems is shown not only to dictate which building unit will form, but also to direct the resulting framework topology. Several of the compounds described herein crystallize either as powders, or as crystals too small for standard in-house X-ray structural analysis. Diffraction experiments have thus required synchrotron based single crystal techniques for structure determination. Further, certain reaction mixture compositions result in multi-phase end products, the formation pathways of which have been studied with time resolved, in situ synchrotron powder diffraction. An extension of the applicability of the in situ techniques investigated the role of oxygen in hydrothermal systems. Oxidation state is proposed to dictate speciation in the Ni-Ge-S system and to promote phase transformations in the Fe-S mineral system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Jiang, Daqiang
This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Lee, J. H.; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong
2016-01-01
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.
Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong
2016-01-01
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.
Chang, L. L.; Wang, Y. D.; Ren, Y.
2015-11-04
Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
NASA Astrophysics Data System (ADS)
Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin; Ren, Yang; Wang, Yangdong
2016-12-01
The micromechanical properties of the constituent phases were characterized for advanced high-strength steels (AHSS) produced by a quenching and partitioning (Q&P) process with in situ tensile loading under synchrotron-based, high-energy X-ray diffraction. The constituent phases present are retained austenite and three martensites (tempered, untampered, and freshly formed martensites). For the material investigated, the 200 and 220 lattice strains of the retained austenite phase were calculated by examining the changes of the X-ray diffraction peak positions during deformation. The 200 and 211 lattice strains of the various martensitic phases with similar crystal structures were determined by separating their overlapped diffraction peaks. Apart from tempered and untempered martensite, the diffraction peaks of freshly formed martensite as a result of austenite-to-martensite transformation can also be separated due to a high initial austenite volume fraction. The phase stresses are first estimated with an empirical relationship through the X-ray diffraction elastic constants. A multiphase elasto-plastic self-consistent model is next used for more accurate determination of the constitutive behaviors of the various phases by comparing the predicted lattice strain distributions and global stress-strain curves with the measured ones. The determined constitutive laws will be used for microstructure-based modeling for sheet formability of the Q&P AHSS steel.
Controlled nucleation and growth of CdS nanoparticles in a polymer matrix.
Di Luccio, Tiziana; Laera, Anna Maria; Tapfer, Leander; Kempter, Susanne; Kraus, Robert; Nickel, Bert
2006-06-29
In-situ synchrotron X-ray diffraction (XRD) was used to monitor the thermal decomposition (thermolysis) of Cd thiolates precursors embedded in a polymer matrix and the nucleation of CdS nanoparticles. A thiolate precursor/polymer solid foil was heated to 300 degrees C in the X-ray diffraction setup of beamline W1.1 at Hasylab, and the diffraction curves were each recorded at 10 degrees C. At temperatures above 240 degrees C, the precursor decomposition is complete and CdS nanoparticles grow within the polymer matrix forming a nanocomposite with interesting optical properties. The nanoparticle structural properties (size and crystal structure) depend on the annealing temperature. Transmission electron microscopy (TEM) and photoluminescence (PL) analyses were used to characterize the nanoparticles. A possible mechanism driving the structural transformation of the precursor is inferred from the diffraction features arising at the different temperatures.
Submicron x-ray diffraction and its applications to problems in materials and environmental science
NASA Astrophysics Data System (ADS)
Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.
2002-03-01
The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.
Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas
2013-01-01
Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done. PMID:24300777
Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas
2013-11-11
Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.
High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation
NASA Astrophysics Data System (ADS)
Nakano, S.; Nakayama, A.; Kikegawa, T.
2008-07-01
Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.
In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.
2018-05-01
Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.
Khatua, Dipak Kumar; V., Lalitha K.; Fancher, Chris M.; ...
2016-10-18
High energy synchrotron X-ray diffraction, in situ with electric field, was carried out on the morphotropic phase boundary composition of the piezoelectric alloy PbTiO 3-BiScO 3. We demonstrate a strong correlation between ferroelectric-ferroelastic domain reorientation, lattice strain and phase transformation. Lastly, we also show the occurrence of the three phenomena and persistence of their correlation in the weak field regime.
Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.
2018-07-01
Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.
Visible-Light Modulation on Lattice Dielectric Responses of a Piezo-Phototronic Soft Material.
Huang, E-Wen; Hsu, Yu-Hsiang; Chuang, Wei-Tsung; Ko, Wen-Ching; Chang, Chung-Kai; Lee, Chih-Kung; Chang, Wen-Chi; Liao, Tzu-Kang; Thong, Hao Cheng
2015-12-16
In situ synchrotron X-ray diffraction is used to investigate a three-way piezo-phototronic soft material. This new system is composed of a semi-crystalline poly(vinylidene fluoride-co-trifluoroethylene) piezoelectric polymer and titanium oxide nanoparticles. Under light illumination, photon-induced piezoelectric responses are nearly two times higher at both the lattice-structure and the macroscopic level than under conditions without light illumination. A mechanistic model is proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean
Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.
Kinetics of Magnetoelastic Twin-Boundary Motion in Ferromagnetic Shape-Memory Alloys
NASA Astrophysics Data System (ADS)
Pramanick, A.; Wang, X.-L.; Stoica, A. D.; Yu, C.; Ren, Y.; Tang, S.; Gai, Z.
2014-05-01
We report the kinetics of twin-boundary motion in the ferromagnetic shape-memory alloy of Ni-Mn-Ga as measured by in situ high energy synchrotron diffraction. The temporal evolution of twin reorientation during the application of a magnetic field is described by thermally activated creep motion of twin boundaries over a distribution of energy barriers. The dynamical creep exponent μ was found to be ˜0.5, suggesting that the distribution of energy barriers is a result of short-range disorders.
Pressure-induced phase transition in GaN nanocrystals
NASA Astrophysics Data System (ADS)
Cui, Q.; Pan, Y.; Zhang, W.; Wang, X.; Zhang, J.; Cui, T.; Xie, Y.; Liu, J.; Zou, G.
2002-11-01
High-pressure in situ energy-dispersive x-ray diffraction experiments on GaN nanocrystals with 50 nm diameter have been carried out using a synchrotron x-ray source and a diamond-anvil cell up to about 79 GPa at room temperature. A pressure-induced first-order structural phase transition from the wurtzite-type structure to the rock-salt-type structure starts at about 48.8 GPa. The rock-salt-type phase persists to the highest pressure in our experimental range.
Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction
NASA Astrophysics Data System (ADS)
Liang, Mengning; Harder, Ross; Robinson, Ian
2007-03-01
A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.
Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction.
Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii
2017-12-01
Mixed holmium cobaltite-chromite HoCo 0.5 Cr 0.5 O 3 with orthorhombic perovskite structure (structure type GdFeO 3 , space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo 0.5 Cr 0.5 O 3 , which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO 6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co 3+ ions and insulator-metal transition occurring in HoCo 0.5 Cr 0.5 O 3 .
Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction
NASA Astrophysics Data System (ADS)
Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii
2017-07-01
Mixed holmium cobaltite-chromite HoCo0.5Cr0.5O3 with orthorhombic perovskite structure (structure type GdFeO3, space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo0.5Cr0.5O3, which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co3+ ions and insulator-metal transition occurring in HoCo0.5Cr0.5O3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, N.A.; Kelton, K.F.
2011-10-27
High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here,more » we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.« less
Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...
2015-09-03
In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less
NASA Astrophysics Data System (ADS)
Connolly, Matthew; Park, Jun-Sang; Bradley, Peter; Lauria, Damian; Slifka, Andrew; Drexler, Elizabeth
2018-06-01
We demonstrate a hydrogen gas chamber suitable for lattice strain measurements and capturing radiographs of a steel specimen under a mechanical load using high energy synchrotron x-rays. The chamber is suitable for static and cyclic mechanical loading. Experiments were conducted at the 1-ID-E end station of the Advanced Photon Source, Argonne National Laboratory. Diffraction patterns show a high signal-to-noise ratio suitable for lattice strain measurements for the specimen and with minimal scattering and overlap from the gas chamber manufactured from aluminum. In situ radiographs of a specimen in the hydrogen chamber show the ability to track a growing crack and to map the lattice strain around the crack with high spatial and strain resolution.
In situ investigation of working battery electrodes using synchrotron x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisrawi, N.M.; Thurston, T.R.; Yang, X.Q.
The results of an in situ investigation of the structural changes that occur during the operation of working battery electrodes using synchrotron radiation are presented. Two types of electrodes were investigated: an AB{sub 2}-type Laves phase alloy anode with the composition Zr{sub x}Ti{sub 1-x}M{sub 2} and a proprietary cell based on a Li{sub x}Mn{sub 2}O{sub 4} spinel compound cathode made by Gould electronics. For the Laves phase alloy compositions with x=0.25 and 0.5 and M=V{sub 0.5}N{sub 1.1}Mn{sub 0.2}Fe{sub 0.2} were examined. Cells made from two different batches of Li{sub x}Mn{sub 2}O{sub 4} material were investigated. The relationships between battery performancemore » and structural changes will be discussed. In the later case, we also discuss the role of over-discharging on the Li{sub x}Mn{sub 2}O{sub 4} structure and on battery operation.« less
Gan, Yingye; Mo, Kun; Yun, Di; ...
2017-03-19
Nanostructured ferritic alloys (NFAs) are promising structural materials for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner's model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young's modulus and Poisson's ratio of the NFAs. Temperature dependencemore » of elastic anisotropy was observed in the NFAs. Lastly, an analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.; Hassan, Ishmael; West Indies)
The temperature dependency of the crystal structure and the polymorphic transition of CaCO{sub 3} from aragonite to calcite were studied using Rietveld structure refinement and high-temperature in situ synchrotron powder X-ray-diffraction data at ambient pressure, P. The orthorhombic metastable aragonite at room P, space group Pmcn, transforms to trigonal calcite, space group R{bar 3}c, at about T{sub c} = 468 C. This transformation occurs rapidly; it starts at about 420 C and is completed by 500 C, an 80 C interval that took about 10 minutes using a heating rate of 8 C/min. Structurally, from aragonite to calcite, the distributionmore » of the Ca atom changes from approximately hexagonal to cubic close-packing. A 5.76% discontinuous increase in volume accompanies the reconstructive first-order transition. Besides the change in coordination of the Ca atom from nine to six from aragonite to calcite, the CO{sub 3} groups change by a 30{sup o} rotation across the transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Yingye; Mo, Kun; Yun, Di
2017-04-01
Nanostructured ferritic alloys (NFAs) are a promising structural material for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner’s model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young’s modulus and Poisson’s ratio of the NFAs. Temperaturemore » dependence of elastic anisotropy was observed in the NFAs. An analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less
In situ synthesis studies of silicon clathrates
NASA Astrophysics Data System (ADS)
Hutchins, Peter Thomas
Solid state clathrates have shown considerable potential as a new class of materials over the past 30 years. Experimental and theoretical studies have shown that precise tuning and synthetic control of these materials, may lead to desirable properties. Very little is known about the mechanism of formation of the clathrates and so the desire to have accurate synthetic control was, until now, unrealistic. This thesis address the problem using in situ synchrotron x-ray techniques. In this study, experiments were designed to utilise time-resolved in situ diffraction techniques and high temperature 23Na NMR, in efforts to understand the mechanism of formation for this class of expanded framework materials. A complex high vacuum capillary synthesis cell was designed for loading under inert conditions and operation under high vacuum at station 6.2 of the SRS Daresbury. The cell was designed to operate in conjunction with a custom made furnace capable of temperatures in excess of 1000 C, as well as a vacuum system capable of 10"5 bar. The clathrate system was studied in situ, using rapid data collection to elucidate the mechanism of formation. The data were analysed using Rietveld methods and showed a structural link between the monoclinic, C2/c, Zintl precursors and the cubic, Pm3n, clathrate I phase. The phases were found to be linked by relation of the sodium planes in the silicide and the sodium atoms resident at cages centres in the clathrate system. This evidence suggests the guest species is instrumental in formation of the clathrate structure by templating the formation of the cages in the structure. Solid state 23Na NMR was utilised to complete specially design experiments, similar to those complete in situ using synchrotron x-ray techniques. The experiments showed increased spherical symmetry of the alkali metal sites and suggested increased mobility of the guest atoms during heating. In addition, cyclic heating experiments using in situ diffraction showed reversible reintroduction of the guest species on heating and cooling, during formation and subsequent dissipation of the clathrate structure. The realisation of the synthesis of a guest free type II clathrate and the theoretical prediction of negative thermal expansion behaviour at low temperature prompted the use of laboratory x-ray diffraction and a liquid helium cryostat to test the prediction. Careful study of the region from 20 to 200 K showed a region of zero or negative thermal expansion in the predicted region the effect observed showed good agreement with theory.
NASA Astrophysics Data System (ADS)
Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.
2018-02-01
Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.
In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.
Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (αmore » ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.« less
Gueninchault, N; Proudhon, H; Ludwig, W
2016-11-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.
Gueninchault, N.; Proudhon, H.; Ludwig, W.
2016-01-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253
Predicting In-Situ X-ray Diffraction for the SrTiO3/Liquid Interface from First Principles
NASA Astrophysics Data System (ADS)
Letchworth-Weaver, Kendra; Gunceler, Deniz; Sundararaman, Ravishankar; Huang, Xin; Brock, Joel; Arias, T. A.
2013-03-01
Recent advances in experimental techniques, such as in-situ x-ray diffraction, allow researchers to probe the solid-liquid interface in electrochemical systems under operating conditions. These advances offer an unprecedented opportunity for theory to predict properties of electrode materials in aqueous environments and inform the design of energy conversion and storage devices. To compare with experiment, these theoretical studies require microscopic details of both the liquid and the electrode surface. Joint Density Functional Theory (JDFT), a computationally efficient alternative to molecular dynamics, couples a classical density-functional, which captures molecular structure of the liquid, to a quantum-mechanical functional for the electrode surface. We present a JDFT exploration of SrTiO3, which can catalyze solar-driven water splitting, in an electrochemical environment. We determine the geometry of the polar SrTiO3 surface and the equilibrium structure of the contacting liquid, as well as the influence of the liquid upon the electronic structure of the surface. We then predict the effect of the fluid environment on x-ray diffraction patterns and compare our predictions to in-situ measurements performed at the Cornell High Energy Synchrotron Source (CHESS). This material is based upon work supported by the Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center funded by the U.S. Department of Energy.
Ruiz-Osés, M.; Schubert, S.; Attenkofer, K.; ...
2014-12-01
Alkali antimonides have a long history as visible-light-sensitive photocathodes. This study focuses on the process of fabrication of the bi-alkali photocathodes, K 2CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K 2CsSb upon cesium deposition, is correlated with changes inmore » the quantum efficiency.« less
Development of broadband X-ray interference lithography large area exposure system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Chaofan; Wu, Yanqing, E-mail: wuyanqing@sinap.ac.cn, E-mail: zhaojun@sinap.ac.cn, E-mail: tairenzhong@sinap.ac.cn; Zhu, Fangyuan
2016-04-15
The single-exposure patterned area is about several 10{sup 2} × 10{sup 2} μm{sup 2} which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several squaremore » centimeters and even bigger by this technology.« less
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy
Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...
2016-01-05
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey S.; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.
2018-03-01
Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe (Fe ,Fe /Ni )3 and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.
2008-01-01
Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Unravelling the low thermal expansion coefficient of cation-substituted YBaCo 4O 7+δ
Manthiram, Arumugam; Huq, Ashfia; Kan, Wang Hay; ...
2016-01-12
With an aim to understand the origin of the low thermal expansion coefficients (TECs), cation substituted YBaCo 4O 7-type oxides have been investigated by in-situ neutron diffraction, bond valence sum (BVS), thermogravimetric analysis, and dilatometry. The compositions YBaCo 4O 7+δ, Y 0.9ln 0.1BaCo 3ZnO 7+δ, and Y 0.9ln 0.1BaCo 3Zn 0.6Fe 0.4O 7+δ) were synthesized by solid-state reaction at 1200 °C. Here, Rietveld refinement of the joint synchrotron X-ray and neutron diffraction data shows that the Zn and Fe dopants have different preferences to substitute the Co ions in the 6c and 2a sites.
NASA Astrophysics Data System (ADS)
Gasc, J.; Brantut, N.; Schubnel, A.; Brunet, F.; Mueller, H.
2008-12-01
We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of a fine grained synthetic calcite aggregate, at 0.66 GPa and for temperatures ranging from ambient to 1200° C. The powder sample was placed in a boron-epoxy assembly with an 8 mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using five piezoceramic transducers (5 MHz eigen frequency) glued on each of the five WC anvils (4 side anvils and upper one). Full waveforms were acquired using an eight channel digital oscilloscope and located using the software Insite (ASC Ltd). Beyond 600° C, calcite grains started growing as evidenced by huge changes in the relative intensity of the diffraction lines. This is correlated to a sudden burst of AE which all located within the sample volume. These AE may indicate that stress relaxation, going on as intra-crystalline plasticity mechanisms were activated, released enough acoustic energy to be recorded and located. Although the diffraction data showed that grain growth continued beyond 800° C, the acoustic activity progressively decreased to below the sensitivity of our recording device (i.e. the triggering level). However, at temperature higher than 1000° C, a large number of AE were recorded again ( 2000 events). AE location revealed that the AE front progressed inwards the sample. The complete loss of diffraction signal and the post-mortem recovery of small amounts of CaO suggest that the second AE burst may be related to calcite melting/decarbonation. Perspectives include thorough microstructural analysis of the samples using electron microscopies (SEM and TEM) as well as a statistical and mechanical analysis of the acoustic data.
Briki, Fatma; Vérine, Jérôme; Doucet, Jean; Bénas, Philippe; Fayard, Barbara; Delpech, Marc; Grateau, Gilles; Riès-Kautt, Madeleine
2011-07-20
Amyloidoses are increasingly recognized as a major public health concern in Western countries. All amyloidoses share common morphological, structural, and tinctorial properties. These consist of staining by specific dyes, a fibrillar aspect in electron microscopy and a typical cross-β folding in x-ray diffraction patterns. Most studies that aim at deciphering the amyloid structure rely on fibers generated in vitro or extracted from tissues using protocols that may modify their intrinsic structure. Therefore, the fine details of the in situ architecture of the deposits remain unknown. Here, we present to our knowledge the first data obtained on ex vivo human renal tissue sections using x-ray microdiffraction. The typical cross-β features from fixed paraffin-embedded samples are similar to those formed in vitro or extracted from tissues. Moreover, the fiber orientation maps obtained across glomerular sections reveal an intrinsic texture that is correlated with the glomerulus morphology. These results are of the highest importance to understanding the formation of amyloid deposits and are thus expected to trigger new incentives for tissue investigation. Moreover, the access to intrinsic structural parameters such as fiber size and orientation using synchrotron x-ray microdiffraction, could provide valuable information concerning in situ mechanisms and deposit formation with potential benefits for diagnostic and therapeutic purposes. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lock, Nina; Bremholm, Martin; Christensen, Mogens; Almer, Jonathan; Chen, Yu-Sheng; Iversen, Bo B
2009-12-14
Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 degrees C) and supercritical (300 bar, 400 degrees C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small- and wide-angle X-ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)(3) within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate-determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub- and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub- and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X-ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 degrees C and gives a two-phase product of hydrated and non-hydrated aluminium oxide.
NASA Astrophysics Data System (ADS)
Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.
2018-04-01
We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.
Diffraction imaging for in situ characterization of double-crystal X-ray monochromators
Stoupin, Stanislav; Liu, Zunping; Heald, Steve M.; ...
2015-10-30
In this paper, imaging of the Bragg-reflected X-ray beam is proposed and validated as an in situ method for characterization of the performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared with the results of finite element analysis. Finally,more » the imaging method offers an additional insight into the local intrinsic crystal quality over the footprint of the incident X-ray beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin
In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble andmore » membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.« less
In situ x-ray diffraction studies of a new LiMg{sub 0.125}Ni{sub 0.75}O{sub 2} cathode material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.Q.; Sun, X.; McBreen, J.
A Synchrotron x-ray source was used for In Situ x-ray diffraction studies during charge on a new LiMg{sub 0.125}Ti{sub 0.125}Ni{sub 0.75} cathode material synthesized by FMC Corp. It had been demonstrated by Gao that this new material has superior thermal stability than LiNiO{sub 2} and LiCo{sub 0.2}Ni{sub 0.8}O{sub 2} at over-charged state. In this current paper, studies on the relationship between the structural changes and thermal stability at over-charged state for these materials are presented. For the first time, the thermal stability of these materials are related to their structural changes during charge, especially to the formation and lattice constantmore » change of a hexagonal phase (H3). The spectral evidence support the hypothesis that the improvement of thermal stability is obtained by suppressing the formation of H3 phase and reducing the shrinkage of its lattice constant c when charged above 4.3 V.« less
Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; ...
2015-12-04
In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO 3/SrTiO 3 superlattices on SrTiO 3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effectsmore » of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO 3 substrates and 20 nm SrRuO 3 thin films on SrTiO 3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.« less
Rostgaard Eltzholtz, Jakob; Tyrsted, Christoffer; Ørnsbjerg Jensen, Kirsten Marie; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Brummerstedt Iversen, Bo
2013-03-21
A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol(-1) for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.
NASA Astrophysics Data System (ADS)
Hammouda, Tahar; Chantel, Julien; Manthilake, Geeth; Guignard, Jérémy; Crichton, Wilson; Gaillard, Fabrice
2014-05-01
Melting of peridotite + CO2 upon compression has been directly monitored in situ, for the first time. We have combined high pressure experiments in the multianvil apparatus with synchrotron-generated X-ray diffraction, in order to monitor sample decarbonation upon heating, followed by melting upon compression. Experiments were performed in the model system CaO-MgO-SiO2+CO2, using dolomite and silicates contained in graphite capsules as starting material. Save Al, starting composition was aimed at reproducing peridotitic system. The sample was first compressed at room temperature, then heated. Decarbonation was observed at 2.2 GPa and 1100°C. After further heating to 1300°C, pressure was increased. Melting was observed at 2.7 GPa, while temperature was kept at 1300°C. All transformations were followed using X-ray diffraction. Starting with silicate + carbonate mixtures, we were thus able to keep CO2 fluid in the experimental sample at high P and T, up to the solidus. Concerning carbon recycling at subduction zones, it is known that CO2 is a non-wetting fluid in silicate aggregates. Therefore, any CO2 resulting from carbonate breakdown likely remains trapped at grain corners either in the subducted lithosphere or in the mantle wedge before eventually being trapped in mantle minerals as fluid inclusions, due to dynamic recrystallization. In this way, CO2 released from the slab may be spread laterally due to mantle convection. Entrainment to further depths by deep subduction or in convection cells induces CO2 introduction to depth wherein the solidus can be crossed, due to pressure increase. The solidus corresponds to the so-called carbonate ledge, beyond which carbonatitic melts are produced. Therefore, compression melting of CO2-bearing lithologies is a way to produce carbonatitic melts at depths corresponding to about 80 km. This mechanism is a viable explanation for the observed geophysical anomalies, such as those revealed by electrical conductivity measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rack, Alexander; Weitkamp, Timm; European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex
2009-03-10
Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)
Improved texture measurement during deformation of polycrystalline olivine at high pressure
NASA Astrophysics Data System (ADS)
Dixon, N. A.; Durham, W. B.; Kohlstedt, D. L.; Hunt, S. A.
2014-12-01
Unresolved issues in geodynamics demand a better understanding of the bulk mechanical properties of mantle minerals, and also careful analysis of the complex lattice-scale physics behind these properties. Instead of probing the mechanical properties of a material by testing the relationship between "bulk" stress and strain rate in a sample at a variety of conditions (varying P, T, water content, and other environmental variables), synchrotron x-ray diffraction now allows us to observe, in situ, the active deformation physics in much greater detail. This includes in situ monitoring of plastic anisotropy and local stress heterogeneity, grain size, the development of lattice-preferred orientation (LPO), and even the partitioning of stress between multiple phases in the same polycrystalline sample. Here, we present results obtained with the use of the MTEX toolbox for Matlab and energy-dispersive x-ray diffraction, showing the in situ development of LPO in deforming dry San Carlos olivine samples, at pressures from 2-7 GPa. These measurements hint at the active dislocation mechanisms for these conditions. The ability generate a broad range of mantle conditions in the D-DIA, while precisely measuring the structure and conditions within our sample at the grain and lattice scale, demonstrates the promising future of deformation experiments as a means to understanding the evolution of the deep Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Yu, Cun
The deformation behavior and load transfer of a dual-phase composite composed of martensite NiTi embedded in brittle Ti{sub 2}Ni matrices were investigated by using in situ synchrotron x-ray diffraction during compression. The composite exhibits a stage-wise deformation feature and a double-yielding phenomenon, which were caused by the interaction between Ti{sub 2}Ni and NiTi with alternative microscopic deformation mechanism. No load transfer occurs from the soft NiTi dendrites to the hard Ti{sub 2}Ni matrices during the pseudoplastic deformation (detwinning) of NiTi, which is significantly different from that previously reported in bulk metallic glasses matrices composites.
High-pressure synthesis, amorphization, and decomposition of silane.
Hanfland, Michael; Proctor, John E; Guillaume, Christophe L; Degtyareva, Olga; Gregoryanz, Eugene
2011-03-04
By compressing elemental silicon and hydrogen in a diamond anvil cell, we have synthesized polymeric silicon tetrahydride (SiH(4)) at 124 GPa and 300 K. In situ synchrotron x-ray diffraction reveals that the compound forms the insulating I4(1)/a structure previously proposed from ab initio calculations for the high-pressure phase of silane. From a series of high-pressure experiments at room and low temperature on silane itself, we find that its tetrahedral molecules break up, while silane undergoes pressure-induced amorphization at pressures above 60 GPa, recrystallizing at 90 GPa into the polymeric crystal structures.
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth’s Core Thermodynamic Conditions
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...
2018-02-28
In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesbah, Adel, E-mail: adel.mesbah@cea.fr; Clavier, Nicolas; Elkaim, Erik
The dehydration process of the hydrated rhabdophane LnPO{sub 4}.0.667H{sub 2}O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO{sub 4}.0.667H{sub 2}O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å{sup 3}. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrousmore » form, which crystallizes in the hexagonal P3{sub 1}21 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å{sup 3}. This study was extended to selected LnPO{sub 4}.0.667H{sub 2}O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO{sub 4}.0.5H{sub 2}O. - Graphical abstract: The dehydration process of the rhabdophane SmPO{sub 4}.0.667H{sub 2}O was studied over combination of in situ high resolution synchrotron powder diffraction and TGA techniques, a first dehydration was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2). Then above 220 °C, the anhydrous form of the rhabdophane SmPO{sub 4} was stabilized and crystallizes in the hexagonal P3{sub 1}21 space group. - Highlights: • In situ synchrotron powder diffraction was carried out during the dehydration of the rhabdopahe LnPO{sub 4}.0.667H{sub 2}O. • The heat of the rhabdophane LnPO{sub 4}.0.667H{sub 2}O leads to LnPO{sub 4}.0.5H{sub 2}O then to anhydrous rhabdophane LnPO{sub 4}. • LnPO{sub 4}.0.5H{sub 2}O (monoclinic, C2) and LnPO{sub 4} (Hexagonal, P3{sub 1}21) were solved over the use of direct methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Wang, Leyun; Almer, Jonathan D.
Deformation processes in Grade 91 (Fe–9%Cr–1%Mo–V,Nb) and Grade 92 (Fe–9%Cr–0.5%Mo–2%W–V,Nb) ferritic–martensitic steels were investigated at temperatures between 20 and 650 °C using high-energy synchrotron X-ray diffraction with in situ thermal–mechanical loading. The change of the dislocation density with strain was quantified by X-ray diffraction line profile analysis complemented by transmission electron microscopy measurements. The relationship between dislocation density and strain during uniform deformation was described by a dislocation model, and two critical materials parameters, namely dislocation mean free path and dynamic recovery coefficient, were determined as a function of temperature. Effects of alloy chemistry, thermal–mechanical treatment and temperature on themore » tensile deformation process in Grade 91 and Grade 92 steels can be well understood by the dislocation evolution behavior.« less
Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite
Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; ...
2014-03-18
In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less
High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials
NASA Technical Reports Server (NTRS)
Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.
2004-01-01
Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.
NASA Astrophysics Data System (ADS)
Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed
2014-04-01
We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
Iwamoto, Hiroyuki
2018-06-13
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix
Jiang, Daqiang; Liu, Yinong; Yu, Cun; ...
2015-08-18
An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, whichmore » means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium
NASA Astrophysics Data System (ADS)
Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua
2016-07-01
A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.
NASA Astrophysics Data System (ADS)
Villa, M.; Niessen, F.; Somers, M. A. J.
2018-01-01
Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.
NASA Astrophysics Data System (ADS)
Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang
2017-06-01
Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4- cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Takuo; Ohshita, Yoshio; Kamiya, Itaru
2011-12-01
Dislocation-mediated strain relaxation during lattice-mismatched InGaAs/GaAs(001) heteroepitaxy was studied through in situ x-ray reciprocal space mapping (in situ RSM). At the synchrotron radiation facility SPring-8, a hybrid system of molecular beam epitaxy and x-ray diffractometry with a two-dimensional detector enabled us to perform in situ RSM at high-speed and high-resolution. Using this experimental setup, four results in terms of film properties were simultaneously extracted as functions of film thickness. These were the lattice constants, the diffraction broadenings along in-plane and out-of-plane directions, and the diffuse scattering. Based on correlations among these results, the strain relaxation processes were classified into fourmore » thickness ranges with different dislocation behavior. In addition, the existence of transition regimes between the thickness ranges was identified. Finally, the dominant dislocation behavior corresponding to each of the four thickness ranges and transition regimes was noted.« less
Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang
2017-01-01
Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4− cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated. PMID:28635947
Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound
NASA Astrophysics Data System (ADS)
Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.
2014-02-01
In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei
2013-02-01
High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.
NASA Astrophysics Data System (ADS)
Cornelius, T. W.; Mocuta, C.; Escoubas, S.; Merabet, A.; Texier, M.; Lima, E. C.; Araujo, E. B.; Kholkin, A. L.; Thomas, O.
2017-10-01
The compositional dependence of the piezoelectric properties of self-polarized PbZr1-xTixO3 (PZT) thin films deposited on Pt/TiO2/SiO2/Si substrates (x = 0.47, 0.49 and 0.50) was investigated by in situ synchrotron X-ray diffraction and electrical measurements. The latter evidenced an imprint effect in the studied PZT films, which is pronounced for films with the composition of x = 0.50 and tends to disappear for x = 0.47. These findings were confirmed by in situ X-ray diffraction along the crystalline [100] and [110] directions of the films with different compositions revealing asymmetric butterfly loops of the piezoelectric strain as a function of the electric field; the asymmetry is more pronounced for the PZT film with a composition of x = 0.50, thus indicating a higher built-in electric field. The enhancement of the dielectric permittivity and the effective piezoelectric coefficient at compositions around the morphotropic phase boundary were interpreted in terms of the polarization rotation mechanism and the monoclinic phase in the studied PZT thin films.
Scott, Robert; Stone, Nicholas; Kendall, Catherine; Geraki, Kalotina; Rogers, Keith
2016-01-01
Calcifications are not only one of the most important early diagnostic markers of breast cancer, but are also increasingly believed to aggravate the proliferation of cancer cells and invasion of surrounding tissue. Moreover, this influence appears to vary with calcification composition. Despite this, remarkably little is known about the composition and crystal structure of the most common type of breast calcifications, and how this differs between benign and malignant lesions. We sought to determine how the phase composition and crystallographic parameters within calcifications varies with pathology, using synchrotron X-ray diffraction. This is the first time crystallite size and lattice parameters have been measured in breast calcifications, and we found that these both parallel closely the changes in these parameters with age observed in fetal bone. We also discovered that these calcifications contain a small proportion of magnesium whitlockite, and that this proportion increases from benign to in situ to invasive cancer. When combined with other recent evidence on the effect of magnesium on hydroxyapatite precipitation, this suggests a mechanism explaining observations that carbonate levels within breast calcifications are lower in malignant specimens. PMID:28721386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, S.; Schaffer, J. E.; Yu, C.
In situ synchrotron X-ray diffraction testing was carried out on a martensitic and an austenitic NiTi wire to study the evolution of internal stresses and the stress-induced martensite (SIM) phase transformation during room temperature tensile deformation. From the point of lattice strain evolution, it is concluded that (1) for the martensitic NiTi wire, detwinning of the [011](B19') type II twins and the {010}(B19') compound twins is responsible for internal strains formed at the early stage of deformation. (2) The measured diffraction moduli of individual martensite families show large elastic anisotropy and strong influences of texture. (3) For the austenitic NiTimore » wire, internal residual stresses were produced due to transformation-induced plasticity, which is more likely to occur in austenite families that have higher elastic moduli than their associated martensite families. (4) Plastic deformation was observed in the SIM at higher stresses, which largely decreased the lower plateau stresses.« less
Through-silicon via-induced strain distribution in silicon interposer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianne, B., E-mail: benjamin.vianne@st.com; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles; Richard, M.-I.
2015-04-06
Strain in silicon induced by Through-Silicon Via (TSV) integration is of particular interest in the frame of the integration of active devices in silicon interposer. Nano-focused X-ray beam diffraction experiments were conducted using synchrotron radiation to investigate the thermally induced strain field in silicon around copper filled TSVs. Measurements were performed on thinned samples at room temperature and during in situ annealing at 400 °C. In order to correlate the 2D strain maps with finite elements analysis, an analytical model was developed, which takes into account beam absorption in the sample for a given diffraction geometry. The strain field along themore » [335] direction is found to be in the 10{sup −5} range at room temperature and around 10{sup −4} at 400 °C. Simulations support the expected plastification in some regions of the TSV during the annealing step.« less
Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng
2018-02-23
The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.
High pressure polymorphs and amorphization of upconversion host material NaY(WO 4) 2
Hong, Fang; Yue, Binbin; Cheng, Zhenxiang; ...
2016-07-29
The pressure effect on the structural change of upconversion host material NaY(WO 4) 2 was studied in this paper by using in-situ synchrotron X-ray diffraction. A transition from the initial scheelite phase to the M-fergusonite phase occurs near 10 GPa, and another phase transition is found near 27.5 GPa, which could be an isostructural transition without symmetry change. The sample becomes amorphous when the pressure is fully released from high pressure. Finally, this work demonstrates the possibility of synthesizing various polymorph structures for non-linear optical applications with a high pressure, chemical doping, or strained thin-film nanostructure process.
Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4.
Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix
2014-05-14
The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.
Manipulating Stress in Cu/low-k Dielectric Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Murray; P Besser; E Ryan
The interaction of x-rays with organic dielectric materials, which alters their mechanical properties, affects values of stress generated within encapsulated Cu structures. In particular, the evolution of stress within submicron Cu interconnect structures encapsulated by an organosilicate glass can be investigated in situ using synchrotron-based x-ray diffraction. The overall geometry of the composite, along with the amount of irradiation, dictates the change in stress of the Cu features. A quantitative comparison of these findings to mechanical modeling results reveals two modes of modification within the dielectric film: a densification that changes the effective eigenstrain followed by an increase in elasticmore » modulus.« less
Manipulating stress in Cu/low-k dielectric nanocomposites
NASA Astrophysics Data System (ADS)
Murray, Conal E.; Besser, Paul R.; Ryan, E. Todd; Jordan-Sweet, Jean L.
2011-04-01
The interaction of x-rays with organic dielectric materials, which alters their mechanical properties, affects values of stress generated within encapsulated Cu structures. In particular, the evolution of stress within submicron Cu interconnect structures encapsulated by an organosilicate glass can be investigated in situ using synchrotron-based x-ray diffraction. The overall geometry of the composite, along with the amount of irradiation, dictates the change in stress of the Cu features. A quantitative comparison of these findings to mechanical modeling results reveals two modes of modification within the dielectric film: a densification that changes the effective eigenstrain followed by an increase in elastic modulus.
Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Davenport, A; Street, S; Scott, T B
2017-08-11
Uranium encapsulated in grout was exposed to water vapour for extended periods of time. Through synchrotron x-ray powder diffraction and tomography measurements, uranium dioxide was determined the dominant corrosion product over a 50-week time period. The oxide growth rate initiated rapidly, with rates comparable to the U + H 2 O reaction. Over time, the reaction rate decreased and eventually plateaued to a rate similar to the U + H 2 O + O 2 reaction. This behaviour was not attributed to oxygen ingress, but instead the decreasing permeability of the grout, limiting oxidising species access to the metal surface.
Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe
Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; ...
2018-09-06
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
Structural studies of the crystallisation of microporous materials
NASA Astrophysics Data System (ADS)
Davies, Andrew Treharne
A range of powerful synchrotron radiation characterisation techniques have been used to study fundamental aspects of the fonnation of microporous solids, specifically alumi nosilicates, heteroatom substituted aluminophosphates and titanosilicates. This work has been performed with the aim of investigating in situ the structural changes occurring during crystallisation and post synthetic treatment. In situ EDXRD was used to follow the crystallisation of these materials under a wide range of synthesis conditions using a hydrothermal cell and a solid-state detector array. A quantitative analysis of the crystallisation kinetics was performed for the large pore aluminosilicate, zeolite A, using a simple mathematical model to calculate the activation energy of formation. The results obtained were found to closely agree with both the experimental results and theoretical models of others. A qualitative study of the effect of altering the synthesis conditions was also investigated for this material. Similar kinetic studies were then performed for a range of microporous aluminophosphates and their cobalt substituted derivatives in order to follow the effects of varying synthesis conditions such as the synthesis temperature, organic template type, and cobalt concentration. Distinct trends were noted in the formation times, stability and nature of the resulting crystalline phases as conditions were varied. The relationship between the cobalt and organic template molecules during crystallisation was considered in some detail with reference to other experimental data and theoretical models. The alumi nophosphate studies were subsequently extended to a range of other heteroatom substituted aluminophosphates, using in situ EDXRD, complimented by EXAFS, which allowed investigation of the local environments around the heteroatoms within the microporous structure. EDXRD and EXAFS studies have been performed on the microporous titanosilicate, ETS-10, while the thermal stability of this material has also been investigated in situ using synchrotron X-ray diffraction in conjunction with a high temperature environmental cell.
Synchrotron X-ray studies of model SOFC cathodes, part I: Thin film cathodes
Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; ...
2017-10-14
In this work, we present synchrotron x-ray investigations of thin film La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) model cathodes for solid oxide fuel cells, grown on electrolyte substrates by pulse laser deposition, in situ during half-cell operations. We observed dynamic segregations of cations, such as Sr and Co, on the surfaces of the film cathodes. The effects of temperature, applied potentials, and capping layers on the segregations were investigated using a surfacesensitive technique of total external reflection x-ray fluorescence. We also studied patterned thin film LSCF cathodes using high-resolution micro-beam diffraction measurements. We find chemical expansion decreases for narrowmore » stripes. This suggests the expansion is dominated by the bulk pathway reactions. Lastly, the chemical expansion vs. the distance from the electrode contact was measured at three temperatures and an oxygen vacancy activation energy was estimated to be ~1.4 eV.« less
NASA Astrophysics Data System (ADS)
Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2014-07-01
The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.
NASA Technical Reports Server (NTRS)
Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.
1988-01-01
Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.
NASA Technical Reports Server (NTRS)
Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.
1989-01-01
Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
NASA Astrophysics Data System (ADS)
Post, J. E.; Bish, D. L.; Heaney, P. J.
2006-05-01
Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Liu, Yinong; Huan, Yong
The concept of transformation-induced plasticity effect is introduced in this work to improve the plasticity of brittle intermetallic compound Ti3Sn, which is a potent high damping material. This concept is achieved in an in situ NiTi/Ti3Sn composite. The composite is composed of primary Ti3Sn phase and (NiTi + Ti3Sn) eutectic structure formed via hypereutectic solidification. The composite exhibits a high damping capacity of 0.075 (indexed by tan δ), a high ultimate compressive strength of 1350 MPa, and a large plasticity of 27.5%. In situ synchrotron high-energy X-ray diffraction measurements revealed clear evidence of the stress-induced martensitic transformation (B2 → B19)more » of the NiTi component during deformation. The strength of the composite mainly stems from the Ti3Sn, whereas the NiTi component is responsible for the excellent plasticity of the composite.« less
Structural Transformation of LiFePO4 during Ultrafast Delithiation.
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; Saulnier, Mathieu; Dufresne, Eric M; Liang, Guoxian; Schougaard, Steen B
2017-12-21
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4 ) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qin; Zhao, Lichen; Wu, Jiang
Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI 6] 4– cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular-more » or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.« less
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; ...
2017-12-05
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
NASA Astrophysics Data System (ADS)
Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.
1998-02-01
The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.
Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V
2000-07-01
A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.
Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M
2004-03-01
In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.
NASA Technical Reports Server (NTRS)
Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.
2000-01-01
A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.
X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri
1988-01-01
Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.
New synchrotron powder diffraction facility for long-duration experiments
Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.
2017-01-01
A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
Nonlinear electrostrictive lattice response of EuTiO3
NASA Astrophysics Data System (ADS)
Pappas, P.; Calamiotou, M.; Köhler, J.; Bussmann-Holder, A.; Liarokapis, E.
2017-07-01
An epitaxial EuTiO3 (ETO) film grown on the SrTiO3 substrate was studied at room temperature with synchrotron XRD and in situ application of an electric field (nominally up to 7.8 kV/cm) in near grazing incidence geometry, in order to monitor the response of the lattice to the field. 2D diffraction images show that apparently misoriented coherently diffracting domains are present close to the surface whereas the film diffracts more as a single crystal towards the interface. Diffraction intensity profiles recorded from the near surface region of the EuTiO3 film showed systematic modifications upon the application of the electric field, indicating that at a critical electric field (nominally above 3.1 kV/cm), there is a clear change in the lattice response to the field, which was much stronger when the field was almost parallel to the diffraction vector. The data suggest that the ETO film, nominally paraelectric at room temperature, transforms under the application of a critical electric field to piezoelectric in agreement with a theoretical analysis based on a double-well potential. In order to exclude effects arising from the substrate, this has been investigated separately and shown not to be affected by the field.
Development of at-wavelength metrology for x-ray optics at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng
2010-07-09
The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less
NASA Astrophysics Data System (ADS)
Paxton, William Arthur
Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution of inhomogeneity is linked to the particle connectivity. Despite a non-linear local response, the average of the measured ensemble behaves linearly. The results suggest that inhomogeneity can be difficult to measure and highlights the power of the EDXRD technique. Additional applications of EDXRD are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...
2017-06-15
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
NASA Astrophysics Data System (ADS)
Carl, Matthew; Van Doren, Brian; Young, Marcus L.
2018-03-01
Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.
NASA Astrophysics Data System (ADS)
Carl, Matthew; Van Doren, Brian; Young, Marcus L.
2018-02-01
Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, M.; National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973; Shukla, V.
Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core regionmore » remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.« less
Successive disorder to disorder phase transitions in ionic liquid [HMIM][BF4] under high pressure
NASA Astrophysics Data System (ADS)
Zhu, Xiang; Yuan, Chaosheng; Li, Haining; Zhu, Pinwen; Su, Lei; Yang, Kun; Wu, Jie; Yang, Guoqiang; Liu, Jing
2016-02-01
In situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction have been employed to investigate the phase behavior of ionic liquid, 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) under high pressure up to 20 GPa at room temperature. With increasing pressure, some characteristic bands of [HMIM][BF4] disappear, and some characteristic bands of [HMIM][BF4] display non-monotonic pressure-induced frequency shift and non-monotonic variation of full width at half-maximum. Two successive phase transitions at ˜1.7 GPa and 7.3 GPa have been corroborated by the results above. The glass transition pressure (Pg) of [HMIM][BF4] at ˜7.3 GPa has been obtained by ruby R1 line broadening measurements and analysis of synchrotron X-ray diffraction patterns, and its glass transition mechanism is also analyzed in detail. These facts are suggestive of two successive disorder to disorder phase transitions induced by compression, that is, [HMIM][BF4] serves as a superpressurized glass under the pressure above 7.3 GPa, which is similar to the glassy state at low temperature, and a compression-induced liquid to liquid phase transition in [HMIM][BF4] occurs at ˜1.7 GPa. Besides, the conformational equilibrium of the GAAA conformer and AAAA conformer was converted easily in liquid [HMIM][BF4], while it was difficult to be influenced in glassy state.
Liu, Jue; Whitfield, Pamela S; Saccomanno, Michael R; Bo, Shou-Hang; Hu, Enyuan; Yu, Xiqian; Bai, Jianming; Grey, Clare P; Yang, Xiao-Qing; Khalifah, Peter G
2017-07-12
Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2 Mg 2 P 3 O 9 N was synthesized by ion exchange from a Na 2 Mg 2 P 3 O 9 N precursor. Impedance spectroscopy measurements indicate that Li 2 Mg 2 P 3 O 9 N has a room temperature Li-ion conductivity of about 10 -6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2 Mg 2 P 3 O 9 N at this temperature. The structure of Li 2 Mg 2 P 3 O 9 N was determined from ex situ synchrotron and time-of-flight neutron diffraction data to retain the P2 1 3 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2 Mg 2 P 3 O 9 N. The two Li-ion sites are found to be very substantially displaced (∼0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2 Mg 2 P 3 O 9 N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li + /Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2-x Li x Mg 2 P 3 O 9 N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2 Mg 2 P 3 O 9 N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. In addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.
Liu, Jue; Whitfield, Pamela S.; Saccomanno, Michael R.; ...
2017-06-06
Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2Mg 2P 3O 9N was synthesized in this paper by ion exchange from a Na 2Mg 2P 3O 9N precursor. Impedance spectroscopy measurements indicate that Li 2Mg 2P 3O 9N has a room temperature Li-ion conductivity of about 10 –6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2Mg 2P 3O 9N at this temperature. The structure of Li 2Mg 2P 3O 9N was determined from ex situ synchrotron and time-of-flight neutronmore » diffraction data to retain the P2 13 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2Mg 2P 3O 9N. The two Li-ion sites are found to be very substantially displaced (~0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2Mg 2P 3O 9N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li +/Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2–xLi xMg 2P 3O 9N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2Mg 2P 3O 9N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. Finally, in addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jue; Whitfield, Pamela S.; Saccomanno, Michael R.
Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2Mg 2P 3O 9N was synthesized in this paper by ion exchange from a Na 2Mg 2P 3O 9N precursor. Impedance spectroscopy measurements indicate that Li 2Mg 2P 3O 9N has a room temperature Li-ion conductivity of about 10 –6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2Mg 2P 3O 9N at this temperature. The structure of Li 2Mg 2P 3O 9N was determined from ex situ synchrotron and time-of-flight neutronmore » diffraction data to retain the P2 13 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2Mg 2P 3O 9N. The two Li-ion sites are found to be very substantially displaced (~0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2Mg 2P 3O 9N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li +/Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2–xLi xMg 2P 3O 9N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2Mg 2P 3O 9N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. Finally, in addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.« less
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jun-Li; Mo, Kun; Yun, Di
2016-04-01
Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic 9F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to themore » different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstrom's dislocation models. (C) 2016 Elsevier B.V. All rights reserved.« less
Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L
2012-11-28
Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pei; Fang, Z. Zak; Koopman, Mark
Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of β ↔ α + δ was observed in themore » (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 °C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900°C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900°C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V.« less
Zhu, Yu-Min; Zhang, Hua; Fan, Shi-Suo; Wang, Si-Jia; Xia, Yi; Shao, Li-Ming; He, Pin-Jing
2014-07-15
Due to the heterogeneity of metal distribution, it is challenging to identify the speciation, source and fate of metals in solid samples at micro scales. To overcome these challenges single particles of air pollution control residues were detected in situ by synchrotron microprobe after each step of chemical extraction and analyzed by multivariate statistical analysis. Results showed that Pb, Cu and Zn co-existed as acid soluble fractions during chemical extraction, regardless of their individual distribution as chlorides or oxides in the raw particles. Besides the forms of Fe2O3, MnO2 and FeCr2O4, Fe, Mn, Cr and Ni were closely associated with each other, mainly as reducible fractions. In addition, the two groups of metals had interrelations with the Si-containing insoluble matrix. The binding could not be directly detected by micro-X-ray diffraction (μ-XRD) and XRD, suggesting their partial existence as amorphous forms or in the solid solution. The combined method on single particles can effectively determine metallic multi-associations and various extraction behaviors that could not be identified by XRD, μ-XRD or X-ray absorption spectroscopy. The results are useful for further source identification and migration tracing of heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.
Feng, Shanglei; Yang, Yingguo; Li, Li; Zhang, Dongsheng; Yang, Xinmei; Xia, Huihao; Yan, Long; Tsang, Derek K L; Huai, Ping; Zhou, Xingtai
2017-09-06
An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the crystallographic thermal expansion and contraction rate of interlayer spacing d 002 in C/C composite with FLiNaK salt impregnation is smaller than that in the virgin sample, indicating the suppression on interlayer spacing from FLiNaK salt impregnated. Meanwhile the crystallite size L C002 of C/C composite with FLiNaK salt impregnation is larger than the virgin one after whole heat treatment process, indicating that FLiNaK salt impregnation could facilitate the crystallization of C/C composite after heat treatment process. This improved crystallization in C/C composite with FLiNaK salt impregnation suggests the synthetic action of the salt squeeze effect on crooked carbon layer and the release of internal residual stress after heating-cooling process. Thus, the present study not only contribute to reveal the interaction mechanism between C/C composite and FLiNaK salt in high temperature environment, but also promote the design of safer and more reliable C/C composite materials for the next generation molten salt reactor.
Gualtieri, Alessandro F; Bursi Gandolfi, Nicola; Pollastri, Simone; Burghammer, Manfred; Tibaldi, Eva; Belpoggi, Fiorella; Pollok, Kilian; Langenhorst, Falko; Vigliaturo, Ruggero; Dražić, Goran
2017-05-15
Along the line of the recent research topic aimed at understanding the in vivo activity of mineral fibres and their mechanisms of toxicity, this work describes the morpho-chemical characteristics of the mineral fibres found in the tissues of Sprague-Dawley rats subjected to intraperitoneal/intrapleural injection of UICC chrysotile, UICC crocidolite and erionite-Na from Nevada (USA). The fibres are studied with in situ synchrotron powder diffraction and high resolution transmission electron microscopy to improve our understanding of the mechanisms of toxicity of these mineral fibres. In contact with the tissues of the rats, chrysotile fibres are prone to dissolve, with leaching of Mg and production of a silica rich relict. On the other hand, crocidolite and erionite-Na fibres are stable even for very long contact times within the tissues of the rats, showing just a thin dissolution amorphous halo. These findings support the model of a lower biopersistence of chrysotile with respect to crocidolite and erionite-Na but the formation of a silica-rich fibrous residue after the pseudo-amorphization of chrysotile may justify a higher cytotoxic potential and intense inflammatory activity of chrysotile in the short term in contact with the lung tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Qin; Zhao, Lichen; Wu, Jiang; ...
2017-06-21
Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI 6] 4– cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular-more » or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.« less
Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...
2016-12-30
The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less
NASA Astrophysics Data System (ADS)
Tracy, S. J.; Turneaure, S.; Duffy, T. S.
2016-12-01
Quartz is one of the most abundant minerals in Earth's crust and serves as an archetype for silicate minerals generally. The shock metamorphism of silica is important for understanding and interpreting meteorite impact events. Shock compression of quartz is characterized by a phase transition occurring over a broad mixed-phase region ( 10-40 GPa). Despite decades of study, the nature of this transformation and the structure of the high-pressure phase remain poorly understood. In situ x-ray diffraction data on shock-compressed SiO2 was collected at the Dynamic Compression Sector at the Advanced Photon Source. The behavior both single crystal alpha-quartz and fused silica was investigated under dynamic loading through a series real-time synchrotron x-ray diffraction measurements during peak stresses up to 65 GPa. A two-stage light gas gun was used to accelerate LiF flyer plates that impacted the SiO2 samples resulting in a propagating step-like increase in pressure and temperature behind the shock front. Four consecutive x-ray frames, separated by 153 ns, were collected during the transient loading and unloading. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that both amorphous silica as well as crystalline alpha-quartz transform to stishovite above 36 GPa. These measurements reveal important information about the role of kinetics as well texture development and potential defect structures in the transformed material.
NASA Technical Reports Server (NTRS)
Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.
2003-01-01
The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.
Lattice strains and load partitioning in bovine trabecular bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhtar, R.; Daymond, M. R.; Almer, J. D.
2012-02-01
Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bonemore » behaves like a plastically yielding foam« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurston, T.R.; Haldar, P.; Wang, Y.L.
Hard x-rays from a synchrotron source were utilized in diffraction experiments performed at elevated temperatures (up to {approximately}870{degree}C) on (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223) tapes {ital completely} encased in silver. The general behavior of the phase and texture development under typical processing conditions was determined, and the effects that several variations in processing conditions had on the phase and texture development were examined. These results and their implications for improving processing conditions are discussed. {copyright} {ital 1997 Materials Research Society.}
High pressure polymorphs and amorphization of upconversion host material NaY(WO{sub 4}){sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Fang; Yue, Binbin, E-mail: yuebb@hpstar.ac.cn, E-mail: chenbin@hpstar.ac.cn; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720
2016-07-25
The pressure effect on the structural change of upconversion host material NaY(WO{sub 4}){sub 2} was studied by using in-situ synchrotron X-ray diffraction. A transition from the initial scheelite phase to the M-fergusonite phase occurs near 10 GPa, and another phase transition is found near 27.5 GPa, which could be an isostructural transition without symmetry change. The sample becomes amorphous when the pressure is fully released from high pressure. This work demonstrates the possibility of synthesizing various polymorph structures for non-linear optical applications with a high pressure, chemical doping, or strained thin-film nanostructure process.
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Pullin, H; Davenport, A; Street, S; Scott, T B
2018-06-18
To reflect potential conditions in a geological disposal facility, uranium was encapsulated in grout and submersed in de-ionised water for time periods between 2-47 weeks. Synchrotron X-ray Powder Diffraction and X-ray Tomography were used to identify the dominant corrosion products and measure their dimensions. Uranium dioxide was observed as the dominant corrosion product and time dependent thickness measurements were used to calculate oxidation rates. The effectiveness of physical and chemical grout properties to uranium corrosion and mobilisation is discussed and Inductively Coupled Plasma Mass Spectrometry was used to measure 238 U (aq) content in the residual water of several samples.
Gate-tunable gigantic lattice deformation in VO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuyama, D., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp; Hatano, T.; Nakano, M., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp
2014-01-13
We examined the impact of electric field on crystal lattice of vanadium dioxide (VO{sub 2}) in a field-effect transistor geometry by in-situ synchrotron x-ray diffraction measurements. Whereas the c-axis lattice parameter of VO{sub 2} decreases through the thermally induced insulator-to-metal phase transition, the gate-induced metallization was found to result in a significant increase of the c-axis length by almost 1% from that of the thermally stabilized insulating state. We also found that this gate-induced gigantic lattice deformation occurs even at the thermally stabilized metallic state, enabling dynamic control of c-axis lattice parameter by more than 1% at room temperature.
NASA Technical Reports Server (NTRS)
Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.
2005-01-01
Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.
In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films
NASA Astrophysics Data System (ADS)
Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.
2017-08-01
In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.
Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; ...
2016-02-18
The functionalization of graphene oxide (GO) and graphene by TiO 2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO 2 and TiO 2 under H 2 reduction. Sequential Rietveld refinement was employed to gain insight intomore » the evolution of crystal growth of TiO 2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less
Impact of synchrotron radiation on macromolecular crystallography: a personal view
Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander
2010-01-01
The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074
NASA Technical Reports Server (NTRS)
Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Zhao, Y.; Palosz, B.; Palosz, W.
2003-01-01
Key properties of nanocrystals are determined by their real atomic structure, therefore a reasonable understanding and meaningful interpretation of their properties requires a realistic model of the structure. In this paper we present an evidence of a complex response of the lattice distances to external pressure indicating a presence of a complex structure of Sic nanopowders. The experiments were performed on nanocrystalline Sic subjected to hydrostatic or isostatic pressure using synchrotron and neutron powder diffraction. Elastic properties of the samples were examined based on X-ray diffraction data using a Diamond Anvil Cell (DAC) in HASYLAB at DESY. The dependence'of the lattice parameters and of the Bragg reflections width with pressure exhibits a ha1 nature of the properties (compressibilities) of the powders and indicates a complex structure of the grains. We interpreted tws behaviour as originating from different elastic properties of the grain interior and surface. Analysis of the dependence of individual interatomic distances on pressure was based on in-situ neutron diffraction measurements done with HbD diffractometer at LANSCE in Los Alamos National Laboratory with the Paris-Edinburgh cell under pressures up to 8 GPa (Qmax = 26/A). Interatomic distances were obtained by PDF analysis using the PDFgetN program. We have found that the interatomic distances undergo a complex, non-monotonic changes. Even under substantial pressures a considerable relaxation of the lattice may take place: some interatomic distances increase with an increase in pressure. We relate this phenomenon to: (1), changes of the microstructure of the densified material, in particular breaking of its fractal chain structure and, (2), its complex structure resembling that of a material composed of two phases, each with its distinct elastic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abughayada, C.; Dabrowski, B.; Kolesnik, S.
2015-09-22
Single-phase polycrystalline samples of stoichiometric RMnO3+delta (R = Er, Y, and Ho) were achieved in the hexagonal P6(3)cm structure through solid state reaction at, similar to 1300 degrees C. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger Ho and Y show rapid and reversible incorporation of large amounts of excess oxygen (0.3 > delta> 0) at an unusually low temperature range of similar to 190-325 degrees C, indicating the industrial usefulness of RMnO3+delta materials for lower cost thermal swing adsorption processes for oxygen separation from air. Further increase of the excess oxygen intake to delta similar tomore » 0.38 was achieved for all the investigated materials when annealed under high pressures of oxygen. The formation of three oxygen stable phases with 6 = 0, 0.28, and 0.38 was confirmed by thermogravimetric measurements, synchrotron X-rays, and neutron diffraction. In situ synchrotron diffraction proved the thermal stability of these single phases and the regions of their creation and coexistence, and demonstrated that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. Structural modeling using neutron powder diffraction for oxygen excess phases describes the formation and details of a large R3c superstructure observed for HoMnO3.28 by tripling the c-axis of the original parent unit cell. Modeling of the RMnO3.38 (R = Y and Er) oxygen-loaded phase converged on a structural model consistent with the symmetry of Pca2(1).« less
Spherical quartz crystals investigated with synchrotron radiation
Pereira, N. R.; Macrander, A. T.; Hill, K. W.; ...
2015-10-27
The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. In conclusion, excluding diffraction from such problem spots has little effect on the focusmore » beyond a decrease in background.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James; Gindhart, Amy; Blanton, Thomas
The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.
Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.
2010-02-03
The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.
Synchrotron applications in wood preservation and deterioration
Barbara L. Illman
2003-01-01
Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...
Pressure-Induced Polymerization of LiN(CN) 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keefer, Derek W.; Gou, Huiyang; Purdy, Andrew P.
The high-pressure behavior of lithium dicyanamide (LiN(CN) 2) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time. On the basis of spectroscopic and diffraction data, we suggest a polymorphic phase transformation at ~8 GPa, wherein dicyanamide ions remain as discrete molecular species. Above ca. 18 GPa, dicyanamide units polymerize, forming a largely disorderedmore » network, and the extent of polymerization may be increased by annealing at elevated temperature. The polymerized product consists of tricyanomelaminate-like groups containing sp 2-hybidized carbon–nitrogen bonds and exhibits a visible absorption edge near 540 nm. The product is recoverable to ambient conditions but is not stable in air/moisture.« less
Albetran, Hani; Vega, Victor
2018-01-01
The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated. PMID:29473854
In situ X-Ray Diffraction of Shock-Compressed Fused Silica
NASA Astrophysics Data System (ADS)
Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.
2018-03-01
Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.
Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.
Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M
2000-05-01
Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian
2016-01-01
A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141
Pink-beam serial crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meents, A.; Wiedorn, M. O.; Srajer, V.
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less
Pink-beam serial crystallography
Meents, A.; Wiedorn, M. O.; Srajer, V.; ...
2017-11-03
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less
Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings
NASA Astrophysics Data System (ADS)
Stolzenburg, Fabian
Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.
Brown, Leon D.; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J.; Reinhard, Christina; Connor, Leigh D.; Inman, Douglas; Brett, Daniel J. L.; Shearing, Paul R.
2017-01-01
A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl–KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl–KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems. PMID:28244437
Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R
2017-03-01
A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.
Liu, Qi; Tan, Guoqiang; Wang, Peng; ...
2017-04-17
A pure phase of VO 2(B) nanorods have been synthesized through an energy-efficient microwave hydrothermal reaction and used as cathode materials of lithium ion batteries, which exhibit promising specific capacity (e.g., 130 mA h g -1 even after 100 charge/discharge cycles) and rate capacity (e.g., ~130 mA h g -1 at a high current of 400 mA g -1). The excellent cyclability originates from the structural reversibility of VO 2(B) upon lithiation/delithiation that is confirmed by the in situ high-energy synchrotron X-ray diffraction (HEXRD) and in situ x-ray adsorption near-edge spectroscopy (XANES) of the VO 2 nanorods in operating batterymore » cells. As a result, the real-time results reveal that discharge forces lithium ions to insert firstly into the tunnels with the largest size along b direction followed by the second largest tunnels along c direction, which is completely reversible in the charge process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qi; Tan, Guoqiang; Wang, Peng
A pure phase of VO 2(B) nanorods have been synthesized through an energy-efficient microwave hydrothermal reaction and used as cathode materials of lithium ion batteries, which exhibit promising specific capacity (e.g., 130 mA h g -1 even after 100 charge/discharge cycles) and rate capacity (e.g., ~130 mA h g -1 at a high current of 400 mA g -1). The excellent cyclability originates from the structural reversibility of VO 2(B) upon lithiation/delithiation that is confirmed by the in situ high-energy synchrotron X-ray diffraction (HEXRD) and in situ x-ray adsorption near-edge spectroscopy (XANES) of the VO 2 nanorods in operating batterymore » cells. As a result, the real-time results reveal that discharge forces lithium ions to insert firstly into the tunnels with the largest size along b direction followed by the second largest tunnels along c direction, which is completely reversible in the charge process.« less
Elastic Properties of Synthetic Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C
NASA Astrophysics Data System (ADS)
Gwanmesia, G. D.; Zhang, J.; Li, B.; Darling, K.; Kung, J.; Neuville, D.; Raterron, P.; Sullivan, S.; Liebermann, R. C.
2003-04-01
We have measured the elastic wave velocities of polycrystalline pyrope (Mg_3Al_2Si_3O12) to 9 GPa and 1000^oC by ultrasonic interferometry, combined with in-situ synchrotron x-ray diffraction and imaging techniques. Fine-grained polycrystalline specimens (99.5% of theoretical density) were hot-pressed from a homogeneous glass starting material in the USSA-2000 apparatus at Stony Brook; the physical properties of the recovered specimens were characterized with density measurements, x-ray diffraction and transmission electron microscopy. Bench-top elastic wave velocities were in excellent agreement with the isotropic averages calculated from single-crystal elastic moduli of Leitner et al. (1980) by the Hashin-Shtrikman method. Travel times of acoustic compressional (P) and shear (S) waves, specimen lengths and PVT equations of state for the specimen and a NaCl standard were measured to 9 GPa and 1000^oC in a DIA-type high pressure apparatus (SAM-85), installed on the superconducting wiggler beamline (X17B) at the National Synchrotron Light Source of the Brookhaven National Laboratory. These data enabled us to determine the pressure and temperature derivatives of the elastic wave velocities and moduli for isotropic pyrope. We compare our new values with those of previous investigators and discuss the implications of these data for interpreting the seismic velocity gradients in the transition zone of the Earth's mantle.
Hu, Xiao Hua; Sun, X.; Hector, Jr., L. G.; ...
2017-04-21
Here, microstructure-based constitutive models for multiphase steels require accurate constitutive properties of the individual phases for component forming and performance simulations. We address this requirement with a combined experimental/theoretical methodology which determines the critical resolved shear stresses and hardening parameters of the constituent phases in QP980, a TRIP assisted steel subject to a two-step quenching and partitioning heat treatment. High energy X-Ray diffraction (HEXRD) from a synchrotron source provided the average lattice strains of the ferrite, martensite, and austenite phases from the measured volume during in situ tensile deformation. The HEXRD data was then input to a computationally efficient, elastic-plasticmore » self-consistent (EPSC) crystal plasticity model which estimated the constitutive parameters of different slip systems for the three phases via a trial-and-error approach. The EPSC-estimated parameters are then input to a finite element crystal plasticity (CPFE) model representing the QP980 tensile sample. The predicted lattice strains and global stress versus strain curves are found to be 8% lower that the EPSC model predicted values and from the HEXRD measurements, respectively. This discrepancy, which is attributed to the stiff secant assumption in the EPSC formulation, is resolved with a second step in which CPFE is used to iteratively refine the EPSC-estimated parameters. Remarkably close agreement is obtained between the theoretically-predicted and experimentally derived flow curve for the QP980 material.« less
Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE
NASA Astrophysics Data System (ADS)
Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich
1993-01-01
SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, X. H.; Sun, X.; Hector, L. G.
2017-06-01
Microstructure-based constitutive models for multiphase steels require accurate constitutive properties of the individual phases for component forming and performance simulations. We address this requirement with a combined experimental/theoretical methodology which determines the critical resolved shear stresses and hardening parameters of the constituent phases in QP980, a TRIP assisted steel subject to a two-step quenching and partitioning heat treatment. High energy X-Ray diffraction (HEXRD) from a synchrotron source provided the average lattice strains of the ferrite, martensite, and austenite phases from the measured volume during in situ tensile deformation. The HEXRD data was then input to a computationally efficient, elastic-plastic self-consistentmore » (EPSC) crystal plasticity model which estimated the constitutive parameters of different slip systems for the three phases via a trial-and-error approach. The EPSC-estimated parameters are then input to a finite element crystal plasticity (CPFE) model representing the QP980 tensile sample. The predicted lattice strains and global stress versus strain curves are found to be 8% lower that the EPSC model predicted values and from the HEXRD measurements, respectively. This discrepancy, which is attributed to the stiff secant assumption in the EPSC formulation, is resolved with a second step in which CPFE is used to iteratively refine the EPSC-estimated parameters. Remarkably close agreement is obtained between the theoretically-predicted and experimentally derived flow curve for the QP980 material.« less
Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction
Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann
2015-01-01
Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084
Local reconstruction in computed tomography of diffraction enhanced imaging
NASA Astrophysics Data System (ADS)
Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia
2007-07-01
Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, S.; Schaffer, J. E.; Ren, Y.
Room temperature deformation of a Ni{sub 46.7}Ti{sub 42.8}Nb{sub 10.5} alloy was studied by in-situ synchrotron X-ray diffraction. Compared to binary NiTi alloy, the Nb dissolved in the matrix significantly increased the onset stress for Stress-Induced Martensite Transformation (SIMT). The secondary phase, effectively a Nb-nanowire dispersion in a NiTi-Nb matrix, increased the elastic stiffness of the bulk material, reduced the strain anisotropy in austenite families by load sharing during SIMT, and increased the stress hysteresis by resisting reverse phase transformation during unloading. The stress hysteresis can be controlled over a wide range by heat treatment through its influences on the residualmore » stress of the Nb-nanowire dispersion and the stability of the austenite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, S.; Schaffer, J. E.; Ren, Y.
Room temperature deformation of a Ni46.7Ti42.8Nb10.5 alloy was studied by in-situ synchrotron X-ray diffraction. Compared to binary NiTi alloy, the Nb dissolved in the matrix significantly increased the onset stress for Stress-Induced Martensite Transformation (SIMT). The secondary phase, effectively a Nb-nanowire dispersion in a NiTi-Nb matrix, increased the elastic stiffness of the bulk material, reduced the strain anisotropy in austenite families by loading sharing during SIMT, and increased the stress hysteresis by resisting reverse phase transformation during unloading. The stress hysteresis can be controlled over a wide range by changing the heat treatment temperature through its influences on the residualmore » stress-strain state of the Nb-nanowire dispersion.« less
Stolar, Tomislav; Batzdorf, Lisa; Lukin, Stipe; Žilić, Dijana; Motillo, Cristina; Friščić, Tomislav; Emmerling, Franziska; Halasz, Ivan; Užarević, Krunoslav
2017-06-05
We have applied in situ monitoring of mechanochemical reactions by high-energy synchrotron powder X-ray diffraction to study the role of liquid additives on the mechanochemical synthesis of the archetypal metal-organic framework (MOF) HKUST-1, which was one of the first and is still among the most widely investigated MOF materials to be synthesized by solvent-free procedures. It is shown here how the kinetics and mechanisms of the mechanochemical synthesis of HKUST-1 can be influenced by milling conditions and additives, yielding on occasion two new and previously undetected intermediate phases containing a mononuclear copper core, and that finally rearrange to form the HKUST-1 architecture. On the basis of in situ data, we were able to tune and direct the milling reactions toward the formation of these intermediates, which were isolated and characterized by spectroscopic and structural means and their magnetic properties compared to those of HKUST-1. The results have shown that despite the relatively large breadth of analysis available for such widely investigated materials as HKUST-1, in situ monitoring of milling reactions can help in the detection and isolation of new materials and to establish efficient reaction conditions for the mechanochemical synthesis of porous MOFs.
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim
2014-01-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979
New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.
Tang, C C; Bushnell-Wye, G; Cernik, R J
1998-05-01
A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim
2014-10-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).
NASA Astrophysics Data System (ADS)
Takahashi, S.; Ohtani, E.; Sakai, T.; Hirao, N.; Ohishi, Y.
2012-12-01
The Earth's core is regarded as an Fe-Ni alloy but its density is lower than that of pure Fe at the core conditions. Therefore, the Earth's core is supposed to contain light elements and carbon is one of the candidates of the light elements to explain the density deficit of the Earth's core. Nakajima et al. (2009) reported the melting temperature of Fe3C up to around 30 GPa based on textual observations, the chemical analysis of the quenched run products and in situ X-ray diffraction experiments using a Kawai-type multi anvil apparatus. Lord et al. (2009) reported melting temperatures of Fe3C up to 70 GPa, which was determined by the temperature plateau during increasing laser power using a laser-heated diamond anvil cell. They also suggested Fe+Fe7C3 is a stable subsolidus phase. There are obvious discrepancies between the melting curve and the stable subsolidus phase reported by Nakajima et al. (2009) and those reported by Lord et al. (2009). In this study, the melting temperatures of Fe3C and a subsolidus phase relation were determined based on in situ X-ray diffraction experiments. This study aims to reveal the stability field of Fe3C and the melting temperature of Fe3C and to discuss the behaviors of carbon in the Earth's core. We have performed experiments using a laser-heated diamond anvil cell combined with in situ X-ray diffraction experiment at BL10XU beamline, SPring-8 synchrotron facility. An NaCl powder and a rhenium or tungsten foil were used for the insulator and gasket, respectively. Melting of the sample was determined by disappearance of the X-ray diffraction peaks. We determined the melting relation of Fe3C up to 145 GPa by in situ X-ray diffraction experiments. Present results are close to Nakajima et al. (2009) up to 30 GPa but become close to that reported by Lord et al. (2009) at higher pressure conditions. The solidus temperature extrapolated to the ICB pressure, 330 GPa, is 5400 K. We also confirmed that Fe3C is stable as a subsolidus phase at least up to 237 GPa and 4100 K. This strongly suggests that Fe3C is a potential candidate of the Earth's inner core although we need further studies at the inner core conditions.
Surface structure of coherently strained ceria ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan
2016-11-14
Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO 2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a “stacks andmore » islands” model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO 2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. In conclusion, the successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.« less
Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy
Withers, P. J.
2015-01-01
To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521
Synchrotron X-ray diffraction study of the Ba{sub 1−x}SrSnO{sub 3} solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodjosantoso, Anti K., E-mail: Prodjosantoso@yahoo.com; Zhou, Qingdi; Kennedy, Brendan J.
At room temperature the sequence of phases with increasing amounts of strontium in the stannate perovskite system Ba{sub 1−x}SrSnO{sub 3} has been established from high resolution synchrotron X-ray powder diffraction. The observed sequence orthorhombic (Pbnm), orthorhombic (Ibmm), tetragonal (I4/mcm), and cubic (Pm3-bar m) is a consequence of the sequential introduction of cooperative tilting of the corner sharing SnO{sub 6} octahedra. The cell volume changes smoothly across the series with no obvious discontinuities associated with the phase transitions. - Graphical abstract: Portions of the synchrotron X-ray diffraction profiles (λ=0.82453 Å) from selected Ba{sub 1−x}Sr{sub x}SnO{sub 3} samples together with the resultsmore » of fitting by the Rietveld method. Highlights: ► Structures of the stannate perovskites Ba{sub 1−x}SrSnO{sub 3} refined from synchrotron XRD. ► The sequence Pm3-bar m→I4/mcm→Ibmm→Pbnm results from tilting of the octahedra. ► The tilting maintains optimal bonding of the cations seen from the BVS analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di, E-mail: diyun1979@xjtu.edu.cn; Xi'an Jiao Tong University, 28 Xian Ning West Road, Xi'an 710049; Mo, Kun
2015-12-15
U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratorymore » (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition where nano-sized grains were observed to emerge. • UO{sub 2} phase exists at the thin area of the as-annealed specimen whereas U-10Mo γ phase dominated at the thicker part. • Bcc γ U-10Mo recrystallized to become nano-meter sized crystallites near the specimen surface. • A separateannealing experiment was conducted with a FIB processed specimen where similar transition occurred at a lower temperature of 460 °C with a faster rate.« less
Operation of the Australian Store.Synchrotron for macromolecular crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.
2014-10-01
The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Severalmore » real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.« less
Schnepp, Zoë; Hollamby, Martin J; Tanaka, Masahiko; Matsushita, Yoshitaka; Katsuya, Yoshio; Sakka, Yoshio
2012-06-01
Metal oxide/nitride nanocomposites have many existing and potential applications, e.g. in energy conversion or ammonia synthesis. Here, a hybrid oxide/nitride nanocomposite (anatase/Ti x W 1- x N) was synthesized by an ammonia-free sol-gel route. Synchrotron x-ray diffraction, complemented with electron microscopy and thermogravimetric analysis, was used to study the structure, composition and mechanism of formation of the nanocomposite. The nanocomposite contained nanoparticles (<5 nm diameter) of two highly intermixed phases. This was found to arise from controlled nucleation and growth of a single oxide intermediate from the gel precursor, followed by phase separation and in situ selective carbothermal nitridation. Depending on the preparation conditions, the composition varied from anatase/Ti x W 1- x N at low W content to an isostructural mixture of Ti-rich and W-rich Ti x W 1- x N at high W content. In situ selective carbothermal nitridation offers a facile route to the synthesis of nitride-oxide nanocomposites. This conceptually new approach is a significant advance from previous methods, which generally require ammonolysis of a pre-synthesized oxide.
NASA Astrophysics Data System (ADS)
Ryu, S.; Zhou, H.; Paudel, T. R.; Irwin, J.; Podkaminer, J. P.; Bark, C. W.; Lee, D.; Kim, T. H.; Fong, D. D.; Rzchowski, M. S.; Tsymbal, E. Y.; Eom, C. B.
2017-10-01
Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internal structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, S.; Zhou, H.; Paudel, T. R.
Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internalmore » structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.« less
1994-11-24
complexes with reversible ligands, including edrophonium, d-tubocurarine and huperzine A , diffracting to similar resolution. The X26c Laue beam line...The EMBL-DESY synchrotron facility at Hamburg was employed to collect a complete 2.3 A data set for a crystal of native Torpedo AChE, as well as for...at the NSLS synchrotron facility at Brookhaven National Laboratory (BNL) was used to obtain a Laue diffraction pattern for a crystal of native Torpedo
Diffraction imaging (topography) with monochromatic synchrotron radiation
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri
1988-01-01
Structural information of special interest to crystal growers and device physicists is now available from high resolution monochromatic synchrotron diffraction imaging (topography). In the review, the importance of superior resolution in momentum transfer and in space is described, and illustrations are taken from a variety of crystals: gallium arsenide, cadmium telluride, mercuric iodide, bismuth silicon oxide, and lithium niobate. The identification and understanding of local variations in crystal growth processes are shown. Finally, new experimental opportunities now available for exploitation are indicated.
NASA Astrophysics Data System (ADS)
Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes
2017-05-01
For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components.
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
Fan, D.; Huang, J. W.; Zeng, X. L.; ...
2016-05-23
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D.; Huang, J. W.; Zeng, X. L.
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose
Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, andmore » to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.« less
Myosin Heads Are Displaced from Actin Filaments in the In Situ Beating Rat Heart in Early Diabetes
Jenkins, Mathew J.; Pearson, James T.; Schwenke, Daryl O.; Edgley, Amanda J.; Sonobe, Takashi; Fujii, Yutaka; Ishibashi-Ueda, Hatsue; Kelly, Darren J.; Yagi, Naoto; Shirai, Mikiyasu
2013-01-01
Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic). Diffraction patterns were recorded during baseline and dobutamine infusions simultaneous with ventricular pressure-volumetry. From these diffraction patterns myosin mass transfer to actin filaments was assessed as the change in intensity ratio (I1,0/I1,1). In diabetic hearts cross-bridge disposition was most notably abnormal in the diastolic phase (p < 0.05) and to a lesser extent the systolic phase (p < 0.05). In diabetic rats only, there was a transmural gradient of contractile depression. Elevated diabetic end-diastolic intensity ratios were correlated with the suppression of diastolic function (p < 0.05). Furthermore, the expected increase in myosin head transfer by dobutamine was significantly blunted in diabetic animals (p < 0.05). Interfilament spacing did not differ between groups. We reveal that impaired cross-bridge disposition and radial transfer may thus underlie the early decline in ventricular function observed in diabetic cardiomyopathy. PMID:23473489
An experimental apparatus for diffraction-limited soft x-ray nano-focusing
NASA Astrophysics Data System (ADS)
Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard
2011-09-01
Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.
Operation of the Australian Store.Synchrotron for macromolecular crystallography
Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T.; McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M.; Bond, Charles S.; Buckle, Ashley M.; Androulakis, Steve
2014-01-01
The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community. PMID:25286837
Operation of the Australian Store.Synchrotron for macromolecular crystallography.
Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve
2014-10-01
The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.
Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong
2014-05-02
Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarley, Brooke A.; Manero, Albert; Cotelo, Jose
2017-01-01
Selective laser melting (SLM) is an additive manufacturing process that uses laser scanning to achieve melting and solidification of a metal powder bed. This process, when applied to develop high temperature material systems, holds great promise for more efficient manufacturing of turbine components that withstand extreme temperatures, heat fluxes, and high mechanical stresses associated with engine environments. These extreme operational conditions demand stringent tolerances and an understanding of the material evolution under thermal loading. This work presents a real-time approach to elucidating the evolution of precipitate phases in SLM Inconel 718 (IN718) under high temperatures using high-energy synchrotron x-ray diffraction.more » Four representative samples (taken along variable build height) were studied in room temperature conditions. Two samples were studied as-processed (samples 1 and 4) and two samples after different thermal treatments (samples 2 and 3). The as-processed samples were found to contain greater amounts of weakening phase, δ. Precipitation hardening of Sample 2 reduced the detectable volume of δ, while also promoting growth of γ00 in the γ matrix. Inversely, solution treatment of Sample 3 produced an overall decrease in precipitate phases. High-temperature, in-situ synchrotron scans during ramp-up, hold, and cool down of two different thermal cycles show the development of precipitate phases. Sample 1 was held at 870°C and subsequently ramped up to 1100°C, during which the high temperature instability of strengthening precipitate, γ00, was seen. γ00 dissolution occurred after 15 minutes at 870°C and was followed by an increase of δ-phase. Sample 4 was held at 800°C and exhibited growth of γ00 after 20 minutes at this temperature. These experiments use in-situ observations to understand the intrinsic thermal effect of the SLM process and the use of heat treatment to manipulate the phase composition of SLM IN718.« less
Dynamic full-field infrared imaging with multiple synchrotron beams
Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.
2013-01-01
Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231
Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck
2016-10-04
The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.
Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang; ...
2016-10-03
The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity ismore » driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang
The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity ismore » driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.« less
Castany, P; Yang, Y; Bertrand, E; Gloriant, T
2016-12-09
In bcc metastable β titanium alloys, and particularly in superelastic alloys, a unique {332}⟨113⟩ twinning system occurs during plastic deformation. However, in situ synchrotron x-ray diffraction during a tensile test shows that the β phase totally transforms into α^{''} martensite under stress in a Ti-27Nb (at. %) alloy. {332}⟨113⟩_{β} twins are thus not formed directly in the β phase but are the result of the reversion of {130}⟨310⟩_{α^{''}} parent twins occurring in martensite under stress. The formation of an interfacial twin boundary ω phase is also observed to accommodate strains induced during the phase reversion.
Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; ...
2016-05-23
The alloy Cu 25 Au 30 Zn 45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. We discovered this alloy by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructuresmore » are those predicted by the cofactor conditions. In order to verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.« less
Synchrotron radiation study on the phase relations of KAlSi3O8
NASA Astrophysics Data System (ADS)
Urakawa, Satoru; Ohno, Hideo; Igawa, Naoki; Kondo, Tadashi; Shimomura, Osamu
1994-07-01
The equilibrium phase relations of KAlSi3O8 have been determined by in situ X-ray diffraction method using synchrotron radiation at Photon Factory, Natl. Lab. for High Energy Physics. Experiments were conducted by using the cubic type high pressure apparatus, MAX90, equipped with sintered diamond anvils. The temperature region was extended to 2000 °C up to 10 GPa in this study. Sanidine, the low pressure phase of KAlSi3O8, decomposes into three phases, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2), at 6.5 GPa and 1200˜1300 °C. The hollandite-type KAlSi3O8 is made up of three phases at 9.2 GPa and 1300˜1400 °C. The melting points of sanidine and the hollandite-type KAlSi3O8 are 1600 °C at 6.7 GPa and 1800 °C at 11.2 GPa, respectively. In three phases coexisting field, wadeite-type K2Si4O9 first melts at the temperature between 1400 °C and 1500 °C.
Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8
NASA Astrophysics Data System (ADS)
Urakawa, S.; Kondo, T.; Igawa, N.; Shimomura, O.; Ohno, H.
1994-10-01
In situ X-ray diffraction study on KAlSi3O8 has been performed using the cubic type high pressure apparatus, MAX90, combined with synchrotron radiation. We determined the phase relations of sanidine, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2) assemblage, and hollandite-type KAlSi3O8, including melting temperatures of potassic phases, up to 11 GPa. Our data on subsolidus phase boundaries are close to the recent data of Yagi and Akaogi (1991). Melting relations of sanidine are consistent with the low pressure data of Lindsley (1966). The breakdown of sanidine into three phases reduces melting temperature, and wadeite-type K2Si4O9 melts first around 1500° C in three phase coexisting region. Melting point of hollandite-type KAlSi3O8 is between 1700° C and 1800° C at 11 GPa. If these potassic phases host potassium in the earth's mantle, the true mantle solidus temperature will be much lower than the reported dry solidus temperature of peridotite.
In meso in situ serial X-ray crystallography of soluble and membrane proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee
A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins,more » including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development.« less
Crystallization dynamics and interface stability of strontium titanate thin films on silicon.
Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C
2015-04-01
Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.
Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.
Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less
Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middey, S.; Rivero, P.; Meyers, D.
2014-10-29
In this study, we address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO 3 on the band insulator SrTiO 3 along the pseudo cubic [111] direction. While in general the metallic LaNiO 3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, andmore » synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La 2Ni 2O 5 (Ni 2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO 3/SrTiO 3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...
2016-12-30
Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less
Surface Structure as a Foundation of Nanotechnology
NASA Astrophysics Data System (ADS)
Robinson, Ian
2007-03-01
The three generations of synchrotron sources achieved to date, parasitic, dedicated and undulator-based, have each time revolutionized the field of X-ray diffraction. Surface structure determination, demonstrated (but very difficult) already with Coolidge tube sources, benefited from the enormous flux gain in the first generation, such as SSRL. Dedicated 2nd-generation sources, such as NSLS, allowed in-situ surface preparation and reliable steady beams to be available when a surface was ready to measure. Third generation sources, such as APS, enormously improved the brightness, hence coherence, and thus allowed access to the surfaces of nanoparticles. This talk will illustrate how these technological advances led to two significant scientific breakthroughs. The concept of crystal truncation rods (CTR) led to new views of how the surface is a modification of, but still an extension of the bulk crystal structure. The development of lensless coherent x-ray diffraction (CXD) imaging has allowed access to the structure of nanocrystalline materials by three-dimensional phase mapping of the particle interiors. The structural principles of these new nano materials are being investigated at present using these new methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.
Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.
Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S
2016-11-01
The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...
2017-04-24
Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
The storage degradation of an 18650 commercial cell studied using neutron powder diffraction
NASA Astrophysics Data System (ADS)
Lee, Po-Han; Wu, She-huang; Pang, Wei Kong; Peterson, Vanessa K.
2018-01-01
Commercial 18650 lithium ion cells containing a blended positive electrode of layered LiNi0.5Mn0.3Co0.2O2 and spinel Li1.1Mn1.9O4 alongside a graphite negative electrode were stored at various depth-of-discharge (DoD) at 60 °C for 1, 2, 4, and 6 months. After storage, the cells were cycled at C/25 at 25 °C between 2.75 and 4.2 V for capacity determination and incremental capacity analysis (ICA). In addition to ICA analysis, the mechanism for capacity fade was investigated by combining the results of neutron powder diffraction under in-situ and operando conditions, in conjunction with post-mortem studies of the electrodes using synchrotron X-ray powder diffraction and inductively-coupled plasma optical emission spectroscopy. Among the cells, those stored at 25% DoD suffered the highest capacity fade due to their higher losses of active Li, NMC, and LMO than cells stored at other DoD. The cells stored at 0% DoD shows second high capacity fade because they exhibit the highest of active LMO and graphite anode among the stored cells and higher losses of active Li and NMC than cells stored at 50% DoD.
Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS
Stoner-Ma, Deborah; Skinner, John M.; Schneider, Dieter K.; Cowan, Matt; Sweet, Robert M.; Orville, Allen M.
2011-01-01
Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of ‘mystery density’, i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 Å resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data. PMID:21169688
NASA Astrophysics Data System (ADS)
Perez Taborda, J. A.; Romero, J. J.; Abad, B.; Muñoz-Rojo, M.; Mello, A.; Briones, F.; Gonzalez, M. S. Martin
2016-04-01
Si x Ge1-x alloys are well-known thermoelectric materials with a high figure of merit at high temperatures. In this work, metal-induced crystallization (MIC) has been used to grow Si0.8Ge0.2 films that present improved thermoelectric performance (zT = 5.6 × 10-4 at room temperature)—according to previously reported values on films—with a relatively large power factor (σ · S 2 = 16 μW · m-1 · K-2). More importantly, a reduction in the thermal conductivity at room temperature (κ = 1.13 ± 0.12 W · m-1 · K-1) compared to other Si-Ge films (˜3 W · m-1 · K-1) has been found. Whereas the usual crystallization of amorphous SiGe (a-SiGe) is achieved at high temperatures and for long times, which triggers dopant loss, MIC reduces the crystallization temperature and the heating time. The associated dopant loss is thus avoided, resulting in a nanostructuration of the film. Using this method, we obtained Si0.8Ge0.2 films (grown by DC plasma sputtering) with appropriate compositional and structural properties. Different thermal treatments were tested in situ (by heating the sample inside the deposition chamber) and ex situ (annealed in an external furnace with controlled conditions). From the studies of the films by: x-ray diffraction (XRD), synchrotron radiation grazing incidence x-ray diffraction (SR-GIXRD), micro Raman, scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS), Hall effect, Seebeck coefficient, electrical and thermal conductivity measurements, we observed that the in situ films at 500 °C presented the best zT values with no gold contamination.
Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Howe, Nicole; Vogeley, Lutz; Liu, Xiangyu; Warshamanage, Rangana; Weinert, Tobias; Panepucci, Ezequiel; Kobilka, Brian; Diederichs, Kay; Wang, Meitian; Caffrey, Martin
2016-01-01
Here, a method for presenting crystals of soluble and membrane proteins growing in the lipid cubic or sponge phase for in situ diffraction data collection at cryogenic temperatures is introduced. The method dispenses with the need for the technically demanding and inefficient crystal-harvesting step that is an integral part of the lipid cubic phase or in meso method of growing crystals. Crystals are dispersed in a bolus of mesophase sandwiched between thin plastic windows. The bolus contains tens to hundreds of crystals, visible with an in-line microscope at macromolecular crystallography synchrotron beamlines and suitably disposed for conventional or serial crystallographic data collection. Wells containing the crystal-laden boluses are removed individually from hermetically sealed glass plates in which crystallization occurs, affixed to pins on goniometer bases and excess precipitant is removed from around the mesophase. The wells are snap-cooled in liquid nitrogen, stored and shipped in Dewars, and manually or robotically mounted on a goniometer in a cryostream for diffraction data collection at 100 K, as is performed routinely with standard, loop-harvested crystals. The method is a variant on the recently introduced in meso in situ serial crystallography (IMISX) method that enables crystallographic measurements at cryogenic temperatures where crystal lifetimes are enormously enhanced whilst reducing protein consumption dramatically. The new approach has been used to generate high-resolution crystal structures of a G-protein-coupled receptor, α-helical and β-barrel transporters and an enzyme as model integral membrane proteins. Insulin and lysozyme were used as test soluble proteins. The quality of the data that can be generated by this method was attested to by performing sulfur and bromine SAD phasing with two of the test proteins. PMID:26894538
Bartosik, M.; Daniel, R.; Zhang, Z.; Deluca, M.; Ecker, W.; Stefenelli, M.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J.
2012-01-01
The influence of a local thermal treatment on the properties of Ti–Al–N coatings is not understood. In the present work, a Ti0.52Al0.48N coating on a WC–Co substrate was heated with a diode laser up to 900 °C for 30 s and radially symmetric lateral gradients of phases, residual stress and hardness were characterized ex-situ using position-resolved synchrotron X-ray diffraction, Raman spectroscopy, transmission electron microscopy and nanoindentation. The results reveal (i) a residual stress relaxation at the edge of the irradiated area and (ii) a compressive stress increase of few GPa in the irradiated area center due to the Ti–Al–N decomposition, in particular due to the formation of small wurtzite (w) AlN domains. The coating hardness increased from 35 to 47 GPa towards the center of the heated spot. In the underlying heated substrate, a residual stress change from about − 200 to 500 MPa down to a depth of 6 μm is observed. Complementary, in-situ high-temperature X-ray diffraction analysis of stresses in a homogeneously heated Ti0.52Al0.48N coating on a WC–Co substrate was performed in the range of 25–1003 °C. The in-situ experiment revealed the origin of the observed thermally-activated residual stress oscillation across the laser heated spot. Finally, it is demonstrated that the coupling of laser heating to produce lateral thermal gradients and position-resolved experimental techniques opens the possibility to perform fast screening of structure–property relationships in complex materials. PMID:23471140
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.« less
NASA Astrophysics Data System (ADS)
Machon, D.; McMillan, P. F.; San-Miguel, A.; Barnes, P.; Hutchins, P. T.
In situ studies have provided valuable new information on the synthesis mechanisms, low temperature properties and high pressure behavior of semiconductor clathrates. Here we review work using synchrotron and laboratory X-ray diffraction and Raman scattering used to study mainly Si-based clathrates under a variety of conditions. During synthesis of the Type I clathrate Na8Si46 by metastable thermal decomposition from NaSi in vacuum, we observe an unusual quasi-epitaxial process where the clathrate structure appears to nucleate and grow directly from the Na-deficient Zintl phase surface. Low temperature X-ray studies of the guest-free Type II clathrate framework Si136 reveal a region of negative thermal expansion behavior as predicted theoretically and analogous to that observed for diamond-structured Si. High pressure studies of Si136 lead to metastable production of the β-Sn structured Si-II phase as well as perhaps other metastable crystalline materials. High pressure investigations of Type I clathrates show evidence for a new class of apparently isostructural densification transformations followed by amorphization in certain cases.
In situ observation of shear-driven amorphization in silicon crystals.
He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X
2016-10-01
Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming
Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack–multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (~1700 mAh g–1 after 100 cycles atmore » 1.3 A g–1 based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.« less
NASA Astrophysics Data System (ADS)
Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao
2018-05-01
The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.
Multilayer diffraction at 104 keV
NASA Technical Reports Server (NTRS)
Krieger, Allen S.; Blake, Richard L.; Siddons, D. P.
1993-01-01
We have measured the diffraction peak of a W:Si synthetic multilayer reflector at 104 keV using the High Energy Bonse-Hart Camera at the X-17B hard X-ray wiggler beam line of the National Synchrotron Light Source at Brookhaven National Laboratory. The characteristics of the diffraction peak are described and compared to theory.
The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures
NASA Astrophysics Data System (ADS)
Talyzin, Alexandr V.; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás
2013-12-01
The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04631a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.
2015-07-01
The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Corinna; Feyand, Mark; Rothkirch, Andre
2012-04-15
The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambientmore » temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.« less
NASA Technical Reports Server (NTRS)
Murphy, Andrew G.; Browne, David J.; Mirihanage, Wajira U.; Mathiesen, Ragnvald H.
2012-01-01
In the last decade synchrotron X-ray sources have fast become the tool of choice for performing in-situ high resolution imaging during alloy solidification. This paper presents the results of an experimental campaign carried out at the European Synchrotron Radiation Facility, using a Bridgman furnace, to monitor phenomena during solidification of Al-Cu alloys - specifically the onset of equiaxed dendrite coherency. Conventional experimental methods for determining coherency involve measuring the change in viscosity or measuring the change in thermal conductivity across the solidifying melt Conflicts arise when comparing the results of these experimental techniques to find a relationship between cooling rate and coherency fraction. It has been shown that the ratio of average velocity to the average grain diameter has an inversely proportional relationship to coherency fraction. In-situ observation therefore makes it possible to measure these values directly from acquired images sequences and make comparisons with published results.
Kim, Nam-Koo; Min, Young Hwan; Noh, Seokhwan; Cho, Eunkyung; Jeong, Gitaeg; Joo, Minho; Ahn, Seh-Won; Lee, Jeong Soo; Kim, Seongtak; Ihm, Kyuwook; Ahn, Hyungju; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2017-07-05
In this study, we employ a combination of various in-situ surface analysis techniques to investigate the thermally induced degradation processes in MAPbI 3 perovskite solar cells (PeSCs) as a function of temperature under air-free conditions (no moisture and oxygen). Through a comprehensive approach that combines in-situ grazing-incidence wide-angle X-ray diffraction (GIWAXD) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) measurements, we confirm that the surface structure of MAPbI 3 perovskite film changes to an intermediate phase and decomposes to CH 3 I, NH 3 , and PbI 2 after both a short (20 min) exposure to heat stress at 100 °C and a long exposure (>1 hour) at 80 °C. Moreover, we observe clearly the changes in the orientation of CH 3 NH 3 + organic cations with respect to the substrate in the intermediate phase, which might be linked directly to the thermal degradation processes in MAPbI 3 perovskites. These results provide important progress towards improved understanding of the thermal degradation mechanisms in perovskite materials and will facilitate improvements in the design and fabrication of perovskite solar cells with better thermal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S.; Dey, S.; Yu, K.
2016-01-01
Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huie, Matthew M.; Bock, David C.; Zhong, Zhong
Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less
Huie, Matthew M.; Bock, David C.; Zhong, Zhong; ...
2016-09-01
Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less
Mainz, Roland; Walker, Bryce C; Schmidt, Sebastian S; Zander, Ole; Weber, Alfons; Rodriguez-Alvarez, Humberto; Just, Justus; Klaus, Manuela; Agrawal, Rakesh; Unold, Thomas
2013-11-07
The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.
NASA Astrophysics Data System (ADS)
Girard, J.; Amulele, G.; Farla, R. J.; Liu, Z.; Mohiuddin, A.; Karato, S.
2013-12-01
Experimental studies on rheological properties of mantle's minerals are crucial to understand the dynamics of Earth's interior, but direct experimental studies under the relevant lower mantle conditions are challenging. Most of the earlier studies were performed at lower mantle pressures but low temperatures using DAC (diamond anvil cell) (e.g., Merkel et al., 2003)), and in DAC experiments strain-rate and stress are unknown. Some previous studies were carried out under high pressures and high temperatures (e.g, Cordier et al., 2004) , but quantitative results on rheological behaviour of said minerals were not obtained. Here we present the results of the first in-situ deformation experiments of perovskite + (Mg,Fe)O (Pv + fp) aggregates using RDA (rotational Drickamer apparatus). The RDA has a better support for the anvils at high pressure than the more commonly used D-DIA apparatus and hence we can reach higher pressures and temperatures than the D-DIA. We have recently made new modifications to the cell assembly to reach the lower mantle conditions with less interference in X-ray diffraction patterns by the surrounding materials. The starting material was ringwoodite synthesized using a multi-anvil. In-situ deformation experiments were then carried at pressure up to 28 GPa (calculated from thermal EOS of Pt) and estimated temperatures up to 2200 K using RDA. Under these conditions, ringwoodite transformed to Pv + fp. We subsequently deformed the sample between strain rates of 10-4 to 10-5 s-1. Stress and strain were measured in-situ using X-ray synchrotron beam. The recovered sample analyses show evidence of perovskite+(Mg,Fe)O microstructure (Fig. 1). The radial X-ray diffraction data are being analysed to determine the stress levels of two minerals. Also microstructures of deformed specimens are studied to understand the deformation mechanisms and strain partitioning. The results will contribute towards our understanding of the rheological properties of the lower mantle including the creep strength, seismic anisotropy and possible role of strain partitioning leading to strain weakening. References Cordier, P., Ungar, T., Zsoldos, L., Tichy, G., 2004. Dislocation creep in MgSiO3 perovskite at conditions of the earth's uppermost lower mantle. Nature 428, 837-840. Merkel, S., Wenk, H.R., Badro, J., Montagnac, G., Gillet, P., Mao, H.-k., Hemley, R.J., 2003. Deformation of (Mg0.9,Fe0.1)SiO3 perovskite aggregates up to 32 GPa. Earth Planet. Sci. Lett. 209, 351-360. Fig. 1: RDA recovered sample SEM Back scattering images, Eutectoid-like appearance of perovskite and (Mg,Fe)O alternated lamellae.
NASA Astrophysics Data System (ADS)
Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi
2018-03-01
Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cun; Aoun, Bachir; Cui, Lishan
Microstructure evolution of a cold-drawn NiTi shape memory alloy wire was investigated by means of in-situ synchrotron high-energy X-ray diffraction during continuous heating. The cold-drawn wire contained amorphous regions and nano-crystalline domains in its microstructure. Pair distribution function analysis revealed that the amorphous regions underwent structural relaxation via atomic rearrangement when heated above 100 °C. The nano-crystalline domains were found to exhibit a strong cold work induced lattice strain anisotropy having a preferential <111> fiber orientation along the wire axial direction. The lattice strain anisotropy systematically decreased upon heating above 200 °C, implying a structural recovery. A broad conical texturemore » was formed in the wire specimen after crystallization similar in detail to the initial <111> texture axial orientation of the nano-crystalline domains produced by the severe cold wire drawing deformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Li; Y Mao; H Ma
An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at highmore » temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.
Murshed, M Mangir; Kuhs, Werner F
2009-04-16
In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.
NASA Astrophysics Data System (ADS)
Adumitroaie, V.; Oyafuso, F. A.; Levin, S.; Gulkis, S.; Janssen, M. A.; Santos-Costa, D.; Bolton, S. J.
2017-12-01
In order to obtain credible atmospheric composition retrieval values from Jupiter's observed radiative signature via Juno's MWR instrument, it is necessary to separate as robustly as possible the contributions from three emission sources: CMB, planet and synchrotron radiation belts. The numerical separation requires a refinement, based on the in-situ data, of a higher fidelity model for the synchrotron emission, namely the multi-parameter, multi-zonal model of Levin at al. (2001). This model employs an empirical electron energy distribution, which prior to the Juno mission, has been adjusted exclusively from VLA observations. At minimum 8 sets of perijove observations (i.e. by PJ9) have to be delivered to an inverse model for retrieval of the electron distribution parameters with the goal of matching the synchrotron emission observed along MWR's lines of sight. The challenges and approaches taken to perform this task are discussed here. The model will be continuously improved with the availability of additional information, both from the MWR and magnetometer instruments.
Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M
2015-01-01
The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464
Aladdin: Transforming science at SRC
NASA Astrophysics Data System (ADS)
Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.
2011-09-01
The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.
Idealized powder diffraction patterns for cellulose polymorphs
USDA-ARS?s Scientific Manuscript database
Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...
High-pressure studies with x-rays using diamond anvil cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guoyin; Mao, Ho Kwang
2016-11-22
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less
High-pressure studies with x-rays using diamond anvil cells
NASA Astrophysics Data System (ADS)
Shen, Guoyin; Mao, Ho Kwang
2017-01-01
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Tschauner, Oliver
2013-01-01
Abstract Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet. Key Words: Fumaroles—Mars—Olivine—Acidophile—Geothermal—Search for life (biosignatures)—Synchrotron X-ray diffraction. Astrobiology 13, 1049–1064. PMID:24283927
CCD sensors in synchrotron X-ray detectors
NASA Astrophysics Data System (ADS)
Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.
1988-04-01
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rammohan, Alagappa; Kaduk, James A.
2017-01-27
The crystal structure of pentasodium hydrogen dicitrate, Na 5H(C 6H 5O 7) 2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na +ions share edges to form open layers parallel to theabplane. A fifth Na +ion in trigonal–bipyramidal coordination shares faces with NaO 6octahedra on both sides of these layers.
Ferroelectrics under the Synchrotron Light: A Review.
Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis
2015-12-30
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.
Diffraction-limited storage-ring vacuum technology
Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek
2014-01-01
Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979
Eeckhout, Sigrid Griet; Gorges, Bernard; Barthe, Laurent; Pelosi, Orietta; Safonova, Olga; Giuli, Gabriele
2008-09-01
A high-temperature furnace with an induction heater coil has been designed and constructed for in situ X-ray spectroscopic experiments under controlled atmospheric conditions and temperatures up to 3275 K. The multi-purpose chamber design allows working in backscattering and normal fluorescence mode for synchrotron X-ray absorption and emission spectroscopy. The use of the furnace is demonstrated in a study of the in situ formation of Cr oxide between 1823 K and 2023 K at logPO(2) values between -10.0 and -11.3 using X-ray absorption near-edge spectroscopy. The set-up is of particular interest for studying liquid metals, alloys and other electrically conductive materials under extreme conditions.
NASA Astrophysics Data System (ADS)
Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu
2017-08-01
We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.
Mapping and load response of overload strain fields: Synchrotron X-ray measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, V; Jisrawi, N M; Sadangi, R K
High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardationmore » following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.« less
NASA Astrophysics Data System (ADS)
Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.
2017-12-01
Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.
NASA Astrophysics Data System (ADS)
Dera, P. K.; Manghnani, M. H.; Hushur, A.; Sobolev, N. V.; Logvinova, A. M.; Newville, M.; Lanzirotti, A.
2013-12-01
Kimberlites belong to rare rock type available only within the Earth's cratonic areas and have been a subject of detailed studies because of the great depth of their origin in the mantle. Kimberlitic diamonds often contain pristine inclusions derived from significant depths with different histories of their origins. Many of kimberlitic diamonds were formed in ultramafic (peridotitic) and mafic (eclogitic) environments of the upper mantle. Thus far only a handful of comprehensive in situ studies including single-crystal X-ray diffraction characterization of pristine diamond solid inclusions have been reported (e.g. Kunz et al. 2001, Nestola et al. 2011). In this study five single-crystal solid inclusions from diamonds found in the Quaternary alluvial deposit in NW of the Siberian craton have been investigated using a combination of in situ single-crystal X-ray diffraction, Raman spectroscopy, synchrotron X-ray microfluorescence and X-ray Absorption Near Edge Spectroscopy (XANES). The grains were identified to be a suite of major upper mantle minerals including olivine, enstatite orthopyroxene (opx), C2/c omphacite clinopyroxene (cpx) and majoritic garnet (two grains), indicating eclogitic origin. All five inclusions are chemically homogeneous, do not show compositional zoning, and exhibit very similar major element chemistry, with significant amounts of Mn2+, Ni2+ and Cr3+ incorporated into the crystal structures, suggesting common geologic origin. All samples were studied in situ, while still embedded in the diamond crystals. High quality single-crystal X-ray diffraction data was collected at the Advanced Photon Source, Argonne National Laboratory to reveal details of the crystal structures and provide crystal chemical information. Some of the structural characteristics of the solid inclusions were found to be fairly uncommon, e.g. the orthoenstatite exhibits an unusually high Ca2+ content (Carlson et al. 1988), and omphacite occurs as the less common C2/c polymorph (Banno, 1970), both of which are considered signatures of eclogitic high-temperature facies. Fe Ka-edge XANES was used to investigate the oxidation state of iron in the solid inclusions. All of the inclusions show predominantly Fe2+, indicating reducing conditions of formation. The combined results of our spectroscopic and diffraction experiments will be interpreted in the context of the conditions and mechanism of formation (syngenesis vs. protogenesis) and possible retrograde transformation the inclusions may have experienced when transported to the surface. References Carlson, W.D. J.S. Swinnea, D.E. Miser (1988) 'Stability of orthoenstatite at high temperature and low pressure' Amer. Mineral. 73: 1255-1263. Banno, S. (1970) 'Classification of eclogites in terms of physical condition of their origin' Phys. Earth. Planet. Interiors 3: 405-421. Kunz, M., P. Gillet, et al. (2002). "Combined in situ X-ray diffraction and Raman spectroscopy on majoritic garnet inclusions in diamonds." Earth and Planet. Sci. Lett. 198: 485-493. Nestola, F., P. Nimis, et al. (2011). "First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth's mantle." Earth and Planet. Sci. Lett. 305: 249-255.
NASA Astrophysics Data System (ADS)
Errandonea, Daniel; Meng, Yue; Häusermann, Daniel; Uchida, Takeyuki
2003-03-01
We studied the phase behaviour and the P - V - T equation of state of Mg by in situ energy-dispersive x-ray diffraction in a multi-anvil apparatus in the pressure-temperature range up to 18.6 GPa and 1527 K. At high temperatures, an hcp to dhcp transition was found above 9.6 GPa, which differs from the hcp to bcc transformation predicted by theoretical calculations. At room temperature, the hcp phase remains stable within the pressure range of this study with an axial ratio, c/a, close to the ideal. The melting of Mg was determined at 2.2, 10 and 12 GPa; the detected melting temperatures are in good agreement with previous diamond anvil cell results. The P - V - T equation of state determined based on the data of this study gives B0 = (36.8 ± 3) GPa, B0 ' = 4.3 ± 0.4, alpha0 = 25 × 10-6 K-1, partialalpha/partialT = (2.3 ± 0.2) × 10-7 K-2 and partialB0,T /partialT = (-2.08 ± 0.09) × 10-2 GPa K-1.
Singh, S. S.; Williams, J. J.; Lin, M. F.; ...
2014-05-14
In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.
In situ multi-axial loading frame to probe elastomers using X-ray scattering.
Pannier, Yannick; Proudhon, Henry; Mocuta, Cristian; Thiaudière, Dominique; Cantournet, Sabine
2011-11-01
An in situ tensile-shear loading device has been designed to study elastomer crystallization using synchrotron X-ray scattering at the Synchrotron Soleil on the DiffAbs beamline. Elastomer tape specimens of thickness 2 mm can be elongated by up to 500% in the longitudinal direction and sheared by up to 200% in the transverse direction. The device is fully automated and plugged into the TANGO control system of the beamline allowing synchronization between acquisition and loading sequences. Experimental results revealing the evolution of crystallization peaks under load are presented for several tension/shear loading sequences.
Marqueño, Tomas; Santamaria-Perez, David; Ruiz-Fuertes, Javier; Chuliá-Jordán, Raquel; Jordá, Jose L; Rey, Fernando; McGuire, Chris; Kavner, Abby; MacLeod, Simon; Daisenberger, Dominik; Popescu, Catalin; Rodriguez-Hernandez, Placida; Muñoz, Alfonso
2018-06-04
We report the formation of an ultrahigh CO 2 -loaded pure-SiO 2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO 2 medium. The CO 2 -filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO 2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO 2 -loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.
Behaviors of Zn2GeO4 under high pressure and high temperature
NASA Astrophysics Data System (ADS)
Shu-Wen, Yang; Fang, Peng; Wen-Tao, Li; Qi-Wei, Hu; Xiao-Zhi, Yan; Li, Lei; Xiao-Dong, Li; Duan-Wei, He
2016-07-01
The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature. Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).
Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian
2017-01-01
The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH2N4) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation. PMID:28218236
High-pressure structural, elastic, and electronic properties of the scintillator host material KMgF3
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Kumar, Ravhi S.; Cornelius, A. L.; Nicol, M. F.; Svane, A.; Delin, A.; Johansson, B.
2007-07-01
The high-pressure structural behavior of the fluoroperovskite KMgF3 is investigated by theory and experiment. Density functional calculations were performed within the local density approximation and the generalized gradient approximation for exchange and correlation effects, as implemented within the full-potential linear muffin-tin orbital method. In situ high-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 40GPa using synchrotron radiation. We find that the cubic Pm3¯m crystal symmetry persists throughout the pressure range studied. The calculated ground state properties—the equilibrium lattice constant, bulk modulus, and elastic constants—are in good agreement with experimental results. By analyzing the ratio between the bulk and shear moduli, we conclude that KMgF3 is brittle in nature. Under ambient conditions, KMgF3 is found to be an indirect gap insulator, with the gap increasing under pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra
Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blödite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blödite at pressures up to ~10.4 GPa and temperatures from ~118.8 K to ~490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperaturemore » equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede.« less
From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite.
Teixeira, Ivo F; Lo, Benedict T W; Kostetskyy, Pavlo; Stamatakis, Michail; Ye, Lin; Tang, Chiu C; Mpourmpakis, Giannis; Tsang, Shik Chi Edman
2016-10-10
We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase relations of Fe Ni alloys at high pressure and temperature
NASA Astrophysics Data System (ADS)
Mao, Wendy L.; Campbell, Andrew J.; Heinz, Dion L.; Shen, Guoyin
2006-04-01
Using a diamond anvil cell and double-sided laser-heating coupled with synchrotron X-ray diffraction, we determined phase relations for three compositions of Fe-rich FeNi alloys in situ at high pressure and high temperature. We studied Fe with 5, 15, and 20 wt.% Ni to 55, 62, and 72 GPa, respectively, at temperatures up to ˜3000 K. Ni stabilizes the face-centered cubic phase to lower temperatures and higher pressure, and this effect increases with increasing pressure. Extrapolation of our experimental results for Fe with 15 wt.% Ni suggests that the stable phase at inner core conditions is hexagonal close packed, although if the temperature at the inner core boundary is higher than ˜6400 K, a two phase outer region may also exist. Comparison to previous laser-heated diamond anvil cell studies demonstrates the importance of kinetics even at high temperatures.
Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian
2017-02-20
The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH 2 N 4 ) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation.
NASA Astrophysics Data System (ADS)
Bark, Chung W.; Ryu, Sangwoo; Koo, Yang M.; Jang, Hyun M.; Youn, Hwa S.
2007-01-01
An in situ method, called synchrotron x-ray microdiffraction, was introduced to examine the electric-field-induced structural modulation of the epitaxially grown pseudotetragonal BiFeO3 thin film. To evaluate the d spacing (d001) from the measured intensity contour in the 2θ-χ space, the peak position in each diffraction profile was determined by applying two-dimensional Lorentzian fitting. By tracing the change of d spacing as a function of the applied electric field and by examining the Landau free energy function for P4mm symmetry, the authors were able to estimate the two important parameters that characterize the field-induced structural modulation. The estimated linear piezoelectric coefficient (d33) at zero-field limit is 15pm /V, and the effective nonlinear electrostrictive coefficient (Qeff) is as low as ˜8.0×10-3m4/C2.
Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure
Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin
2017-01-01
Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479
Evolution of twinning in extruded AZ31 alloy with bimodal grain structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcés, G., E-mail: ggarces@cenim.csic.es
2017-04-15
Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallizedmore » grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.« less
Investigation of deformation twinning under complex stress states in a rolled magnesium alloy
Wu, Wei; Chuang, Chih-Pin; Qiao, Dongxiao; ...
2016-05-15
We employed a specially designed semi-circular notch specimen in the current study to generate the various strain conditions, including uniaxial, biaxial, shear, and plane strains, which was utilized to explore the evolution of different deformation twinning systems under complex loading conditions. We found that when using in situ synchrotron X-ray diffraction mapping method, that the extensive double twins were activated during loading, while nearly no extension twinning activity was detected. After the formation of {10.1} and {10.3} compression twins, they transformed into {10.1}-{10.2} and {10.3}-{10.2} double twins instantaneously at the early stage of deformation. The lattice strain evolutions in differentmore » hkls were mapped at selected load levels during the loading-unloading sequence. Finally, the relationship between the macroscopic straining and microscopic response was established.« less
Polymorphic Transformation in Mixtures of High- and Low-Melting Fractions of Milk Fat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisneros,A.; Mazzanti, G.; Campos, R.
2006-01-01
The kinetics of crystallization of high-melting fraction (HMF) and a mixture of 40% HMF and 60% low-melting fraction (LMF) of milk fat were studied at 5 C by time-resolved in-situ synchrotron X-ray diffraction. HMF crystallized in the {alpha} polymorph, had a longer lifetime than the ones previously reported in pure milk fat, and was almost completely solid. The HMF/LMF mixture crystallized initially in the {alpha} form and transformed into the {beta}' polymorph, with a solid fat content much lower than that of HMF. The polymorphic change was therefore attributed to a delayed sudden formation of {beta}' mixed crystals from themore » uncrystallized melt. These findings are important for the food industry and as fundamental knowledge to improve our understanding of the origin of the macroscopic physical properties of solid milk fat fractions used in many manufacturing processes.« less
Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale
Mo, Jingyi; Blowes, Liisa M.; Egertová, Michaela; Terrill, Nicholas J.; Wang, Wen; Elphick, Maurice R.; Gupta, Himadri S.
2016-01-01
The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (EIF), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials. PMID:27708167
Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale.
Mo, Jingyi; Prévost, Sylvain F; Blowes, Liisa M; Egertová, Michaela; Terrill, Nicholas J; Wang, Wen; Elphick, Maurice R; Gupta, Himadri S
2016-10-18
The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (E IF ), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.
Li{sub 4}FeH{sub 6}: Iron-containing complex hydride with high gravimetric hydrogen density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, Hiroyuki, E-mail: cyto@spring8.or.jp; Takagi, Shigeyuki; Matsuo, Motoaki
2014-07-01
Li{sub 4}FeH{sub 6}, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li{sub 4}FeH{sub 6} is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li{sub 4}FeH{sub 6} at moderate pressures. Li{sub 4}FeH{sub 6} can be recovered at ambient conditions wheremore » Li{sub 4}FeH{sub 6} is metastable.« less
Liquid-to-liquid crossover in the GaIn eutectic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Q.; Wang, X. D.; Su, Y.
Liquid-liquid crossover is promising and closely related to the atomic dynamics during heating and cooling processes. Here we reveal a reversible structural crossover in the liquid Ga85.8In14.2 eutectic alloys by using in situ synchrotron x-ray diffraction and ab initio molecular dynamics simulation. A kink always appears on the temperature dependent behaviors of density, ratio of the second peak position to the first in the pair correlation function, coordination number, heat capacity, free energy, and atomic diffusivity in the temperature range of about 400–550 K. It is likely ascribed to atomic rearrangements of Ga and In atoms from a relative randommore » packing at high temperatures to a relative nonuniform packing at low temperatures, in which In atoms prefer to have more In neighbors. This observation will promote more understanding of the liquid structure of eutectic alloys« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L. L.; Wang, Y. D.; Ren, Y.
Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
Topological Dirac line nodes and superconductivity coexist in SnSe at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xuliang; Lu, Pengchao; Wang, Xuefei
2017-10-01
We report on the discovery of a pressure-induced topological and superconducting phase of SnSe, a material which attracts much attention recently due to its superior thermoelectric properties. In situ high-pressure electrical transport and synchrotron x-ray diffraction measurements show that the superconductivity emerges along with the formation of a CsCl-type structural phase of SnSe above around 27 GPa, with a maximum critical temperature of 3.2 K at 39 GPa. Based on ab initio calculations, this CsCl-type SnSe is predicted to be a Dirac line-node (DLN) semimetal in the absence of spin-orbit coupling, whose DLN states are protected by the coexistence ofmore » time-reversal and inversion symmetries. These results make CsCl-type SnSe an interesting model platform with simple crystal symmetry to study the interplay of topological physics and superconductivity.« less
X-ray and synchrotron methods in studies of cultural heritage sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.
2016-09-15
X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.
In situ Zn/ZnO mapping elucidating for "shape change" of zinc electrode
NASA Astrophysics Data System (ADS)
Nakata, Akiyoshi; Arai, Hajime; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi
2018-04-01
For the use of the zinc anode in secondary batteries, it is necessary to solve the "shape change" deterioration issue in that zinc species agglomerate in the center of the electrode to fade the available capacity. The local chemical compositions of the zinc electrodes during "shape change" were precisely analyzed using the synchrotron X-ray diffraction mapping analysis of practical zinc-nickel cells in a non-destructive manner. The in situ Zn/ZnO mapping shows that metallic Zn deposition chiefly occurs in the periphery of ZnO while ZnO are left in the center of electrode like a hill on charging. On discharging, the ZnO hill grows to the perpendicular direction on the electrode while metallic zinc is oxidized and dissolved. These findings allow us to propose a mechanism for the shape change; thus dissolved zincate species are decomposed on the ZnO hill during discharging to be accumulated in the center of the electrode. It is suggested that suppressing zincate dissolution and non-uniform zinc deposition slow the growth rate of the ZnO hill to enhance the cyclability of zinc-based secondary batteries.
Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*
NASA Astrophysics Data System (ADS)
Belak, J.; Ilavsky, J.; Hessler, J. P.
2005-07-01
Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Michalchuk, Adam A L; Hope, Karl S; Kennedy, Stuart R; Blanco, Maria V; Boldyreva, Elena V; Pulham, Colin R
2018-04-17
Resonant acoustic mixing (RAM) is a new technology designed for intensive mixing of powders that offers the capability to process powders with minimal damage to particles. This feature is particularly important for mixing impact-sensitive materials such as explosives and propellants. While the RAM technique has been extensively employed for the mixing of powders and viscous polymers, comparatively little is known about its use for mechanosynthesis. We present here the first in situ study of RAM-induced co-crystallisation monitored using synchrotron X-ray powder diffraction. The phase profile of the reaction between nicotinamide and carbamazepine in the presence of a small amount of water was monitored at two different relative accelerations of the mixer. In marked contrast to ball-milling techniques, the lack of milling bodies in the RAM experiment does not hinder co-crystallisation of the two starting materials, which occurred readily and was independent of the frequency of oscillation. The reaction could be optimised by enhancing the number of reactive contacts through mixing and comminution. These observations provide new insight into the role of various experimental parameters in conventional mechanochemistry using liquid-assisted grinding techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Christopher; Rosenthal, Anja; Myhill, Robert
We have performed an experimental cross calibration of a suite of mineral equilibria within mantle rock bulk compositions that are commonly used in geobarometry to determine the equilibration depths of upper mantle assemblages. Multiple barometers were compared simultaneously in experimental runs, where the pressure was determined using in-situ measurements of the unit cell volumes of MgO, NaCl, Re and h-BN between 3.6 and 10.4 GPa, and 1250 and 1500 °C. The experiments were performed in a large volume press (LVPs) in combination with synchrotron X-ray diffraction. Noble metal capsules drilled with multiple sample chambers were loaded with a range ofmore » bulk compositions representative of peridotite, eclogite and pyroxenite lithologies. By this approach, we simultaneously calibrated the geobarometers applicable to different mantle lithologies under identical and well determined pressure and temperature conditions. We identified discrepancies between the calculated and experimental pressures for which we propose simple linear or constant correction factors to some of the previously published barometric equations. As a result, we establish internally-consistent cross-calibrations for a number of garnet-orthopyroxene, garnet-clinopyroxene, Ca-Tschermaks-in-clinopyroxene and majorite geobarometers.« less
Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil
2016-06-08
Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.
NASA Astrophysics Data System (ADS)
Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.
2018-02-01
We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.
NASA Astrophysics Data System (ADS)
Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.
2018-05-01
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.
NASA Astrophysics Data System (ADS)
Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.
2018-07-01
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.
NASA Astrophysics Data System (ADS)
Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.
2012-01-01
Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Jamison, Laura M.
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-basedmore » materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO 2; (2) investigation of surface morphology in micrograined UO 2; (3) Nano-indentation experiments on nano- and micro-grained UO 2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO 2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO 2.« less
Novel portable press for synchrotron time-resolved 3-D micro-imagining under extreme conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippe, J.; Le Godec, Y., E-mail: yann.legodec@impmc.upmc.fr; Bergame, F.
Here we present the instrumental development to extend the synchrotron X-ray microtomography techniques to in situ studies under static compression (HP) or shear stress or the both conditions at high temperatures (HT). To achieve this, a new rotating tomography Paris-Edinburgh cell (rotoPEc) has been developed. This ultra-compact portable device, easily and successfully adapted to various multi-modal synchrotron experimental set-up at ESRF, SOLEIL and DIAMOND is explained in detail.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro
2018-07-01
Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.
Research Associate | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.
Polaron hopping in olivine phosphates studied by nuclear resonant scattering
NASA Astrophysics Data System (ADS)
Tracy, Sally June
Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.
Ferroelectrics under the Synchrotron Light: A Review
Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis
2015-01-01
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post,J.; Bish, D.; Heaney, P.
2007-01-01
Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less
NASA Astrophysics Data System (ADS)
Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto
2007-09-01
We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.
NASA Astrophysics Data System (ADS)
Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.
2016-03-01
Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates.
Ultrahigh pressure deformation of polycrystaline hcp-cobalt
NASA Astrophysics Data System (ADS)
Merkel, S.; Antonangeli, D.; Fiquet, G.; Yagi, T.
2003-12-01
During the past few years, a novel set of methods has been developed allowing direct measurements on elasticity and rheology under static ultrahigh pressures using synchrotron x-ray diffraction and the diamond anvil cell. In particular, the analysis on the development of texture and uniaxial stress in a polycrystalline sample under ultrahigh pressure and non-hydrostatic conditions yielded to very interesting results on the microscopic deformation mechanisms and strength of MgO, silicate perovskite or ɛ -Fe [eg. Merkel et al. 2002, Merkel et al. 2003]. However, our understanding of the properties of the ɛ phase of iron remains poor. There are considerable uncertainties and disagreement on the results of various experiments or first-principles calculations. In particular, the results of the radial diffraction measurement on ɛ -Fe [Mao et al. 1998] have been highly controversial. In order to address this issue, we performed investigations on polycrystalline hcp-cobalt. Its properties such as the bulk modulus and thermal expansion are very close to those of ɛ -Fe and it is readily available under ambient conditions. Thus, it is a well known material and results from the high pressure radial diffraction experiments can be compared with those from well-established techniques. In the present analysis, we performed a new set a measurements between 0 and 20 GPa under ambient temperature conditions at the ESRF synchrotron source using amorphous boron gasket, monochromatic x-ray beam, and imaging plate techniques. From such an experiment, we are able to extract information on non-hydrostatic stress, elasticity, and preferred orientations of the sample in-situ under high pressure and compare them with results obtained previously on ɛ -Fe. Documenting the evolution of stress, elasticity and texture in hcp metals is of great interest for our understanding of the bulk properties and seismic anisotropy of the Earth's inner core. S. Merkel et al., J. Geophys. Res. 107 (2002) doi: 10.129/2001JB000920. S. Merkel et al., Earth Planet. Sci. Lett. 209 (2003) 351. H. Mao et al., Nature 396 (1998), 741
Aqueous Nucleation and Growth of Titanium Oxides Using Time-Resolved Synchrotron X- ray Diffraction
NASA Astrophysics Data System (ADS)
Hummer, D. R.; Heaney, P. J.; Post, J. E.
2006-05-01
The inorganic precipitation of oxide minerals in soil environments has profound effects on a variety of geochemical processes. These include the removal of metals from the aqueous phase, the production of coatings that reduce the reactive surface area of pre-existing mineral grains, and the generation of feedstocks for microbial metabolic reactions. Recent observations of transient, metastable phases during the growth of oxide crystallites has raised questions about their role in crystallization mechanisms, and created a need for more detailed structural measurements. To better understand the process of nucleation and growth, we investigated the crystallization of Ti oxides from aqueous 0.5 M TiCl4 solutions using synchrotron X-ray diffraction at temperatures of 100 and 150 °C. Solutions were heated in a 1.0 mm internal diameter quartz glass capillary sealed with epoxy. Powder diffraction patterns of the growing crystallites were collected using image plate technology with a time step of ~ 4 minutes, providing high resolution in situ measurements of structural changes during the crystallization process. The data indicate a co-precipitation of the two crystalline phases anatase and rutile within the first 30 minutes of heating, followed by a gradual phase transition from anatase to rutile during particle coarsening throughout the 10 hour duration of an experiment. The co-existence of anatase and rutile at the onset of crystallization lends additional support to the assertion of nearly identical free energies for anatase and rutile at the nanoscale, believed to be due to the prominence of surface energy effects (Ranade et al., 2001). Whole pattern analyses using the Rietveld refinement method also documented previously unobserved changes in lattice parameters of both phases during growth, on the order of 0.2-0.3 % expansion for each axis. The trends in lattice parameters are observed to be temperature dependent, generally having lower values at higher crystallization temperature. In addition to increased surface energy, these small but measurable structural changes may be partially responsible for the observed reversals in thermodynamic stability between crystalline Ti oxide phases at very small particle sizes.
NASA Astrophysics Data System (ADS)
Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.
2016-08-01
Crystallographic study of Itokawa particle, RA-QD02-0127 by using new X-ray diffraction method was performed. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.
Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
A multi-dataset data-collection strategy produces better diffraction data
Liu, Zhi-Jie; Chen, Lirong; Wu, Dong; Ding, Wei; Zhang, Hua; Zhou, Weihong; Fu, Zheng-Qing; Wang, Bi-Cheng
2011-01-01
A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays. PMID:22011470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xi; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Thadesar, Paragkumar A.
2014-09-15
In-situ microscale thermomechanical strain measurements have been performed in combination with synchrotron x-ray microdiffraction to understand the fundamental cause of failures in microelectronics devices with through-silicon vias. The physics behind the raster scan and data analysis of the measured strain distribution maps is explored utilizing the energies of indexed reflections from the measured data and applying them for beam intensity analysis and effective penetration depth determination. Moreover, a statistical analysis is performed for the beam intensity and strain distributions along the beam penetration path to account for the factors affecting peak search and strain refinement procedure.
In situ synchrotron investigation of grain growth behavior of nano-grained UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Yao, Tiankai; Lian, Jie
Here, we report on the study of grain growth kinetics in nano-grained UO 2 samples. Dense nano-grained UO 2 samples with well-controlled stoichiometry and grain size were fabricated using the spark plasma sintering technique. To determine the grain growth kinetics at elevated temperatures, a synchrotron wide-angle X-ray scattering (WAXS) study was performed in situ to measure the real-time grain size evolution based on the modified Williamson-Hall analysis. The unique grain growth kinetics of nanocrystalline UO 2 at 730 °C and 820 °C were observed and explained by the difference in mobility of various grain boundaries.
In situ synchrotron investigation of grain growth behavior of nano-grained UO 2
Miao, Yinbin; Yao, Tiankai; Lian, Jie; ...
2017-01-09
Here, we report on the study of grain growth kinetics in nano-grained UO 2 samples. Dense nano-grained UO 2 samples with well-controlled stoichiometry and grain size were fabricated using the spark plasma sintering technique. To determine the grain growth kinetics at elevated temperatures, a synchrotron wide-angle X-ray scattering (WAXS) study was performed in situ to measure the real-time grain size evolution based on the modified Williamson-Hall analysis. The unique grain growth kinetics of nanocrystalline UO 2 at 730 °C and 820 °C were observed and explained by the difference in mobility of various grain boundaries.
In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.
Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C
2005-11-01
In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.
Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis
2017-01-01
The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Y.; Ishikawa, Y.; Sugawara, Y.; Takahashi, Y.; Hirano, K.
2018-04-01
Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11-26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \\varvec b = < {11 - 20} > /3 did not exist in the sample. A dominant proportion of TDs were of mixed type with \\varvec b = < {11 - 20} > /3 + < {0001} > , i.e., so-called c + a dislocations. Pure 1c screw dislocations with \\varvec b = < {0001} > and TDs with c-component larger than 1c were also observed.
Multifit / Polydefix : a framework for the analysis of polycrystal deformation using X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Sébastien; Hilairet, Nadège
2015-06-27
Multifit/Polydefixis an open source IDL software package for the efficient processing of diffraction data obtained in deformation apparatuses at synchrotron beamlines.Multifitallows users to decompose two-dimensional diffraction images into azimuthal slices, fit peak positions, shapes and intensities, and propagate the results to other azimuths and images.Polydefixis for analysis of deformation experiments. Starting from output files created inMultifitor other packages, it will extract elastic lattice strains, evaluate sample pressure and differential stress, and prepare input files for further texture analysis. TheMultifit/Polydefixpackage is designed to make the tedious data analysis of synchrotron-based plasticity, rheology or other time-dependent experiments very straightforward and accessible tomore » a wider community.« less
NASA Astrophysics Data System (ADS)
Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.
2017-12-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Ecological and agricultural applications of synchrotron IR microscopy
NASA Astrophysics Data System (ADS)
Raab, T. K.; Vogel, J. P.
2004-10-01
The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.
Density Determination of Metallic Melts from Diffuse X-Ray Scattering
NASA Astrophysics Data System (ADS)
Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.
2017-12-01
Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...
2016-04-07
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less
2013-01-01
This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4′-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results. PMID:24215390
Sacchi, Marco; Brewer, Adam Y; Jenkins, Stephen J; Parker, Julia E; Friščić, Tomislav; Clarke, Stuart M
2013-12-03
This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4'-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results.
Synchrotron X-Ray Diffraction Studies of Olivine from Comet Wild 2
NASA Technical Reports Server (NTRS)
2008-01-01
We have analyzed a collection of the Comet Wild 2 coma grains returned by the NASA Stardust Mission, using micro-area Laue diffraction equipment. The purpose of the diffraction experiment is to permit the structure refinement of olivine including site occupancies. In addition to the intrinsic importance of the olivine structures for revealing the thermal history of Wild 2 materials, we wish to test reports that olivine recovered after hypervelocity capture in silica aerogel has undergone a basic structural change due to capture heating [1]. The diffraction equipment placed at beam line BL- 4B1 of PF, KEK was developed with a micropinhole and an imaging plate (Fuji Co. Ltd.) using the Laue method combined with polychromatic X-ray of synchrotron radiation operated at energy of 2.5 GeV. The incident beam is limited to 1.6 m in diameter by a micropinhole set just upstream of the sample [2, 3]. It is essential to apply a microbeam to obtain diffracted intensities with high signal to noise ratios. This equipment has been successfully applied to various extraterrestrial materials, including meteorites and interplanetary dust particles [4]. The Laue pattern of the sample C2067,1,111,4 (Fig. 1) was successfully taken on an imaging plate after a 120 minute exposure (Fig. 2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Mário T.; Center for Applied Toxinology, CAT-CEPID, São Paulo, SP; Advanced Center for Genomics and Proteomics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000
2007-07-01
A single crystal of zhaoermiatoxin with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å. Zhaoermiatoxin, an Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA{sub 2}-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49→Arg substitution that does notmore » alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA{sub 2} homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA{sub 2} catalytic activity. A single crystal with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å.« less
Infrastructure development for radioactive materials at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, D. J.; Weidner, R.; Ghose, S. K.
2018-02-01
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Infrastructure development for radioactive materials at the NSLS-II
Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...
2017-11-04
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
NASA Astrophysics Data System (ADS)
Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio
2018-06-01
The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.
Synchrotron Radial X-ray Diffraction Studies of Deformation of Polycrystalline MgO
NASA Astrophysics Data System (ADS)
Girard, J.; Tsujino, N.; Mohiuddin, A.; Karato, S. I.
2016-12-01
X-ray diffraction analyses have been used for decades to study mechanical properties of polycrystalline samples during in-situ high-pressure deformation. When polycrystalline materials are deformed, stresses develop in grains and lead to lattice distortion. Using X-ray diffraction we can estimate the lattice strain for each (hkl) diffraction plans and calculate the applied stress for each (hkl), using [Singh, 1993] relation. However, this method doesn't take into account plastic anisotropy. As a results of plastic anisotropy present in the material, stress estimated from this method can be largely differ depending on (hkl) diffraction planes [Karato, 2009]. Studying the stress estimate for each (hkl) plane, might help us distinguish dominant deformation mechanisms activated during deformation such as diffusion (we will observe small stress variation as a function of (hkl) diffraction planes) or dislocation creep (we will observe a stress variation as a function of (hkl) diffraction planes that could also give us clues on potential slip system activity). In this study we observed stress evolution in MgO polycrystalline samples deformed under mantle pressure and temperature for (200) and (220) diffraction planes. Using a range MgO grain sizes we were able to control the active deformation mechanism (for e.g. diffusion creep or dislocation creep). For coarse-grained specimens, we observed strong (hkl) dependence of radial strain indicating the operation of dislocation creep. The observed (hkl) dependence changes with pressure suggesting a change in the slip system: at pressures higher than 27 GPa, (200) shows larger stress estimate than (220). In contrast, at lower pressures, (220) shows larger stress estimate than (200). This might indicate a slip system transition in MgO occurring under lower mantle conditions. From {110} plane to {100} plane. This is in good agreement with theoretical predictions and numerical calculation [Amodeo et al., 2012] and has an important implication for the interpretation of seismic anisotropy in the D" layer [Karato, 1998]. Amodeo, J., Carrey P., and P. Cordier (2012), Philosophical Magazine, 92(12). Karato, S-I. (1998), Earth and planets Space, 50, 1019-1028 Karato, S.-I. (2009), Physical Review. B, 79(21). Singh, A. K., (1993), Journal of Applied Physic, 73, 4278.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Horz, F.
2000-01-01
Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.
Wang, Shanmin; Zang, Chengpeng; Wang, Yongkun; ...
2015-05-04
Lead selenide, PbSe, an important lead chalcogenide semiconductor, has been investigated using in–situ high–pressure/high–temperature synchrotron x–ray diffraction and electrical resistivity measurements. For the first time, high–quality x-ray diffraction data were collected for the intermediate orthorhombic PbSe. Combined with ab initio calculations, we find a Cmcm, InI–type symmetry for the intermediate phase, which is structurally more favorable than the anti–GeS–type Pnma. At room temperature, the onset of the cubic–orthorhombic transition was observed at ~3.5 GPa with a ~3.4% volume reduction. At an elevated temperature of 1000 K, the reversed orthorhombic–to–cubic transition was observed at 6.12 GPa, indicating a positive Clapeyron slopemore » for the phase boundary. Interestingly, phase–transition induced elastic softening in PbSe was also observed, which can be mainly attributed to the loosely bonded trigonal prisms along the b–axis in the Cmcm structure. Compared with the cubic phase, orthorhombic PbSe exhibits a large negative pressure dependence of electrical resistivity. Additionally, thermoelastic properties of orthorhombic PbSe have been derived from isothermal compression data, such as temperature derivative of bulk modulus and thermally induced pressure.« less
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-01-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
NASA Astrophysics Data System (ADS)
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.
2016-04-01
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
NASA Astrophysics Data System (ADS)
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-10-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
McDonald, S A; Reischig, P; Holzner, C; Lauridsen, E M; Withers, P J; Merkle, A P; Feser, M
2015-10-23
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through '4D' in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
NASA Astrophysics Data System (ADS)
Li, Bo; Xu, Jingui; Chen, Wei; Ye, Zhilin; Huang, Shijie; Fan, Dawei; Zhou, Wenge; Xie, Hongsen
2018-04-01
The compressibility and expansivity of anglesite (PbSO4) have been measured at high pressure up to 21.6 GPa and high temperature up to 700 K using in situ angle-dispersive X-ray diffraction and diamond anvil cell. The third-order Birch-Murnaghan equation of state (III-BM-EoS) was used to analyze the pressure-volume (P-V) data of PbSO4. We obtained the bulk modulus K 0 = 59(1) GPa, and its pressure derivative K0' = 5.3(4), respectively. Using Holland-Powell thermal EoS to fit the temperature-volume (T-V) data, the thermal expansion coefficient α 0 = 4.59(2) × 10- 5 K- 1 for PbSO4 was also derived. Simultaneously, the ambient-pressure axial compressibilities (β a0 = 1.79(4) × 10- 3 GPa- 1, β b0 = 1.75(5) × 10- 3 GPa- 1, β c0 = 2.12(4) × 10- 3 GPa- 1) and axial thermal expansivities (α a0 = 1.23(4) × 10- 5 K- 1, α b0 = 1.93(2) × 10- 5 K- 1, and α c0 = 1.43(1) × 10- 5 K- 1) along a-axis, b-axis and c-axis were derived at 300 K, respectively. Furthermore, the potential influencing factors (e.g., the effective size of M2+ cation, polarizability and electronegativity) on the bulk moduli of barite-type (belonging to Pbnm space group) sulfates (anglesite, barite, and celestine) were discussed. We found that the polarizability might be the most important factor. Finally, the anisotropic linear compressibility and thermal expansivity in barite-type sulfates were also discussed, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilairet, Nadège; Wang, Yanbin; Sanehira, Takeshi
2012-03-15
Polycrystalline samples of San Carlos olivine were deformed at high-pressure (2.8-7.8 GPa), high-temperature (1153 to 1670 K), and strain rates between 7.10{sup -6} and 3.10{sup -5} s{sup -1}, using the D-DIA apparatus. Stress and strain were measured in situ using monochromatic X-rays diffraction and imaging, respectively. Based on the evolution of lattice strains with total bulk strain and texture development, we identified three deformation regimes, one at confining pressures below 3-4 GPa, one above 4 GPa, both below 1600 K, and one involving growth of diffracting domains associated with mechanical softening above {approx}1600 K. The softening is interpreted as enhancedmore » grain boundary migration and recovery. Below 1600 K, elasto-plastic self-consistent analysis suggests that below 3-4 GPa, deformation in olivine occurs with large contribution from the so-called 'a-slip' system [100](010). Above {approx}4 GPa, the contribution of the a-slip decreases relative to that of the 'c-slip' [001](010). This conclusion is further supported by texture refinements. Thus for polycrystalline olivine, the evolution in slip systems found by previous studies may be progressive, starting from as low as 3-4 GPa and up to 8 GPa. During such a gradual change, activation volumes measured on polycrystalline olivine cannot be linked to a particular slip system straightforwardly. The quest for 'the' activation volume of olivine at high pressure should cease at the expense of detailed work on the flow mechanisms implied. Such evolution in slip systems should also affect the interpretation of seismic anisotropy data in terms of upper mantle flow between 120 and 300 km depth.« less
NASA Astrophysics Data System (ADS)
Mao, H.; Mao, W. L.
2005-12-01
Multiple x-ray and allied probes have been recently developed and integrated with diamond-anvil cells at synchrotron facilities. They have effectively opened up the vast field area of the Earth's interior to direct, in-situ study. For instance, x-ray emission spectroscopy identifies the high-spin-low-spin transition that governs Fe-Mg partitioning, the most important factor in element differentiation in the mantle. Inelastic x-ray near-edge spectroscopy reveals the bonding nature of light elements that control the phase transitions, structure and partitioning of these elements (e.g., carbon bonding changes as an element, and in oxides, carbonates, and silicates). X-ray diffraction combined with laser-heated diamond anvil cell determines crystal structures and P-V-T equations of state. Shear moduli, single-crystal elasticity, and phonon dynamics can be measured to the core pressures with newly-enabled, complementary techniques, including radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, non-resonant inelastic x-ray scattering, high-temperature Raman spectroscopy, and Brillouin scattering spectroscopy. The nonhydrostatic stress in solid samples which was previously regarded as a nuisance that degraded the experiments, can now be used for extracting important rheological information, including deformation mechanisms, preferred orientation, slip systems, plasticity, failure, and shear strength of major mantle and core minerals at high pressures. With the new arsenal of experimental techniques over the extended P-T-x regimes at we can now address questions that were not conceivable only a decade ago. Knowledge of the high P-T properties is leading to fundamental improvements in interpreting seismological observations and understanding the structure, dynamics, and evolution of the Earth's deep interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung,K.; Yoon, W.; McBreen, J.
2007-01-01
Synchrotron based in situ X-ray diffraction technique has been used to study the mechanism of capacity fading of LiCoO2 cycled to a higher voltage above the normal 4.2 V limit and to investigate the mechanism of capacity retention improvement by ZrO2 surface coating on LiCoO2. It was found that the capacity fading of LiCoO2 cycled at higher voltage limit is closely related to the increased polarization rather than the bulk crystal structure damage. The capacity of uncoated LiCoO2 sample dropped to less than 70 mAh g-1 when charged to 4.8 V after high voltage cycling. However, when the voltage limitmore » was further increased to 8.35 V, the capacity was partially restored and the corresponding structural changes were recovered to the similar level as seen in fresh sample. This indicates that the integrity of the bulk crystal structure of LiCoO2 was not seriously damaged during cycling to 4.8 V. The increased polarization seems to be responsible for the fading capacity and the uncompleted phase transformation of LiCoO2. The polarization-induced capacity fading can be significantly improved by ZrO2 surface coating. It was proposed that the effect of ZrO2-coating layer on the capacity retention during high voltage cycling is through the formation of protection layer on the surface of LiCoO2 particles, which can reduce the decomposition of the electrolyte at higher voltages.« less
Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M
2014-11-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.
2014-01-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies. PMID:25343789
NASA Astrophysics Data System (ADS)
Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.
2014-12-01
Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.
Beam-smiling in bent-Laue monochromators
NASA Astrophysics Data System (ADS)
Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.
1997-07-01
When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.
Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi
2016-07-01
Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
2017-10-03
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy
Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert
2006-01-01
We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930
Interpretation of small-angle diffraction experiments on opal-like photonic crystals
NASA Astrophysics Data System (ADS)
Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.
2011-08-01
Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.
NASA Astrophysics Data System (ADS)
Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi
2015-03-01
Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.
Guo, Yu; Senanayake, Sanjaya; Gu, Dong; ...
2015-01-12
Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeO x catalysts with very similar structural characteristics in CO oxidation.« less
Pargasite at high pressure and temperature
NASA Astrophysics Data System (ADS)
Comboni, Davide; Lotti, Paolo; Gatta, G. Diego; Merlini, Marco; Liermann, Hanns-Peter; Frost, Daniel J.
2017-08-01
The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (P max = 16.5 GPa, T max = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V 0 = 915.2(8) Å3 and K P0,T0 = 95(2) GPa (β P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a 0 = 9.909(4) Å and K(a) P0,T0 = 76(2) GPa for the a-axis; b 0 = 18.066(7) Å and K(b) P0,T0 = 111(2) GPa for the b-axis; c 0 = 5.299(5) Å and K(c) P0,T0 = 122(12) GPa for the c-axis [K(c) P0,T0 K(b) P0,T0 > K(a) P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [K P0, T0(A) = 38(2) GPa, K P0, T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [K P0, T0(M1,2,3) ≤ 120 GPa] and to the rigid tetrahedra [K P0, T0(T1,T2) 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V 0 = 909.1(2) Å3, α0 = 2.7(2)·10-5 K-1 and α1 = 1.4(6)·10-9 K-2 [with α0(a) = 0.47(6)·10-5 K-1, α0(b) = 1.07(4)·10-5 K-1, and α0(c) = 0.97(7)·10-5 K-1]. The petrological implications for the experimental findings of this study are discussed.
NASA Astrophysics Data System (ADS)
Müller, Martin; Murphy, Bridget; Burghammer, Manfred; Riekel, Christian; Roberts, Mark; Papiz, Miroslav; Clarke, David; Gunneweg, Jan; Pantos, Emmanuel
2004-10-01
Archaeological textiles fragments from the caves of Qumran in the Dead Sea region were investigated by means of X-ray microbeam diffraction on single fibres. This non-destructive technique made the identification of the used plant textile fibres possible. Apart from bast fibres (mainly flax), cotton was identified which was most unexpected in the archaeological context.
Structures of Astromaterials Revealed by EBSD
NASA Technical Reports Server (NTRS)
Zolensky, M.
2018-01-01
Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.
Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.
2015-03-01
Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.
NASA Astrophysics Data System (ADS)
Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.
2005-01-01
Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.
Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef
2016-03-07
Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to -16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features.
Krause, Bärbel; Abadias, Gregory; Michel, Anny; Wochner, Peter; Ibrahimkutty, Shyjumon; Baumbach, Tilo
2016-12-21
The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and Mo 1-x Si x films on amorphous Si (a-Si). The simultaneous measurements provide direct evidence of a spontaneous, thickness-dependent amorphous-to-crystalline (a-c) phase transition, associated with tensile stress build-up and surface roughening. This phase transformation is thermodynamically driven, the metastable amorphous layer being initially stabilized by the contributions of surface and interface energies. A quantitative analysis of the XRD data, complemented by simulations of the transformation kinetics, unveils an interface-controlled crystallization process. This a-c phase transition is also dominating the stress evolution. While stress build-up can significantly limit the performance of devices based on nanostructures and thin films, it can also trigger the formation of these structures. The simultaneous in situ access to the stress signal itself, and to its microstructural origins during structure formation, opens new design routes for tailoring nanoscale devices.
In situ high-pressure measurement of crystal solubility by using neutron diffraction
NASA Astrophysics Data System (ADS)
Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun
2018-05-01
Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.
GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code.
E, J C; Wang, L; Chen, S; Zhang, Y Y; Luo, S N
2018-03-01
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
In Situ Distribution And Speciation Of Toxic Copper, Nickel, And Zinc In Hydrated Roots Of Cowpea
The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy, the distribution and speciation of Cu, Ni, and Zn was examined in situ
Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben
2014-09-01
X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. L.; Han, Y. F., E-mail: yfhan@sjtu.edu.cn, E-mail: bdsun@sjtu.edu.cn; Zhou, W.
2015-01-26
Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energymore » in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.« less
Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure
NASA Astrophysics Data System (ADS)
Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; Zhang, Lei; Palomares, Raul I.; Lang, Maik; Navrotsky, Alexandra; Mao, Wendy L.; Ewing, Rodney C.
2017-07-01
The structure of lanthanide-doped uranium dioxide, LnxU1-xO2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ∼50-55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25-0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO2, such as Young's modulus.
High-pressure synthesis and characterization of incompressible titanium pernitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadram, Venkata S.; Kim, Duck Young; Strobel, Timothy A.
A new transition-metal pernitride, TiN 2, was uncovered from the chemical reaction of TiN with N 2 at 73GPa in a laser-heated diamond anvil cell (DAC). The crystal structure of this compound exhibits tetragonal I 4/ mcm symmetry and consists of single-bonded nitrogen dimers (N–N dumbbells) embedded in the metal lattice as shown by our ab initio calculations and verified by in situ synchrotron x-ray diffraction measurements. The pressure-volume equation of state determined from the experimental data reveals that TiN 2 is incompressible with bulk modulus in the range of 360-385 GPa which is close to that of cubic boronmore » nitride (382 GPa). Here, the origin of high bulk modulus of TiN 2 (which is metallic) is rooted in the nearly filled anti-bonding states of the pernitride units. TiN 2 is fully recoverable to ambient conditions and represents the lowest-density transition metal pernitride synthesized to date.« less
Hydrogen-bearing iron peroxide and its implications to the deep Earth
NASA Astrophysics Data System (ADS)
Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.
2017-12-01
Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.
Pressure-induced amorphization in orthorhombic Ta{sub 2}O{sub 5}: An intrinsic character of crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Quanjun; Zhang, Huafang; Cheng, Benyuan
2014-05-21
The phase transition of orthorhombic Ta{sub 2}O{sub 5} was investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The orthorhombic phase transforms into an amorphous form completely at 24.7 GPa. A bulk modulus B{sub 0} = 139 (9) GPa for the orthorhombic Ta{sub 2}O{sub 5} is derived from the P-V data. We suggest that the pressure-induced amorphization (PIA) in Ta{sub 2}O{sub 5} can be attributed to the unstability of the a axis under high pressure leads to the connections of polyhedral breaking down and even triggers disorder of the whole crystal frame. These results demonstrate that the PIA is an intrinsic charactermore » of Ta{sub 2}O{sub 5} which depends on its orthorhombic crystal structure rather than nanosize effects. This study provides a new kind of bulk material for investigating PIA in metal oxides.« less
Diamond anvils with a round table designed for high pressure experiments in DAC
NASA Astrophysics Data System (ADS)
Dubrovinsky, Leonid; Koemets, Egor; Bykov, Maxim; Bykova, Elena; Aprilis, Georgios; Pakhomova, Anna; Glazyrin, Konstantin; Laskin, Alexander; Prakapenka, Vitali B.; Greenberg, Eran; Dubrovinskaia, Natalia
2017-10-01
Here, we present new Diamond Anvils with a Round Table (DART-anvils) designed for applications in the diamond anvil cell (DAC) technique. The main features of the new DART-anvil design are a spherical shape of both the crown and the table of a diamond and the position of the centre of the culet exactly in the centre of the sphere. The performance of DART-anvils was tested in a number of high pressure high-temperature experiments at different synchrotron beamlines. These experiments demonstrated a number of advantages, which are unavailable with any of the hitherto known anvil designs. Use of DART-anvils enables to realise in situ single-crystal X-ray diffraction experiments with laser heating using stationary laser-heating setups; eliminating flat-plate design of conventional anvils, DART-anvils make the cell alignment easier; working as solid immersion lenses, they provide additional magnification of the sample in a DAC and improve the image resolution.
Bunn, Jonathan Kenneth; Fang, Randy L; Albing, Mark R; Mehta, Apurva; Kramer, Matthew J; Besser, Matthew F; Hattrick-Simpers, Jason R
2015-07-10
High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe–Cr–Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h.
A co-crystal between benzene and ethane: a potential evaporite material for Saturn’s moon Titan
Maynard-Casely, Helen E.; Hodyss, Robert; Cable, Morgan L.; Vu, Tuan Hoang; Rahm, Martin
2016-01-01
Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn’s moon Titan’s lakes, an evaporite material. PMID:27158505
Jia, Haoling; Zheng, Lili; Li, Weidong; ...
2015-02-18
In this paper, in situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite element simulations have been conducted to examine the lattice-strain evolution in metallic-glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-glass matrix. Significant plastic deformation can be observed prior to failure from the macroscopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respectively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are governed by the constitutive laws of the two phases (modeled by free-volume theory and crystal plasticity) and geometric informationmore » (crystalline phase morphology and distribution). The load-partitioning mechanisms have been revealed among various crystalline orientations and between the two phases, as determined by slip strain fields in crystalline phase and by strain localizations in matrix. Finally, implications on ductility enhancement of MGMCs are also discussed.« less
Texture evolution during nitinol martensite detwinning and phase transformation
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.
2013-12-01
Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.
High-pressure synthesis and characterization of incompressible titanium pernitride
Bhadram, Venkata S.; Kim, Duck Young; Strobel, Timothy A.
2016-03-07
A new transition-metal pernitride, TiN 2, was uncovered from the chemical reaction of TiN with N 2 at 73GPa in a laser-heated diamond anvil cell (DAC). The crystal structure of this compound exhibits tetragonal I 4/ mcm symmetry and consists of single-bonded nitrogen dimers (N–N dumbbells) embedded in the metal lattice as shown by our ab initio calculations and verified by in situ synchrotron x-ray diffraction measurements. The pressure-volume equation of state determined from the experimental data reveals that TiN 2 is incompressible with bulk modulus in the range of 360-385 GPa which is close to that of cubic boronmore » nitride (382 GPa). Here, the origin of high bulk modulus of TiN 2 (which is metallic) is rooted in the nearly filled anti-bonding states of the pernitride units. TiN 2 is fully recoverable to ambient conditions and represents the lowest-density transition metal pernitride synthesized to date.« less
Wang, Dongxue; Bie, Xiaofei; Fu, Qiang; Dixon, Ditty; Bramnik, Natalia; Hu, Yong-Sheng; Fauth, Francois; Wei, Yingjin; Ehrenberg, Helmut; Chen, Gang; Du, Fei
2017-01-01
Sodium-ion batteries operating at ambient temperature hold great promise for use in grid energy storage owing to their significant cost advantages. However, challenges remain in the development of suitable electrode materials to enable long lifespan and high rate capability. Here we report a sodium super-ionic conductor structured electrode, sodium vanadium titanium phosphate, which delivers a high specific capacity of 147 mA h g−1 at a rate of 0.1 C and excellent capacity retentions at high rates. A symmetric sodium-ion full cell demonstrates a superior rate capability with a specific capacity of about 49 mA h g−1 at 20 C rate and ultralong lifetime over 10,000 cycles. Furthermore, in situ synchrotron diffraction and X-ray absorption spectroscopy measurement are carried out to unravel the underlying sodium storage mechanism and charge compensation behaviour. Our results suggest the potential application of symmetric batteries for electrochemical energy storage given the superior rate capability and long cycle life. PMID:28660877
Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics
NASA Astrophysics Data System (ADS)
Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen
2011-01-01
The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.
Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.
Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao
We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less
Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo
2016-12-15
Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.
Wang, Dongxue; Bie, Xiaofei; Fu, Qiang; Dixon, Ditty; Bramnik, Natalia; Hu, Yong-Sheng; Fauth, Francois; Wei, Yingjin; Ehrenberg, Helmut; Chen, Gang; Du, Fei
2017-06-29
Sodium-ion batteries operating at ambient temperature hold great promise for use in grid energy storage owing to their significant cost advantages. However, challenges remain in the development of suitable electrode materials to enable long lifespan and high rate capability. Here we report a sodium super-ionic conductor structured electrode, sodium vanadium titanium phosphate, which delivers a high specific capacity of 147 mA h g -1 at a rate of 0.1 C and excellent capacity retentions at high rates. A symmetric sodium-ion full cell demonstrates a superior rate capability with a specific capacity of about 49 mA h g -1 at 20 C rate and ultralong lifetime over 10,000 cycles. Furthermore, in situ synchrotron diffraction and X-ray absorption spectroscopy measurement are carried out to unravel the underlying sodium storage mechanism and charge compensation behaviour. Our results suggest the potential application of symmetric batteries for electrochemical energy storage given the superior rate capability and long cycle life.
Structural transition and amorphization in compressed α - Sb 2 O 3
Zhao, Zhao; Zeng, Qiaoshi; Zhang, Haijun; ...
2015-05-27
Sb₂O₃-based materials are of broad interest in materials science and industry. High-pressure study using diamond anvil cells shows promise in obtaining new crystal and electronic structures different from their pristine states. Here, we conducted in situ angle dispersive synchrotron x-ray-diffraction and Raman spectroscopy experiments on α-Sb₂O₃ up to 50 GPa with neon as the pressure transmitting medium. A first-order structural transition was observed in between 15 and 20 GPa, where the cubic phase I gradually transformed into a layered tetragonal phase II through structural distortion and symmetry breaking. To explain the dramatic changes in sample color and transparency, we performedmore » first-principles calculations to track the evolution of its density of states and electronic structure under pressure. At higher pressure, a sluggish amorphization was observed. Our results highlight the structural connections among the sesquioxides, where the lone electron pair plays an important role in determining the local structures.« less
Micro-stress dominant displacive reconstructive transition in lithium aluminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qiwei; Yan, Xiaozhi; Zhang, Leilei
It is supposed that diffusive reconstructive transitions usually take place under hydrostatic pressure or low stresses, and displacive reconstructive phase transitions easily occur at nonhydrostatic pressure. Here, by in-situ high pressure synchrotron X-ray diffraction and single-crystal Raman scattering studies on lithium aluminate at room temperature, we show that the reconstructive transition mechanism is dependent on the internal microscopic stresses rather than the macroscopic stresses. In this case, even hydrostatic pressure can favor the displacive transition if the compressibility of crystal is anisotropic. During hydrostatic compression, γ-LiAlO{sub 2} transforms to δ-LiAlO{sub 2} at about 4 GPa, which is much lower than thatmore » in previous nonhydrostatic experiments (above 9 GPa). In the region where both phases coexist, there are enormous microscopic stresses stemming from the lattice mismatch, suggesting that this transition is displacive. Furthermore, the atomic picture is drawn with the help of the shear Raman modes.« less
NASA Astrophysics Data System (ADS)
Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho
2017-03-01
Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.
Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys
Wu, Wei; Gao, Yanfei; Oak Ridge National Lab.; ...
2016-09-11
We present that deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning- detwinning process, the twinning-like lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculationmore » of the lattice strain confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. In conclusion, the study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pan; Guan, Jiwen; Galeschuk, Draven T. K.
2017-04-28
Formamidinium lead iodide (FAPbI3) perovskite as a superior solar cell material was investigated in two polymorphs at high pressures using in situ synchrotron X-ray diffraction, FTIR spectroscopy, photoluminescence (PL) spectroscopy, electrical conductivity (EC) measurements, and ab initio calculations. We identified two new structures (i.e., Imm2 and Immm) for α-FAPbI3 but only a structural distortion (in C2/c) for δ-FAPbI3 upon compression. A pressure-enhanced hydrogen bond plays a prominent role in structural modifications, as corroborated by FTIR spectroscopy. PL measurements and calculations consistently show the structure and pressure dependences of the band gap energies. Finally, EC measurements reveal drastically different transport propertiesmore » of α- and δ-FAPbI3 at low pressures but a common trend to metallic states at high pressures. All of these observations suggest strongly contrasting structural stabilities and pressure-tuned optoelectric properties of the two FAPbI3 polymorphs.« less
Structure and bulk modulus of Ln-doped UO 2 (Ln = La, Nd) at high pressure
Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; ...
2017-04-10
The structure of lanthanide-doped uranium dioxide, Ln xU 1-xO 2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ~50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ~ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ~ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both themore » ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. As a result, this trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO 2, such as Young's modulus.« less
Phase transition induced strain in ZnO under high pressure
Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...
2016-05-13
Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less
Pigott, Jeffrey S.; Ditmer, Derek A.; Fischer, Rebecca A.; ...
2015-11-24
We have fabricated novel controlled-geometry samples for the laser-heated diamond anvil cell (LHDAC) in which a transparent oxide layer (SiO 2) is sandwiched between two laser-absorbing layers (Ni) in a single, cohesive sample. The samples were mass manufactured (>10 4 samples) using a combination of physical vapor deposition, photolithography, and wet and plasma etching. The double hot-plate arrangement of the samples, coupled with the chemical and spatial homogeneity of the laser-absorbing layers, addresses problems of spatial temperature heterogeneities encountered in previous studies where simple mechanical mixtures of transparent and opaque materials were used. Here we report thermal equations of statemore » (EOS) for nickel to 100 GPa and 3000 K and stishovite to 50 GPa and 2400 K obtained using the LHDAC and in situ synchrotron x-ray micro-diffraction. Lastly, we discuss the inner core composition and the stagnation of subducted slabs in the mantle based on our refined thermal EOS.« less
Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition
Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.; ...
2017-04-10
Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less
Chemical applications of synchrotron radiation: Workshop report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the fieldmore » of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.« less
Synthesis of branched metal nanostructures with controlled architecture and composition
NASA Astrophysics Data System (ADS)
Ortiz, Nancy
On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental principles of coordination chemistry and nanoparticle formation, with a stronger foundation for the predictive synthesis of future nanomaterials with controllable structural features.
NASA Technical Reports Server (NTRS)
Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret
1988-01-01
Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.
High-pressure Irreversible Amorphization of La1/3NbO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
I Halevy; A Hen; A Broide
2011-12-31
The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.
Symposium LL: Nanowires--Synthesis Properties Assembly and Application
2010-09-10
dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong
Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael
2018-04-24
This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.
SUNY beamline facilities at the National Synchrotron Light Source (Final Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppens, Philip
2003-06-22
The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Neeraj; Anderson, Virginia R.; Johnson, Scooter D.
The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities duemore » to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to understand nucleation and growth mechanisms of ALEp to enable improvement in material quality and broaden its application.« less