Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis
NASA Astrophysics Data System (ADS)
Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.
2012-07-01
We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.
NASA Technical Reports Server (NTRS)
Chao, Luen-Yuan; Shetty, Dinesh K.
1992-01-01
Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.
Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.
1988-01-01
If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.
Mächtle, W
1999-01-01
Sedimentation velocity is a powerful tool for the analysis of complex solutions of macromolecules. However, sample turbidity imposes an upper limit to the size of molecular complexes currently amenable to such analysis. Furthermore, the breadth of the particle size distribution, combined with possible variations in the density of different particles, makes it difficult to analyze extremely complex mixtures. These same problems are faced in the polymer industry, where dispersions of latices, pigments, lacquers, and emulsions must be characterized. There is a rich history of methods developed for the polymer industry finding use in the biochemical sciences. Two such methods are presented. These use analytical ultracentrifugation to determine the density and size distributions for submicron-sized particles. Both methods rely on Stokes' equations to estimate particle size and density, whereas turbidity, corrected using Mie's theory, provides the concentration measurement. The first method uses the sedimentation time in dispersion media of different densities to evaluate the particle density and size distribution. This method works provided the sample is chemically homogeneous. The second method splices together data gathered at different sample concentrations, thus permitting the high-resolution determination of the size distribution of particle diameters ranging from 10 to 3000 nm. By increasing the rotor speed exponentially from 0 to 40,000 rpm over a 1-h period, size distributions may be measured for extremely broadly distributed dispersions. Presented here is a short history of particle size distribution analysis using the ultracentrifuge, along with a description of the newest experimental methods. Several applications of the methods are provided that demonstrate the breadth of its utility, including extensions to samples containing nonspherical and chromophoric particles. PMID:9916040
Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.
Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko
2017-11-01
A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.
Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki
2016-12-01
This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.
Schuck, P
2000-03-01
A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
NASA Astrophysics Data System (ADS)
Wang, Ji-Peng; François, Bertrand; Lambert, Pierre
2017-09-01
Estimating hydraulic conductivity from particle size distribution (PSD) is an important issue for various engineering problems. Classical models such as Hazen model, Beyer model, and Kozeny-Carman model usually regard the grain diameter at 10% passing (d10) as an effective grain size and the effects of particle size uniformity (in Beyer model) or porosity (in Kozeny-Carman model) are sometimes embedded. This technical note applies the dimensional analysis (Buckingham's ∏ theorem) to analyze the relationship between hydraulic conductivity and particle size distribution (PSD). The porosity is regarded as a dependent variable on the grain size distribution in unconsolidated conditions. It indicates that the coefficient of grain size uniformity and a dimensionless group representing the gravity effect, which is proportional to the mean grain volume, are the main two determinative parameters for estimating hydraulic conductivity. Regression analysis is then carried out on a database comprising 431 samples collected from different depositional environments and new equations are developed for hydraulic conductivity estimation. The new equation, validated in specimens beyond the database, shows an improved prediction comparing to using the classic models.
Scaling and allometry in the building geometries of Greater London
NASA Astrophysics Data System (ADS)
Batty, M.; Carvalho, R.; Hudson-Smith, A.; Milton, R.; Smith, D.; Steadman, P.
2008-06-01
Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly any work exists on the properties of spatial distributions within individual cities, notwithstanding considerable knowledge about their fractal structure. We redress this here by examining scaling relationships in a world city using data on the geometric properties of individual buildings. We first summarise how power laws can be used to approximate the size distributions of buildings, in analogy to city-size distributions which have been widely studied as rank-size and lognormal distributions following Zipf [ Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [ Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relationships between buildings in terms of their different geometric size properties. We present some preliminary analysis of building heights from the Emporis database which suggests very strong scaling in world cities. The data base for Greater London is then introduced from which we extract 3.6 million buildings whose scaling properties we explore. We examine key allometric relationships between these different properties illustrating how building shape changes according to size, and we extend this analysis to the classification of buildings according to land use types. We conclude with an analysis of two-point correlation functions of building geometries which supports our non-spatial analysis of scaling.
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A
2015-01-01
This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398
Planetarium instructional efficacy: A research synthesis
NASA Astrophysics Data System (ADS)
Brazell, Bruce D.
The purpose of the current study was to explore the instructional effectiveness of the planetarium in astronomy education using meta-analysis. A review of the literature revealed 46 studies related to planetarium efficacy. However, only 19 of the studies satisfied selection criteria for inclusion in the meta-analysis. Selected studies were then subjected to coding procedures, which extracted information such as subject characteristics, experimental design, and outcome measures. From these data, 24 effect sizes were calculated in the area of student achievement and five effect sizes were determined in the area of student attitudes using reported statistical information. Mean effect sizes were calculated for both the achievement and the attitude distributions. Additionally, each effect size distribution was subjected to homogeneity analysis. The attitude distribution was found to be homogeneous with a mean effect size of -0.09, which was not significant, p = .2535. The achievement distribution was found to be heterogeneous with a statistically significant mean effect size of +0.28, p < .05. Since the achievement distribution was heterogeneous, the analog to the ANOVA procedure was employed to explore variability in this distribution in terms of the coded variables. The analog to the ANOVA procedure revealed that the variability introduced by the coded variables did not fully explain the variability in the achievement distribution beyond subject-level sampling error under a fixed effects model. Therefore, a random effects model analysis was performed which resulted in a mean effect size of +0.18, which was not significant, p = .2363. However, a large random effect variance component was determined indicating that the differences between studies were systematic and yet to be revealed. The findings of this meta-analysis showed that the planetarium has been an effective instructional tool in astronomy education in terms of student achievement. However, the meta-analysis revealed that the planetarium has not been a very effective tool for improving student attitudes towards astronomy.
2008-01-01
A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY
NASA Astrophysics Data System (ADS)
Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao
2016-06-01
The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.
Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.
Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T
2007-03-30
Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.
LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu
2017-01-20
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less
Particle size and shape distributions of hammer milled pine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke
2015-04-01
Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Bothmore » materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.« less
Box-Cox transformation of firm size data in statistical analysis
NASA Astrophysics Data System (ADS)
Chen, Ting Ting; Takaishi, Tetsuya
2014-03-01
Firm size data usually do not show the normality that is often assumed in statistical analysis such as regression analysis. In this study we focus on two firm size data: the number of employees and sale. Those data deviate considerably from a normal distribution. To improve the normality of those data we transform them by the Box-Cox transformation with appropriate parameters. The Box-Cox transformation parameters are determined so that the transformed data best show the kurtosis of a normal distribution. It is found that the two firm size data transformed by the Box-Cox transformation show strong linearity. This indicates that the number of employees and sale have the similar property as a firm size indicator. The Box-Cox parameters obtained for the firm size data are found to be very close to zero. In this case the Box-Cox transformations are approximately a log-transformation. This suggests that the firm size data we used are approximately log-normal distributions.
Kristin Bunte; Steven R. Abt
2001-01-01
This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...
Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories
NASA Astrophysics Data System (ADS)
Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.
2018-07-01
Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (∼15-20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If ≥cm-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.
Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories
NASA Technical Reports Server (NTRS)
Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.
2018-01-01
Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If greater than or equal to centimeter-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.
The Italian primary school-size distribution and the city-size: a complex nexus
NASA Astrophysics Data System (ADS)
Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.
2014-06-01
We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.
A Bayesian Nonparametric Meta-Analysis Model
ERIC Educational Resources Information Center
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.
2015-01-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.
NASA Astrophysics Data System (ADS)
Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias
2003-05-01
The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.
NASA Astrophysics Data System (ADS)
Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.
2015-12-01
The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.
NASA Astrophysics Data System (ADS)
Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.
2018-02-01
The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.
Knouft, Jason H
2004-05-01
Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.
The Italian primary school-size distribution and the city-size: a complex nexus
Belmonte, Alessandro; Di Clemente, Riccardo; Buldyrev, Sergey V.
2014-01-01
We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features. PMID:24954714
NASA Astrophysics Data System (ADS)
Baitimirova, M.; Osite, A.; Katkevics, J.; Viksna, A.
2012-08-01
Burning of candles generates particulate matter of fine dimensions that produces poor indoor air quality, so it may cause harmful impact on human health. In this study solid aerosol particles of burning of candles of different composition and kerosene combustion were collected in a closed laboratory system. Present work describes particulate matter collection for structure analysis and the relationship between source and size distribution of particulate matter. The formation mechanism of particulate matter and their tendency to agglomerate also are described. Particles obtained from kerosene combustion have normal size distribution. Whereas, particles generated from the burning of stearin candles have distribution shifted towards finer particle size range. If an additive of stearin to paraffin candle is used, particle size distribution is also observed in range of towards finer particles. A tendency to form agglomerates in a short time is observed in case of particles obtained from kerosene combustion, while in case of particles obtained from burning of candles of different composition such a tendency is not observed. Particles from candles and kerosene combustion are Aitken and accumulation mode particles
A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankman, C.; Gladman, B. J.; Kaib, N.
Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, whichmore » then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .« less
NASA Technical Reports Server (NTRS)
Kitchen, J. C.
1977-01-01
Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.
Do small animals have a biogeography?
Valdecasas, A G; Camacho, A I; Peláez, M L
2006-01-01
It has been stated that small organisms do not have barriers for distribution and will not show biogeographic discreteness. General models for size-mediated biogeographies establish a transition region between ubiquitous dispersal and restricted biogeography at about 1-10 mm. We tested patterns of distribution versus size with water mites, a group of freshwater organisms with sizes between 300 microm and 10 mm. We compiled a list of all known water mite species for Sierra del Guadarrama (a mountain range in the centre of the Iberian Peninsula) from different authors and our own studies in the area. Recorded habitats include lotic, lentic and interstitial environments. Species body size and world distribution were drawn from our work and published specialized taxonomic literature. The null hypothesis was that distribution is size-independent. The relationship between distribution and size was approached via analysis of variance and between size and habitat via logistic regression. Contrary to expectations, there is no special relationship between water mite size and area size distribution. On the other hand, water mite size is differentially distributed among habitats, although this ecological sorting is very weak. Larger water mites are more common in lentic habitats and smaller water mites in lotic habitats. Size-dependent distribution in which small organisms tend to be cosmopolitan breaks down when the particular biology comes into play. Water mites do not fit a previously proposed size-dependent biogeographical distribution, and are in accordance with similar data published on Tardigrada, Rotifera, Gastrotricha and the like.
Particle size analysis of some water/oil/water multiple emulsions.
Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V
2005-04-29
Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.
Body size distributions signal a regime shift in a lake ecosystem
Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.
2016-01-01
Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.
Improving alpine-region spectral unmixing with optimal-fit snow endmembers
NASA Technical Reports Server (NTRS)
Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff
1995-01-01
Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.
Mudalige, Thilak K; Qu, Haiou; Linder, Sean W
2015-11-13
Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yamashita, S.; Nakajo, T.; Naruse, H.
2009-12-01
In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.
Formation and size distribution of self-assembled vesicles
Huang, Changjin; Quinn, David; Suresh, Subra
2017-01-01
When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods. PMID:28265065
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
Distribution of the two-sample t-test statistic following blinded sample size re-estimation.
Lu, Kaifeng
2016-05-01
We consider the blinded sample size re-estimation based on the simple one-sample variance estimator at an interim analysis. We characterize the exact distribution of the standard two-sample t-test statistic at the final analysis. We describe a simulation algorithm for the evaluation of the probability of rejecting the null hypothesis at given treatment effect. We compare the blinded sample size re-estimation method with two unblinded methods with respect to the empirical type I error, the empirical power, and the empirical distribution of the standard deviation estimator and final sample size. We characterize the type I error inflation across the range of standardized non-inferiority margin for non-inferiority trials, and derive the adjusted significance level to ensure type I error control for given sample size of the internal pilot study. We show that the adjusted significance level increases as the sample size of the internal pilot study increases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions
Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.
2005-01-01
Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.
2015-09-01
In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.
NASA Astrophysics Data System (ADS)
Li, Tao; Li, Tuan-Jie
2018-04-01
The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.
Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-06-01
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less
Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-01-01
Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039
Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan; ...
2017-05-30
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less
[Analysis of visible extinction spectrum of particle system and selection of optimal wavelength].
Sun, Xiao-gang; Tang, Hong; Yuan, Gui-bin
2008-09-01
In the total light scattering particle sizing technique, the extinction spectrum of particle system contains some information about the particle size and refractive index. The visible extinction spectra of the common monomodal and biomodal R-R particle size distribution were computed, and the variation in the visible extinction spectrum with the particle size and refractive index was analyzed. The corresponding wavelengths were selected as the measurement wavelengths at which the second order differential extinction spectrum was discontinuous. Furthermore, the minimum and the maximum wavelengths in the visible region were also selected as the measurement wavelengths. The genetic algorithm was used as the inversion method under the dependent model The computer simulation and experiments illustrate that it is feasible to make an analysis of the extinction spectrum and use this selection method of the optimal wavelength in the total light scattering particle sizing. The rough contour of the particle size distribution can be determined after the analysis of visible extinction spectrum, so the search range of the particle size parameter is reduced in the optimal algorithm, and then a more accurate inversion result can be obtained using the selection method. The inversion results of monomodal and biomodal distribution are all still satisfactory when 1% stochastic noise is put in the transmission extinction measurement values.
NASA Astrophysics Data System (ADS)
Hassan, A. H.; Fluke, C. J.; Barnes, D. G.
2012-09-01
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a “software as a service” manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.
Geological duration of ammonoids controlled their geographical range of fossil distribution.
Wani, Ryoji
2017-01-01
The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.
The paper discusses the simulation of the effects of changes to particle loading, particle size distribution, and electrostatic precipitator (ESP) operating temperatures using ESP models. It also illustrates the usefulness of modern ESP models for this type of analysis. Increasin...
Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.
2014-01-01
Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.
Rees, Terry F.
1990-01-01
Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.
Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu
2017-06-01
This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.
Particle size analysis of amalgam powder and handpiece generated specimens.
Drummond, J L; Hathorn, R M; Cailas, M D; Karuhn, R
2001-07-01
The increasing interest in the elimination of amalgam particles from the dental waste (DW) stream, requires efficient devices to remove these particles. The major objective of this project was to perform a comparative evaluation of five basic methods of particle size analysis in terms of the instrument's ability to quantify the size distribution of the various components within the DW stream. The analytical techniques chosen were image analysis via scanning electron microscopy, standard wire mesh sieves, X-ray sedigraphy, laser diffraction, and electrozone analysis. The DW particle stream components were represented by amalgam powders and handpiece/diamond bur generated specimens of enamel; dentin, whole tooth, and condensed amalgam. Each analytical method quantified the examined DW particle stream components. However, X-ray sedigraphy, electrozone, and laser diffraction particle analyses provided similar results for determining particle distributions of DW samples. These three methods were able to more clearly quantify the properties of the examined powder and condensed amalgam samples. Furthermore, these methods indicated that a significant fraction of the DW stream contains particles less than 20 microm. The findings of this study indicated that the electrozone method is likely to be the most effective technique for quantifying the particle size distribution in the DW particle stream. This method required a relative small volume of sample, was not affected by density, shape factors or optical properties, and measured a sufficient number of particles to provide a reliable representation of the particle size distribution curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R.
2012-09-15
Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powdermore » pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.« less
Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L
2018-04-12
Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Characterization of Inclusion Populations in Mn-Si Deoxidized Steel
NASA Astrophysics Data System (ADS)
García-Carbajal, Alfonso; Herrera-Trejo, Martín; Castro-Cedeño, Edgar-Ivan; Castro-Román, Manuel; Martinez-Enriquez, Arturo-Isaias
2017-12-01
Four plant heats of Mn-Si deoxidized steel were conducted to follow the evolution of the inclusion population through ladle furnace (LF) treatment and subsequent vacuum treatment (VT). The liquid steel was sampled, and the chemical composition and size distribution of the inclusion populations were characterized. The Gumbel generalized extreme-value (GEV) and generalized Pareto (GP) distributions were used for the statistical analysis of the inclusion size distributions. The inclusions found at the beginning of the LF treatment were mostly fully liquid SiO2-Al2O3-MnO inclusions, which then evolved into fully liquid SiO2-Al2O3-CaO-MgO and partly liquid SiO2-CaO-MgO-(Al2O3-MgO) inclusions detected at the end of the VT. The final fully liquid inclusions had a desirable chemical composition for plastic behavior in subsequent metallurgical operations. The GP distribution was found to be undesirable for statistical analysis. The GEV distribution approach led to shape parameter values different from the zero value hypothesized from the Gumbel distribution. According to the GEV approach, some of the final inclusion size distributions had statistically significant differences, whereas the Gumbel approach predicted no statistically significant differences. The heats were organized according to indicators of inclusion cleanliness and a statistical comparison of the size distributions.
Yuan, K; Niu, C; Xie, Q; Jiang, W; Gao, L; Ma, R; Huang, Z
2018-02-01
To investigate and compare the effects of two apical canal instrumentation protocols on apical stress distribution at the root apex under vertical compaction of gutta-percha and occlusal loads using finite element analysis. Three finite element analysis models of a mandibular first premolar were reconstructed: an original canal model, a size 35, .04 taper apical canal enlargement model and a Lightspeed size 60 apical canal enlargement model. A 15 N compaction force was applied vertically to the gutta-percha 5 mm from the apex. A 175 N occlusal load in two directions (vertical and 45° to the longitudinal axis of the tooth) was simulated. Stresses in the apical 2 mm of the root were calculated and compared among the three models. Under vertical compaction, stresses in the apical canal instrumented by Lightspeed size 60 (maximal 3.3 MPa) were higher than that of the size 35, .04 taper model (maximal 1.3 MPa). In the case of the two occlusal forces, the Lightspeed size 60 apical enlargement was associated with the greatest stress distribution in the apical region. The greatest stress and the most obvious stress difference between the models appeared at the tip of the root when occlusal and vertical compaction loads were applied. Apical enlargement caused stress distribution changes in the apical region of roots. The larger apical size led to higher stress concentration at the root apex. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils
NASA Technical Reports Server (NTRS)
Chapman, R. S.
1977-01-01
Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.
Effect of Bimodal Grain Size Distribution on Scatter in Toughness
NASA Astrophysics Data System (ADS)
Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire
2009-04-01
Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.
1976-01-01
A study was made of the field size distributions for LACIE test sites 5029, 5033, and 5039, People's Republic of China. Field lengths and widths were measured from LANDSAT imagery, and field area was statistically modeled. Field size parameters have log-normal or Poisson frequency distributions. These were normalized to the Gaussian distribution and theoretical population curves were made. When compared to fields in other areas of the same country measured in the previous study, field lengths and widths in the three LACIE test sites were 2 to 3 times smaller and areas were smaller by an order of magnitude.
Body size distributions signal a regime shift in a lake ...
Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use
Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa
2004-10-29
Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.
Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.
1984-11-01
constructed, calibrated, and successfully applied. Our efforts to verify the performance and accuracy of this diagnostic led to a parallel research...array will not be an acceptable detection system for size distribution measurements by this method. VI. Conclusions This study has led to the following...radiation is also useful particle size analysis by ensemble multiangle scattering. One problem for all multiwavelength or multiaricle diagnostics for
Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan
2015-02-01
To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.
Money-center structures in dynamic banking systems
NASA Astrophysics Data System (ADS)
Li, Shouwei; Zhang, Minghui
2016-10-01
In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.
RAINDROP DISTRIBUTIONS AT MAJURO ATOLL, MARSHALL ISLANDS.
RAINDROPS, MARSHALL ISLANDS), (*ATMOSPHERIC PRECIPITATION, TROPICAL REGIONS), PARTICLE SIZE, SAMPLING, TABLES(DATA), WATER , ATTENUATION, DISTRIBUTION, VOLUME, RADAR REFLECTIONS, RAINFALL, PHOTOGRAPHIC ANALYSIS, COMPUTERS
Yokoyama, Eiji; Hashimoto, Ruiko; Etoh, Yoshiki; Ichihara, Sachiko; Horikawa, Kazumi; Uchimura, Masako
2011-01-01
The distribution of insertion sequence (IS) 629 among strains of enterohemorrhagic Escherichia coli serovar O157 (O157) was investigated and compared with the strain lineages defined by lineage specific polymorphism assay-6 (LSPA-6) to demonstrate the effectiveness of IS629 analysis for population genetics analysis. Using pulsed-field gel electrophoresis and variable-number tandem repeat typing, 140 strains producing both VT1 and VT2 and 98 strains producing only VT2 were selected from a total of 592 strains isolated from patients and asymptomatic carriers in Chiba Prefecture, Japan, during 2003-2008. By LSPA-6 analysis, six strains had atypical amplicon sizes in their Z5935 loci and five strains had atypical amplicon sizes in their arp-iclR intergenic regions. Sequence analyses of PCR amplified DNAs showed that five of the six loci used for LSPA-6 analysis had tandem repeats and the allele changes were due to changes in the number of tandem repeats. Subculturing and long-term incubation was found to have no detectable effect on the lineages defined by LSPA-6 analysis, demonstrating the robustness of LSPA-6 analysis. Minimum spanning tree analysis reconstruction revealed that strains in lineage I, I/II, and II clustered on separate branches, indicating that the distribution of IS629 was biased among O157 strains in different lineages. Strains with LSPA-6 codes 231111, 211113, and 211114 had atypical amplicon sizes and were clustered in lineage I/II branch, and strains with LSPA-6 codes 212114, 221123, 221223, 222123, 222224, 242123, 252123, and 242222 had atypical amplicon sizes and clustered in lineage II branches. Linkage disequilibrium was observed in strains in every lineage when the standardized index of association was calculated using IS629 distribution data. Therefore, the distribution analysis of IS629 may be effective for population genetics analysis of O157 due to the biased IS629 distribution among strains in the three O157 lineages. Copyright © 2010 Elsevier B.V. All rights reserved.
Viking Lander image analysis of Martian atmospheric dust
NASA Technical Reports Server (NTRS)
Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.
1995-01-01
We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977, 1979) by deriving more accurate brightness closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius r(sub eff) is found to be 1.85 +/- 0.3 micrometers at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 micrometers at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance nu(sub eff) of the size distribution is equal to 0.5 +/- 0.2 micrometers. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollak et al. (1977, 1979) estimates.
Viking Lander image analysis of Martian atmospheric dust
NASA Technical Reports Server (NTRS)
Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.
1995-01-01
We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977,1979) by deriving more accurate brightnesses closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius (r(sub eff)) is found to be 1.85 +/- 0.3 microns at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 microns at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance (nu(eff)) of the size distribution is equal to 0.5 +/- 0.2 microns. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollack et al. (1977,1979) estimates.
Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L
2015-12-30
Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ozen, Murat; Guler, Murat
2014-02-01
Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.
Characterizations of particle size distribution of the droplets exhaled by sneeze
Han, Z. Y.; Weng, W. G.; Huang, Q. Y.
2013-01-01
This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed. PMID:24026469
Finite-size analysis of a continuous-variable quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leverrier, Anthony; Grosshans, Frederic; Grangier, Philippe
2010-06-15
The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully securemore » secret keys in the finite-size scenario, over distances larger than 50 km.« less
Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2018-06-07
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, whichmore » may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation betweenmore » ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.« less
NASA Astrophysics Data System (ADS)
Baasch, B.; Müller, H.; von Dobeneck, T.
2018-07-01
In this work, we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine-learning techniques. Non-negative matrix factorization is used to determine grain-size end-members from sediment surface samples. Four end-members were found, which well represent the variety of sediments in the study area. A radial basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.
NASA Astrophysics Data System (ADS)
Baasch, B.; M"uller, H.; von Dobeneck, T.
2018-04-01
In this work we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine learning techniques. Nonnegative matrix factorisation is used to determine grain-size end-members from sediment surface samples. Four end-members were found which well represent the variety of sediments in the study area. A radial-basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.
Suspended sediment transport in an estuarine tidal channel within San Francisco Bay, California
Sternberg, R.W.; Cacchione, D.A.; Drake, D.E.; Kranck, K.
1986-01-01
Size distributions of the suspended sediment samples, estimates of particle settling velocity (??s), friction velocity (U*), and reference concentration (Ca) at z = 20 cm were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle sizes in the 4-11 ?? (62.5-0.5 ??m) size range with the reference concentration Ca at z = 20 cm (C??); (2) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf); and (3) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. An analysis was also carried out on the sensitivity of the suspended sediment distribution equation to deviations in the primary variables ??s, U*, and Ca. In addition, computations of mass flux were made in order to show vertical variations in mass flux for varying flow conditions. ?? 1986.
Study the fragment size distribution in dynamic fragmentation of laser shock loding tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu
2017-06-01
Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.
Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem
2016-08-06
We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.
NASA Astrophysics Data System (ADS)
Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.
2016-06-01
Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.
NASA Astrophysics Data System (ADS)
Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.
2012-12-01
Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.
NASA Astrophysics Data System (ADS)
Vasil'ev, E. N.
2018-04-01
Numerical simulation is performed for heat transfer in a heat distributer of a thermoelectric cooling system, which is located between the heat-loaded element and the thermoelectric module, for matching their sizes and for heat flux equalization. The dependences of the characteristic values of temperature and thermal resistance of the copper and aluminum heat distributer on its thickness and on the size of the heatloaded element. Comparative analysis is carried out for determining the effect of the thermal conductivity of the material and geometrical parameters on the heat resistance. The optimal thickness of the heat distributer depending on the size of the heat-loaded element is determined.
Spatial Distribution of Bed Particles in Natural Boulder-Bed Streams
NASA Astrophysics Data System (ADS)
Clancy, K. F.; Prestegaard, K. L.
2001-12-01
The Wolman pebble count is used to obtain the size distribution of bed particles in natural streams. Statistics such as median particle size (D50) are used in resistance calculations. Additional information such as bed particle heterogeneity may also be obtained from the particle distribution, which is used to predict sediment transport rates (Hey, 1979), (Ferguson, Prestegaard, Ashworth, 1989). Boulder-bed streams have an extreme range of particles in the particle size distribution ranging from sand size particles to particles larger than 0.5-m. A study of a natural boulder-bed reach demonstrated that the spatial distribution of the particles is a significant factor in predicting sediment transport and stream bed and bank stability. Further experiments were performed to test the limits of the spatial distribution's effect on sediment transport. Three stream reaches 40-m in length were selected with similar hydrologic characteristics and spatial distributions but varying average size particles. We used a grid 0.5 by 0.5-m and measured four particles within each grid cell. Digital photographs of the streambed were taken in each grid cell. The photographs were examined using image analysis software to obtain particle size and position of the largest particles (D84) within the reach's particle distribution. Cross section, topography and stream depth were surveyed. Velocity and velocity profiles were measured and recorded. With these data and additional surveys of bankfull floods, we tested the significance of the spatial distributions as average particle size decreases. The spatial distribution of streambed particles may provide information about stream valley formation, bank stability, sediment transport, and the growth rate of riparian vegetation.
The application of a linear algebra to the analysis of mutation rates.
Jones, M E; Thomas, S M; Clarke, K
1999-07-07
Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.
Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis)
Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Winsor H. Lowe; Michael K. Schwartz
2015-01-01
Environmental DNA (eDNA) sampling has become a widespread approach for detecting aquatic animals with high potential for improving conservation biology. However, little research has been done to determine the size of particles targeted by eDNA surveys. In this study, we conduct particle distribution analysis of eDNA from a captive Brook Trout (Salvelinus fontinalis) in...
2017-01-01
Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847
NASA Astrophysics Data System (ADS)
Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.
2015-10-01
A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.
NASA Astrophysics Data System (ADS)
Huber, Franz J. T.; Will, Stefan; Daun, Kyle J.
2016-11-01
Inferring the size distribution of aerosolized fractal aggregates from the angular distribution of elastically scattered light is a mathematically ill-posed problem. This paper presents a procedure for analyzing Wide-Angle Light Scattering (WALS) data using Bayesian inference. The outcome is probability densities for the recovered size distribution and aggregate morphology parameters. This technique is applied to both synthetic data and experimental data collected on soot-laden aerosols, using a measurement equation derived from Rayleigh-Debye-Gans fractal aggregate (RDG-FA) theory. In the case of experimental data, the recovered aggregate size distribution parameters are generally consistent with TEM-derived values, but the accuracy is impaired by the well-known limited accuracy of RDG-FA theory. Finally, we show how this bias could potentially be avoided using the approximation error technique.
Mazzoli, Alida; Moriconi, Giacomo
2014-12-01
The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management. Copyright © 2014 Elsevier Ltd. All rights reserved.
A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations
NASA Technical Reports Server (NTRS)
Mulrooney, Mark K.; Matney, Mark J.
2008-01-01
We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.
Effect of mahlep on molecular weight distribution of cookie flour gluten proteins
USDA-ARS?s Scientific Manuscript database
Size Exclusion-High performance Chromatography (SE-HPLC) has been extensively used in molecular weight distribution analysis of wheat proteins. In this study the protein analysis was conducted on different cookie dough blends with different percentages of some ingredients. The mean chromatography ...
Modified Distribution-Free Goodness-of-Fit Test Statistic.
Chun, So Yeon; Browne, Michael W; Shapiro, Alexander
2018-03-01
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
NASA Astrophysics Data System (ADS)
Dietze, Michael; Fuchs, Margret; Kreutzer, Sebastian
2016-04-01
Many modern approaches of radiometric dating or geochemical fingerprinting rely on sampling sedimentary deposits. A key assumption of most concepts is that the extracted grain-size fraction of the sampled sediment adequately represents the actual process to be dated or the source area to be fingerprinted. However, these assumptions are not always well constrained. Rather, they have to align with arbitrary, method-determined size intervals, such as "coarse grain" or "fine grain" with partly even different definitions. Such arbitrary intervals violate principal process-based concepts of sediment transport and can thus introduce significant bias to the analysis outcome (i.e., a deviation of the measured from the true value). We present a flexible numerical framework (numOlum) for the statistical programming language R that allows quantifying the bias due to any given analysis size interval for different types of sediment deposits. This framework is applied to synthetic samples from the realms of luminescence dating and geochemical fingerprinting, i.e. a virtual reworked loess section. We show independent validation data from artificially dosed and subsequently mixed grain-size proportions and we present a statistical approach (end-member modelling analysis, EMMA) that allows accounting for the effect of measuring the compound dosimetric history or geochemical composition of a sample. EMMA separates polymodal grain-size distributions into the underlying transport process-related distributions and their contribution to each sample. These underlying distributions can then be used to adjust grain-size preparation intervals to minimise the incorporation of "undesired" grain-size fractions.
Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo
2016-01-01
The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.
Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo
2016-01-01
The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation. PMID:26986004
NASA Technical Reports Server (NTRS)
Shook, D. F.; Pierce, C. R.
1972-01-01
Proton recoil distributions were obtained by using organic liquid scintillators of different size. The measured distributions are converted to neutron spectra by differentiation analysis for comparison to the unfolded spectra of the largest scintillator. The approximations involved in the differentiation analysis are indicated to have small effects on the precision of neutron spectra measured with the smaller scintillators but introduce significant error for the largest scintillator. In the case of the smallest cylindrical scintillator, nominally 1.2 by 1.3 cm, the efficiency is shown to be insensitive to multiple scattering and to the angular distribution to the incident flux. These characteristics of the smaller scintillator make possible its use to measure scalar flux spectra within media high efficiency is not required.
Theoretical size distribution of fossil taxa: analysis of a null model.
Reed, William J; Hughes, Barry D
2007-03-22
This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family.
NASA Technical Reports Server (NTRS)
Murrow, P. J.; Rose, W. I., Jr.; Self, S.
1980-01-01
The total grain distribution of tephra from the eruption by the Fuego volcano in Guatemala on Oct. 14, 1974 was determined by grain size analysis. The region within each isopach has a grain distribution which was weighted proportionally to its percentage volume; the total distribution had a median grain size of 0.6 mm and a sorting coefficient of 2.3. The ash composed of fine particles did not fall in the volcano area as part of the recognizable tephra blanket; the eruption column reached well into the stratosphere to the height of 10-12 km above sea level, with mass flux rate estimated altitudes of 18-23 km
Ranjit, Suman; Dvornikov, Alexander; Dobrinskikh, Evgenia; Wang, Xiaoxin; Luo, Yuhuan; Levi, Moshe; Gratton, Enrico
2017-01-01
The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet. PMID:28717559
NASA Astrophysics Data System (ADS)
Gulliver, Eric A.
The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.
NASA Astrophysics Data System (ADS)
Tang, Hong; Lin, Jian-Zhong
2013-01-01
An improved anomalous diffraction approximation (ADA) method is presented for calculating the extinction efficiency of spheroids firstly. In this approach, the extinction efficiency of spheroid particles can be calculated with good accuracy and high efficiency in a wider size range by combining the Latimer method and the ADA theory, and this method can present a more general expression for calculating the extinction efficiency of spheroid particles with various complex refractive indices and aspect ratios. Meanwhile, the visible spectral extinction with varied spheroid particle size distributions and complex refractive indices is surveyed. Furthermore, a selection principle about the spectral extinction data is developed based on PCA (principle component analysis) of first derivative spectral extinction. By calculating the contribution rate of first derivative spectral extinction, the spectral extinction with more significant features can be selected as the input data, and those with less features is removed from the inversion data. In addition, we propose an improved Tikhonov iteration method to retrieve the spheroid particle size distributions in the independent mode. Simulation experiments indicate that the spheroid particle size distributions obtained with the proposed method coincide fairly well with the given distributions, and this inversion method provides a simple, reliable and efficient method to retrieve the spheroid particle size distributions from the spectral extinction data.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Meta-Analysis of Planetarium Efficacy Research
ERIC Educational Resources Information Center
Brazell, Bruce D.; Espinoza, Sue
2009-01-01
In this study, the instructional effectiveness of the planetarium in astronomy education was explored through a meta-analysis of 19 studies. This analysis resulted in a heterogeneous distribution of 24 effect sizes with a mean of +0.28, p less than 0.05. The variability in this distribution was not fully explained under a fixed effect model. As a…
Avalanche statistics from data with low time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.
Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less
Avalanche statistics from data with low time resolution
LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; ...
2016-11-22
Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less
Preparation and characterization of 'green' hybrid clay-dye nanopigments
NASA Astrophysics Data System (ADS)
Kaya, Mehmet; Onganer, Yavuz; Tabak, Ahmet
2015-03-01
We obtained a low cost and abundant nanopigment material composed of Rhodamine B (Rh-B) organic dye compound and Unye bentonite (UB) clay from Turkey. The characterization of the nanopigment was investigated using scanning electron microscopy (SEM), particle size distribution, powder X-ray diffraction (PXRD), Fourier transformed infra-red spectroscopy (FT-IR) and thermal analysis techniques. According to the result of texture analyses, we showed that the particle size distribution (d: 0.5-mean distribution) of Rh-B/UB nanopigment material was around 100 nm diameter. It was also demonstrated that the samples had a particle size around nm diameter in SEM images. As seen in the PXRD and thermal analysis, there is a difference in basal spacing by 1.46° (2θ) and a higher mass loss by 7.80% in the temperature range 200-500 °C compared to the raw bentonite.
NASA Astrophysics Data System (ADS)
Fang, H.; van der Zwaag, S.; van Dijk, N. H.
2018-07-01
The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.
Calcinations effect on the grain size distributions Al2O3 powder
NASA Astrophysics Data System (ADS)
Issa, Tarik Talib; Mohammed, Awattif A.; Kamil, Dunia
2012-09-01
Fine of Al2O3 Powder was calcined at 200°C, 400°C, 600°C, and 800°C respectively for 2 hours under static air, x-ray diffraction, optical microscope and grain size distribution were done to analysis the resulting data after calcinations process. Batter particle size was achieved at 800°C of value (0.486) μm, while batter particles mean value of size 7.18 μm was found at 400°C. SEM micrographs shows that the agglomerate particles were vanished due to the calcinations process.
Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E
2018-05-30
Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.
NASA Astrophysics Data System (ADS)
Pérez-López, R.; Legrand, D.; Garduño-Monroy, V. H.; Rodríguez-Pascua, M. A.; Giner-Robles, J. L.
2011-04-01
The Michoacán-Guanajuato Volcanic Field displays about 1040 monogenetic volcanoes mainly composed of basaltic cinder cones. This monogenetic volcanic field is the consequence of a dextral transtensive tectonic regime within the Transmexican Volcanic Belt (TMVB), the largest intra continental volcanic arc around the world, related to the subduction of the Rivera and Cocos plates underneath the North American Plate. We performed a statistical analysis for the size-distribution of the basal diameter (Wco) for cinder cones. Dataset used here was compiled by Hasenaka and Carmichael (1985). Monogenetic volcanoes obey a power-law very similar to the Gutenberg-Richter law for earthquakes, with respect to their size-distribution: log 10 ( N >= Wco ) = α - β log10( Wco), with β = 5.01 and α = 2.98. Therefore, the monogenetic volcanoes exhibit a (Wco) size-distribution empirical power-law, suggesting a self-organized criticality phenomenon.
NASA Astrophysics Data System (ADS)
Rykov, A. I.; Nomura, K.; Wang, J.
2013-08-01
We report on recent developments in the analysis of nuclear forward scattering (NFS) using the Fourier transformation of measured time spectra. In the frequency domain, it is shown that the lineshape is generally described by the convolution of two intensity factors. One of them is Lorentzian related to free decay. We derived the expressions for the second factor related to the Frenkel exciton polariton formed in Mössbauer media. For stray particles of a powder spread over a 2D surface the particle size distribution can be derived from Mössbauer thickness distribution. The thickness-related lineshape is deconvolved through sharpening the Fourier NFS spectra. The lineshapes in these sharpened spectra are theoretically expressed via the parameters of the particle size distributions. Through fitting the lineshapes with our theoretical expressions the particle size distribution parameters were determined.
A statistical analysis of North East Atlantic (submicron) aerosol size distributions
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.
2011-12-01
The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6% of the time), background clean marine category (occurring 26.1% of the time) and anthropogenic category (occurring 20% of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation), albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE) Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%), this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.
The morphology of cometary dust: Subunit size distributions down to tens of nanometres
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus
2017-04-01
The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi, E-mail: tsuyoshi.terai@nao.ac.jp
Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s{sup –1}. We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficientmore » sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids.« less
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
Beekman, Alice; Shan, Daxian; Ali, Alana; Dai, Weiguo; Ward-Smith, Stephen; Goldenberg, Merrill
2005-04-01
This study evaluated the effect of the imaginary component of the refractive index on laser diffraction particle size data for pharmaceutical samples. Excipient particles 1-5 microm in diameter (irregular morphology) were measured by laser diffraction. Optical parameters were obtained and verified based on comparison of calculated vs. actual particle volume fraction. Inappropriate imaginary components of the refractive index can lead to inaccurate results, including false peaks in the size distribution. For laser diffraction measurements, obtaining appropriate or "effective" imaginary components of the refractive index was not always straightforward. When the recommended criteria such as the concentration match and the fit of the scattering data gave similar results for very different calculated size distributions, a supplemental technique, microscopy with image analysis, was used to decide between the alternatives. Use of effective optical parameters produced a good match between laser diffraction data and microscopy/image analysis data. The imaginary component of the refractive index can have a major impact on particle size results calculated from laser diffraction data. When performed properly, laser diffraction and microscopy with image analysis can yield comparable results.
NASA Astrophysics Data System (ADS)
Matsubara, Yoshitsugu; Musashi, Yasuo
2017-12-01
The purpose of this study is to explain fluctuations in email size. We have previously investigated the long-term correlations between email send requests and data flow in the system log of the primary staff email server at a university campus, finding that email size frequency follows a power-law distribution with two inflection points, and that the power-law property weakens the correlation of the data flow. However, the mechanism underlying this fluctuation is not completely understood. We collected new log data from both staff and students over six academic years and analyzed the frequency distribution thereof, focusing on the type of content contained in the emails. Furthermore, we obtained permission to collect "Content-Type" log data from the email headers. We therefore collected the staff log data from May 1, 2015 to July 31, 2015, creating two subdistributions. In this paper, we propose a model to explain these subdistributions, which follow log-normal-like distributions. In the log-normal-like model, email senders -consciously or unconsciously- regulate the size of new email sentences according to a normal distribution. The fitting of the model is acceptable for these subdistributions, and the model demonstrates power-law properties for large email sizes. An analysis of the length of new email sentences would be required for further discussion of our model; however, to protect user privacy at the participating organization, we left this analysis for future work. This study provides new knowledge on the properties of email sizes, and our model is expected to contribute to the decision on whether to establish upper size limits in the design of email services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha
2014-10-28
For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, evenmore » though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.« less
Gienger, Jonas; Bär, Markus; Neukammer, Jörg
2018-01-10
A method is presented to infer simultaneously the wavelength-dependent real refractive index (RI) of the material of microspheres and their size distribution from extinction measurements of particle suspensions. To derive the averaged spectral optical extinction cross section of the microspheres from such ensemble measurements, we determined the particle concentration by flow cytometry to an accuracy of typically 2% and adjusted the particle concentration to ensure that perturbations due to multiple scattering are negligible. For analysis of the extinction spectra, we employ Mie theory, a series-expansion representation of the refractive index and nonlinear numerical optimization. In contrast to other approaches, our method offers the advantage to simultaneously determine size, size distribution, and spectral refractive index of ensembles of microparticles including uncertainty estimation.
Chenglin, L.; Charpentier, R.R.
2010-01-01
The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Lane, Rebecca E.; Korbie, Darren; Anderson, Will; Vaidyanathan, Ramanathan; Trau, Matt
2015-01-01
Exosomes are vesicles which have garnered interest due to their diagnostic and therapeutic potential. Isolation of pure yields of exosomes from complex biological fluids whilst preserving their physical characteristics is critical for downstream applications. In this study, we use 100 nm-liposomes from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol as a model system as a model system to assess the effect of exosome isolation protocols on vesicle recovery and size distribution using a single-particle analysis method. We demonstrate that liposome size distribution and ζ-potential are comparable to extracted exosomes, making them an ideal model for comparison studies. Four different purification protocols were evaluated, with liposomes robustly isolated by three of them. Recovered yields varied and liposome size distribution was unaltered during processing, suggesting that these protocols do not induce particle aggregation. This leads us to conclude that the size distribution profile and characteristics of vesicles are stably maintained during processing and purification, suggesting that reports detailing how exosomes derived from tumour cells differ in size to those from normal cells are reporting a real phenomenon. However, we hypothesize that larger particles present in most purified exosome samples represent co-purified contaminating non-exosome debris. These isolation techniques are therefore likely nonspecific and may co-isolate non-exosome material of similar physical properties.
Kornilov, Oleg; Toennies, J Peter
2015-02-21
The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.
Reliable and More Powerful Methods for Power Analysis in Structural Equation Modeling
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun
2017-01-01
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Sample size determination for mediation analysis of longitudinal data.
Pan, Haitao; Liu, Suyu; Miao, Danmin; Yuan, Ying
2018-03-27
Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
Random-growth urban model with geographical fitness
NASA Astrophysics Data System (ADS)
Kii, Masanobu; Akimoto, Keigo; Doi, Kenji
2012-12-01
This paper formulates a random-growth urban model with a notion of geographical fitness. Using techniques of complex-network theory, we study our system as a type of preferential-attachment model with fitness, and we analyze its macro behavior to clarify the properties of the city-size distributions it predicts. First, restricting the geographical fitness to take positive values and using a continuum approach, we show that the city-size distributions predicted by our model asymptotically approach Pareto distributions with coefficients greater than unity. Then, allowing the geographical fitness to take negative values, we perform local coefficient analysis to show that the predicted city-size distributions can deviate from Pareto distributions, as is often observed in actual city-size distributions. As a result, the model we propose can generate a generic class of city-size distributions, including but not limited to Pareto distributions. For applications to city-population projections, our simple model requires randomness only when new cities are created, not during their subsequent growth. This property leads to smooth trajectories of city population growth, in contrast to other models using Gibrat’s law. In addition, a discrete form of our dynamical equations can be used to estimate past city populations based on present-day data; this fact allows quantitative assessment of the performance of our model. Further study is needed to determine appropriate formulas for the geographical fitness.
Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii
2016-12-01
The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.
Theoretical size distribution of fossil taxa: analysis of a null model
Reed, William J; Hughes, Barry D
2007-01-01
Background This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. Model New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. Conclusion The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family. PMID:17376249
Gavino, V C; Milo, G E; Cornwell, D G
1982-03-01
Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.
2011-01-01
Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.
A statistical analysis of North East Atlantic (submicron) aerosol size distributions
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.
2011-08-01
The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical Cluster~analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75 % throughout the year. By applying the Hartigan-Wong k-Means method, 12 Clusters were identified as systematically occurring and these 12 Clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6 % of the time), background clean marine category (occurring 26.1 % of the time) and anthropogenic category (occurring 20 % of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less that 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine characteristic is a clear bimodality in the size distribution, although it should be noted that either the Aitken mode or the Accumulation mode may dominate the number concentration. By contrast, the continentally-influenced size distributions are generally more mono-modal, albeit with traces of bi-modality. The open ocean category occurs more often during May, June and July, corresponding with the N. E. Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6 %), this suggests that the marine biota is an important source of new aerosol particles in N. E. Atlantic Air.
Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C
2013-06-01
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R(2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).
ERIC Educational Resources Information Center
Shieh, Gwowen
2006-01-01
This paper considers the problem of analysis of correlation coefficients from a multivariate normal population. A unified theorem is derived for the regression model with normally distributed explanatory variables and the general results are employed to provide useful expressions for the distributions of simple, multiple, and partial-multiple…
Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.
Fishler, Rami; Verhoeven, Frank; de Kruijf, Wilbur; Sznitman, Josué
2018-02-15
We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique. Copyright © 2017 Elsevier B.V. All rights reserved.
Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA
Remo, Jonathan; Heine, Ruben A.; Ickes, Brian
2016-01-01
In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.
NASA Astrophysics Data System (ADS)
Wongpratat, Unchista; Maensiri, Santi; Swatsitang, Ekaphan
2016-09-01
Effect of cations distribution upon EXAFS analysis on magnetic properties of Co1-xNixFe2O4 (x = 0, 0.25, 0.50, 0.75 and 1.0) nanoparticles prepared by the hydrothermal method in aloe vera extract solution were studied. XRD analysis confirmed a pure phase of cubic spinel ferrite of all samples. Changes in lattice parameter and particle size depended on the Ni content with partial substitution and site distributions of Co2+, Ni2+ ions of different ionic radii at both tetrahedral and octahedral sites in the crystal structure. Particle sizes of samples estimated by TEM images were found to be in the range of 10.87-62.50 nm. The VSM results at room temperature indicated the ferrimagnetic behavior of all samples. Superparamagnetic behavior was observed in NiFe2O4 sample. The coercivity (Hc) and remanance (Mr) values were related to the particle sizes of samples. The saturation magnetization (Ms) was increased by a factor of 1.4 to a value of 57.57 emu/g, whereas the coercivity (Hc) was decreased by a factor of 20 to a value of 63.15 Oe for a sample with x = 0.75. In addition to the cations distribution, the increase of aspect ratio (surface to volume ratio) due to the decrease of particle size could significantly affect the magnetic properties of the materials.
Large-Scale Weibull Analysis of H-451 Nuclear- Grade Graphite Specimen Rupture Data
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Walker, Andrew; Baker, Eric H.; Murthy, Pappu L.; Bratton, Robert L.
2012-01-01
A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens excised from a single extruded graphite log. Strength variation was compared with specimen location, size, and orientation relative to the parent body. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and to investigate the strength distribution. The CARES/Life and WeibPar codes were used to investigate issues regarding the size effect, Weibull parameter consistency, and nonlinear stress-strain response. Overall, the Weibull distribution described the behavior of the pooled data very well. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV (Gen IV) high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Extensive appendixes are provided with this report to show all aspects of the rupture data and analytical results.
NASA Astrophysics Data System (ADS)
Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.
2018-01-01
Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.
Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A
2015-06-15
Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of composition of grains of debris flow on its impact force
NASA Astrophysics Data System (ADS)
Tang, jinbo; Hu, Kaiheng; Cui, Peng
2017-04-01
Debris flows compose of solid material with broad size distribution from fine sand to boulders. Impact force imposed by debris flows is a very important issue for protection engineering design and strongly influenced by their grain composition. However, this issue has not been studied in depth and the effects of grain composition not been considered in the calculation of the impact force. In this present study, the small-scale flume experiments with five kinds of compositions of grains for debris flow were carried out to study the effect of the composition of grains of debris flow on its impact force. The results show that the impact force of debris flow increases with the grain size, the hydrodynamic pressure of debris flow is calibrated based on the normalization parameter dmax/d50, in which dmax is the maximum size and d50 is the median size. Furthermore, a log-logistic statistic distribution could be used to describe the distribution of magnitude of impact force of debris flow, where the mean and the variance of the present distribution increase with grain size. This distribution proposed in the present study could be used to the reliability analysis of structures impacted by debris flow.
NASA Technical Reports Server (NTRS)
Kuriyan, J. G.; Phillips, D. H.; Willson, R. C.
1974-01-01
This paper describes the theoretical analysis that is required to infer, from polarimeter measurements of skylight, the size distribution, refractive index and abundance of particulates in the atmosphere. To illustrate the viability of the method, some data obtained at UCLA is analyzed and the atmospheric parameters are derived. The explicit demonstration of the redundancy in the description of aerosol distributions suggests that radiation field measurements will not uniquely determine the modal radius of the size distribution. In spite of this nonuniqueness information useful to heat budget calculations can be derived.
Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi
2014-01-01
Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
Homogeneous crystal nucleation in Ni droplets
NASA Astrophysics Data System (ADS)
Kožíšek, Zdeněk; Demo, Pavel
2017-10-01
Crystal nucleation kinetics is often represented by induction times or metastable zone widths (Kulkarni et al., 2013; Bokeloh et al., 2011). Repeating measurements of supercooling or time delay, at which phase transition is detected, are statistically processed to determine the so-called survivorship function, from which nucleation rate is computed. The size distribution of nuclei is difficult to measure near the critical size directly, and it is not clear which amount of nuclei is formed at the moment when the phase transition is detected. In the present paper, kinetic nucleation equations are solved for the crystal nucleation in Ni liquid droplet to determine the number of nuclei formed within a considered system. Analysis of supercooling experimental data, based on the classical nucleation theory CNT), computes appropriate values of the nucleation rate. However, CNT underestimates the number of nuclei F (F ≪ 1 for supercritical sizes). Taking into account the dependence of the surface energy on nucleus size to data analysis overcomes this discrepancy and leads to reasonable values of the size distribution of nuclei.
Development, primacy, and systems of cities.
El-shakhs, S
1972-10-01
The relationship between the evolutionary changes in the city size distribution of nationally defined urban systems and the process of socioeconomic development is examined. Attention is directed to the problems of defining and measuring changes in city size distributions, using the results to test empirically the relationship of such changes to the development process. Existing theoretical structures and empirical generalizations which have tried to explain or to describe, respectively, the hierarchical relationships of cities are represented by central place theory and rank size relationships. The problem is not that deviations exist but that an adequate definition is lacking of urban systems on the 1 hand, and a universal measure of city size distribution, which could be applied to any system irrespective of its level of development, on the other. The problem of measuring changes in city size distributions is further compounded by the lack of sufficient reliable information about different systems of cities for the purposes of empirical comparative analysis. Changes in city size distributions have thus far been viewed largely within the framework of classic equilibrium theory. A more differentiated continuum of the development process should replace the bioplar continuum of underdeveloped developed countries in relating changes in city size distribution with development. Implicit in this distinction is the view that processes which influence spatial organization during the early formative stages of development are inherently different from those operating during the more advanced stages. 2 approaches were used to examine the relationship between national levels of development and primacy: a comparative analysis of a large number of countries at a given point in time; and a historical analysis of a limited sample of 2 advanced countries, the US and Great Britain. The 75 countries included in this study cover a wide range of characteristics. The study found a significant association between the degree of primacy of distributions of cities and their socioeconomic level of development; and the form of the primacy curve (or its evolution with development) seemed to follow a consistent pattern in which the peak of primacy obtained during the stages of socioeconomic transition with countries being less primate in either direction from that peak. This pattern is the result of 2 reverse influences of the development process on the spatial structure of countries--centralization and concentration beginning with the rise of cities and a decentralization and spread effect accompanying the increasing influence and importance of the periphery and structural changes in the pattern of authority.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.
1985-01-01
The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.
NASA Astrophysics Data System (ADS)
Sukhanov, Ivan I.; Ditenberg, Ivan A.
2017-12-01
The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.
Asmeda, R; Noorlaila, A; Norziah, M H
2016-01-15
This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David
2018-05-01
In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.
Elemental composition and size distribution of particulates in Cleveland, Ohio
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.
1975-01-01
Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.
Elemental composition and size distribution of particulates in Cleveland, Ohio
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.
1975-01-01
Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.
Potential source identification for aerosol concentrations over a site in Northwestern India
NASA Astrophysics Data System (ADS)
Payra, Swagata; Kumar, Pramod; Verma, Sunita; Prakash, Divya; Soni, Manish
2016-03-01
The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 μm) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 μm). Particles smaller than 0.8 μm (at aerodynamic size) constitute ~ 99% of all particles in winter and ~ 90% of particles in summer season. However, particles greater than 2 μm contribute ~ 3% and ~ 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from Thar Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 μm is the key contributor in winter for higher ANC.
A possible divot in the Kuiper belt's scattered-object size distribution
NASA Astrophysics Data System (ADS)
Shankman, C.; Kavelaars, J.; Gladman, B.; Petit, J.
2014-07-01
The formation and evolution history of the Solar System, while not directly accessible, has measurable signatures in the present-day size distributions of the Trans-Neptunian Object (TNO) populations. The form of the size distribution is modelled as a power law with number going as size to some characteristic slope. Recent works have shown that a single power law does not match the observations across all sizes; the power law breaks to a different form [1, 2, 3]. The large- size objects record the accretion history, while the small-size objects record the collision history. The changes of size-distribution shape and slope as one moves from 'large' to 'medium' to 'small' KBOs are the signature needed to constrain the formation and collision history of the Solar System. The scattering TNOs are those TNOs undergoing strong (scattering) interactions Neptune. The scattering objects can come to pericentre in the giant planet region. This close-in pericentre passage allows for the observation of smaller objects, and thus for the constraint of the small-size end of the size distribution. Our recent analysis of the Canada France Ecliptic Plane Survey's (CFEPS) scattering objects revealed an exciting potential form for the scattering object size distribution - a divot (see Figure). Our divot (a sharp drop in the number of objects per unit size which then returns at a potentially different slope) matches our observations well and can simultaneously explain observed features in other inclined (so-called "hot") Kuiper Belt populations. In this scenario all of the hot populations would share the same source and have been implanted in the outer solar system through scattering processes. If confirmed, our divot would represent a new exciting paradigm for the formation history of the Kuiper Belt. Here we present the results of an extension of our previous work to include a new, deeper, Kuiper Belt survey. By the addition of two new faint scattering objects from this survey which, in tandem with the full characterizations of the survey's biases (acting like non- detections limits), we better constrain the form of the scattering object size distribution.
Vertical distribution of the prokaryotic cell size in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.
2012-12-01
Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.
Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2017-04-01
Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.
Hewett, P
1995-02-01
Particle size distributions were measured for fumes from mild steel (MS) and stainless steel (SS); shielded metal arc welding (SMAW) and gas metal arc welding (GMAW) consumables. Up to six samples of each type of fume were collected in a test chamber using a micro-orifice uniform deposit (cascade) impactor. Bulk samples were collected for bulk fume density and specific surface area analysis. Additional impactor samples were collected using polycarbonate substrates and analyzed for elemental content. The parameters of the underlying mass distributions were estimated using a nonlinear least squares analysis method that fits a smooth curve to the mass fraction distribution histograms of all samples for each type of fume. The mass distributions for all four consumables were unimodal and well described by a lognormal distribution; with the exception of the GMAW-MS and GMAW-SS comparison, they were statistically different. The estimated mass distribution geometric means for the SMAW-MS and SMAW-SS consumables were 0.59 and 0.46 micron aerodynamic equivalent diameter (AED), respectively, and 0.25 micron AED for both the GMAW-MS and GMAW-SS consumables. The bulk fume densities and specific surface areas were similar for the SMAW-MS and SMAW-SS consumables and for the GMAW-MS and GMAW-SS consumables, but differed between SMAW and GMAW. The distribution of metals was similar to the mass distributions. Particle size distributions and physical properties of the fumes were considerably different when categorized by welding method. Within each welding method there was little difference between MS and SS fumes.
Aluminium alloys in municipal solid waste incineration bottom ash.
Hu, Yanjun; Rem, Peter
2009-05-01
With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.
Analysis of Noise Mechanisms in Cell-Size Control.
Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai
2017-06-06
At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and heavy-tailed cell-size distributions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki
2006-07-01
The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less
Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan
2015-12-17
Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.
Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan
2015-01-01
Nano-sized TiCx/2009Al composites (with 5, 7, and 9 vol% TiCx) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiCx particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiCx particles in 2009Al as well as the tensile properties of nano-sized TiCx/2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiCx particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiCx/2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiCx/2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiCx particles and tensile properties of composites. PMID:28793749
A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu
2007-01-01
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…
Variability in group size and the evolution of collective action.
Peña, Jorge; Nöldeke, Georg
2016-01-21
Models of the evolution of collective action typically assume that interactions occur in groups of identical size. In contrast, social interactions between animals occur in groups of widely dispersed size. This paper models collective action problems as two-strategy multiplayer games and studies the effect of variability in group size on the evolution of cooperative behavior under the replicator dynamics. The analysis identifies elementary conditions on the payoff structure of the game implying that the evolution of cooperative behavior is promoted or inhibited when the group size experienced by a focal player is more or less variable. Similar but more stringent conditions are applicable when the confounding effect of size-biased sampling, which causes the group-size distribution experienced by a focal player to differ from the statistical distribution of group sizes, is taken into account. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Xue; Salzano, Giuseppina; Zhang, Jiwen; Gref, Ruxandra
2017-01-01
Supramolecular cyclodextrin-based nanoparticles (CD-NPs) mediated by host-guest interactions have gained increased popularity because of their "green" and simple preparation procedure, as well as their versatility in terms of inclusion of active molecules. Herein, we showed that original CD-NPs of around 100 nm are spontaneously formed in water, by mixing 2 aqueous solutions of (1) a CD polymer and (2) dextran grafted with benzophenone moieties. For the first time, CD-NPs were instantaneously produced in a microfluidic interaction chamber by mixing 2 aqueous solutions of neutral polymers, in the absence of organic solvents. Whatever the mixing conditions, CD-NPs with narrow size distributions were immediately formed upon contact of the 2 polymeric solutions. In situ size measurements showed that the CD-NPs were spontaneously formed. Nanoparticle tracking analysis was used to individually follow the CD-NPs in their Brownian motions, to gain insights on their size distribution, concentration, and stability on extreme dilution. Nanoparticle tracking analysis allowed to establish that despite their non-covalent nature, and the CD-NPs were remarkably stable in terms of concentration and size distribution, even on extreme dilution (concentrations as low as 100 ng/mL). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornilov, Oleg; Toennies, J. Peter
The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.9–1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A k{sup a} e{sup −bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{submore » 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup −(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.« less
NASA Astrophysics Data System (ADS)
Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert
2017-08-01
Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.
Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik
2017-12-15
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Maslov, Igor A.
2018-03-01
Polarization measurements of the twilight background with Wide-Angle Polarization Camera (WAPC) are used to detect the depolarization effect caused by stratospheric aerosol near the altitude of 20 km. Based on a number of observations in central Russia in spring and summer 2016, we found the parameters of lognormal size distribution of aerosol particles. This confirmed the previously published results of the colorimetric method as applied to the same twilights. The mean particle radius (about 0.1 micrometers) and size distribution are also in agreement with the recent data of in situ and space-based remote sensing of stratospheric aerosol. Methods considered here provide two independent techniques of the stratospheric aerosol study based on the twilight sky analysis.
NASA Astrophysics Data System (ADS)
Durda, Daniel D.; Flynn, George J.; Sandel, L. Erica; Strait, Melissa M.
2007-01-01
We present mass-frequency data for fragments from the impact disruption of four chondritic meteorites, extending to masses several orders of magnitude smaller the mass-frequency data that are usually measured in similar impact experiments. Masses of mm- to cm-scale fragments were determined by directly weighing debris collected from the floor of the Ames Vertical Gun Range impact chamber. Masses of sub-mm to dust-size fragments were determined from analysis of foil penetration data. The mass-frequency distributions display a range of morphologies ranging from nearly linear power-law distributions to `broken' power laws with progressively shallower slopes at smaller fragment masses, apparently dependent on the magnitude of the impact specific energy.
Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone
NASA Astrophysics Data System (ADS)
Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter
2016-09-01
Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.
Comparing particle-size distributions in modern and ancient sand-bed rivers
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.
2011-12-01
Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.
Nondestructive ultrasonic characterization of armor grade silicon carbide
NASA Astrophysics Data System (ADS)
Portune, Andrew Richard
Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy exhibited favorable agreement between predicted and observed distributions. Developed techniques were applied to large sample areas using scanning acoustic spectroscopy to map variations in the size distribution and concentration of grains and solid inclusions within the bulk microstructure. The experiments performed in this thesis form the foundation of a novel characterization technique capable of mapping variations in sample composition which could be extended to a wide range of dense polycrystalline heterogeneous materials.
Nanodosimetry of electrons: analysis by experiment and modelling.
Bantsar, A; Pszona, S
2015-09-01
Nanodosimetry experiments for high-energy electrons from a (131)I radioactive source interacting with gaseous nitrogen with sizes on a scale equivalent to the mass per area of a segment of DNA and nucleosome are described. The discrete ionisation cluster-size distributions were measured in experiments carried out with the Jet Counter. The experimental results were compared with those obtained by Monte Carlo modelling. The descriptors of radiation damages have been derived from the data obtained from ionisation cluster-size distributions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of sulfate and carbonate minerals on particle-size distributions in arid soils
Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.
2014-01-01
Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.
Detection of a Divot in the Scattering Population's Size Distribution
NASA Astrophysics Data System (ADS)
Shankman, Cory; Gladman, B.; Kaib, N.; Kavelaars, J.; Petit, J.
2012-10-01
Via joint analysis of the calibrated Canada France Ecliptic Place Survey (CFEPS, Petit et al 2011, AJ 142, 131), which found scattering Kuiper Belt objects, and models of their orbital distribution, we show that there should be enough kilometer-scale scattering objects to supply the Jupiter Family Comets (JFCs). Surprisingly, our analysis favours a divot (an abrupt drop and then recovery) in the size distribution at a diameter of 100 km, which results in a temporary flattening of the cumulative size distribution until it returns to a collisional equilibrium slope. Using the absolutely calibrated CFEPS survey we estimate that there are 2 x 10**9 scattering objects with H_g < 18, which is sufficient to provide the currently estimated JFC resupply rate. We also find that the primordial disk from which the scattering objects came must have had a "hot" initial inclination distribution before the giant planets scattered it out. We find that a divot, in the absolute magnitude number distribution, with a bright-end logarithmic slope of 0.8, a drop at a g-band H magnitude of 9, and a faint side logarithmic slope of 0.5 satisfies our data and simultaneously explains several existing nagging puzzles about Kuiper Belt luminosity functions (see Gladman et al., this meeting). Multiple explanations of how such a feature could have arisen will be discussed. This research was supported by the Natural Sciences and Engineering Research Council of Canada.
Mass size distribution of particle-bound water
NASA Astrophysics Data System (ADS)
Canepari, S.; Simonetti, G.; Perrino, C.
2017-09-01
The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).
Callcut, S; Knowles, J C
2002-05-01
Glass-reinforced hydroxyapatite (HA) foams were produced using reticulated foam technology using a polyurethane template with two different pore size distributions. The mechanical properties were evaluated and the structure analyzed through density measurements, image analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the mechanical properties, the use of a glass significantly improved the ultimate compressive strength (UCS) as did the use of a second coating. All the samples tested showed the classic three regions characteristic of an elastic brittle foam. From the density measurements, after application of a correction to compensate for the closed porosity, the bulk and apparent density showed a 1 : 1 correlation. When relative bulk density was plotted against UCS, a non-linear relationship was found characteristic of an isotropic open celled material. It was found by image analysis that the pore size distribution did not change and there was no degradation of the macrostructure when replicating the ceramic from the initial polyurethane template during processing. However, the pore size distributions did shift to a lower size by about 0.5 mm due to the firing process. The ceramic foams were found to exhibit mechanical properties typical of isotropic open cellular foams.
The influence of wildfires on aerosol size distributions in rural areas.
Alonso-Blanco, E; Calvo, A I; Fraile, R; Castro, A
2012-01-01
The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time--before, during, and after the passing of the smoke plume from the wildfires--shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm.
The Influence of Wildfires on Aerosol Size Distributions in Rural Areas
Alonso-Blanco, E.; Calvo, A. I.; Fraile, R.; Castro, A.
2012-01-01
The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time—before, during, and after the passing of the smoke plume from the wildfires—shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm. PMID:22629191
Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers.
Gustafsson, Simon; Mihranyan, Albert
2016-06-08
The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration.
The Future of Small- and Medium-Sized Communities in the Prairie Region.
ERIC Educational Resources Information Center
Wellar, Barry S., Ed.
Four papers are featured. The first is a statistical overview and analysis of past, present and future happenings to small communities in the Region; it focuses on two indicators: (1) population growth or declining community class size and, (2) the changing distribution of commercial outlets by community class size. The other three papers report…
NASA Astrophysics Data System (ADS)
García, T.; Velo, A.; Fernandez-Bastero, S.; Gago-Duport, L.; Santos, A.; Alejo, I.; Vilas, F.
2005-02-01
This paper examines the linkages between the space-distribution of grain sizes and the relative percentage of the amount of mineral species that result from the mixing process of siliciclastic and carbonate sediments at the Ria de Vigo (NW of Spain). The space-distribution of minerals was initially determined, starting from a detailed mineralogical study based on XRD-Rietveld analysis of the superficial sediments. Correlations between the maps obtained for grain sizes, average fractions of either siliciclastic or carbonates, as well as for individual-minerals, were further stabilised. From this analysis, spatially organized patterns were found between carbonates and several minerals involved in the siliciclastic fraction. In particular, a coupled behaviour is observed between plagioclases and carbonates, in terms of their relative percentage amounts and the grain size distribution. In order to explain these results a conceptual model is proposed, based on the interplay between chemical processes at the seawater-sediment interface and hydrodynamical factors. This model suggests the existence of chemical control mechanisms that, by selective processes of dissolution-crystallization, constrain the mixed environment's long-term evolution, inducing the formation of self-organized sedimentary patterns.
NASA Astrophysics Data System (ADS)
Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Iyetomi, Hiroshi; Souma, Wataru; Yoshikawa, Hiroshi
2017-07-01
Preface; Foreword, Acknowledgements, List of tables; List of figures, prologue, 1. Introduction: reconstructing macroeconomics; 2. Basic concepts in statistical physics and stochastic models; 3. Income and firm-size distributions; 4. Productivity distribution and related topics; 5. Multivariate time-series analysis; 6. Business cycles; 7. Price dynamics and inflation/deflation; 8. Complex network, community analysis, visualization; 9. Systemic risks; Appendix A: computer program for beginners; Epilogue; Bibliography; Index.
Scaling of size distributions of C60 and C70 fullerene surface islands
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.; Berdnikov, Y.; Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.
2017-06-01
We present experimental data and a theoretical analysis for the size distributions of C60 and C70 surface islands deposited onto In-modified Si(111)√3 × √3-Au surface under different conditions. We show that both fullerene islands feature an analytic Vicsek-Family scaling shape where the scaled size distributions are given by a power law times an incomplete beta-function with the required normalization. The power exponent in this distribution corresponds to the fractal shape of two-dimensional islands, confirmed by the experimentally observed morphologies. Quite interestingly, we do not see any significant difference between C60 and C70 fullerenes in terms of either scaling parameters or temperature dependence of the diffusion constants. In particular, we deduce the activation energy for surface diffusion of ED = 140 ± 10 meV for both types of fullerenes.
Global time-size distribution of volcanic eruptions on Earth.
Papale, Paolo
2018-05-01
Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.
Neutron - Alpha irradiation response of superheated emulsion detectors
NASA Astrophysics Data System (ADS)
Felizardo, M.; Morlat, T.; Girard, T. A.; Kling, A.; Fernandes, A. C.; Marques, J. G.; Carvalho, F.; Ramos, A. R.
2017-08-01
We report new experimental investigations of the response of single superheated emulsion detectors with small droplet (<30 μm radii) size distributions to both α- and neutron irradiations. Analysis of the results in terms of the underlying detector physics yields a toy model which reasonably reproduces the observations, and identifies the initial energy of the α in the liquid and distribution of droplet sizes as primarily responsible for the detector capacity to distinguish between nuclear recoil and α events.
NASA Astrophysics Data System (ADS)
Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.
2017-03-01
The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.
Comparison of Sample Size by Bootstrap and by Formulas Based on Normal Distribution Assumption.
Wang, Zuozhen
2018-01-01
Bootstrapping technique is distribution-independent, which provides an indirect way to estimate the sample size for a clinical trial based on a relatively smaller sample. In this paper, sample size estimation to compare two parallel-design arms for continuous data by bootstrap procedure are presented for various test types (inequality, non-inferiority, superiority, and equivalence), respectively. Meanwhile, sample size calculation by mathematical formulas (normal distribution assumption) for the identical data are also carried out. Consequently, power difference between the two calculation methods is acceptably small for all the test types. It shows that the bootstrap procedure is a credible technique for sample size estimation. After that, we compared the powers determined using the two methods based on data that violate the normal distribution assumption. To accommodate the feature of the data, the nonparametric statistical method of Wilcoxon test was applied to compare the two groups in the data during the process of bootstrap power estimation. As a result, the power estimated by normal distribution-based formula is far larger than that by bootstrap for each specific sample size per group. Hence, for this type of data, it is preferable that the bootstrap method be applied for sample size calculation at the beginning, and that the same statistical method as used in the subsequent statistical analysis is employed for each bootstrap sample during the course of bootstrap sample size estimation, provided there is historical true data available that can be well representative of the population to which the proposed trial is planning to extrapolate.
NASA Technical Reports Server (NTRS)
Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.
2006-01-01
A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic properties of particles within a size distribution mode that accompanied changes in the sizes of those particles. This model was used to examine three specific cases in which the sampled aerosol evolved slowly over a period of hours or days.
Dispersion and sampling of adult Dermacentor andersoni in rangeland in Western North America.
Rochon, K; Scoles, G A; Lysyk, T J
2012-03-01
A fixed precision sampling plan was developed for off-host populations of adult Rocky Mountain wood tick, Dermacentor andersoni (Stiles) based on data collected by dragging at 13 locations in Alberta, Canada; Washington; and Oregon. In total, 222 site-date combinations were sampled. Each site-date combination was considered a sample, and each sample ranged in size from 86 to 250 10 m2 quadrats. Analysis of simulated quadrats ranging in size from 10 to 50 m2 indicated that the most precise sample unit was the 10 m2 quadrat. Samples taken when abundance < 0.04 ticks per 10 m2 were more likely to not depart significantly from statistical randomness than samples taken when abundance was greater. Data were grouped into ten abundance classes and assessed for fit to the Poisson and negative binomial distributions. The Poisson distribution fit only data in abundance classes < 0.02 ticks per 10 m2, while the negative binomial distribution fit data from all abundance classes. A negative binomial distribution with common k = 0.3742 fit data in eight of the 10 abundance classes. Both the Taylor and Iwao mean-variance relationships were fit and used to predict sample sizes for a fixed level of precision. Sample sizes predicted using the Taylor model tended to underestimate actual sample sizes, while sample sizes estimated using the Iwao model tended to overestimate actual sample sizes. Using a negative binomial with common k provided estimates of required sample sizes closest to empirically calculated sample sizes.
Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision
Zupanc, Jernej; Drašler, Barbara; Boljte, Sabina; Kralj-Iglič, Veronika; Iglič, Aleš; Erdogmus, Deniz; Drobne, Damjana
2014-01-01
We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1–50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected. PMID:25426933
Spatial organization of surface nanobubbles and its implications in their formation process.
Lhuissier, Henri; Lohse, Detlef; Zhang, Xuehua
2014-02-21
We study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it. The precise correlation suggests that the nanobubbles grow by diffusion of the gas from the bulk rather than by diffusion of the gas adsorbed on the surface. Lastly, the size distribution of the nanobubbles is found to be well described by a log-normal distribution.
Sequential associative memory with nonuniformity of the layer sizes.
Teramae, Jun-Nosuke; Fukai, Tomoki
2007-01-01
Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities, termed "neuronal avalanches." Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these experimental findings, here we consider an associative memory model of binary neurons that stores sequences of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calculate the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an application of the analysis, we show how the present variability in sequential memory patterns degrades the power-law lifetime distribution of retrieved neural activities.
Adequacy of laser diffraction for soil particle size analysis
Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash
2017-01-01
Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis, and the empirical results of this study, suggest that deployment of laser diffraction as a standard test procedure can provide reliable results, provided consistent sample preparation is used. PMID:28472043
On sample size of the kruskal-wallis test with application to a mouse peritoneal cavity study.
Fan, Chunpeng; Zhang, Donghui; Zhang, Cun-Hui
2011-03-01
As the nonparametric generalization of the one-way analysis of variance model, the Kruskal-Wallis test applies when the goal is to test the difference between multiple samples and the underlying population distributions are nonnormal or unknown. Although the Kruskal-Wallis test has been widely used for data analysis, power and sample size methods for this test have been investigated to a much lesser extent. This article proposes new power and sample size calculation methods for the Kruskal-Wallis test based on the pilot study in either a completely nonparametric model or a semiparametric location model. No assumption is made on the shape of the underlying population distributions. Simulation results show that, in terms of sample size calculation for the Kruskal-Wallis test, the proposed methods are more reliable and preferable to some more traditional methods. A mouse peritoneal cavity study is used to demonstrate the application of the methods. © 2010, The International Biometric Society.
Visual accumulation tube for size analysis of sands
Colby, B.C.; Christensen, R.P.
1956-01-01
The visual-accumulation-tube method was developed primarily for making size analyses of the sand fractions of suspended-sediment and bed-material samples. Because the fundamental property governing the motion of a sediment particle in a fluid is believed to be its fall velocity. the analysis is designed to determine the fall-velocity-frequency distribution of the individual particles of the sample. The analysis is based on a stratified sedimentation system in which the sample is introduced at the top of a transparent settling tube containing distilled water. The procedure involves the direct visual tracing of the height of sediment accumulation in a contracted section at the bottom of the tube. A pen records the height on a moving chart. The method is simple and fast, provides a continuous and permanent record, gives highly reproducible results, and accurately determines the fall-velocity characteristics of the sample. The apparatus, procedure, results, and accuracy of the visual-accumulation-tube method for determining the sedimentation-size distribution of sands are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aushev, A A; Barinov, S P; Vasin, M G
2015-06-30
We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied bymore » alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)« less
A probabilistic fatigue analysis of multiple site damage
NASA Technical Reports Server (NTRS)
Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.
1994-01-01
The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.
NASA Astrophysics Data System (ADS)
Dierks, Karsten; Dieckmann, Matthias; Niederstrasser, Dirk; Schwartz, R.; Wegener, Alfred R.
1995-01-01
Laser light source powers of our instrument LEPOSIAR are minimized so that dynamic light scattering (DLS) measurements can be conducted with lowest intensity levels on human eye lenses (3.2 mW/cm2) within measurement times of 3 to 5 seconds. We describe an extension of DLS and an eye lens characterization along the optical axis (OA), revealing the molecular size ranges together with distributions found in lens regions parallel to the OA. The microstructures of various lens regions are separated by the analyzed radius distributions reflecting the visco-elastic properties of the eye lens. Detailed analysis and applied statistical categorization of results are described. The data obtained by DLS allow for an objective interpretation of opacity occurrences on molecular size range which are related to refraction anomalies. Apart from changes in color and fluorescence properties, the refractive anomalies can be assumed as the origin of the cataract. The bimodal radius distributions are characterized as a function of patient ages varying from 9 to 85 years. Our clinical study on 42 subjects proves a size decrease of the monomeric fraction with age, whereby their relative frequency of occurrence decreases. The larger polymeric radius fractions which are detected in lenses of all subjects increase with their age. An increase of protein polymer size is likely to be linked to the decrease of the (gamma) -crystallin fraction in old eye lens nuclei. Our preliminary analysis of clinical results is corresponding to the chemical gradients parallel to the OA of the lenses which are reported by O. Hockwin after examination on extracted eye lenses. The normalization of the lens densitometric data derived after Scheimpflug- photography against the protein size fraction analysis by DLS is performed. As a comparison mean between both techniques on identical eye lenses, an absorption corrected densitometry is conducted for the first time.
NASA Astrophysics Data System (ADS)
Li, Xiang; Jiang, Li; Hoa, Le Phuoc; Lyu, Yan; Xu, Tingting; Yang, Xin; Iinuma, Yoshiteru; Chen, Jianmin; Herrmann, Hartmut
2016-11-01
In this study, measurements of size-resolved sugar and nitrophenol concentrations and their distributions during Shanghai haze episodes were performed. The primary goal was to track their possible source categories and investigate the contribution of biological and biomass burning aerosols to urban haze events through regional transport. The results showed that levoglucosan had the highest concentration (40-852 ng m-3) followed by 4-nitrophenol (151-768 ng m-3), sucrose (38-380 ng m-3), 4-nitrocatechol (22-154 ng m-3), and mannitol (5-160 ng m-3). Size distributions exhibited over 90% of levoglucosan and 4-nitrocatechol to the total accumulated in the fine-particle size fraction (<2.1 μm), particularly in heavier haze periods. The back trajectories further supported the fact that levoglucosan was linked to biomass-burning particles, with higher values of associated with air masses passing from biomass burning areas (fire spots) before reaching Shanghai. Other primary saccharide and nitrophenol species showed an unusually large peak in the coarse-mode size fraction (>2.1 μm), which can be correlated with emissions from local sources (biological emission). Principal component analysis (PCA) and positive matrix factorization (PMF) revealed four probable sources (biomass burning: 28%, airborne pollen: 25%, fungal spores: 24%, and combustion emission: 23%) responsible for urban haze events. Taken together, these findings provide useful insight into size-resolved source apportionment analysis via molecular markers for urban haze pollution events in Shanghai.
Final Report - Cloud-Based Management Platform for Distributed, Multi-Domain Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Pulak; Mukherjee, Biswanath
2017-11-03
In this Department of Energy (DOE) Small Business Innovation Research (SBIR) Phase II project final report, Ennetix presents the development of a solution for end-to-end monitoring, analysis, and visualization of network performance for distributed networks. This solution benefits enterprises of all sizes, operators of distributed and federated networks, and service providers.
NASA Astrophysics Data System (ADS)
Costa, A.; Pioli, L.; Bonadonna, C.
2017-05-01
The authors found a mistake in the formulation of the distribution named Bi-Weibull distribution reported in the equation (A.2) of the Appendix A. The error affects equation (4) (which is the same as eq. (A.2)) and Table 4 in the original manuscript.
NASA Astrophysics Data System (ADS)
Castagno, K. A.; Ruehr, S. A.; Donnelly, J. P.; Woodruff, J. D.
2017-12-01
Coastal populations have grown increasingly susceptible to the impacts of tropical cyclone events as they grow in size, wealth, and infrastructure. Changes in tropical cyclone frequency and intensity, augmented by a changing climate, pose an increasing threat of property damage and loss of life. Reconstructions of intense-hurricane landfalls from a series of southeastern New England sediment cores identify a series of events spanning the past 2,000 years. Though the frequency of these landfalls is well constrained, the intensity of these storms, particularly those for which no historical record exists, is not. This study analyzes the grain-size distribution of major storm event beds along a transect of sediment cores from a kettle pond in Falmouth, MA. The grain-size distribution of each event is determined using an image processing, size, and shape analyzer. The depositional patterns and changes in grain-size distribution in these fine-grained systems may both spatially and temporally reveal characteristics of both storm intensity and the nature of sediment deposition. An inverse-modeling technique using this kind of grain-size analysis to determine past storm intensity has been explored in back-barrier lagoon systems in the Caribbean, but limited research has assessed its utility to assess deposits from back-barrier ponds in the northeastern United States. Increases in hurricane intensity may be closely tied to increases in sea surface temperature. As such, research into these prehistoric intervals of increased frequency and/or intensity provides important insight into the current and future hurricane risks facing coastal communities in New England.
The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs.
Zepeda, Rene; Chan, Franco; Sawatzky, Bonita
2016-01-01
This study proposes a way to reduce energy losses in the form of rolling resistance friction during manual wheelchair propulsion by increasing the size of the front caster wheels and adjusting the weight distribution. Drag tests were conducted using a treadmill and a force transducer. Three different casters diameter (4 in., 5 in., and 6 in.) and six different mass distribution combinations (based on percentage of total weight on the caster wheels) were studied. A two-way analysis of variance test was performed to compare caster size and weight distribution contribution with drag force of an ultralight wheelchair. The 4 in. caster contributed significantly more drag, but only when weight was 40% or greater over the casters. Weight distribution contributed more to drag regardless of the casters used.
Digital Image Analysis Algorithm For Determination of Particle Size Distributions In Diesel Engines
NASA Astrophysics Data System (ADS)
Armas, O.; Ballesteros, R.; Gomez, A.
One of the most serious problems associated to Diesel engines is pollutant emissions, standing out nitrogen oxides and particulate matter. However, although current emis- sions standards in Europe and America with regard to light vehicles and heavy duty engines refer the particulate limit in mass units, concern for knowing size and number of particles emitted by engines is being increased recently. This interest is promoted by last studies about particle harmful effects on health and is enhanced by recent changes in internal combustion engines technology. This study is focused on the implementation of a method to determine the particle size distribution made up in current methodology for vehicles certification in Europe. It will use an automated Digital Image Analysis Algorithm (DIAA) to determine particle size trends from Scanning Electron Microscope (SEM) images of filters charged in a dilution system used for measuring specific particulate emissions. The experimental work was performed on a steady state direct injection Diesel en- gine with 0.5 MW rated power, being considered as a typical engine in middle power industries. Particulate size distributions obtained using DIAA and a Scanning Mobil- ity Particle Sizer (SMPS), nowadays considered as the most reliable technique, were compared. Although number concentration detected by this method does not repre- sent real flowing particle concentration, this algorithm fairly reproduces the trends observed with SMPS when the engine load is varied.
Variable pixel size ionospheric tomography
NASA Astrophysics Data System (ADS)
Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei
2017-06-01
A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.
In vitro ovine articular chondrocyte proliferation: experiments and modelling.
Mancuso, L; Liuzzo, M I; Fadda, S; Pisu, M; Cincotti, A; Arras, M; La Nasa, G; Concas, A; Cao, G
2010-06-01
This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed (1) was adopted for quantitative interpretation of these experimental data. The model is based on a 1-D (that is, mass-structured), single-staged population balance approach capable of taking into account contact inhibition at confluence. The model's parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model's parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at 'balanced growth', to be adequately predicted.
Inverse Statistics and Asset Allocation Efficiency
NASA Astrophysics Data System (ADS)
Bolgorian, Meysam
In this paper using inverse statistics analysis, the effect of investment horizon on the efficiency of portfolio selection is examined. Inverse statistics analysis is a general tool also known as probability distribution of exit time that is used for detecting the distribution of the time in which a stochastic process exits from a zone. This analysis was used in Refs. 1 and 2 for studying the financial returns time series. This distribution provides an optimal investment horizon which determines the most likely horizon for gaining a specific return. Using samples of stocks from Tehran Stock Exchange (TSE) as an emerging market and S&P 500 as a developed market, effect of optimal investment horizon in asset allocation is assessed. It is found that taking into account the optimal investment horizon in TSE leads to more efficiency for large size portfolios while for stocks selected from S&P 500, regardless of portfolio size, this strategy does not only not produce more efficient portfolios, but also longer investment horizons provides more efficiency.
Inter-cohort growth for three tropical resources: tilapia, octopus and lobster.
Velázquez-Abunader, Iván; Gómez-Muñoz, Victor Manuel; Salas, Silvia; Ruiz-Velazco, Javier M J
2015-09-01
Growth parameters are an important component for the stock assessment of exploited aquatic species. However, it is often difficult to apply direct methods to estimate growth and to analyse the differences between males and females, particularly in tropical areas. The objective of this study was to analyse the inter-cohort growth of three tropical resources and discuss the possible fisheries management implications. A simple method was used to compare individual growth curves obtained from length frequency distribution analysis, illustrated by case studies of three tropical species from different aquatic environments: tilapia (Oreochromis aureus), red octopus (Octopus maya) and the Caribbean spiny lobster (Panulirus argus). The analysis undertaken compared the size distribution of males and females of a given cohort through modal progression analysis. The technique used proved to be useful for highlighting the differences in growth between females and males of a specific cohort. The potential effect of extrinsic and intrinsic factors on the organism's development as reflected in the size distribution of the cohorts is discussed.
Evaluation of a High-Resolution Benchtop Micro-CT Scanner for Application in Porous Media Research
NASA Astrophysics Data System (ADS)
Tuller, M.; Vaz, C. M.; Lasso, P. O.; Kulkarni, R.; Ferre, T. A.
2010-12-01
Recent advances in Micro Computed Tomography (MCT) provided the motivation to thoroughly evaluate and optimize scanning, image reconstruction/segmentation and pore-space analysis capabilities of a new generation benchtop MCT scanner and associated software package. To demonstrate applicability to soil research the project was focused on determination of porosities and pore size distributions of two Brazilian Oxisols from segmented MCT-data. Effects of metal filters and various acquisition parameters (e.g. total rotation, rotation step, and radiograph frame averaging) on image quality and acquisition time are evaluated. Impacts of sample size and scanning resolution on CT-derived porosities and pore-size distributions are illustrated.
Canpolat, Murat; Mourant, Judith R.
2003-12-09
Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.
Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong
2017-10-01
We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.
Pye, Kenneth; Blott, Simon J
2004-08-11
Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.
NASA Technical Reports Server (NTRS)
Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo
2016-01-01
The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer. However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size distribution both within a given rain event and across different varieties of rain events. Index Terms-drop size distribution, frequency scaling, propagation losses, radiowave propagation.
NASA Technical Reports Server (NTRS)
Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo
2016-01-01
The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer [1]). However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link [2]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size distribution both within a given rain event and across different varieties of rain events. Index Terms-drop size distribution, frequency scaling, propagation losses, radiowave propagation.
A simple autocorrelation algorithm for determining grain size from digital images of sediment
Rubin, D.M.
2004-01-01
Autocorrelation between pixels in digital images of sediment can be used to measure average grain size of sediment on the bed, grain-size distribution of bed sediment, and vertical profiles in grain size in a cross-sectional image through a bed. The technique is less sensitive than traditional laboratory analyses to tails of a grain-size distribution, but it offers substantial other advantages: it is 100 times as fast; it is ideal for sampling surficial sediment (the part that interacts with a flow); it can determine vertical profiles in grain size on a scale finer than can be sampled physically; and it can be used in the field to provide almost real-time grain-size analysis. The technique can be applied to digital images obtained using any source with sufficient resolution, including digital cameras, digital video, or underwater digital microscopes (for real-time grain-size mapping of the bed). ?? 2004, SEPM (Society for Sedimentary Geology).
Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust
Chubb, Lauren G.; Cauda, Emanuele G.
2017-01-01
Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139
Kim, C.S.; Wilson, K.M.; Rytuba, J.J.
2011-01-01
The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.
Evolution of large body size in abalones (Haliotis): Patterns and implications
Estes, J.A.; Lindberg, D.R.; Wray, C.
2005-01-01
Kelps and other fleshy macroalgae - dominant reef-inhabiting organisms in cool - seasmay have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60-75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosystems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our findings support the view that fleshy-algal dominated ecosystems radiated rapidly in the coastal oceans with the onset of the most recent glacial age. We conclude with a discussion of the broader implications of this change. ?? 2005 The Paleontological Society. All rights reserved.
Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
Touboul, Jonathan; Destexhe, Alain
2010-02-11
The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP) recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous statistical analyses such as the Kolmogorov-Smirnov test. Similar power-law scaling is observed for surrogate signals, suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations, and does not survive more rigorous analysis such as the Kolmogorov-Smirnov test. The same analysis was also performed on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon. This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by more stringent statistical tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, Daniel J; Monazam, Esmail R; Casleton, Kent H
Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion.more » Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.« less
The Sea-Ice Floe Size Distribution
NASA Astrophysics Data System (ADS)
Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.
2017-12-01
The size distribution of ice floes in the polar seas affects the dynamics and thermodynamics of the ice cover and its interaction with the ocean and atmosphere. Ice-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our ice-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 ice floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our ice-ocean model resulted in reduced sea-ice thickness, mainly in the marginal ice zone, which improved the simulation of sea-ice extent and yielded an earlier ice retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.
Multiple Method Analysis of TiO2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants.
Deng, Yingqing; Petersen, Elijah J; Challis, Katie E; Rabb, Savelas A; Holbrook, R David; Ranville, James F; Nelson, Bryant C; Xing, Baoshan
2017-09-19
Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO 2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO 2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.
Schindler, Torben; Walter, Johannes; Peukert, Wolfgang; Segets, Doris; Unruh, Tobias
2015-12-10
Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2-8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using in situ SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time-temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis.
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. We found a negative correlation of r = -.45 [95% CI: -.53; -.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology.
Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.
Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi
2014-12-01
To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.
NASA Astrophysics Data System (ADS)
Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki
Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.
Anderson, P J; Wilson, J D; Hiller, F C
1989-07-01
Accurate measurement of cigarette smoke particle size distribution is important for estimation of lung deposition. Most prior investigators have reported a mass median diameter (MMD) in the size range of 0.3 to 0.5 micron, with a small geometric standard deviation (GSD), indicating few ultrafine (less than 0.1 micron) particles. A few studies, however, have suggested the presence of ultrafine particles by reporting a smaller count median diameter (CMD). Part of this disparity may be due tot he inefficiency to previous sizing methods in measuring ultrafine size range, to evaluate size distribution of smoke from standard research cigarettes, commercial filter cigarettes, and from marijuana cigarettes with different delta 9-tetrahydrocannabinol contents. Four 35-cm3, 2-s puffs were generated at 60-s intervals, rapidly diluted, and passed through a charge neutralizer and into a 240-L chamber. Size distribution for six cigarettes of each type was measured, CMD and GSD were determined from a computer-generated log probability plot, and MMD was calculated. The size distribution parameters obtained were similar for all cigarettes tested, with an average CMD of 0.1 micron, a MMD of 0.38 micron, and a GSD of 2.0. The MMD found using the EAA is similar to that previously reported, but the CMD is distinctly smaller and the GSD larger, indicating the presence of many more ultrafine particles. These results may explain the disparity of CMD values found in existing data. Ultrafine particles are of toxicologic importance because their respiratory tract deposition is significantly higher than for particles 0.3 to 0.5 micron and because their large surface area facilitates adsorption and delivery of potentially toxic gases to the lung.
Analysis of Blood Flow in a Partially Blocked Bifurcated Blood Vessel
NASA Astrophysics Data System (ADS)
Abdul-Razzak, Hayder; Elkassabgi, Yousri; Punati, Pavan K.; Nasser, Naseer
2009-09-01
Coronary artery disease is a major cause of death in the United States. It is the narrowing of the lumens of the coronary blood vessel by a gradual build-up of fatty material, atheroma, which leads to the heart muscle not receiving enough blood. This my ocardial ischemia can cause angina, a heart attack, heart failure as well as sudden cardiac death [9]. In this project a solid model of bifurcated blood vessel with an asymmetric stenosis is developed using GAMBIT and imported into FLUENT for analysis. In FLUENT, pressure and velocity distributions in the blood vessel are studied under different conditions, where the size and position of the blockage in the blood vessel are varied. The location and size of the blockage in the blood vessel are correlated with the pressures and velocities distributions. Results show that such correlation may be used to predict the size and location of the blockage.
New insights in morphological analysis for managing activated sludge systems.
Oliveira, Pedro; Alliet, Marion; Coufort-Saudejaud, Carole; Frances, Christine
2018-06-01
In activated sludge (AS) process, the impact of the operational parameters on process efficiency is assumed to be correlated with the sludge properties. This study provides a better insight into these interactions by subjecting a laboratory-scale AS system to a sequence of operating condition modifications enabling typical situations of a wastewater treatment plant to be represented. Process performance was assessed and AS floc morphology (size, circularity, convexity, solidity and aspect ratio) was quantified by measuring 100,000 flocs per sample with an automated image analysis technique. Introducing 3D distributions, which combine morphological properties, allowed the identification of a filamentous bulking characterized by a floc population shift towards larger sizes and lower solidity and circularity values. Moreover, a washout phenomenon was characterized by smaller AS flocs and an increase in their solidity. Recycle ratio increase and COD:N ratio decrease both promoted a slight reduction of floc sizes and a constant evolution of circularity and convexity values. The analysis of the volume-based 3D distributions turned out to be a smart tool to combine size and shape data, allowing a deeper understanding of the dynamics of floc structure under process disturbances.
Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M
2010-03-08
The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.
Reduction of glycine particle size by impinging jet crystallization.
Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán
2015-01-15
The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleeman, M.J.; Schauer, J.J.; Cass, G.R.
A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution atmore » 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.« less
Determination of Hyaluronan Molecular Mass Distribution in Human Breast Milk
Yuan, Han; Amin, Ripal; Ye, Xin; De La Motte, Carol A.; Cowman, Mary K.
2015-01-01
Hyaluronan (HA) in human milk mediates host responses to microbial infection, via TLR4- and CD44-dependent signaling. Signaling by HA is generally size-specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low M component. Here we report the size distribution of HA in human milk samples from twenty unique donors. A new method for HA analysis, employingion exchange (IEX) chromatography to fractionate HA by size, and specific quantification of each size fraction by competitive Enzyme Linked Sorbent Assay (ELSA), was developed. When separated into four fractions, milk HA with M ≤ 20 kDa, M ≈20-60 kDa, and M ≈ 60-110 kDa comprised an average of 1.5%, 1.4% and 2% of the total HA, respectively. The remaining 95% was HA with M≥110 kDa. Electrophoretic analysis of the higher M HA from thirteen samples showed nearly identical M distributions, with an average M of ∼440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low M HA components. PMID:25579786
Mechanical trapping of particles in granular media
NASA Astrophysics Data System (ADS)
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Mechanical trapping of particles in granular media.
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank
2018-02-12
Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
NASA Astrophysics Data System (ADS)
Zhou, Yali; Zhang, Qizhi; Yin, Yixin
2015-05-01
In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.
NASA Astrophysics Data System (ADS)
Kim, Y.; Sievering, H.; Boatman, J.
1990-06-01
As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.
NASA Astrophysics Data System (ADS)
Poulet, Francois; Lucchetti, Alice; Bibring, Jean-Pierre; Langevin, Yves; Carter, John; Delbo, Marco; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Le Mouélic, Stéphane; Mottola, Stefano; Pilorget, Cédric; Vincendon, Mathieu; Cremonese, Gabriele
2015-11-01
The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., Science, 2015). The panorama acquired by CIVA at the landing site on the 67P comet reveals a rough terrain dominated by fractures and agglomerates of consolidated materials. While the composition of these materials is unknown, they provide unique structures to constrain the conditions prevailing at the surface of a comet. A quantitative analysis of the microscopic structures (grains that look like pebbles and fractures) will be presented. The pebble size distribution will be compared to the size distribution of other cometary materials such as boulders at the touchdown site (Mottola et al. Science, 2015), boulders surrounding the landing site (Lucchetti et al., A&A, submitted), >7m sized boulders globally distributed on the comet (Pajola et al., A&A, 2015), grains collected by the COSIMA experiment onboard Rosetta (Langevin et al., JGR, submitted) as well as population of grains remotely observed in coma and jets of other comets. The nature of the pebbles will be then discussed in relation to both endogenic and exogenic processes that could explain their formation. The fractures exhibit two different size distributions that are correlated to the texture of the landscape. Among different physical processes, we will evaluate whether thermal fatigue induced by diurnal temperature variations (Delbo et al. Nature, 2014) could be a mechanism of surficial fragmentation.
Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao
2013-10-01
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.
Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao
2013-01-01
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094
The transitional behaviour of avalanches in cohesive granular materials
NASA Astrophysics Data System (ADS)
Quintanilla, M. A. S.; Valverde, J. M.; Castellanos, A.
2006-07-01
We present a statistical analysis of avalanches of granular materials that partially fill a slowly rotated horizontal drum. For large sized noncohesive grains the classical coherent oscillation is reproduced, consisting of a quasi-periodic succession of regularly sized avalanches. As the powder cohesiveness is increased by decreasing the particle size, we observe a gradual crossover to a complex dynamics that resembles the transitional behaviour observed in fusion plasmas. For particle size below ~50 µm, avalanches lose a characteristic size, retain a short term memory and turn gradually decorrelated in the long term as described by a Markov process. In contrast, large grains made cohesive by coating them with adhesive microparticles display a distinct phenomenology, characterized by a quasi-regular succession of well defined small precursors and large relaxation events. The transition from a one-peaked distribution (noncohesive large beads) to a flattened distribution (fine cohesive beads) passing through the two-peaked distribution of cohesive large beads had already been predicted using a coupled-map lattice model, as the relaxation mechanism of grain reorganization becomes dominant to the detriment of inertia.
Adjemian, Jennifer C Z; Girvetz, Evan H; Beckett, Laurel; Foley, Janet E
2006-01-01
More than 20 species of fleas in California are implicated as potential vectors of Yersinia pestis. Extremely limited spatial data exist for plague vectors-a key component to understanding where the greatest risks for human, domestic animal, and wildlife health exist. This study increases the spatial data available for 13 potential plague vectors by using the ecological niche modeling system Genetic Algorithm for Rule-Set Production (GARP) to predict their respective distributions. Because the available sample sizes in our data set varied greatly from one species to another, we also performed an analysis of the robustness of GARP by using the data available for flea Oropsylla montana (Baker) to quantify the effects that sample size and the chosen explanatory variables have on the final species distribution map. GARP effectively modeled the distributions of 13 vector species. Furthermore, our analyses show that all of these modeled ranges are robust, with a sample size of six fleas or greater not significantly impacting the percentage of the in-state area where the flea was predicted to be found, or the testing accuracy of the model. The results of this study will help guide the sampling efforts of future studies focusing on plague vectors.
Analyzing coastal environments by means of functional data analysis
NASA Astrophysics Data System (ADS)
Sierra, Carlos; Flor-Blanco, Germán; Ordoñez, Celestino; Flor, Germán; Gallego, José R.
2017-07-01
Here we used Functional Data Analysis (FDA) to examine particle-size distributions (PSDs) in a beach/shallow marine sedimentary environment in Gijón Bay (NW Spain). The work involved both Functional Principal Components Analysis (FPCA) and Functional Cluster Analysis (FCA). The grainsize of the sand samples was characterized by means of laser dispersion spectroscopy. Within this framework, FPCA was used as a dimension reduction technique to explore and uncover patterns in grain-size frequency curves. This procedure proved useful to describe variability in the structure of the data set. Moreover, an alternative approach, FCA, was applied to identify clusters and to interpret their spatial distribution. Results obtained with this latter technique were compared with those obtained by means of two vector approaches that combine PCA with CA (Cluster Analysis). The first method, the point density function (PDF), was employed after adapting a log-normal distribution to each PSD and resuming each of the density functions by its mean, sorting, skewness and kurtosis. The second applied a centered-log-ratio (clr) to the original data. PCA was then applied to the transformed data, and finally CA to the retained principal component scores. The study revealed functional data analysis, specifically FPCA and FCA, as a suitable alternative with considerable advantages over traditional vector analysis techniques in sedimentary geology studies.
Evaluation of Gas Phase Dispersion in Flotation under Predetermined Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Młynarczykowska, Anna; Oleksik, Konrad; Tupek-Murowany, Klaudia
2018-03-01
Results of various investigations shows the relationship between the flotation parameters and gas distribution in a flotation cell. The size of gas bubbles is a random variable with a specific distribution. The analysis of this distribution is useful to make mathematical description of the flotation process. The flotation process depends on many variable factors. These are mainly occurrences like collision of single particle with gas bubble, adhesion of particle to the surface of bubble and detachment process. These factors are characterized by randomness. Because of that it is only possible to talk about the probability of occurence of one of these events which directly affects the speed of the process, thus a constant speed of flotation process. Probability of the bubble-particle collision in the flotation chamber with mechanical pulp agitation depends on the surface tension of the solution, air consumption, degree of pul aeration, energy dissipation and average feed particle size. Appropriate identification and description of the parameters of the dispersion of gas bubbles helps to complete the analysis of the flotation process in a specific physicochemical conditions and hydrodynamic for any raw material. The article presents the results of measurements and analysis of the gas phase dispersion by the size distribution of air bubbles in a flotation chamber under fixed hydrodynamic conditions. The tests were carried out in the Laboratory of Instrumental Methods in Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineerin, AGH Univeristy of Science and Technology in Krakow.
Hajeb, Parvaneh; Herrmann, Susan S; Poulsen, Mette E
2017-07-19
The guidance document SANTE 11945/2015 recommends that cereal samples be milled to a particle size preferably smaller than 1.0 mm and that extensive heating of the samples should be avoided. The aim of the present study was therefore to investigate the differences in milling procedures, obtained particle size distributions, and the resulting pesticide residue recovery when cereal samples were milled at the European Union National Reference Laboratories (NRLs) with their routine milling procedures. A total of 23 NRLs participated in the study. The oat and rye samples milled by each NRL were sent to the European Union Reference Laboratory on Cereals and Feedingstuff (EURL) for the determination of the particle size distribution and pesticide residue recovery. The results showed that the NRLs used several different brands and types of mills. Large variations in the particle size distributions and pesticide extraction efficiencies were observed even between samples milled by the same type of mill.
Di Maria, Francesco; Bianconi, Francesco; Micale, Caterina; Baglioni, Stefano; Marionni, Moreno
2016-02-01
The size distribution of aggregates has direct and important effects on fundamental properties of construction materials such as workability, strength and durability. The size distribution of aggregates from construction and demolition waste (C&D) is one of the parameters which determine the degree of recyclability and therefore the quality of such materials. Unfortunately, standard methods like sieving or laser diffraction can be either very time consuming (sieving) or possible only in laboratory conditions (laser diffraction). As an alternative we propose and evaluate the use of image analysis to estimate the size distribution of aggregates from C&D in a fast yet accurate manner. The effectiveness of the procedure was tested on aggregates generated by an existing C&D mechanical treatment plant. Experimental comparison with manual sieving showed agreement in the range 81-85%. The proposed technique demonstrated potential for being used on on-line systems within mechanical treatment plants of C&D. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physico-chemical characterization of grain dust in storage air of Bangalore.
Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R
1998-06-01
An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.
Temporal change in the size distribution of airborne Radiocesium derived from the Fukushima accident
NASA Astrophysics Data System (ADS)
Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu; Akata, Naofumi
2013-04-01
The accident of Fukushima Dai-ichi nuclear power plant discharged a large amount of radioactive materials into the environment. After 40 days of the accident, we started to collect the size-segregated aerosol at Tsukuba City, Japan, located 170 km south of the plant, by use of a low-pressure cascade impactor. The sampling continued from April 28, through October 26, 2011. The number of sample sets collected in total was 8. The radioactivity of 134Cs and 137Cs in aerosols collected at each stage were determined by gamma-ray with a high sensitivity Germanic detector. After the gamma-ray spectrometry analysis, the chemical species in the aerosols were analyzed. The analyses of first (April 28-May 12) and second (May 12-26) samples showed that the activity size distributions of 134Cs and 137Cs in aerosols reside mostly in the accumulation mode size range. These activity size distributions almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the results, we regarded that sulfate is the main transport medium of these radionuclides, and re-suspended soil particles that attached radionuclides were not the major airborne radioactive substances by the end of May, 2011 (Kaneyasu et al., 2012). We further conducted the successive extraction experiment of radiocesium from the aerosol deposits on the aluminum sheet substrate (8th stage of the first aerosol sample, 0.5-0.7 μm in aerodynamic diameter) with water and 0.1M HCl. In contrast to the relatively insoluble property of Chernobyl radionuclides, those in aerosols collected at Tsukuba in fine mode are completely water-soluble (100%). From the third aerosol sample, the activity size distributions started to change, i.e., the major peak in the accumulation mode size range seen in the first and second aerosol samples became smaller and an additional peak appeared in the coarse mode size range. The comparison of the activity size distributions of radiocesium and the mass size distributions of major aerosol components collected by the end of August, 2011, (i.e., sample No.5) and its implication will be discussed in the presentation. Reference Kaneyasu et al., Environ. Sci. Technol. 46, 5720-5726 (2012).
Lu, Tian; Huang, Zhen; Cheung, C S; Ma, Jing
2012-11-01
The size distribution of elemental carbon (EC), organic carbon (OC) and particle-phase PAHs emission from a direct injection diesel engine fueled with a waste cooking biodiesel, ultra low sulfur diesel (ULSD, 10-ppm-wt), and low sulfur diesel (LSD, 400-ppm-wt) were investigated experimentally. The emission factor of biodiesel EC is 90.6 mg/kh, which decreases by 60.3 and 71.7%, compared with ULSD and LSD respectively and the mass mean diameter (MMD) of EC was also decreased with the use of biodiesel. The effect of biodiesel on OC emission might depend on the engine operation condition, and the difference in OC size distribution is not that significant among the three fuels. For biodiesel, its brake specific emission of particle-phase PAHs is obviously smaller than that from the two diesel fuels, and the reduction effect appears in almost all size ranges. In terms of size distribution, the MMD of PAHs from biodiesel is larger than that from the two diesel fuels, which could be attributed to the more effective reduction on combustion derived PAHs in nuclei mode. The toxicity analysis indicates that biodiesel could reduce the total PAHs emissions, as well as the carcinogenic potency of particle-phase PAHs in almost all the size ranges. Copyright © 2012 Elsevier B.V. All rights reserved.
Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2017-01-01
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623
Atmospheric particulate analysis using angular light scattering
NASA Technical Reports Server (NTRS)
Hansen, M. Z.
1980-01-01
Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.
Olson, Scott A.; Weber, Matthew A.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Ayotte, Joseph D.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Boehmler, Erick M.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Boehmler, Erick M.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Olson, Scott A.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Ayotte, Joseph D.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Ayotte, Joseph D.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Framework for cascade size calculations on random networks
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Ghanma, M A; Rider, R V; Sirageldin, I
1984-01-01
The Lorenz Curve, originally developed to measure the concentration of wealth in a population, was used to describe the distribution of contraceptive practice in Jordan. Data from the 1976 Jordan Fertility Study, carried out as part of the World Fertility Survey program, was used in the analysis. The application of the Automatic Interaction Detector program to the survey's sample population of 3611 women of reproductive age divided the sample into 6 mutually exclusive groups on the basis of residence, education, and whether desired family size was attained or not attained. These 3 characteristics accounted for a major portion of the variation in contraceptive practice. These subgroups, in ascending order by the proportion practicing contraception, were: 1) rural women with unattained desired family size; 2) urban, illiterate women with unattained desired family size; 3) rural women with attained desired family size; 4) urban, literate women with unattained desired family size; 5) urban, illiterate women with attained desired family size; and 6) urban, literate women with attained desired family size. The cumulative proportion of the sample in each ordered subdivision was plotted on the X axis of a graph, and the cumulative proportion of those practicing contraception was plotted on the Y axis of the graph. A line connecting the intersection of the points on the X and Y axis was then drawn. The resultant line was a concave ascending line. If contraceptive practice was evenly distributed in the population, the line would be a straight diagonal line. The plotted curved line indicated that contraceptive practice was unevenly distributed in the population. 2 indexes for measuring the area between the diagonal and the line resulting from plotting the observed distribution for each subgroup was used to assess the degree of concentration of contraceptive practice in the population. The indexes also indicated that contraceptive practice was unequally distributed. When separate curves were plotted for the subgroups with attained desired family size and the subgroups without attained desired family size, it was apparent that the distribution of contraceptive practice was more uniform among those with attained desired family size than among the other 3 subgroups. A curve for the distribution of births was then plotted on the same graph. This curve was not a true application of the Lorenz Curve since it was based on the order of the subdivisions by birth rates. The resultant line approached the straight diagonal line and indicated that the distribution of births was fairly evenly distributed in the population. The uneven distribution of contraceptive practice and the uniform distribution of births suggests that contraceptive practice in this population is ineffective. This may be a characteristic of populations in the early stages of fertility control.
Marcias, Gabriele; Fostinelli, Jacopo; Catalani, Simona; Uras, Michele; Sanna, Andrea Maurizio; Avataneo, Giuseppe; De Palma, Giuseppe; Fabbri, Daniele; Paganelli, Matteo; Lecca, Luigi Isaia; Buonanno, Giorgio; Campagna, Marcello
2018-06-07
The characteristics of aerosol, in particular particle size and chemical composition, can have an impact on human health. Particle size distribution and chemical composition is a necessary parameter in occupational exposure assessment conducted in order to understand possible health effects. The aim of this study was to characterize workplace airborne particulate matter in a metallurgical setting by synergistically using two different approaches; Methodology: Analysis of inhalable fraction concentrations through traditional sampling equipment and ultrafine particles (UFP) concentrations and size distribution was conducted by an Electric Low-Pressure Impactor (ELPI+™). The determination of metallic elements (ME) in particles was carried out by inductively coupled plasma mass spectrometry; Results: Inhalable fraction and ME concentrations were below the limits set by Italian legislation and the American Conference of Governmental Industrial Hygienists (ACGIH, 2017). The median of UFP was between 4.00 × 10⁴ and 2.92 × 10⁵ particles/cm³. ME concentrations determined in the particles collected by ELPI show differences in size range distribution; Conclusions: The adopted synergistic approach enabled a qualitative and quantitative assessment of the particles in steelmaking factories. The results could lead to a better knowledge of occupational exposure characterization, in turn affording a better understanding of occupational health issues due to metal fumes exposure.
Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads
NASA Technical Reports Server (NTRS)
Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui
1997-01-01
Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.
Modelling cell population growth with applications to cancer therapy in human tumour cell lines.
Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N
2004-01-01
In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.
Collagen fibril arrangement and size distribution in monkey oral mucosa
OTTANI, V.; FRANCHI, M.; DE PASQUALE, V.; LEONARDI, L.; MOROCUTTI, M.; RUGGERI, A.
1998-01-01
Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed. PMID:9688498
Lu, Yehu; Song, Guowen; Li, Jun
2014-11-01
The garment fit played an important role in protective performance, comfort and mobility. The purpose of this study is to quantify the air gap to quantitatively characterize a three-dimensional (3-D) garment fit using a 3-D body scanning technique. A method for processing of scanned data was developed to investigate the air gap size and distribution between the clothing and human body. The mesh model formed from nude and clothed body was aligned, superimposed and sectioned using Rapidform software. The air gap size and distribution over the body surface were analyzed. The total air volume was also calculated. The effects of fabric properties and garment size on air gap distribution were explored. The results indicated that average air gap of the fit clothing was around 25-30 mm and the overall air gap distribution was similar. The air gap was unevenly distributed over the body and it was strongly associated with the body parts, fabric properties and garment size. The research will help understand the overall clothing fit and its association with protection, thermal and movement comfort, and provide guidelines for clothing engineers to improve thermal performance and reduce physiological burden. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Time-evolution of grain size distributions in random nucleation and growth crystallization processes
NASA Astrophysics Data System (ADS)
Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.
2010-02-01
We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.
Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders
2013-09-07
The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.
Ultrafine particle and fiber production in micro-gravity
NASA Technical Reports Server (NTRS)
Webb, George W.
1987-01-01
The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.
Automated determination of dust particles trajectories in the coma of comet 67P
NASA Astrophysics Data System (ADS)
Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.
2017-09-01
During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].
Constraints on early events in Martian history as derived from the cratering record
NASA Technical Reports Server (NTRS)
Barlow, Nadine G.
1990-01-01
Constrains on early events in Martian history are derived using the planet's cratering record. Variations in the shapes of the crater size-frequency distribution curves are interpreted as indicative of the size-frequency distribution of the production populations, thus providing information about the age of the unit relative to the end of the heavy bombardment period. Results from the analysis of craters superposed on heavily cratered units across the Martian surface provide constraints on the hemispheric dichotomy and the early erosional conditions on Mars.
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
Computational methods were developed to study the trajectories of beta particles (positrons) through a magnetic analysis system as a function of the spatial distribution of the radionuclides in the beta source, size and shape of the source collimator, and the strength of the analyzer magnetic field. On the basis of these methods, the particle flux, their energy spectrum, and source-to-target transit times have been calculated for Na-22 positrons as a function of the analyzer magnetic field and the size and location of the target. These data are in studies requiring parallel beams of positrons of uniform energy such as measurement of the moisture distribution in composite materials. Computer programs for obtaining various trajectories are included.
Major and trace element chemistry of Luna 24 samples from Mare Crisium
NASA Technical Reports Server (NTRS)
Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.
1978-01-01
Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.
Invasions and impacts of exotic plants in the Pacific Islands
J.S. Denslow
2008-01-01
Islands support many more species of invasive plants than comparably sized mainland habitats. Analysis of extensive data on the distribution of invasive plants among Pacific islands suggests that the diversity of these species on islands is a function of both environmental characteristics (island size, habitat heterogeneity) and socioeconomic conditions (country...
Analysis of particulates on tape lift samples
NASA Astrophysics Data System (ADS)
Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling
2014-09-01
Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.
2014-10-16
Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency
Numerical sedimentation particle-size analysis using the Discrete Element Method
NASA Astrophysics Data System (ADS)
Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.
2015-12-01
Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.
Wei, Ziping; McEvoy, Matt; Razinkov, Vladimir; Polozova, Alla; Li, Elizabeth; Casas-Finet, Jose; Tous, Guillermo I; Balu, Palani; Pan, Alfred A; Mehta, Harshvardhan; Schenerman, Mark A
2007-09-01
Adequate biophysical characterization of influenza virions is important for vaccine development. The influenza virus vaccines are produced from the allantoic fluid of developing chicken embryos. The process of viral replication produces a heterogeneous mixture of infectious and non-infectious viral particles with varying states of aggregation. The study of the relative distribution and behavior of different subpopulations and their inter-correlation can assist in the development of a robust process for a live virus vaccine. This report describes a field flow fractionation and multiangle light scattering (FFF-MALS) method optimized for the analysis of size distribution and total particle counts. The FFF-MALS method was compared with several other methods such as transmission electron microscopy (TEM), atomic force microscopy (AFM), size exclusion chromatography followed by MALS (SEC-MALS), quantitative reverse transcription polymerase chain reaction (RT Q-PCR), median tissue culture dose (TCID(50)), and the fluorescent focus assay (FFA). The correlation between the various methods for determining total particle counts, infectivity and size distribution is reported. The pros and cons of each of the analytical methods are discussed.
C-Sphere Strength-Size Scaling in a Bearing-Grade Silicon Nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Jadaan, Osama M.; Kirkland, Timothy Philip
2008-01-01
A C-sphere specimen geometry was used to determine the failure strength distributions of a commercially available bearing-grade silicon nitride (Si3N4) having ball diameters of 12.7 and 25.4 mm. Strengths for both diameters were determined using the combination of failure load, C sphere geometry, and finite element analysis and fitted using two-parameter Weibull distributions. Effective areas of both diameters were estimated as a function of Weibull modulus and used to explore whether the strength distributions predictably strength-scaled between each size. They did not. That statistical observation suggested that the same flaw type did not limit the strength of both ball diametersmore » indicating a lack of material homogeneity between the two sizes. Optical fractography confirmed that. It showed there were two distinct strength-limiting flaw types in both ball diameters, that one flaw type was always associated with lower strength specimens, and that significantly higher fraction of the 24.5-mm-diameter c-sphere specimens failed from it. Predictable strength-size-scaling would therefore not result as a consequence of this because these flaw types were not homogenously distributed and sampled in both c-sphere geometries.« less
Solid rocket motor plume particle size measurements using multiple optical techniques in a probe
NASA Astrophysics Data System (ADS)
Manser, John R.
1995-03-01
An experimental investigation to measure particle size distributions in the plume of sub-scale solid rocket motors was conducted. A phase-Doppler particle analyzer (pDPA) in conjunction with three-wavelength extinction measurements were used in a specially designed particle collection probe in an attempt to determine the entire plume particle size distribution. In addition, a laser ensemble particle sizer was used for comparative data. The PDPA and Malvem distributions agreed in the observed modes near 1 and 4.5 micron diameter (d). Scanning electron microscope (SEM) pictures of collected particles were in good agreement with the measured Malvem Sauter mean diameter (d(sub 32)) of 2.59 micron. Data analysis indicates that less than 3% of the total mass of the particles was contained in particles with diameter d dess than 0.5 micron. Therefore, the PDPA, which can typically measure particles down to a minimum diameter of 0.5 micron with a dynamic range (d(sub max):d(sub min)) of 50:1, can be used by itself to determine the particle size distribution. Multiple wavelength measurements were found to be very sensitive to inaccuracies in the measured transmittances.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.
2003-01-01
Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fever droplets, larger size develop due to greater condencational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.
2003-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.
NASA Astrophysics Data System (ADS)
George, Freya; Gaidies, Fred
2016-04-01
Analysis of porphyroblast distribution in metamorphic rocks yields insight into the processes controlling metamorphic reaction rates. By coupling this textural record with microprobe analysis and phase-equilibria and diffusion modelling, a detailed view of the nucleation and growth history of metamorphic minerals can be obtained. In this study, we comprehensively characterise the 3D distribution and compositional variation of a garnet population in a garnet-grade pelitic schist of the Lesser Himalayan Sequence (Sikkim), in order to investigate both the rates and kinetic controls of porphyroblastic crystallisation. Quantification of the size, shape and spatial distribution of garnet using high-resolution μ-computed X-ray tomography and statistical analysis reveals a log-normal crystal size distribution, systematic variation of aspect ratio with crystal size, and a significantly clustered garnet texture in the study sample. The latter is indicative of interface-controlled nucleation and growth, with nucleation sites controlled principally by a heterogeneous precursor assemblage. At length-scales less than 0.7 mm, there is evidence for adjacent grains that are on average smaller than the mean size of the population; this minor ordering is attributed to secondary redistribution of porphyroblast centers and reduction of crystal sizes due to syn-kinematic growth and resorption, respectively. Geochemical traverses through centrally sectioned garnet crystals of variable size highlight several features: (1) core compositions of even the smallest crystals preserve primary prograde growth zonation, with little evidence for diffusional modification in any crystal size; (2) rim compositions are within error between grains, suggestive of sample-scale equilibration of the growth medium at the time of cessation of crystallisation; (3) different grains of equal radii display equivalent compositional zoning; and (4) gradients of compositional profiles display a steepening trend in progressively smaller grain sizes, converse to anticipated trends based on classic kinetic crystallisation theory. The observed systematic behaviour is interpreted to reflect interface-controlled rates of crystallisation, with a decrease in the rate of crystal growth of newly nucleated grains as the crystallisation interval proceeds. Numerical simulations of garnet growth successfully reproduce observed core and rim compositions, and simulations of intracrystalline diffusion yield rapid heating/cooling rates along the P-T path, in excess of 100 °C/Ma. Radial garnet crystallisation is correspondingly rapid, with minimum growth rates of 1.5 mm/Ma in the smallest crystals. Simulations suggest progressive nucleation of new generations of garnet occurred with an exponentially decreasing frequency along the prograde path; however, measured gradients indicate that core compositions developed more slowly than predicted by the model, potentially resulting in a more evenly distributed pattern of nucleation.
Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method
Lu, Zhaolin
2017-01-01
Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925
Size exclusion deep bed filtration: Experimental and modelling uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badalyan, Alexander, E-mail: alexander.badalyan@adelaide.edu.au; You, Zhenjiang; Aji, Kaiser
A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspendedmore » particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.« less
NASA Astrophysics Data System (ADS)
Hong, Jae Weon; Hong, Won Eui; Kwak, Yoon Sik
This study attempts to shed light on the factors that influence the locations of bank branches in establishing a bank's distribution network from the angle of the network analysis. Whereas the previous studies analyzed the locations of bank branches on the basis of their geographical characteristics and image, the significance of this study rests upon the fact that it endeavors to explore the location factors from a new perspective of the movement path of financial customers. For this analysis, the network between administrative districts, which form the fundamental unit of a location, was analyzed based on the financial transactional data. The important findings of this study are as follows. First, in conformity with the previous studies, the income level, the spending level, the number of businesses, and the size of workforce in the pertinent region were all found to influence the size of a bank's market. Second, the centrality index extracted from the analysis of the network was found to have a significant effect on the locations of bank branches. In particular, the degree centrality was revealed to have a greater influence on the size of a bank's market than does the closeness centrality. Such results of this study clearly suggest the needs for a new approach from the perspective of network in furtherance of other factors that have been considered important in the previous studies of the distribution network strategies.
NASA Astrophysics Data System (ADS)
Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang
2012-02-01
This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.
2013-01-01
Background Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autosomal and two X chromosomal MSRs among 270 HapMap individuals from Central Europe, Asia and Africa. Copy number variation, stability and genetic heterogeneity of the autosomal macrosatellite repeats RS447 (chromosome 4p), MSR5p (5p), FLJ40296 (13q), RNU2 (17q) and D4Z4 (4q and 10q) and X chromosomal DXZ4 and CT47 were investigated. Results Repeat array size distribution analysis shows that all of these MSRs are highly polymorphic with the most genetic variation among Africans and the least among Asians. A mitotic mutation rate of 0.4-2.2% was observed, exceeding meiotic mutation rates and possibly explaining the large size variability found for these MSRs. By means of a novel Bayesian approach, statistical support for a distinct multimodal rather than a uniform allele size distribution was detected in seven out of eight MSRs, with evidence for equidistant intervals between the modes. Conclusions The multimodal distributions with evidence for equidistant intervals, in combination with the observation of MSR-specific constraints on minimum array size, suggest that MSRs are limited in their configurations and that deviations thereof may cause disease, as is the case for facioscapulohumeral muscular dystrophy. However, at present we cannot exclude that there are mechanistic constraints for MSRs that are not directly disease-related. This study represents the first comprehensive study of MSRs in different human populations by applying novel statistical methods and identifies commonalities and differences in their organization and function in the human genome. PMID:23496858
Grain size of loess and paleosol samples: what are we measuring?
NASA Astrophysics Data System (ADS)
Varga, György; Kovács, János; Szalai, Zoltán; Újvári, Gábor
2017-04-01
Particle size falling into a particularly narrow range is among the most important properties of windblown mineral dust deposits. Therefore, various aspects of aeolian sedimentation and post-depositional alterations can be reconstructed only from precise grain size data. Present study is aimed at (1) reviewing grain size data obtained from different measurements, (2) discussing the major reasons for disagreements between data obtained by frequently applied particle sizing techniques, and (3) assesses the importance of particle shape in particle sizing. Grain size data of terrestrial aeolian dust deposits (loess and paleosoil) were determined by laser scattering instruments (Fritsch Analysette 22 Microtec Plus, Horiba Partica La-950 v2 and Malvern Mastersizer 3000 with a Hydro Lv unit), while particles size and shape distributions were acquired by Malvern Morphologi G3-ID. Laser scattering results reveal that the optical parameter settings of the measurements have significant effects on the grain size distributions, especially for the fine-grained fractions (<5 µm). Significant differences between the Mie and Fraunhofer approaches were found for the finest grain size fractions, while only slight discrepancies were observed for the medium to coarse silt fractions. It should be noted that the different instruments provided different grain size distributions even with the exactly same optical settings. Image analysis-based grain size data indicated underestimation of clay and fine silt fractions compared to laser measurements. The measured circle-equivalent diameter of image analysis is calculated from the acquired two-dimensional image of the particle. It is assumed that the instantaneous pulse of compressed air disperse the sedimentary particles onto the glass slide with a consistent orientation with their largest area facing to the camera. However, this is only one outcome of infinite possible projections of a three-dimensional object and it cannot be regarded as a representative one. The third (height) dimension of the particles remains unknown, so the volume-based weightings are fairly dubious in the case of platy particles. Support of the National Research, Development and Innovation Office (Hungary) under contract NKFI 120620 is gratefully acknowledged. It was additionally supported (for G. Varga) by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
NASA Astrophysics Data System (ADS)
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
Measurements of ultrafine particles from a gas-turbine burning biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouis, C.; Beretta, F.; Minutolo, P.
2010-04-15
Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distributionmore » function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the microturbine indicating that the distribution function of the sizes of the emitted particles can be strongly affected by combustion conditions. (author)« less
Near-infrared scattering as a dust diagnostic
NASA Astrophysics Data System (ADS)
Saajasto, Mika; Juvela, Mika; Malinen, Johanna
2018-06-01
Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.
Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A
2016-05-01
Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison
2017-07-01
The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.
ERIC Educational Resources Information Center
Hobbs, Charles Eugene
The author investigates elementary school students' performance when solving selected open distributive sentences in relation to three factors (Open Sentence Type, Context, Number Size) and identifies and classifies solution methods attempted by students and students' errors in performance. Eighty fifth-grade students participated in the…
Rank distributions: a panoramic macroscopic outlook.
Eliazar, Iddo I; Cohen, Morrel H
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions-top-down, bottom-up, and global-and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Vadlja, Denis; Koller, Martin; Novak, Mario; Braunegg, Gerhart; Horvat, Predrag
2016-12-01
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
A Distribution-Free Description of Fragmentation by Blasting Based on Dimensional Analysis
NASA Astrophysics Data System (ADS)
Sanchidrián, José A.; Ouchterlony, Finn
2017-04-01
A model for fragmentation in bench blasting is developed from dimensional analysis adapted from asteroid collision theory, to which two factors have been added: one describing the discontinuities spacing and orientation and another the delay between successive contiguous shots. The formulae are calibrated by nonlinear fits to 169 bench blasts in different sites and rock types, bench geometries and delay times, for which the blast design data and the size distributions of the muckpile obtained by sieving were available. Percentile sizes of the fragments distribution are obtained as the product of a rock mass structural factor, a rock strength-to-explosive energy ratio, a bench shape factor, a scale factor or characteristic size and a function of the in-row delay. The rock structure is described by means of the joints' mean spacing and orientation with respect to the free face. The strength property chosen is the strain energy at rupture that, together with the explosive energy density, forms a combined rock strength/explosive energy factor. The model is applicable from 5 to 100 percentile sizes, with all parameters determined from the fits significant to a 0.05 level. The expected error of the prediction is below 25% at any percentile. These errors are half to one-third of the errors expected with the best prediction models available to date.
Percent area coverage through image analysis
NASA Astrophysics Data System (ADS)
Wong, Chung M.; Hong, Sung M.; Liu, De-Ling
2016-09-01
The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
Microgels: Structure, Dynamics, and Possible Applications.
NASA Astrophysics Data System (ADS)
McKenna, John; Streletzky, Kiril
2007-03-01
We cross-linked Hydropxypropylcellulose (HPC) polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a transition to a fewer modes around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. Our experiments prove that microgel particles shrink under volume phase transition. The shrinkage is reversible and depends on the amount of cross-linker, salt and polymer concentrations and rate of heating. Reversibility of microgel volume phase transition property might be particularly useful for a controlled drug delivery and release.
Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J
2017-01-15
The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La 3+ adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La 2 O 3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
Size distributions and failure initiation of submarine and subaerial landslides
ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.
2009-01-01
Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area affected by subaerial landslides is comparable to that calculated by slope stability analysis for submarine landslides. The area distribution of subaerial landslides from a single event may be determined by the size distribution of the morphology of the affected area, not by the initiation process. ?? 2009 Elsevier B.V.
Detecting microsatellites within genomes: significant variation among algorithms.
Leclercq, Sébastien; Rivals, Eric; Jarne, Philippe
2007-04-18
Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions.
Detecting microsatellites within genomes: significant variation among algorithms
Leclercq, Sébastien; Rivals, Eric; Jarne, Philippe
2007-01-01
Background Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Results Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Conclusion Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions. PMID:17442102
NASA Astrophysics Data System (ADS)
Fan, Daidu; Tu, Junbiao; Cai, Guofu; Shang, Shuai
2015-06-01
Grain-size analysis is a basic routine in sedimentology and related fields, but diverse methods of sample collection, processing and statistical analysis often make direct comparisons and interpretations difficult or even impossible. In this paper, 586 published grain-size datasets from the Qiantang Estuary (East China Sea) sampled and analyzed by the same procedures were merged and their textural parameters calculated by a percentile and two moment methods. The aim was to explore which of the statistical procedures performed best in the discrimination of three distinct sedimentary units on the tidal flats of the middle Qiantang Estuary. A Gaussian curve-fitting method served to simulate mixtures of two normal populations having different modal sizes, sorting values and size distributions, enabling a better understanding of the impact of finer tail components on textural parameters, as well as the proposal of a unifying descriptive nomenclature. The results show that percentile and moment procedures yield almost identical results for mean grain size, and that sorting values are also highly correlated. However, more complex relationships exist between percentile and moment skewness (kurtosis), changing from positive to negative correlations when the proportions of the finer populations decrease below 35% (10%). This change results from the overweighting of tail components in moment statistics, which stands in sharp contrast to the underweighting or complete amputation of small tail components by the percentile procedure. Intercomparisons of bivariate plots suggest an advantage of the Friedman & Johnson moment procedure over the McManus moment method in terms of the description of grain-size distributions, and over the percentile method by virtue of a greater sensitivity to small variations in tail components. The textural parameter scalings of Folk & Ward were translated into their Friedman & Johnson moment counterparts by application of mathematical functions derived by regression analysis of measured and modeled grain-size data, or by determining the abscissa values of intersections between auxiliary lines running parallel to the x-axis and vertical lines corresponding to the descriptive percentile limits along the ordinate of representative bivariate plots. Twofold limits were extrapolated for the moment statistics in relation to single descriptive terms in the cases of skewness and kurtosis by considering both positive and negative correlations between percentile and moment statistics. The extrapolated descriptive scalings were further validated by examining entire size-frequency distributions simulated by mixing two normal populations of designated modal size and sorting values, but varying in mixing ratios. These were found to match well in most of the proposed scalings, although platykurtic and very platykurtic categories were questionable when the proportion of the finer population was below 5%. Irrespective of the statistical procedure, descriptive nomenclatures should therefore be cautiously used when tail components contribute less than 5% to grain-size distributions.
Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2016-11-20
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Membrane emulsification to produce perfume microcapsules
NASA Astrophysics Data System (ADS)
Pan, Xuemiao
Microencapsulation is an efficient technology to deliver perfume oils from consumer products onto the surface of fabrics. Microcapsules having uniform size/mechanical strength, may provide better release performance. Membrane emulsification in a dispersion cell followed by in-situ polymerization was used to prepare narrow size distribution melamine-formaldehyde (MF) microcapsules containing several types of oil-based fragrances or ingredients. Investigated in this study are the parameters impacting to the size and size distribution of the droplets and final MF microcapsules. A pilot plant-scale cross-flow membrane system was also used to produce MF microcapsules, demonstrating that the membrane emulsification process has potential to be scaled up for industrial applications. In this study, health and environmental friendly poly (methyl methacrylate) (PMMA) microcapsules with narrow size distribution were also prepared for the first time using the dispersion cell membrane emulsification system. Characterization methods previously used for thin-shell microcapsules were expanded to analyse microcapsules with thick shells. The intrinsic mechanical properties of thick shells were determined using a micromanipulation technique and finite element analysis (FEM). The microcapsules structure was also considered in the determination of the permeability and diffusivity of the perfume oils in good solvents..
NASA Astrophysics Data System (ADS)
Wolock, David M.
1995-08-01
The effects of subbasin size on topographic characteristics and simulated flow paths were determined for the 111.5-km2 Sleepers River Research Watershed in Vermont using the watershed model TOPMODEL. Topography is parameterized in TOPMODEL as the spatial and statistical distribution of the index ln (a/tan B), where In is the Napierian logarithm, a is the upslope area per unit contour length, and tan B is the slope gradient. The mean, variance, and skew of the ln (a/tan B) distribution were computed for several sets of nested subbasins (0.05 to 111.5 km2)) along streams in the watershed and used as input to TOPMODEL. In general, the statistics of the ln (a/tan B) distribution and the simulated percentage of overland flow in total streamflow increased rapidly for some nested subbasins and decreased rapidly for others as subbasin size increased from 0.05 to 1 km2, generally increased up to a subbasin size of 5 km2, and remained relatively constant at a subbasin size greater than 5 km2. Differences in simulated flow paths among subbasins of all sizes (0.05 to 111.5 km2) were caused by differences in the statistics of the ln (a/tan B) distribution, not by differences in the explicit spatial arrangement of ln (a/tan B) values within the subbasins. Analysis of streamflow chemistry data from the Neversink River watershed in southeastern New York supports the hypothesis that subbasin size affects flow-path characteristics.
Larché, J-F; Seynaeve, J-M; Voyard, G; Bussière, P-O; Gardette, J-L
2011-04-21
The thermoporosimetry method was adapted to determine the mesh size distribution of an acrylate thermoset clearcoat. This goal was achieved by increasing the solvent rate transfer by increasing the pressure and temperature. A comparison of the results obtained using this approach with those obtained by DMA (dynamic mechanical analysis) underlined the accuracy of thermoporosimetry in characterizing the macromolecular architecture of thermosets. The thermoporosimetry method was also used to analyze the effects of photoaging on cross-linking, which result from the photodegradation of the acrylate thermoset. It was found that the formation of a three-dimensional network followed by densification generates a modification of the average mesh size that leads to a dramatic decrease of the meshes of the polymer.
Multiscaling properties of coastal waters particle size distribution from LISST in situ measurements
NASA Astrophysics Data System (ADS)
Pannimpullath Remanan, R.; Schmitt, F. G.; Loisel, H.; Mériaux, X.
2013-12-01
An eulerian high frequency sampling of particle size distribution (PSD) is performed during 5 tidal cycles (65 hours) in a coastal environment of the eastern English Channel at 1 Hz. The particle data are recorded using a LISST-100x type C (Laser In Situ Scattering and Transmissometry, Sequoia Scientific), recording volume concentrations of particles having diameters ranging from 2.5 to 500 mu in 32 size classes in logarithmic scale. This enables the estimation at each time step (every second) of the probability density function of particle sizes. At every time step, the pdf of PSD is hyperbolic. We can thus estimate PSD slope time series. Power spectral analysis shows that the mean diameter of the suspended particles is scaling at high frequencies (from 1s to 1000s). The scaling properties of particle sizes is studied by computing the moment function, from the pdf of the size distribution. Moment functions at many different time scales (from 1s to 1000 s) are computed and their scaling properties considered. The Shannon entropy at each time scale is also estimated and is related to other parameters. The multiscaling properties of the turbidity (coefficient cp computed from the LISST) are also consider on the same time scales, using Empirical Mode Decomposition.
2001-11-01
ultrafine particles with a narrow size distribution and high purity. Chemical Vapor Synthesis (CVS) is a method to generate particles in the size range...high temperatures due to strong covalent bonds. Ultrafine particles of SiC are promising for the production of dense bulk solids due to the small grain
Measurement of the mass and composition of particulate matter (PM) as a function of size is important for research studies for chemical mass balance, factor analysis, air quality model evaluation, epidemiology, and risk assessment. Such measurements are also important in underst...
1989-08-18
conditions, strain rate , geometry, manufacturing variables, microstructure, surface conditions, and alloy contamination. Exzvples of service failures are...depends on the ductility of the material, strain rate and stress concentration. The macrosocpic appearances of two ductile overstress fractures are shown...distribution of nucleation sites, stress orientation, temperature, ductility and strain rate . The size of the dimples is oontrolled by the size, number ard
Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific
NASA Astrophysics Data System (ADS)
Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.
2015-09-01
This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner. Electronic supplementary information (ESI) available: IF images of brain, heart, low magnification images of spleen, mouse heart rate and blood pressure post-LPS. See DOI: 10.1039/c5nr03626g
An analysis of the orbital distribution of solid rocket motor slag
NASA Astrophysics Data System (ADS)
Horstman, Matthew F.; Mulrooney, Mark
2009-01-01
The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.
NASA Astrophysics Data System (ADS)
Afifah, M. R. Nurul; Aziz, A. Che; Roslan, M. Kamal
2015-09-01
Sediment samples were collected from the shallow marine from Kuala Besar, Kelantan outwards to the basin floor of South China Sea which consisted of quaternary bottom sediments. Sixty five samples were analysed for their grain size distribution and statistical relationships. Basic statistical analysis like mean, standard deviation, skewness and kurtosis were calculated and used to differentiate the depositional environment of the sediments and to derive the uniformity of depositional environment either from the beach or river environment. The sediments of all areas were varied in their sorting ranging from very well sorted to poorly sorted, strongly negative skewed to strongly positive skewed, and extremely leptokurtic to very platykurtic in nature. Bivariate plots between the grain-size parameters were then interpreted and the Coarsest-Median (CM) pattern showed the trend suggesting relationships between sediments influenced by three ongoing hydrodynamic factors namely turbidity current, littoral drift and waves dynamic, which functioned to control the sediments distribution pattern in various ways.
Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors
Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong
2016-01-01
Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M-D.
2000-08-23
Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results ofmore » the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10%) compared with the tail regions. This result shows that the ejector device could have a higher bin-to-bin counting uncertainty for ''soft'' particles such as DOP than for a solid dry particle like NaCl. The results suggest that it may be difficult to precisely characterize the size distribution of particles ejected from the mini-dilution system if the particle is not solid.« less
Generation of a monodispersed aerosol
NASA Technical Reports Server (NTRS)
Schenck, H.; Mikasa, M.; Devicariis, R.
1974-01-01
The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Wriedt, Thomas; Han, Yi Ping; Mädler, Lutz; Jiao, Yong Chang
2018-05-01
Light scattering of a radially inhomogeneous droplet, which is modeled by a multilayered sphere, is investigated within the framework of Generalized Lorenz-Mie Theory (GLMT), with particular efforts devoted to the analysis of the internal field distribution in the cases of shaped beam illumination. To circumvent numerical difficulties in the computation of internal field for an absorbing/non-absorbing droplet with pretty large size parameter, a recursive algorithm is proposed by reformulation of the equations for the expansion coefficients. Two approaches are proposed for the prediction of the internal field distribution, namely a rigorous method and an approximation method. The developed computer code is tested to be stable in a wide range of size parameters. Numerical computations are implemented to simulate the internal field distributions of a radially inhomogeneous droplet illuminated by a focused Gaussian beam.
Particle size distribution: A key factor in estimating powder dustiness.
López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo
2017-12-01
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.
Optical behaviour of copper phthalocyanine preparations for inkjet inks.
Otáhalová, Lenka; Kaplanová, Marie; Gunde, Marta Klanjšek; Puchta, Miloš
2011-06-01
The present study investigates the preparation of the copper phthalocyanine pigment for inkjet printing inks. The pigment particle size distribution was measured with laser diffraction at different times of wet milling. Simultaneously, the absorbance spectra in a visible-near infrared spectral region of the corresponding diluted pigment dispersions were measured. At the beginning of the milling process, the particle size distribution is bimodal, showing the presence of aggregates and agglomerates. During the second hour of milling, the particle size distribution changes to unimodal due to the breaking of agglomerates, and the corresponding absorbance spectra change accordingly. Further milling diminishes the size of pigment aggregates up to the steady state value of around 130 nm, where also the absorbance in the corresponding spectra does not increase. A detailed analysis of intensity and position of the absorbance peak at 340 nm in dependence on the milling time and pigment concentration confirms the idea that an optical spectroscopy could be used for the assessment of optimal milling time required for the preparation of pigments with the maximum absorption ability.
Aerosol in the Pacific troposphere
NASA Technical Reports Server (NTRS)
Clarke, Antony D.
1989-01-01
The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Size distribution of extracellular vesicles by optical correlation techniques.
Montis, Costanza; Zendrini, Andrea; Valle, Francesco; Busatto, Sara; Paolini, Lucia; Radeghieri, Annalisa; Salvatore, Annalisa; Berti, Debora; Bergese, Paolo
2017-10-01
Understanding the colloidal properties of extracellular vesicles (EVs) is key to advance fundamental knowledge in this field and to develop effective EV-based diagnostics, therapeutics and devices. Determination of size distribution and of colloidal stability of purified EVs resuspended in buffered media is a complex and challenging issue - because of the wide range of EV diameters (from 30 to 2000nm), concentrations of interest and membrane properties, and the possible presence of co-isolated contaminants with similar size and densities, such as protein aggregates and fat globules - which is still waiting to be fully addressed. We report here a fully detailed protocol for accurate and robust determination of the size distribution and stability of EV samples which leverages a dedicated combination of Fluorescence Correlation Spectroscopy (FCS) and Dynamic Light Scattering (DLS). The theoretical background, critical experimental steps and data analysis procedures are thoroughly presented and finally illustrated through the representative case study of EV formulations obtained from culture media of B16 melanoma cells, a murine tumor cell line used as a model for human skin cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Ning-Chen; de Grijs, Richard; Cioni, Maria-Rosa L.; Rubele, Stefano; Subramanian, Smitha; van Loon, Jacco Th.; Bekki, Kenji; Bell, Cameron P. M.; Ivanov, Valentin D.; Marconi, Marcella; Muraveva, Tatiana; Oliveira, Joana M.; Ripepi, Vincenzo
2018-05-01
In this paper we report a clustering analysis of upper main-sequence stars in the Small Magellanic Cloud, using data from the VMC survey (the VISTA near-infrared YJK s survey of the Magellanic system). Young stellar structures are identified as surface overdensities on a range of significance levels. They are found to be organized in a hierarchical pattern, such that larger structures at lower significance levels contain smaller ones at higher significance levels. They have very irregular morphologies, with a perimeter–area dimension of 1.44 ± 0.02 for their projected boundaries. They have a power-law mass–size relation, power-law size/mass distributions, and a log-normal surface density distribution. We derive a projected fractal dimension of 1.48 ± 0.03 from the mass–size relation, or of 1.4 ± 0.1 from the size distribution, reflecting significant lumpiness of the young stellar structures. These properties are remarkably similar to those of a turbulent interstellar medium, supporting a scenario of hierarchical star formation regulated by supersonic turbulence.
NASA Astrophysics Data System (ADS)
Clarke, David W.; Boyle, John F.; Chiverrell, Richard C.; Lario, Javier; Plater, Andrew J.
2014-09-01
At present, limited understanding of mesoscale (years-decades-centuries) back-barrier lagoon, barrier estuary behaviour is a critical shortcoming for resource managers and decision makers. In this paper, high-resolution particle size analysis of a sediment core from an intermittently open and closed barrier estuary is utilised to reconstruct a history of back-barrier environmental change at mesoscale temporal resolution. Sediments from Pescadero Marsh, California, were analysed for their particle size distribution at consecutive 2-mm intervals down-core. Site selection, informed by a time series of maps and aerial photographs coupled with a robust core chronology, ensured that the particle size data primarily reflect changing hydrodynamics of the back-barrier area over the European-American era (1850 to the present). Following more traditional plotting of particle size data and summary statistics, and statistical analysis of particle size end-members, visual analysis and categorisation of particle size distribution curves (PSDCs) provide an effective basis for the identification of recurring modal sizes and subpopulations. These particle size windows (PSWs) are interpreted as reflecting different modes of sediment transport and deposition, i.e., suspension and saltation loads, the varying prominence of which is interpreted as being modified by barrier integrity. When considered together, the down-core mean particle size (MPS) trend and individual PSDCs offer considerable insight into mesoscale system behaviour at subannual resolution over multiple years. This behaviour is expressed in the recurrence of characteristic barrier estuarine environments (closed lagoon, tidal lagoon, tidal marsh, and open estuary) and the overall barrier regime, and their persistence over the last c. 150 years. Subannual and multiannual fluctuations in back-barrier environmental configuration are seen to be superimposed on a longer-term quasi-stable barrier regime, demonstrating the value of the applied methodology with regard to bridging the estuarine evolution (long-term, stratigraphic) and process (short-term, geomorphic) knowledge bases. The documented behaviour suggests a level of innate morphological resilience in the system over the long term despite episodic disturbance by high-energy storms. Such empirical demonstrations of resilient behaviour in coastal environments are rare at the mesoscale.
Rank distributions: A panoramic macroscopic outlook
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Coalescence computations for large samples drawn from populations of time-varying sizes
Polanski, Andrzej; Szczesna, Agnieszka; Garbulowski, Mateusz; Kimmel, Marek
2017-01-01
We present new results concerning probability distributions of times in the coalescence tree and expected allele frequencies for coalescent with large sample size. The obtained results are based on computational methodologies, which involve combining coalescence time scale changes with techniques of integral transformations and using analytical formulae for infinite products. We show applications of the proposed methodologies for computing probability distributions of times in the coalescence tree and their limits, for evaluation of accuracy of approximate expressions for times in the coalescence tree and expected allele frequencies, and for analysis of large human mitochondrial DNA dataset. PMID:28170404
Assessment of sampling stability in ecological applications of discriminant analysis
Williams, B.K.; Titus, K.
1988-01-01
A simulation study was undertaken to assess the sampling stability of the variable loadings in linear discriminant function analysis. A factorial design was used for the factors of multivariate dimensionality, dispersion structure, configuration of group means, and sample size. A total of 32,400 discriminant analyses were conducted, based on data from simulated populations with appropriate underlying statistical distributions. A review of 60 published studies and 142 individual analyses indicated that sample sizes in ecological studies often have met that requirement. However, individual group sample sizes frequently were very unequal, and checks of assumptions usually were not reported. The authors recommend that ecologists obtain group sample sizes that are at least three times as large as the number of variables measured.
Power laws, discontinuities and regional city size distributions
Garmestani, A.S.; Allen, Craig R.; Gallagher, C.M.
2008-01-01
Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux.
Latitude Variation for Pluto's Crater Distribution
NASA Astrophysics Data System (ADS)
Dwivedi, A. K.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Ennico Smith, K.; Young, L. A.
2017-12-01
The crater population distribution on Pluto and Charon have been studied to infer the size distribution of objects in the Kuiper belt (Singer et al. 2017; submitted). In this talk, we will look at the variation in crater distribution with latitude. To circumvent possible bias effects in the analysis, we focus our analysis on a region having the most consistent imaging resolution afforded by the flyby geometry. The longitudinal extent of our study region is 90E to 150E, and the latitudinal extent is 0°N to 90°N. Our preliminary analysis shows crater population peaks in the latitude range 30°N to 60°N and drops off sharply toward the north pole. Here we describe how we quantify the crater distribution in this region and explore a range of processes for volatile transport over both orbital timescales and perihelion precession timescales, including million year Milankovitch cycles for obliquity oscillations.
Intensity distribution of the x ray source for the AXAF VETA-I mirror test
NASA Technical Reports Server (NTRS)
Zhao, Ping; Kellogg, Edwin M.; Schwartz, Daniel A.; Shao, Yibo; Fulton, M. Ann
1992-01-01
The X-ray generator for the AXAF VETA-I mirror test is an electron impact X-ray source with various anode materials. The source sizes of different anodes and their intensity distributions were measured with a pinhole camera before the VETA-I test. The pinhole camera consists of a 30 micrometers diameter pinhole for imaging the source and a Microchannel Plate Imaging Detector with 25 micrometers FWHM spatial resolution for detecting and recording the image. The camera has a magnification factor of 8.79, which enables measuring the detailed spatial structure of the source. The spot size, the intensity distribution, and the flux level of each source were measured with different operating parameters. During the VETA-I test, microscope pictures were taken for each used anode immediately after it was brought out of the source chamber. The source sizes and the intensity distribution structures are clearly shown in the pictures. They are compared and agree with the results from the pinhole camera measurements. This paper presents the results of the above measurements. The results show that under operating conditions characteristic of the VETA-I test, all the source sizes have a FWHM of less than 0.45 mm. For a source of this size at 528 meters away, the angular size to VETA is less than 0.17 arcsec which is small compared to the on ground VETA angular resolution (0.5 arcsec, required and 0.22 arcsec, measured). Even so, the results show the intensity distributions of the sources have complicated structures. These results were crucial for the VETA data analysis and for obtaining the on ground and predicted in orbit VETA Point Response Function.
NASA Astrophysics Data System (ADS)
Khiari, Nouha; Atoui, Abdelfattah; Khalil, Nadia; Charef, Abdelkrim; Aleya, Lotfi
2017-10-01
The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay shore (from 0 to 2 m depth), the bottom is covered by medium sand. Sediment transport is noted along the coast; from north to south and from south to north, caused by longshore drift and a rip current in the middle of the bay. These two currents are generated by wind and swell, especially by north to northeast waves which transport the finest sediment. Particle size analysis of bottom sediment indicates a mean grain size ranging from coarse to very fine sands while vertical distribution of grain size tends to decrease from surface to depth. The increase in particle size of sediment cores may be due to the coexistence of terrigenous inputs along with the sedimentary transit parallel to the coast due to the effect of longshore drift. Mineralogical analysis shows that Monastir's coastal sands and bottom sediment are composed of quartz, calcite, magnesium calcite, aragonite and hematite. The existence of a low energy zone with potential to accumulate pollutants indicates that managerial action is necessary to help preserve Monastir Bay.
EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.
Tong, Xiaoxiao; Bentler, Peter M
2013-01-01
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.
Empirical Reference Distributions for Networks of Different Size
Smith, Anna; Calder, Catherine A.; Browning, Christopher R.
2016-01-01
Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556
Impact of carpet construction on fluid penetration: The case of blood.
Feng, Chengcheng; Michielsen, Stephen; Attinger, Daniel
2018-03-01
Bloodstains and bloodstain patterns are often observed at crime scenes and their analysis through bloodstain pattern analysis (BPA) can assist in reconstructing crime scenes. However, most published work related to BPA only deals with hard, non-porous surfaces and none of the studies have carefully characterized carpets. Soft and porous carpets are often encountered at crime scenes since they are common in American homes accounting for 51% of total U.S. flooring market; this has motivated the research described herein. To assess fluid penetration into tufted carpers, a new method for determining porosity and pore size distribution in tufted carpets has been developed for bloodstains on carpet. In this study, three kinds of nylon carpet were used: a low, a medium and a high face-weight carpet. Each carpet had an antistain treatment, which was removed from half of each carpet by steam-cleaning with a pH 12 NaOH solution. This resulted in six carpet samples. Yarn twist, carpet weight, pile height, water contact angles on carpets, water contact angles on individual fibers, and fiber cross-sectional shapes were characterized. Porosity and pore size distribution were analyzed using confocal laser scanning microscopy (CLSM). Porcine blood was used as a human blood substitute at three liquid volumes (30μL, 10μL, and 2μL). Analysis showed that porous carpet construction and antistain finishing both affected penetration. The depth of blood penetration decreased with the increase of carpet face-weight but increased with increased drop height. The removal of antistain treatment increased blood penetration into the carpets and changed the pore size distribution. Effects of antistain treatment, porosity and pore size distribution of tufted carpet, and blood wicking behaviors on carpets were found to strongly affect blood penetration into the carpets. Copyright © 2018 Elsevier B.V. All rights reserved.
Impact of geometrical properties on permeability and fluid phase distribution in porous media
NASA Astrophysics Data System (ADS)
Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.
2008-09-01
To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.
The Applicability of Confidence Intervals of Quantiles for the Generalized Logistic Distribution
NASA Astrophysics Data System (ADS)
Shin, H.; Heo, J.; Kim, T.; Jung, Y.
2007-12-01
The generalized logistic (GL) distribution has been widely used for frequency analysis. However, there is a little study related to the confidence intervals that indicate the prediction accuracy of distribution for the GL distribution. In this paper, the estimation of the confidence intervals of quantiles for the GL distribution is presented based on the method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) and the asymptotic variances of each quantile estimator are derived as functions of the sample sizes, return periods, and parameters. Monte Carlo simulation experiments are also performed to verify the applicability of the derived confidence intervals of quantile. As the results, the relative bias (RBIAS) and relative root mean square error (RRMSE) of the confidence intervals generally increase as return period increases and reverse as sample size increases. And PWM for estimating the confidence intervals performs better than the other methods in terms of RRMSE when the data is almost symmetric while ML shows the smallest RBIAS and RRMSE when the data is more skewed and sample size is moderately large. The GL model was applied to fit the distribution of annual maximum rainfall data. The results show that there are little differences in the estimated quantiles between ML and PWM while distinct differences in MOM.
Floe-size distributions in laboratory ice broken by waves
NASA Astrophysics Data System (ADS)
Herman, Agnieszka; Evers, Karl-Ulrich; Reimer, Nils
2018-02-01
This paper presents the analysis of floe-size distribution (FSD) data obtained in laboratory experiments of ice breaking by waves. The experiments, performed at the Large Ice Model Basin (LIMB) of the Hamburg Ship Model Basin (Hamburgische Schiffbau-Versuchsanstalt, HSVA), consisted of a number of tests in which an initially continuous, uniform ice sheet was broken by regular waves with prescribed characteristics. The floes' characteristics (surface area; minor and major axis, and orientation of equivalent ellipse) were obtained from digital images of the ice sheets after five tests. The analysis shows that although the floe sizes cover a wide range of values (up to 5 orders of magnitude in the case of floe surface area), their probability density functions (PDFs) do not have heavy tails, but exhibit a clear cut-off at large floe sizes. Moreover, the PDFs have a maximum that can be attributed to wave-induced flexural strain, producing preferred floe sizes. It is demonstrated that the observed FSD data can be described by theoretical PDFs expressed as a weighted sum of two components, a tapered power law and a Gaussian, reflecting multiple fracture mechanisms contributing to the FSD as it evolves in time. The results are discussed in the context of theoretical and numerical research on fragmentation of sea ice and other brittle materials.
Study of Submicron Particle Size Distributions by Laser Doppler Measurement of Brownian Motion.
1984-10-29
o ..... . 5-1 A.S *6NEW DISCOVERIES OR INVENTIONS .. o......... ......... 6-1 APPENDIX: COMPUTER SIMULATION OF THE BROWNIAN MOTION SENSOR SIGNALS...scattering regime by analysis of the scattered light intensity and particle mass (size) obtained using the Brownian motion sensor . 9 Task V - By application...of the Brownian motion sensor in a flat-flame burner, the contractor shall assess the application of this technique for In-situ sizing of submicron
Identification of Low-Latency Obfuscated Traffic Using Multi-Attribute Analysis
2017-03-01
the distribution of common Tor packet sizes. Herrmann et al. also contend that the remaining variations in observed packet sizes are caused by OS...specific fragmentation and that Tor’s variation in packet size provides an additional level of protection as the false positive rate (FPR) using packet...three pre-filter variations , the observed FPR for non-Tor ranged from 94.4 percent to 7.2 percent, and the observed FNR for Tor ranged from 61.3
Porosity characterization for heterogeneous shales using integrated multiscale microscopy
NASA Astrophysics Data System (ADS)
Rassouli, F.; Andrew, M.; Zoback, M. D.
2016-12-01
Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements from all different imaging techniques. These multi-scale characterization techniques are then compared with traditional analytical techniques such as Mercury Porosimetry.
Study on characteristics of printed circuit board liberation and its crushed products.
Quan, Cui; Li, Aimin; Gao, Ningbo
2012-11-01
Recycling printed circuit board waste (PCBW) waste is a hot issue of environmental protection and resource recycling. Mechanical and thermo-chemical methods are two traditional recycling processes for PCBW. In the present research, a two-step crushing process combined with a coarse-crushing step and a fine-pulverizing step was adopted, and then the crushed products were classified into seven different fractions with a standard sieve. The liberation situation and particle shape in different size fractions were observed. Properties of different size fractions, such as heating value, thermogravimetric, proximate, ultimate and chemical analysis were determined. The Rosin-Rammler model was applied to analyze the particle size distribution of crushed material. The results indicated that complete liberation of metals from the PCBW was achieved at a size less than 0.59 mm, but the nonmetal particle in the smaller-than-0.15 mm fraction is liable to aggregate. Copper was the most prominent metal in PCBW and mainly enriched in the 0.42-0.25 mm particle size. The Rosin-Rammler equation adequately fit particle size distribution data of crushed PCBW with a correlation coefficient of 0.9810. The results of heating value and proximate analysis revealed that the PCBW had a low heating value and high ash content. The combustion and pyrolysis process of PCBW was different and there was an obvious oxidation peak of Cu in combustion runs.
Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang
2013-01-01
Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.
Methods for Determining Particle Size Distributions from Nuclear Detonations.
1987-03-01
Debris . . . 30 IV. Summary of Sample Preparation Method . . . . 35 V. Set Parameters for PCS ... ........... 39 VI. Analysis by Vendors...54 XV. Results From Brookhaven Analysis Using The Method of Cumulants ... ........... . 54 XVI. Results From Brookhaven Analysis of Sample...R-3 Using Histogram Method ......... .55 XVII. Results From Brookhaven Analysis of Sample R-8 Using Histogram Method ........... 56 XVIII.TEM Particle
Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.
Mikheev, Vladimir B; Brinkman, Marielle C; Granville, Courtney A; Gordon, Sydney M; Clark, Pamela I
2016-09-01
Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11-25nm count median diameter) and submicron particles (96-175nm count median diameter). Each mode has comparable number concentrations (10(7)-10(8) particles/cm(3)). "Dry puff" tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e-cigarette, along with submicron particles the user is also inhaling nano-aerosol that consists of nanoparticles with attached chemicals that has not been fully investigated. The presence of high concentrations of nanoparticles requires nanotoxicological consideration in order to assess the potential health impact of e-cigarettes. The toxicological impact of inhaled nanoparticles could be significant, though not necessarily similar to the biomarkers typical of combustible tobacco smoke. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis
Brinkman, Marielle C.; Granville, Courtney A.; Gordon, Sydney M.; Clark, Pamela I.
2016-01-01
Introduction: Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. Methods: We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. Results: E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11–25nm count median diameter) and submicron particles (96–175nm count median diameter). Each mode has comparable number concentrations (107–108 particles/cm3). “Dry puff” tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. Conclusions: E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. Implications: The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e-cigarette, along with submicron particles the user is also inhaling nano-aerosol that consists of nanoparticles with attached chemicals that has not been fully investigated. The presence of high concentrations of nanoparticles requires nanotoxicological consideration in order to assess the potential health impact of e-cigarettes. The toxicological impact of inhaled nanoparticles could be significant, though not necessarily similar to the biomarkers typical of combustible tobacco smoke. PMID:27146638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebetrau, A.M.
Work is underway at Pacific Northwest Laboratory (PNL) to improve the probabilistic analysis used to model pressurized thermal shock (PTS) incidents in reactor pressure vessels, and, further, to incorporate these improvements into the existing Vessel Integrity Simulation Analysis (VISA) code. Two topics related to work on input distributions in VISA are discussed in this paper. The first involves the treatment of flaw size distributions and the second concerns errors in the parameters in the (Guthrie) equation which is used to compute ..delta..RT/sub NDT/, the shift in reference temperature for nil ductility transition.
NASA Astrophysics Data System (ADS)
Guzmán, G.; Gómez, J. A.; Giráldez, J. V.
2010-05-01
Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a second alternative a unique optical model valid for a broad range of soils developed by the Department of Soil, Water, and Environmental Science of the University of Arizona (personal communication, already submitted) was tested. The results were compared with the particle size distribution measured in the same soils and aggregate classes using the hydrometer method. Preliminary results indicate a better calibration of the technique using the optical model of the Department of Soil, Water, and Environmental Science of the University of Arizona, which obtained a good correlations (r2>0.85). This result suggests that with an appropriate calibration of the optical model laser diffractometry might provide a reliable soil particle characterization.
The evolution of Zipf's law indicative of city development
NASA Astrophysics Data System (ADS)
Chen, Yanguang
2016-02-01
Zipf's law of city-size distributions can be expressed by three types of mathematical models: one-parameter form, two-parameter form, and three-parameter form. The one-parameter and one of the two-parameter models are familiar to urban scientists. However, the three-parameter model and another type of two-parameter model have not attracted attention. This paper is devoted to exploring the conditions and scopes of application of these Zipf models. By mathematical reasoning and empirical analysis, new discoveries are made as follows. First, if the size distribution of cities in a geographical region cannot be described with the one- or two-parameter model, maybe it can be characterized by the three-parameter model with a scaling factor and a scale-translational factor. Second, all these Zipf models can be unified by hierarchical scaling laws based on cascade structure. Third, the patterns of city-size distributions seem to evolve from three-parameter mode to two-parameter mode, and then to one-parameter mode. Four-year census data of Chinese cities are employed to verify the three-parameter Zipf's law and the corresponding hierarchical structure of rank-size distributions. This study is revealing for people to understand the scientific laws of social systems and the property of urban development.
Examination of pulverized waste recycled glass as filter media in slow sand filtration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piccirillo, J.B.; Letterman, R.D.
1997-10-01
The purpose of this study was to investigate the pulverization of waste recycled glass to produce glass sand for slow sand filters. Pulverization experiments were performed using a fail mill pulverizer. The glass sand product from the pulverizer meets the size distribution requirements of ASTM-C-33 without size distribution adjustment. The size distribution must be adjusted to meet the grain size distribution requirements of the Ten States Standards and the USEPA for filter media used in slow sand filters. Pulverized glass that meet slow sand filter media specifications is an effective alternative to silica sand as a filter media for slowmore » sand filtration. Three pilot plant slow sand filters with glass sand filter media were compared to a fourth filter containing silica sand filter media. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good or better than the silica sands, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; 99.92% and 99.97% for cryptosporidium oocysts. Based on a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.« less
Shandilya, Kaushik K; Kumar, Ashok
2011-06-15
This study presents the physical characteristics of fine particulate matter (PM) collected inside the urban-public transit buses in Toledo, OH. These buses run on 20% biodiesel blended with ultra-low sulfur diesel (ULSD) (B20). For risk analysis, it is crucial to know the modality of the size distribution and the shape factor of PM collected inside the bus. The number-size distribution, microstructure, and aspect ratio of fine PM filter samples collected in the urban-public transit buses were measured for three years (2007-2009), using an environmental scanning electron microscope (ESEM) coupled with energy dispersive X-ray spectrometry (EDX). Only the reproducible results from repeated experiments on ESEM and size distribution obtained by the GRIMM dust monitor were used in this study. The size distribution was found bi-modal in the winter and fall months and was primarily uni-modal during spring and summer. The aspect ratio for different filter samples collected inside the bus range from 2.4 to 3.6 in average value, with standard deviation ranging from 0.9 to 7.4. The square-shaped and oblong-shaped particles represent the single inhalable particle's morphology characteristics in the air of the Toledo transit buses. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H.
2013-09-01
We investigated the cluster-size distribution of the residual nonwetting phase in a sintered glass-bead porous medium at two-phase flow conditions, by means of micro-computed-tomography (μCT) imaging with pore-scale resolution. Cluster-size distribution functions and cluster volumes were obtained by image analysis for a range of injected pore volumes under both imbibition and drainage conditions; the field of view was larger than the porosity-based representative elementary volume (REV). We did not attempt to make a definition for a two-phase REV but used the nonwetting-phase cluster-size distribution as an indicator. Most of the nonwetting-phase total volume was found to be contained in clusters that were one to two orders of magnitude larger than the porosity-based REV. The largest observed clusters in fact ranged in volume from 65% to 99% of the entire nonwetting phase in the field of view. As a consequence, the largest clusters observed were statistically not represented and were found to be smaller than the estimated maximum cluster length. The results indicate that the two-phase REV is larger than the field of view attainable by μCT scanning, at a resolution which allows for the accurate determination of cluster connectivity.
Evidence for soft bounds in Ubuntu package sizes and mammalian body masses.
Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco
2013-12-24
The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call "soft bound." Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly.
Zhang, Wenhui; Cai, Chunxue; Wang, Jing; Mao, Zhen; Li, Yueqiu; Ding, Liang; Shen, Shigang; Dou, Haiyang
2017-08-08
Home-made asymmetrical flow field-flow fractionation (AF4) system, online coupled with ultraviolet/visible (UV/Vis) detector was employed for the separation and size characterization of low density lipoprotein (LDL) in egg yolk plasma. At close to natural condition of egg yolk, the effects of cross flow rate, sample loading, and type of membrane on the size distribution of LDL were investigated. Under the optimal operation conditions, AF4-UV/Vis provides the size distribution of LDL. Moreover, the precision of AF4-UV/Vis method proposed in this work for the analysis of LDL in egg yolk plasma was evaluated. The intra-day precisions were 1.3% and 1.9% ( n =7) and the inter-day precisions were 2.4% and 2.3% ( n =7) for the elution peak height and elution peak area of LDL, respectively. Results reveal that AF4-UV/Vis is a useful tool for the separation and size characterization of LDL in egg yolk plasma.
NASA Technical Reports Server (NTRS)
Mason, C. C.
1971-01-01
Analysis of lunar particle size distribution data indicates that the surface material is composed of two populations. One population is caused by comminution from the impact of the larger-sized meteorites, while the other population is caused by the melting of fine material by the impact of smaller-sized meteorites. The results are referred to Mars, and it is shown that the Martian atmosphere would vaporize the smaller incoming meteorites and retard the incoming meteorites of intermediate and large size, causing comminution and stirring of the particulate layer. The combination of comminution and stirring would result in fine material being sorted out by the prevailing circulation of the Martian atmosphere and the material being transported to regions where it could be deposited. As a result, the Martian surface in regions of prevailing upward circulation is probably covered by either a rubble layer or by desert pavement; regions of prevailing downward circulation are probably covered by sand dunes.
NASA Astrophysics Data System (ADS)
Lagrosas, N.; Bautista, D. L. B.; Miranda, J. P.
2016-12-01
Aerosol optical properties and growth were measured during 2014 and 2016 New Year celebrations at Manila Observatory, Philippines. Measurements were done using a USB2000 spectrometer from 22:00 of 31 December 2013 to 03:00 of 01 January 2014 and from 18:00 of 31 December 2015 to 05:30 01 January 2016. A xenon lamp was used as a light source 150m from the spectrometer. Fireworks and firecrackers were the main sources of aerosols during these festivities. Data were collected every 60s and 10s for 2014 and 2016 respectively. The aerosol volume size distribution was derived using the parametric inversion method proposed by Kaijser (1983). The method is performed by selecting 8 wavelengths from 387.30nm to 600.00nm. The reference intensities were obtained when firework activities were considerably low and the air was assumed to be relatively clean. Using Mie theory and assuming that the volume size distribution is a linear combination of 33 bimodal lognormal distribution functions with geometric mean radii between 0.003um and 1.2um, a least-square minimization process was implemented between measured optical depths and computed optical depths. The 2016 New Year distribution showed mostly a unimodal size distribution (mean radius = 0.3um) from 23:00 to 05:30 (Fig. 1a). The mean Angstrom coefficient value during the same time interval was approximately 0.75. This could be attributed to a constant RH (100%) during this time interval. A bimodal distribution was observed when RH value was 94% from 18:30 to 21:30. The transition to a unimodal distribution was observed at 21:00 when the RH value changes from 94% to 100%. In contrast to the 2016 New Year celebration, the 2014 size distribution was bimodal from 23:30 to 02:30 (Fig 1b). The bimodal distribution is the result of firework activities before New Year. Aerosol growth was evident when the size distribution became unimodal after 02:30 (mean radius = 1.1um). The mean Angstrom coefficient, when the size distribution is unimodal, was around 0.5 and this could be attributed to increasing RH from 78% to 88% during this time interval. The two New Year celebrations showed different patterns of aerosols growth. Aerosols produced at high RH tend to be unimodal while aerosols produced at low RH tend to have a bimodal distribution. As RH increased, the bimodal distribution became unimodal.
Saripella, Kalyan K; Mallipeddi, Rama; Neau, Steven H
2014-11-20
Polyplasdone of different particle size was used to study the sorption, desorption, and distribution of water, and to seek evidence that larger particles can internalize water. The three samples were Polyplasdone® XL, XL-10, and INF-10. Moisture sorption and desorption isotherms at 25 °C at 5% intervals from 0 to 95% relative humidity (RH) were generated by dynamic vapor sorption analysis. The three products provided similar data, judged to be Type III with a small hysteresis that appears when RH is below 65%. An absent rounded knee in the sorption curve suggests that multilayers form before the monolayer is completed. The hysteresis indicates that internally absorbed moisture is trapped as the water is desorbed and the polymer sample shrinks, thus requiring a lower level of RH to continue desorption. The fit of the Guggenheim-Anderson-de Boer (GAB) and the Young and Nelson equations was accomplished in the data analysis. The W(m), C(G), and K values from GAB analysis are similar across the three samples, revealing 0.962 water molecules per repeating unit in the monolayer. A small amount of absorbed water is identified, but this is consistent across the three particle sizes. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimizing Probability of Detection Point Estimate Demonstration
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
Brenda Rosser; Matt O' Connor
2007-01-01
Fish habitat in cold water streams in many northwestern California watersheds has been declared degraded under provisions of the Federal Clean Water Act, contributing to listings of anadromous fish species under the Endangered Species Act. It is believed that past and present land management activities induce erosion that contributes excess sand-size and finer sediment...
Rapid Analysis of the Size Distribution of Metal-Containing Aerosol
Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.
2017-01-01
Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214
Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis.
Cavicchi, Richard E; King, Jason; Ripple, Dean C
2018-05-01
The spatially averaged density of protein aggregates is an important parameter that can be used to relate size distributions measured by orthogonal methods, to characterize protein particles, and perhaps to estimate the amount of protein in aggregate form in a sample. We obtained a series of images of protein aggregates exhibiting Brownian diffusion while settling under the influence of gravity in a sealed capillary. The aggregates were formed by stir-stressing a monoclonal antibody (NISTmAb). Image processing yielded particle tracks, which were then examined to determine settling velocity and hydrodynamic diameter down to 1 μm based on mean square displacement analysis. Measurements on polystyrene calibration microspheres ranging in size from 1 to 5 μm showed that the mean square displacement diameter had improved accuracy over the diameter derived from imaged particle area, suggesting a future method for correcting size distributions based on imaging. Stokes' law was used to estimate the density of each particle. It was found that the aggregates were highly porous with density decreasing from 1.080 to 1.028 g/cm 3 as the size increased from 1.37 to 4.9 μm. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.
Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less
Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations
Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.; ...
2016-08-29
Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less
NASA Technical Reports Server (NTRS)
2005-01-01
Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.
Nucleation and Growth Kinetics from LaMer Burst Data.
Chu, Daniel B K; Owen, Jonathan S; Peters, Baron
2017-10-12
In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.
Size resolved ultrafine particles emission model--a continues size distribution approach.
Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick
2011-08-15
A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.
A Noncentral "t" Regression Model for Meta-Analysis
ERIC Educational Resources Information Center
Camilli, Gregory; de la Torre, Jimmy; Chiu, Chia-Yi
2010-01-01
In this article, three multilevel models for meta-analysis are examined. Hedges and Olkin suggested that effect sizes follow a noncentral "t" distribution and proposed several approximate methods. Raudenbush and Bryk further refined this model; however, this procedure is based on a normal approximation. In the current research literature, this…
NASA Astrophysics Data System (ADS)
Paladino, J. D.; Hagen, D. E.; Whitefield, P. D.; Hopkins, A. R.; Schmid, O.; Wilson, M. R.; Schlager, H.; Schulte, P.
2000-02-01
This paper discusses participate concentration and size distribution data gathered using the University of Missouri-Rolla Mobile Aerosol Sampling System (UMR-MASS), and used to investigate the southern extent of the eastern end of the North Atlantic Flight Corridor (NAFC) during project Pollution From Aircraft Emissions in the North Atlantic Flight Corridor/Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (POLINAT 2/SONEX) from September 19 to October 23, 1997. The analysis presented in this paper focuses on "the corridor effect," or enhancement of pollutants by jet aircraft combustion events. To investigate the phenomena, both vertical and horizontal profiles of the corridor, and regions immediately adjacent to the corridor, were performed. The profiles showed a time-dependent enhancement of particulates within the corridor, and a nonvolatile (with respect to thermal volatilization at 300°C) aerosol enhancement at corridor altitudes by a factor of 3.6. The southern extent of the North Atlantic Flight Corridor was established from a four flight average of the particulate data and yielded a boundary near 42.5°N during the study period. A size distribution analysis of the nonvolatile particulates revealed an enhancement in the <40 nm particulates for size distributions recorded within the flight corridor.
NASA Astrophysics Data System (ADS)
Park, Y. K.; Jung, J.; Lee, J. I.; Yoo, K. C.; Kim, J. W.
2016-12-01
Clay mineralogy and crystal size distribution in marine sediment is used for the indication of a sediment provenance and climatic changes. Objective of this study is to trace the sediment provenances in the Southern Drake Passage with clay mineralogy, elemental composition and crystal size distributions (CSDs) of clay mineral. In the present study, X-Ray Diffractometer (XRD) measurements showed that smectite, illite and chlorite are dominant phases. The semi-quantitative analysis showed that the relatively proportion of smectite is 50 - 60% in interglacial stage, 30 - 39% in glacial stage. Comparing with REE data, sediments supply was influenced by Weddell sea current and Antarctic Circumpolar Current (ACC). Moreover, elemental composition and microscopic analysis of smectites were carried by Transmission Electron Microscopy (TEM) and energy dispersive spectroscopy (EDS). The composition of smectite clay minerals were plotted on the tertiary diagram indicating that Smectite in Drake Passage was transported from three provenances: South Shetland island, east and west side of Antarctic peninsula during glacial - interglacial period. The CSDs of smectite also indicate the various source of smectite. The variation in the values of α (mean thickness) and β2 (shape or uniformity of the distribution) of smectite grain size will be discussed in terms of the sediment provenance.
Qureshi, Rashid Nazir
2010-01-01
An overview is given of the recent literature on (bio) analytical applications of flow field-flow fractionation (FlFFF). FlFFF is a liquid-phase separation technique that can separate macromolecules and particles according to size. The technique is increasingly used on a routine basis in a variety of application fields. In food analysis, FlFFF is applied to determine the molecular size distribution of starches and modified celluloses, or to study protein aggregation during food processing. In industrial analysis, it is applied for the characterization of polysaccharides that are used as thickeners and dispersing agents. In pharmaceutical and biomedical laboratories, FlFFF is used to monitor the refolding of recombinant proteins, to detect aggregates of antibodies, or to determine the size distribution of drug carrier particles. In environmental studies, FlFFF is used to characterize natural colloids in water streams, and especially to study trace metal distributions over colloidal particles. In this review, first a short discussion of the state of the art in instrumentation is given. Developments in the coupling of FlFFF to various detection modes are then highlighted. Finally, application studies are discussed and ordered according to the type of (bio) macromolecules or bioparticles that are fractionated. PMID:20957473
Capture Zone Distributions and Island Morphologies in Organic Epitaxy and Graphene Formation
NASA Astrophysics Data System (ADS)
Pimpinelli, Alberto; Einstein, T. L.
2013-03-01
Stating that island nucleation is an essential step in the formation of an epitaxial or supported layer may appear trivially obvious. However, less trivial is the observation that the size of the critical nucleus plays a crucial role in that it determines both the island density (and therefore the size of domains) and the evolution of the island morphology. In this talk we will describe recent developments in the analysis of capture zone distributions (CZD) specifically tailored for application to organic materials. We will also describe specific features of organic and graphene island morphologies, and discuss how they are related to the nucleation process and to the size of the critical nucleus. Work at UMD supported by NSF-MRSEC, Grant DMR 05-20471 and NSF CHE 07-49949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jian, E-mail: Jian.Zhou@tudelft.n; Ye Guang, E-mail: g.ye@tudelft.n; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent
2010-07-15
Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuousmore » depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.« less
NASA Astrophysics Data System (ADS)
Ogulei, David; Hopke, Philip K.; Zhou, Liming; Patrick Pancras, J.; Nair, Narayanan; Ondov, John M.
Several multivariate data analysis methods have been applied to a combination of particle size and composition measurements made at the Baltimore Supersite. Partial least squares (PLS) was used to investigate the relationship (linearity) between number concentrations and the measured PM2.5 mass concentrations of chemical species. The data were obtained at the Ponca Street site and consisted of six days' measurements: 6, 7, 8, 18, 19 July, and 21 August 2002. The PLS analysis showed that the covariance between the data could be explained by 10 latent variables (LVs), but only the first four of these were sufficient to establish the linear relationship between the two data sets. More LVs could not make the model better. The four LVs were found to better explain the covariance between the large sized particles and the chemical species. A bilinear receptor model, PMF2, was then used to simultaneously analyze the size distribution and chemical composition data sets. The resolved sources were identified using information from number and mass contributions from each source (source profiles) as well as meteorological data. Twelve sources were identified: oil-fired power plant emissions, secondary nitrate I, local gasoline traffic, coal-fired power plant, secondary nitrate II, secondary sulfate, diesel emissions/bus maintenance, Quebec wildfire episode, nucleation, incinerator, airborne soil/road-way dust, and steel plant emissions. Local sources were mostly characterized by bi-modal number distributions. Regional sources were characterized by transport mode particles (0.2- 0.5μm).
Empirical study of the tails of mutual fund size
NASA Astrophysics Data System (ADS)
Schwarzkopf, Yonathan; Farmer, J. Doyne
2010-06-01
The mutual fund industry manages about a quarter of the assets in the U.S. stock market and thus plays an important role in the U.S. economy. The question of how much control is concentrated in the hands of the largest players is best quantitatively discussed in terms of the tail behavior of the mutual fund size distribution. We study the distribution empirically and show that the tail is much better described by a log-normal than a power law, indicating less concentration than, for example, personal income. The results are highly statistically significant and are consistent across fifteen years. This contradicts a recent theory concerning the origin of the power law tails of the trading volume distribution. Based on the analysis in a companion paper, the log-normality is to be expected, and indicates that the distribution of mutual funds remains perpetually out of equilibrium.
Species abundance distribution and population dynamics in a two-community model of neutral ecology
NASA Astrophysics Data System (ADS)
Vallade, M.; Houchmandzadeh, B.
2006-11-01
Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.
NASA Astrophysics Data System (ADS)
McLeod, Euan
2016-03-01
The sizing of individual nanoparticles and the recovery of the distributions of sizes from populations of nanoparticles provide valuable information in virology, exosome analysis, air and water quality monitoring, and nanomaterials synthesis. Conventional approaches for nanoparticle sizing include those based on costly or low-throughput laboratory-scale equipment such as transmission electron microscopy or nanoparticle tracking analysis, as well as those approaches that only provide population-averaged quantities, such as dynamic light scattering. Some of these limitations can be overcome using a new family of alternative approaches based on quantitative phase imaging that combines lensfree holographic on-chip microscopy with self-assembled liquid nanolenses. In these approaches, the particles of interest are deposited onto a glass coverslip and the sample is coated with either pure liquid polyethylene glycol (PEG) or aqueous solutions of PEG. Due to surface tension, the PEG self-assembles into nano-scale lenses around the particles of interest. These nanolenses enhance the scattering signatures of the embedded particles such that individual nanoparticles as small as 40 nm are clearly visible in phase images reconstructed from captured holograms. The magnitude of the phase quantitatively corresponds to particle size with an accuracy of +/-11 nm. This family of approaches can individually size more than 10^5 particles in parallel, can handle a large dynamic range of particle sizes (40 nm - 100s of microns), and can accurately size multi-modal distributions of particles. Furthermore, the entire approach has been implemented in a compact and cost-effective device suitable for use in the field or in low-resource settings.
Photoballistics of volcanic jet activity at Stromboli, Italy
NASA Technical Reports Server (NTRS)
Chouet, B.; Hamisevicz, N.; Mcgetchin, T. R.
1974-01-01
Two night eruptions of the volcano Stromboli were studied through 70-mm photography. Single-camera techniques were used. Particle sphericity, constant velocity in the frame, and radial symmetry were assumed. Properties of the particulate phase found through analysis include: particle size, velocity, total number of particles ejected, angular dispersion and distribution in the jet, time variation of particle size and apparent velocity distribution, averaged volume flux, and kinetic energy carried by the condensed phase. The frequency distributions of particle size and apparent velocities are found to be approximately log normal. The properties of the gas phase were inferred from the fact that it was the transporting medium for the condensed phase. Gas velocity and time variation, volume flux of gas, dynamic pressure, mass erupted, and density were estimated. A CO2-H2O mixture is possible for the observed eruptions. The flow was subsonic. Velocity variations may be explained by an organ pipe resonance. Particle collimation may be produced by a Magnus effect.
AMIE Gan Island Ancillary Disdrometer Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oue, Mariko
2016-04-01
As part of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement Climate Research Facility (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment (AMIE), in January 2012 a disdrometer observation took place with the second ARM Mobile Facility (AMF2), the Scanning ARM Cloud Radar (SACR), the Texas A&M SMART-R C-band radar, and the National Center for Atmospheric Research (NCAR) dual wavelength S- and Ka-bands polarimetric (SPolKa) radar on Gan Island, Maldives. In order to measure raindrop size distributions, a disdrometer of Nagoya University, Japan, was set up close to the ARM Two-Dimensional (2D) Video Disdrometer (2DVD). The SMART-R and SPolKa radars performedmore » range-height-indicator scanning in the direction of the disdrometer site. Comparing the disdrometer data with 2DVD data, the raindrop size distribution data will be calibrated. Furthermore, the analysis of the raindrop size distribution and radar data will be expected to clarify the microphysics in tropical convective clouds.« less
Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G
2015-11-01
The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa. Copyright © 2015 Elsevier Inc. All rights reserved.
Tong, Mingming; Cole, Katie; Brito-Parada, Pablo R; Neethling, Stephen; Cilliers, Jan J
2017-04-18
Pseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams. The relationship between the size distribution of the films in a foam and that of the bubbles themselves is thus a key relationship in the modeling and simulation of unstable foams. This work uses structural simulation from Surface Evolver to statistically analyze this relationship and to ultimately formulate a relationship for the film size in 2D foams that is shown to be valid across a wide range of different bubble polydispersities. These results and other topological features are then validated using digital image analysis of experimental pseudo-2D foams produced in a vertical Hele-Shaw cell, which contains a monolayer of bubbles between two plates. From both the experimental and computational results, it is shown that there is a distribution of sizes that a film can adopt and that this distribution is very strongly dependent on the sizes of the two bubbles to which the film is attached, especially the smaller one, but that it is virtually independent of the underlying polydispersity of the foam.
Voutilainen, Arto; Kaipio, Jari P; Pekkanen, Juha; Timonen, Kirsi L; Ruuskanen, Juhani
2004-01-01
A theoretical comparison of modeled particle depositions in the human respiratory tract was performed by taking into account different particle number and mass size distributions and physical activity in an urban environment. Urban-air data on particulate concentrations in the size range 10 nm-10 microm were used to estimate the hourly average particle number and mass size distribution functions. The functions were then combined with the deposition probability functions obtained from a computerized ICRP 66 deposition model of the International Commission on Radiological Protection to calculate the numbers and masses of particles deposited in five regions of the respiratory tract of a male adult. The man's physical activity and minute ventilation during the day were taken into account in the calculations. Two different mass and number size distributions of aerosol particles with equal (computed) <10 microm particle mass concentrations gave clearly different deposition patterns in the central and peripheral regions of the human respiratory tract. The deposited particle numbers and masses were much higher during the day (0700-1900) than during the night (1900-0700) because an increase in physical activity and ventilation were temporally associated with highly increased traffic-derived particles in urban outdoor air. In future analyses of the short-term associations between particulate air pollution and health, it would not only be important to take into account the outdoor-to-indoor penetration of different particle sizes and human time-activity patterns, but also actual lung deposition patterns and physical activity in significant microenvironments.
A Poisson process approximation for generalized K-5 confidence regions
NASA Technical Reports Server (NTRS)
Arsham, H.; Miller, D. R.
1982-01-01
One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.
Sun, Xiao-gang; Tang, Hong; Dai, Jing-min
2008-12-01
The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.
Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats
Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin
2014-01-01
Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs. PMID:25565843
The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Matsui, T.
2012-01-01
Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.
Zhu, Qiaohao; Carriere, K C
2016-01-01
Publication bias can significantly limit the validity of meta-analysis when trying to draw conclusion about a research question from independent studies. Most research on detection and correction for publication bias in meta-analysis focus mainly on funnel plot-based methodologies or selection models. In this paper, we formulate publication bias as a truncated distribution problem, and propose new parametric solutions. We develop methodologies of estimating the underlying overall effect size and the severity of publication bias. We distinguish the two major situations, in which publication bias may be induced by: (1) small effect size or (2) large p-value. We consider both fixed and random effects models, and derive estimators for the overall mean and the truncation proportion. These estimators will be obtained using maximum likelihood estimation and method of moments under fixed- and random-effects models, respectively. We carried out extensive simulation studies to evaluate the performance of our methodology, and to compare with the non-parametric Trim and Fill method based on funnel plot. We find that our methods based on truncated normal distribution perform consistently well, both in detecting and correcting publication bias under various situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com
2016-03-15
The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less
NASA Astrophysics Data System (ADS)
Assmann, D. N.; Hermann, M.; Weigelt, A.; Martinsson, B. G.; Brenninkmeijer, C. A. M.; Rauthe-Schoech, A.; van Velthoven, P. J. F.; Boenisch, H.; Zahn, A.
2016-12-01
Submicrometer aerosol particles in the upper troposphere and lowermost stratosphere (UT/LMS) influence the Earth`s radiation budget directly and, more important, indirectly, by acting as cloud condensation nuclei and by changing trace gas concentrations through heterogeneous chemical processes. Since 1997, regular in situ UT/LMS aerosol particle measurements have been conducted by the Leibniz Institute for Tropospheric Research, Leipzig, Germany and the University of Lund, Sweden, using the the CARIBIC (now IAGOS-CARIBIC) observatory (www.caribic-atmospheric.com) onboard a passenger aircraft. Submicrometer aerosol particle number concentrations and the aerosol particle size distribution are measured using three condensation particle counters and one optical particle size spectrometer. Moreover, particle elemental composition is determined using an aerosol impactor sampler and post-flight ion beam analysis (PIXE, PESA) of the samples in the laboratory. Based on this unique data set, including meteorological analysis, we present representative spatio-temporal distributions of particle number, surface, volume, and elemental concentrations in an altitude of 8-12 km covering a large fraction of the northern hemisphere. We discuss the measured values in the different size regimes with respect to sources and sinks in different regions. Additionally, we calculated highly resolved latitudinal and longitudinal cross sections of the particle number size distribution, probability density functions and trends in particle number concentrations, but also in elemental composition, determined from our regular measurements over more than a decade. Moreover, we present the seasonality of particle number concentration in an equivelent latitude - potential temperature coordinate framework (see figure). The results are interpreted with respect to aerosol microphysics and transport using CARIBIC trace gas data like ozone and water vapour. The influence of clouds in the troposphere and the different stratosphere-troposphere-exchange processes are clearly visible. Besides providing information about UT/LMS aerosol particle sources, transport, and sinks, these distributions can be used to validate remote sensing instruments or global atmospheric aerosol models.
NASA Astrophysics Data System (ADS)
Assmann, Denise; Hermann, Markus; Weigelt, Andreas; Martinsson, Bengt; Brenninkmeijer, Carl; Rauthe-Schöch, Armin; van Velthoven, Peter; Bönisch, Harald; Zahn, Andreas
2017-04-01
Submicrometer aerosol particles in the upper troposphere and lowermost stratosphere (UT/LMS) influence the Earth`s radiation budget directly and, more important, indirectly, by acting as cloud condensation nuclei and by changing trace gas concentrations through heterogeneous chemical processes. Since 1997, regular in situ UT/LMS aerosol particle measurements have been conducted by the Leibniz Institute for Tropospheric Research, Leipzig, Germany and the University of Lund, Sweden, using the the CARIBIC (now IAGOS-CARIBIC) observatory (www.caribic-atmospheric.com) onboard a passenger aircraft. Submicrometer aerosol particle number concentrations and the aerosol particle size distribution are measured using three condensation particle counters and one optical particle size spectrometer. Moreover, particle elemental composition is determined using an aerosol impactor sampler and post-flight ion beam analysis (PIXE, PESA) of the samples in the laboratory. Based on this unique data set, including meteorological analysis, we present representative spatio-temporal distributions of particle number, surface, volume and elemental concentrations in an altitude of 8-12 km covering a large fraction of the northern hemisphere. We discuss the measured values in the different size regimes with respect to sources and sinks in different regions. Additionally, we calculated highly resolved latitudinal and longitudinal cross sections of the particle number size distribution, probability density functions and trends in particle number concentrations, but also in elemental composition, determined from our regular measurements over more than a decade. Moreover, we generated seasonal contour plots for particle number concentrations, the potential temperature, and the equivalent latitude. The results are interpreted with respect to aerosol microphysics and transport using CARIBIC trace gas data like ozone and water vapour. The influence of clouds in the troposphere and the different stratosphere-troposphere-exchange processes is clearly visible. Besides providing information about UT/LMS aerosol particle sources, transport, and sinks, these distributions can be used to validate remote sensing instruments or global atmospheric aerosol models.
2014-10-01
estimated total cord, spared white matter, and lesion volumes were determined. Volumetric analysis for the axial distribution of the lesion and spared...We analyzed the axial distribution of the lesion along a 3 mm segment with epicenter in the middle. To account for spinal cord size variability...that drug treated mice had overall smaller lesions as compared to the vehicle treated group. We next analyzed the axial distribution of spared white
Evaluating the importance of grain size sensitive creep in terrestrial ice sheet rheology
NASA Astrophysics Data System (ADS)
Maaijwee, C. N. P. J.; de Bresser, J. H. P.
2009-04-01
The rheology of ice in terrestrial ice sheets is generally considered to be independent of the size of the grains (crystals), and appears well described by Glen's flow law. In recent years, however, new laboratory deformation experiments on ice as well as analysis of in situ measurements of deformation at glaciers suggested that grain size and variations therein should not be discarded as important parameters in the deformation of ice in nature. Ice, just like crystalline rock materials, exhibits distributed grain sizes. Taking now that not only grain size insensitive (GSI; dislocation) mechanisms, but also grain size sensitive (GSS; diffusion and/or grain boundary sliding) mechanisms may be operative in ice, variations in the shape of the distribution (e.g. the width) can be expected to affect the rheological behaviour. To evaluate this effect, we have derived a composite GSI+GSS flow law and combined this with full grain size distributions. The constitutive flow equations for end-member GSI and GSS creep of ice were taken from the work of Goldsby and Kohlstedt (2001, J.Geophys.Res., vol. 106). We used their description of grain boundary sliding controlled creep as representative of GSS creep. The grain size data largely came from published measurements from the top 800-1000 m of two Greenland ice cores (NorthGRIP and GRIP) and one Antarctic ice core (Epica, Dome Concordia). Temperature profiles were available for both core settings. The grain size data show a close to lognormal distribution in all three settings, with the median grain size increasing with depth. We constructed a synthetic grain size profile up to a depth of 3100 m (cf. GRIP) by allowing the median grain size and standard deviation of the distribution to linearly increase with depth. The percentage GSS creep contributing to the total strain rate has been calculated for a range of strain rates that were assumed constant along the ice core axes. The results of our calculations show that at realistic strain rates in the order of 10-11 to 10-12 s-1, GSS mechanisms can be expected to dominate creep in the parts of the ice sheets investigated (i.e. the top ~1000 m). In the synthetic core, the GSS contribution decreases if going to greater depth (~2500 m), but increases again close to the contact with the bedrock (at 3100 m). Although many assumptions have been made in our approach, the results confirm the important role that grain size might play in ice sheet rheology. The application of full grain size distributions in composite flow equations helps to come to reliable extrapolation of lab data to nature.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
The tungsten powder study of the dispenser cathode
NASA Astrophysics Data System (ADS)
Bao, Ji-xiu; Wan, Bao-fei
2006-06-01
The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.
NASA Astrophysics Data System (ADS)
Mahmoudi, M.; Sklar, L. S.; Leclere, S.; Davis, J. D.; Stine, A.
2017-12-01
The size distributions of sediment produced on hillslopes and supplied to river channels influence a wide range of fluvial processes, from bedrock river incision to the creation of aquatic habitats. However, the factors that control hillslope sediment size are poorly understood, limiting our ability to predict sediment size and model the evolution of sediment size distributions across landscapes. Recently separate field and theoretical investigations have begun to address this knowledge gap. Here we compare the predictions of several emerging modeling approaches to landscapes where high quality field data are available. Our goals are to explore the sensitivity and applicability of the theoretical models in each field context, and ultimately to provide a foundation for incorporating hillslope sediment size into models of landscape evolution. The field data include published measurements of hillslope sediment size from the Kohala peninsula on the island of Hawaii and tributaries to the Feather River in the northern Sierra Nevada mountains of California, and an unpublished data set from the Inyo Creek catchment of the southern Sierra Nevada. These data are compared to predictions adapted from recently published modeling approaches that include elements of topography, geology, structure, climate and erosion rate. Predictive models for each site are built in ArcGIS using field condition datasets: DEM topography (slope, aspect, curvature), bedrock geology (lithology, mineralogy), structure (fault location, fracture density), climate data (mean annual precipitation and temperature), and estimates of erosion rates. Preliminary analysis suggests that models may be finely tuned to the calibration sites, particularly when field conditions most closely satisfy model assumptions, leading to unrealistic predictions from extrapolation. We suggest a path forward for developing a computationally tractable method for incorporating spatial variation in production of hillslope sediment size distributions in landscape evolution models. Overall, this work highlights the need for additional field data sets as well as improved theoretical models, but also demonstrates progress in predicting the size distribution of sediments produced on hillslopes and supplied to channels.
Haule, Kamila; Freda, Włodzimierz
2016-04-01
Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance Ed, remote sensing reflectance Rrs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d0 = 0.3 μm causing a maximum E d increase of 40% within 0.5-m depth, and the maximum Ed decrease of 100% at depths below 5 m. Moreover, we showed that the impact of size distribution on the "blue to green" ratios of Rrs and R varies from 24% increase to 27% decrease at the same crude oil concentration.
Xu, Zhenqiang; Yao, Maosheng
2013-05-01
Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1-4.7 μm dominated, accounting for 20-40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most environments studied here. Viable microbial load per unit of particulate matter was also shown to vary significantly with the sampling environments. The results from this study suggested that different environments even with similar levels of total microbial culturable aerosol concentrations could present different inhalation risks due to different bioaerosol particle size distribution and composition. This work fills literature gaps regarding bioaerosol size and composition-based exposure risks in different human dwellings in contrast to a vast body of total bioaerosol levels.
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
NASA Astrophysics Data System (ADS)
Cho, Hyoup Je; Choi, Gyeong Man
A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.
Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel
2015-01-01
This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.
Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel
2015-01-01
This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.
Characterisation of Fine Ash Fractions from the AD 1314 Kaharoa Eruption
NASA Astrophysics Data System (ADS)
Weaver, S. J.; Rust, A.; Carey, R. J.; Houghton, B. F.
2012-12-01
The AD 1314±12 yr Kaharoa eruption of Tarawera volcano, New Zealand, produced deposits exhibiting both plinian and subplinian characteristics (Nairn et al., 2001; 2004, Leonard et al., 2002, Hogg et al., 2003). Their widespread dispersal yielded volumes, column heights, and mass discharge rates of plinian magnitude and intensity (Sahetapy-Engel, 2002); however, vertical shifts in grain size suggest waxing and waning within single phases and time-breaks on the order of hours between phases. These grain size shifts were quantified using sieve, laser diffraction, and image analysis of the fine ash fractions (<1 mm in diameter) of some of the most explosive phases of the eruption. These analyses served two purposes: 1) to characterise the change in eruption intensity over time, and 2) to compare the three methods of grain size analysis. Additional analyses of the proportions of components and particle shape were also conducted to aid in the interpretation of the eruption and transport dynamics. 110 samples from a single location about 6 km from source were sieved at half phi intervals between -4φ to 4φ (16 mm - 63 μm). A single sample was then chosen to test the range of grain sizes to run through the Mastersizer 2000. Three aliquots were tested; the first consisted of each sieve size fraction ranging between 0φ (1000 μm) and <4φ (<63 μm, i.e. the pan). For example, 0, 0.5, 1, …, 4φ, and the pan were ran through the Mastersizer and then their results, weighted according to their sieve weight percents, were summed together to produce a total distribution. The second aliquot included 3 samples ranging between 0-2φ (1000-250 μm), 2.5-4φ (249-63 μm), and the pan. A single sample consisting of the total range of grain sizes between 0φ and the pan was used for the final aliquot. Their results were compared and it was determined that the single sample consisting of the broadest range of grain sizes yielded an accurate grain size distribution. This data was then compared with the sieve weight percent data, and revealed that there is a significant difference in size characterisation between sieving and the Mastersizer for size fractions between 0-3φ (1000-125 μm). This is due predominantly to the differing methods that sieving and the Mastersizer use to characterise a single particle, to inhomogeneity in grain density in each grain-size fraction, and to grain-shape irregularities. This led the Mastersizer to allocate grains from a certain sieve size fraction into coarser size fractions. Therefore, only the Mastersizer data from 3.5φ and below were combined with the coarser sieve data to yield total grain size distributions. This high-resolution analysis of the grain size data enabled subtle trends in grain size to be identified and related to short timescale eruptive processes.
Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh
2018-02-01
Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.
Brewer, Amandaa K; Striegel, André M
2011-04-15
The string-of-pearls-type morphology is ubiquitous, manifesting itself variously in proteins, vesicles, bacteria, synthetic polymers, and biopolymers. Characterizing the size and shape of analytes with such morphology, however, presents a challenge, due chiefly to the ease with which the "strings" can be broken during chromatographic analysis or to the paucity of information obtained from the benchmark microscopy and off-line light scattering methods. Here, we address this challenge with multidetector hydrodynamic chromatography (HDC), which has the ability to determine, simultaneously, the size, shape, and compactness and their distributions of string-of-pearls samples. We present the quadruple-detector HDC analysis of colloidal string-of-pearls silica, employing static multiangle and quasielastic light scattering, differential viscometry, and differential refractometry as detection methods. The multidetector approach shows a sample that is broadly polydisperse in both molar mass and size, with strings ranging from two to five particles, but which also contains a high concentration of single, unattached "pearls". Synergistic combination of the various size parameters obtained from the multiplicity of detectors employed shows that the strings with higher degrees of polymerization have a shape similar to the theory-predicted shape of a Gaussian random coil chain of nonoverlapping beads, while the strings with lower degrees of polymerization have a prolate ellipsoidal shape. The HDC technique is contrasted experimentally with multidetector size-exclusion chromatography, where, even under extremely gentle conditions, the strings still degraded during analysis. Such degradation is shown to be absent in HDC, as evidenced by the fact that the molar mass and radius of gyration obtained by HDC with multiangle static light scattering detection (HDC/MALS) compare quite favorably to those determined by off-line MALS analysis under otherwise identical conditions. The multidetector HDC results were also comparable to those obtained by transmission electron microscopy (TEM). Unlike off-line MALS or TEM, however, multidetector HDC is able to provide complete particle analysis based on the molar mass, size, shape, and compactness and their distributions for the entire sample population in less than 20 min. © 2011 American Chemical Society
Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan
2012-04-01
The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.
Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Rui; Levard, Clément; Marinakos, Stella M.
2012-04-02
The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure asmore » a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.« less
Aronin, C.E. Petrie; Cooper, J.A.; Sefcik, L.S.; Tholpady, S.S.; Ogle, R.C.; Botchwey, E.A.
2008-01-01
A novel scaffold fabrication method utilizing both polymer blend extrusion and gas foaming techniques to control pore size distribution is presented. Seventy five per cent of all pores produced using polymer blend extrusion alone were less than 50 μm. Introducing a gas technique provided better control of pore size distribution, expanding the range from 0-50 to 0-350 μm. Varying sintering time, annealing temperature and foaming pressure also helped reduced the percentage of pore sizes below 50 μm. Scaffolds chosen for in vitro cellular studies had a pore size distribution of 0-300 μm, average pore size 66 ± 17 μm, 0.54 ± 0.02% porosity and 98% interconnectivity, measured by micro computed tomography (microCT) analysis. The ability of the scaffolds to support osteogenic differentiation and cranial defect repair was evaluated by static and dynamic (0.035 ± 0.006 m s-1 terminal velocity) cultivation with dura mater stem cells (DSCs). In vitro studies showed minimal increases in proliferation over 28 days in culture in osteogenic media. Alkaline phosphatase expression remained constant throughout the study. Moderate increases in matrix deposition, as assessed by histochemical staining and microCT analysis, occurred at later time points, days 21 and 28. Although constructs cultured dynamically showed greater mineralization than static conditions, these trends were not significant. It remains unclear whether bioreactor culture of DSCs is advantageous for bone tissue engineering applications. However, these studies show that polycaprolactone (PCL) scaffolds alone, without the addition of other co-polymers or ceramics, support long-term attachment and mineralization of DSCs throughout the entire porous scaffold. PMID:18434267
Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids
NASA Astrophysics Data System (ADS)
Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.
2006-09-01
We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.
NASA Astrophysics Data System (ADS)
Shekar, Yamini
This research investigates the nano-scale pore structure of cementitious mortars undergoing delayed ettringite formation (DEF) using small angle x-ray scattering (SAXS). DEF has been known to cause expansion and cracking during later ages (around 4000 days) in concrete that has been heat cured at temperatures of 70°C or above. Though DEF normally occurs in heat cured concrete, mass cured concrete can also experience DEF. Large crystalline pressures result in smaller pore sizes. The objectives of this research are: (1) to investigate why some samples expand early than later expansion, (2) to evaluate the effects of curing conditions and pore size distributions at high temperatures, and (3) to assess the evolution of the pore size distributions over time. The most important outcome of the research is the pore sizes obtained from SAXS were used in the development of a 3-stage model. From the data obtained, the pore sizes increase in stage 1 due to initial ettringite formation and in turn filling up the smallest pores. Once the critical pore size threshold is reached (around 20nm) stage 2 is formed due to cracking which tends to decrease in the pore sizes. Finally, in stage 3, the cracking continues, therefore increasing in the pore size.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad
2016-07-01
Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of the total detrital elemental flux. Trace elements show high concentrations of radioactive elements like U, Th, Pb, and Rb that suggest their high anomalous presence in the catchment lithology. An overall study indicates that the hydroclimatic conditions over the debris-covered glacier play a dominant controlling factor in erosion, transportation, and evacuation of suspended sediments during the ablation season.
Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM
NASA Astrophysics Data System (ADS)
Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; Xie, Xiaoxun; Wang, Hongli; Li, Jiandong; Shi, Zhengguo; Liu, Yangang
2018-01-01
East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10 m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution, and size distribution.
Nano- and Microparticles in Welding Aerosol: Granulometric Analysis
NASA Astrophysics Data System (ADS)
Kirichenko, K. Yu.; Drozd, V. A.; Chaika, V. V.; Gridasov, A. V.; Kholodov, A. S.; Golokhvast, K. S.
The paper presents the first results of the study of the size of particles appearing in the welding process by means of laser granulometry. It is shown that welding aerosol is the source of nano-and micro-sized particles extremely dangerous for human and animal health. Particle size distribution in the microrange was from 1 to 10 μm and up to 100%. It is shown that in 9 cases out of 28 with the use of various welding modes, welding rods and components the emission of aerosol with nano-sized particles (from 45.5% to 99.4%) is observed.
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
de Monchy, Romain; Rouyer, Julien; Destrempes, François; Chayer, Boris; Cloutier, Guy; Franceschini, Emilie
2018-04-01
Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.
Kobayashi, M
2000-11-01
The first costal scute (C 1) collected from 2, 749 hawksbill turtle (Eretmochelys imbricata) captured in Cuban waters in 1993 and 1994 were analyzed to determine their body size and age distributions. The C 1 width (C 1 W) was converted to the straight carapace length (SCL) using a formula, SCL = 4.3527 (C 1 W)0.8484, to examine its body size distribution. The SCL ranged from 51.3 to 96.1 cm with 68.8 cm of mean and 68.6 cm of median. Ages of captured turtles estimated from the C 1 surface patterns were ranged from 3.3 to 61.5 years old with 15.8 years of mean and 14.5 years of median. A growth function of van Bertalanffy, M(t) = A(1-Be-kt), was applied to determine the relationship between the age and body size (SCL). A formula, SCL = 80.4(1 -0.663e-0.118(Age)), was derived and indicated a slowdown in the growth after about 14 years old. The maturation age and the rate of sexually matured Cuban hawksbill turtles were also discussed based on these results.
Zhang, Yuanzhi; Huang, Zhaojun; Chen, Chuqun; He, Yijun; Jiang, Tingchen
2015-07-10
Suspended sediments in water bodies are classified into organic and inorganic matter and have been investigated by remote-sensing technology for years. Focusing on inorganic matter, however, detailed information such as the grain size of this matter has not been provided yet. In this study, we present a new solution for estimating inorganic suspended sediments' size distribution in highly complex Case 2 waters by using a simple spectrometer sensor rather than a backscattering sensor. An experiment was carried out in the Pearl River Estuary (PRE) in the dry season to collect the remote-sensing reflectance (Rrs) and particle size distribution (PSD) of inorganic suspended sediments. Based on Mie theory, PSDs in the PRE waters were retrieved by Rrs, colored dissolved organic matter, and phytoplankton. The retrieved median diameters in 12 stations show good agreement with those of laboratory analysis at root mean square error of 2.604 μm (27.63%), bias of 1.924 μm (20.42%), and mean absolute error of 2.298 μm (24.37%). The retrieved PSDs and previous PSDs were compared, and the features of PSDs in the PRE waters were concluded.
Gradually truncated log-normal in USA publicly traded firm size distribution
NASA Astrophysics Data System (ADS)
Gupta, Hari M.; Campanha, José R.; de Aguiar, Daniela R.; Queiroz, Gabriel A.; Raheja, Charu G.
2007-03-01
We study the statistical distribution of firm size for USA and Brazilian publicly traded firms through the Zipf plot technique. Sale size is used to measure firm size. The Brazilian firm size distribution is given by a log-normal distribution without any adjustable parameter. However, we also need to consider different parameters of log-normal distribution for the largest firms in the distribution, which are mostly foreign firms. The log-normal distribution has to be gradually truncated after a certain critical value for USA firms. Therefore, the original hypothesis of proportional effect proposed by Gibrat is valid with some modification for very large firms. We also consider the possible mechanisms behind this distribution.
Geometrical characterization of perlite-metal syntactic foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovinšek, Matej, E-mail: matej.borovinsek@um.si
This paper introduces an improved method for the detailed geometrical characterization of perlite-metal syntactic foam. This novel metallic foam is created by infiltrating a packed bed of expanded perlite particles with liquid aluminium alloy. The geometry of the solidified metal is thus defined by the perlite particle shape, size and morphology. The method is based on a segmented micro-computed tomography data and allows for automated determination of the distributions of pore size, sphericity, orientation and location. The pore (i.e. particle) size distribution and pore orientation is determined by a multi-criteria k-nearest neighbour algorithm for pore identification. The results indicate amore » weak density gradient parallel to the casting direction and a slight preference of particle orientation perpendicular to the casting direction. - Highlights: •A new method for identification of pores in porous materials was developed. •It was applied on perlite-metal syntactic foam samples. •A porosity decrease in the axial direction of the samples was determined. •Pore shape analysis showed a high percentage of spherical pores. •Orientation analysis showed that more pores are oriented in the radial direction.« less
NASA Astrophysics Data System (ADS)
Rezaei Ashtiani, Hamid Reza; Zarandooz, Roozbeh
2015-09-01
A 2D axisymmetric electro-thermo-mechanical finite element (FE) model is developed to investigate the effect of current intensity, welding time, and electrode tip diameter on temperature distributions and nugget size in resistance spot welding (RSW) process of Inconel 625 superalloy sheets using ABAQUS commercial software package. The coupled electro-thermal analysis and uncoupled thermal-mechanical analysis are used for modeling process. In order to improve accuracy of simulation, material properties including physical, thermal, and mechanical properties have been considered to be temperature dependent. The thickness and diameter of computed weld nuggets are compared with experimental results and good agreement is observed. So, FE model developed in this paper provides prediction of quality and shape of the weld nuggets and temperature distributions with variation of each process parameter, suitably. Utilizing this FE model assists in adjusting RSW parameters, so that expensive experimental process can be avoided. The results show that increasing welding time and current intensity lead to an increase in the nugget size and electrode indentation, whereas increasing electrode tip diameter decreases nugget size and electrode indentation.
Size distributions of micro-bubbles generated by a pressurized dissolution method
NASA Astrophysics Data System (ADS)
Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.
2012-03-01
Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.
Recovering 3D Particle Size Distributions from 2D Sections
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Olson, Daniel A.
2017-01-01
We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible and practical method to do this, show which of these techniques gives the most faithful conversions, and provide (online) short computer codes to calculate both 2D- 3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter. Proper determination of particle size distributions in chondrites - for chondrules, CAIs, and metalgrains - is of basic importance for assessing the processes of formation and/or of accretion of theseparticles into their parent bodies. To date, most information of this sort is gathered from 2D samplescut from a rock such as in microscopic analysis of thin sections, or SEM maps of planar surfaces(Dodd 1976, Hughes 1978a,b; Rubin and Keil 1984, Rubin and Grossman 1987, Grossman et al1988, Rubin 1989, Metzler et al 1992, Kuebler et al 1999, Nelson and Rubin 2002, Schneider et al 2003, Hezel et al 2008; Fisher et al 2014; for an exhaustive review with numerous references seeFriedrich et al 2014). While qualitative discrimination between chondrite types can readily be doneusing data of this sort, any deeper exploration of the processes by which chondrite constituents werecreated or emplaced into their parent requires a more quantitative approach.
The effects of surfactant and electrolyte concentrations on the size of nanochitosan during storage
NASA Astrophysics Data System (ADS)
Primaningtyas, Annisa; Budhijanto, Wiratni; Fahrurrozi, Mohammad; Kusumastuti, Yuni
2017-05-01
The nano-sized particle of chitosan (nanochitosan) is a potential natural preservative agent for fresh fish and fish product preservation. Theoretically, nano-sized particles exert strong van der Waals force to each other so that the problem associated with nanochitosan is agglomeration that leads to size instability during storage. Size stability is of importance in the application of nanochitosan as an antimicrobial agent because it considerably affects the antimicrobial activity of chitosan. In this study, the formulation of nanochitosan was optimized with respect to the two major factors in colloid dispersion theory, which were the presence of surfactant and electrolyte. Polysorbate-80 was chosen as the representative of food grade surfactant while NaCl was used as the electrolyte. The purposes of this study were to evaluate the effect of polysorbate-80 concentration and to determine the effect of NaCl ions on the particle size of nanochitosan for at least one month storage period. Data were analyzed using Analysis of Variance (ANOVA) to identify the factors significantly affect the size stability. The dynamics of particle size distribution during storage was measured by Particle Size Analyzer (PSA). The result showed that surfactant did not significantly affect the particle size stability. On the other hand, the addition of electrolyte into the colloidal dispersion of nanochitosan consistently stabilized and also narrowed the particle size distribution during storage in the range of 175-391 nm.
Optical disk processing of solar images.
NASA Astrophysics Data System (ADS)
Title, A.; Tarbell, T.
The current generation of space and ground-based experiments in solar physics produces many megabyte-sized image data arrays. Optical disk technology is the leading candidate for convenient analysis, distribution, and archiving of these data. The authors have been developing data analysis procedures which use both analog and digital optical disks for the study of solar phenomena.
Effect of carbide distribution on rolling-element fatigue life of AMS 5749
NASA Technical Reports Server (NTRS)
Parker, R. J.; Bamberger, E. N.
1983-01-01
Endurance tests with ball bearings made of corrosion resistant bearing steel which resulted in fatigue lives much lower than were predicted are discussed. Metallurgical analysis revealed an undesirable carbide distribution in the races. It was shown in accelerated fatigue tests in the RC rig that large, banded carbides can reduce rolling element fatigue life by a factor of approximately four. The early spalling failures on the bearing raceways are attributed to the large carbide size and banded distribution.
NASA Astrophysics Data System (ADS)
Bede, Andrea; Ardelean, Ioan
2017-12-01
Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.
NASA Astrophysics Data System (ADS)
Bringi, V. N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W. L.; Schoenhuber, M.
2003-01-01
The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, `maritime-like' and `continental-like' clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.
Evidence for soft bounds in Ubuntu package sizes and mammalian body masses
Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco
2013-01-01
The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call “soft bound.” Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly. PMID:24324175
Analysis of the typical small watershed of warping dams in the sand properties
NASA Astrophysics Data System (ADS)
Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha
2018-06-01
Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.
Effects of particle size distribution in thick film conductors
NASA Technical Reports Server (NTRS)
Vest, R. W.
1983-01-01
Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O’Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David DI
2015-01-01
Objective To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Methods Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Results Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Conclusion Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. PMID:26036246
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O'Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David D I; Lewis, Andrew L
2016-05-01
To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. © The Author(s) 2015.
Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent
NASA Astrophysics Data System (ADS)
Kien, Le Anh
2017-09-01
Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.
X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing
NASA Astrophysics Data System (ADS)
Sitdikov, V. D.; Murashkin, M. Yu; Khasanov, M. R.; Kasatkin, I. A.; Chizhov, P. S.; Bobruk, E. V.
2014-08-01
Recently it has been established that during high pressure torsion dynamic aging takes place in aluminum Al-Mg-Si alloys resulting in formation of nanosized particles of strengthening phases in the aluminum matrix, which greatly improves the electrical conductivity and strength properties. In the present paper structural characterization of ultrafine-grained (UFG) samples of aluminum 6201 alloy produced by severe plastic deformation (SPD) was performed using X-ray diffraction analysis. As a result, structure features (lattice parameter, size of coherent scattering domains) after dynamic aging of UFG samples were determined. The size and distribution of second- phase particles in the Al matrix were assessed with regard to HPT regimes. Impact of the size and distribution of the formed secondary phases on the strength, ductility and electrical conductivity is discussed.
Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren
2015-11-01
We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation
Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.
2013-01-01
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.
Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H
2013-07-16
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.
NASA Astrophysics Data System (ADS)
Cao, Shaowen; Shen, Baojia; Huang, Qian; Chen, Zhe
2018-06-01
Surface photodeposition of noble metal cocatalyst has been regarded as an effective approach to facilitate the separation of charge carriers and reduce the over-potential of water reduction, thus to enhance the photocatalytic H2-production activities of semiconductor photocatalyst. Herein, the influences of sacrificial agents used in the photodeposition process on the dispersion of noble metal nanoparticles are investigated, via a series of technique of photocatalytic hydrogen evolution test, microstructure analysis and photoelectrochemical measurement. As a result, the sacrificial agents are found to show large impact on the loading amount, particle size and distribution of different metals on the surface of g-C3N4. The real loading amount of Pt and Au is higher in methanol solution than that in triethanolamine solution. Better distribution and smaller size of Pt nanoparticles are achieved in the presence of methanol; while better distribution and smaller size of Au nanoparticles are achieved in the presence of triethanolamine. As a result, quite different charge transfer ability is achieved for the synthesized Pt and Au decorated g-C3N4, which subsequently leads to disparate photocatalytic activities of the same g-C3N4 photocatalyst under various conditions. The finding in this work indicates that the valid deposition content, particle size and distribution of metal cocatalysts should be carefully taken into account when comparing the photocatalytic activities among various samples.
ERIC Educational Resources Information Center
Cuervo, Hernan
2012-01-01
The sustained disadvantages suffered by rural schools place the concept of social justice at the centre of any discussion of rural education. However, too often a one-size-fits-all model is adopted that equates it with distribution of resources. Drawing on Iris Marion Young's work, this paper instead demonstrates the necessity of adopting a plural…
Pan-Arctic aerosol number size distributions: seasonality and transport patterns
NASA Astrophysics Data System (ADS)
Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard
2017-07-01
The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.
The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns - to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.
The aggregation efficiency of very fine volcanic ash
NASA Astrophysics Data System (ADS)
Del Bello, E.; Taddeucci, J.; Scarlato, P.
2013-12-01
Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution of particles in the turbulent dispersion, and iii) the number of adhered particles as a function of time. Optical laser granulometry provided constrains on grain size distribution of ash particles effectively adhered to the glass slide at the end of each run. Results obtained from our data-set allowed to provide a relationship for determining aggregation rate as a function of particle number density across a range of particle size distributions. This empirical model can be used to determine the aggregation fraction starting from a given total grain size distribution, thus providing fundamental parameters to incorporate aggregation into numerical models of ash dispersal and deposition.
Relating the microscopic rules in coalescence-fragmentation models to the cluster-size distribution
NASA Astrophysics Data System (ADS)
Ruszczycki, B.; Burnett, B.; Zhao, Z.; Johnson, N. F.
2009-11-01
Coalescence-fragmentation problems are now of great interest across the physical, biological, and social sciences. They are typically studied from the perspective of rate equations, at the heart of which are the rules used for coalescence and fragmentation. Here we discuss how changes in these microscopic rules affect the macroscopic cluster-size distribution which emerges from the solution to the rate equation. Our analysis elucidates the crucial role that the fragmentation rule can play in such dynamical grouping models. We focus our discussion on two well-known models whose fragmentation rules lie at opposite extremes. In particular, we provide a range of generalizations and new analytic results for the well-known model of social group formation developed by Eguíluz and Zimmermann, [Phys. Rev. Lett. 85, 5659 (2000)]. We develop analytic perturbation treatments of this original model, and extend the analytic analysis to the treatment of growing and declining populations.
Phenytoin crystal growth rates in the presence of phosphate and chloride ions
NASA Astrophysics Data System (ADS)
Zipp, G. L.; Rodríguez-Hornedo, N.
1992-09-01
Phenytoin crystal growth kinetics have been measured as a function of supersaturation in pH 2.2 phosphoric acid and pH 2.2 hydrochloric acid solutions. Two different methods were used for the kinetic analysis. The first involved a zone-sensing device which provided an analysis of the distribution of crystals in a batch crystallizer. Crystal growth rates were calculated from the increase in the size of the distribution with time. In the second method, growth rates were evaluated from the change in size with time of individual crystals observed under an inverted microscope. The results from each method compare favorably. The use of both techniques provides an excellent opportunity to exploit the strengths of each: an average growth rate from a population of crystals from batch crystallization and insight into the effect of growth on the morphology of the crystals from the individual crystal measurements.
Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.
2017-10-01
The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.
2018-03-01
The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.
Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R
2015-09-01
Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.
Morphological rates of angiosperm seed size evolution.
Sims, Hallie J
2013-05-01
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life-history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per-clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Determining the effect of grain size and maximum induction upon coercive field of electrical steels
NASA Astrophysics Data System (ADS)
Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel
2011-10-01
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.
Heinicke, Grant; Matthews, Frank; Schwartz, Joseph B
2005-01-01
Drugs layering experiments were performed in a fluid bed fitted with a rotor granulator insert using diltiazem as a model drug. The drug was applied in various quantities to sugar spheres of different mesh sizes to give a series of drug-layered sugar spheres (cores) of different potency, size, and weight per particle. The drug presence lowered the bulk density of the cores in proportion to the quantity of added drug. Polymer coating of each core lot was performed in a fluid bed fitted with a Wurster insert. A series of polymer-coated cores (pellets) was removed from each coating experiment. The mean diameter of each core and each pellet sample was determined by image analysis. The rate of change of diameter on polymer addition was determined for each starting size of core and compared to calculated values. The core diameter was displaced from the line of best fit through the pellet diameter data. Cores of different potency with the same size distribution were made by layering increasing quantities of drug onto sugar spheres of decreasing mesh size. Equal quantities of polymer were applied to the same-sized core lots and coat thickness was measured. Weight/weight calculations predict equal coat thickness under these conditions, but measurable differences were found. Simple corrections to core charge weight in the Wurster insert were successfully used to manufacture pellets having the same coat thickness. The sensitivity of the image analysis technique in measuring particle size distributions (PSDs) was demonstrated by measuring a displacement in PSD after addition of 0.5% w/w talc to a pellet sample.
Free lipid and computerized determination of adipocyte size.
Svensson, Henrik; Olausson, Daniel; Holmäng, Agneta; Jennische, Eva; Edén, Staffan; Lönn, Malin
2018-06-21
The size distribution of adipocytes in a suspension, after collagenase digestion of adipose tissue, can be determined by computerized image analysis. Free lipid, forming droplets, in such suspensions implicates a bias since droplets present in the images may be identified as adipocytes. This problem is not always adjusted for and some reports state that distinguishing droplets and cells is a considerable problem. In addition, if the droplets originate mainly from rupture of large adipocytes, as often described, this will also bias size analysis. We here confirm that our ordinary manual means of distinguishing droplets and adipocytes in the images ensure correct and rapid identification before exclusion of the droplets. Further, in our suspensions, prepared with focus on gentle handling of tissue and cells, we find no association between the amount of free lipid and mean adipocyte size or proportion of large adipocytes.
Evolution of Particle Size Distributions in Fragmentation Over Time
NASA Astrophysics Data System (ADS)
Charalambous, C. A.; Pike, W. T.
2013-12-01
We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under grinding conditions, or as discrete steps, such as with impact events. In both cases our model gives the energy associated with the fragmentation in terms of the developing surface area of the population. We show the agreement of our model to the evolution of particle size distributions associated with episodic and continuous fragmentation and how the evolution of some popular fractals may be represented using this approach. C. A. Charalambous and W. T. Pike (2013). Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model. Abstract Submitted to the AGU 46th Fall Meeting. Bird, N. R. A., Watts, C. W., Tarquis, A. M., & Whitmore, A. P. (2009). Modeling dynamic fragmentation of soil. Vadose Zone Journal, 8(1), 197-201. Reid, K. J. (1965). A solution to the batch grinding equation. Chemical Engineering Science, 20(11), 953-963. Turcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research: Solid Earth 91(B2), 1921-1926.
2014-01-01
To describe flow or transport phenomena in porous media, relations between aquifer hydraulic conductivity and effective porosity can prove useful, avoiding the need to perform expensive and time consuming measurements. The practical applications generally require the determination of this parameter at field scale, while most of the empirical and semiempirical formulas, based on grain size analysis and allowing determination of the hydraulic conductivity from the porosity, are related to the laboratory scale and thus are not representative of the aquifer volumes to which one refers. Therefore, following the grain size distribution methodology, a new experimental relation between hydraulic conductivity and effective porosity, representative of aquifer volumes at field scale, is given for a confined aquifer. The experimental values used to determine this law were obtained for both parameters using only field measurements methods. The experimental results found, also if in the strict sense valid only for the investigated aquifer, can give useful suggestions for other alluvial aquifers with analogous characteristics of grain-size distribution. Limited to the investigated range, a useful comparison with the best known empirical formulas based on grain size analysis was carried out. The experimental data allowed also investigation of the existence of a scaling behaviour for both parameters considered. PMID:25180202
NASA Astrophysics Data System (ADS)
Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.
2016-03-01
Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.
NASA Astrophysics Data System (ADS)
Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.
2013-04-01
Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.
NASA Astrophysics Data System (ADS)
Alexandersen, Mike; Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Gwyn, Stephen D. J.; Shankman, Cory J.; Pike, Rosemary E.
2016-11-01
The trans-Neptunian objects (TNOs) preserve evidence of planet building processes in their orbital and size distributions. While all populations show steep size distributions for large objects, a relative deficit of Neptunian trojans and scattering objects with diameters of D < 100 km has been detected. We investigated this deficit with a 32 square degree survey, in which we detected 77 TNOs that are brighter than a limiting r-band magnitude of 24.6. Our plutino sample (18 objects in 3:2 mean-motion resonance with Neptune) shows a deficit of D < 100 km objects, rejecting a single power-law size distribution at >99% confidence. Combining our survey with the Canada-France Ecliptic Plane Survey, we perform a detailed analysis of the allowable parameters for the plutino size distribution, including knees and divots. We surmise the existence of 9000 ± 3000 plutinos with an absolute magnitude of H r ≤ 8.66 and {37000}-10000+12000 with H r ≤ 10.0 (95% confidence). Our survey also discovered one temporary Uranian trojan, one temporary Neptunian trojan, and one stable Neptunian trojan, for which we estimate populations of {110}-100+500, {210}-200+900, and {150}-140+600 with H r ≤ 10.0, respectively. All three populations are thus less numerous than the main belt asteroids (592 asteroids with H r ≤ 10.0). With such population sizes, the temporary Neptunian trojans cannot be previously stable trojans diffusing out of the resonance now; they must be recently captured Centaurs or scattering objects. As the bias against the detection of objects grows with larger semimajor axes, our discovery of three 3:1 resonators and one 4:1 resonator adds to the growing evidence that the high-order resonances are far more populated than is typically predicted.
Real-time feedback control of twin-screw wet granulation based on image analysis.
Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György
2018-06-04
The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanical analysis of the dry stone walls built by the Incas
NASA Astrophysics Data System (ADS)
Castro, Jaime; Vallejo, Luis E.; Estrada, Nicolas
2017-06-01
In this paper, the retaining walls in the agricultural terraces built by the Incas are analyzed from a mechanical point of view. In order to do so, ten different walls from the Lower Agricultural Sector of Machu Picchu, Perú, were selected using images from Google Street View and Google Earth Pro. Then, these walls were digitalized and their mechanical stability was evaluated. Firstly, it was found that these retaining walls are characterized by two distinctive features: disorder and a block size distribution with a large size span, i.e., the particle size varies from blocks that can be carried by one person to large blocks weighing several tons. Secondly, it was found that, thanks to the large span of the block size distribution, the factor of safety of the Inca retaining walls is remarkably close to those that are recommended in modern geotechnical design standards. This suggests that these structures were not only functional but also highly optimized, probably as a result of a careful trial and error procedure.
Overlap between treatment and control distributions as an effect size measure in experiments.
Hedges, Larry V; Olkin, Ingram
2016-03-01
The proportion π of treatment group observations that exceed the control group mean has been proposed as an effect size measure for experiments that randomly assign independent units into 2 groups. We give the exact distribution of a simple estimator of π based on the standardized mean difference and use it to study the small sample bias of this estimator. We also give the minimum variance unbiased estimator of π under 2 models, one in which the variance of the mean difference is known and one in which the variance is unknown. We show how to use the relation between the standardized mean difference and the overlap measure to compute confidence intervals for π and show that these results can be used to obtain unbiased estimators, large sample variances, and confidence intervals for 3 related effect size measures based on the overlap. Finally, we show how the effect size π can be used in a meta-analysis. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Apriandanu, D. O. B.; Yulizar, Y.
2017-04-01
Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.
Particle size distributions from laboratory-scale biomass fires using fast response instruments
S Hosseini; L. Qi; D. Cocker; D. Weise; A. Miller; M. Shrivastava; J.W. Miller; S. Mahalingam; M. Princevac; H. Jung
2010-01-01
Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in...
CM-DataONE: A Framework for collaborative analysis of climate model output
NASA Astrophysics Data System (ADS)
Xu, Hao; Bai, Yuqi; Li, Sha; Dong, Wenhao; Huang, Wenyu; Xu, Shiming; Lin, Yanluan; Wang, Bin
2015-04-01
CM-DataONE is a distributed collaborative analysis framework for climate model data which aims to break through the data access barriers of increasing file size and to accelerate research process. As data size involved in project such as the fifth Coupled Model Intercomparison Project (CMIP5) has reached petabytes, conventional methods for analysis and diagnosis of model outputs have been rather time-consuming and redundant. CM-DataONE is developed for data publishers and researchers from relevant areas. It can enable easy access to distributed data and provide extensible analysis functions based on tools such as NCAR Command Language, NetCDF Operators (NCO) and Climate Data Operators (CDO). CM-DataONE can be easily installed, configured, and maintained. The main web application has two separate parts which communicate with each other through APIs based on HTTP protocol. The analytic server is designed to be installed in each data node while a data portal can be configured anywhere and connect to a nearest node. Functions such as data query, analytic task submission, status monitoring, visualization and product downloading are provided to end users by data portal. Data conform to CMIP5 Model Output Format in each peer node can be scanned by the server and mapped to a global information database. A scheduler included in the server is responsible for task decomposition, distribution and consolidation. Analysis functions are always executed where data locate. Analysis function package included in the server has provided commonly used functions such as EOF analysis, trend analysis and time series. Functions are coupled with data by XML descriptions and can be easily extended. Various types of results can be obtained by users for further studies. This framework has significantly decreased the amount of data to be transmitted and improved efficiency in model intercomparison jobs by supporting online analysis and multi-node collaboration. To end users, data query is therefore accelerated and the size of data to be downloaded is reduced. Methodology can be easily shared among scientists, avoiding unnecessary replication. Currently, a prototype of CM-DataONE has been deployed on two data nodes of Tsinghua University.
Characterization of magnetic nanoparticle by dynamic light scattering
2013-01-01
Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350
An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples
Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.
2015-01-01
Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069
D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore
2016-06-01
The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in particular, if these are used after inappropriate storage conditions.
NASA Astrophysics Data System (ADS)
Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.
2015-12-01
The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.
Chaton, Catherine T.
2017-01-01
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has seen a resurgence in popularity as a technique for characterizing macromolecules and complexes in solution. SV-AUC is a particularly powerful tool for studying protein conformation, complex stoichiometry, and interacting systems in general. Deconvoluting velocity data to determine a sedimentation coefficient distribution c(s) allows for the study of either individual proteins or multi-component mixtures. The standard c(s) approach estimates molar masses of the sedimenting species based on determination of the frictional ratio (f/f0) from boundary shapes. The frictional ratio in this case is a weight-averaged parameter, which can lead to distortion of mass estimates and loss of information when attempting to analyze mixtures of macromolecules with different shapes. A two-dimensional extension of the c(s) analysis approach provides size-and-shape distributions that describe the data in terms of a sedimentation coefficient and frictional ratio grid. This allows for better resolution of species with very distinct shapes that may co-sediment and provides better molar mass determinations for multi-component mixtures. An example case is illustrated using globular and non-globular proteins of different masses with nearly identical sedimentation coefficients that could only be resolved using the size-and-shape distribution. Other applications of this analytical approach to complex biological systems are presented, focusing on proteins involved in the innate immune response to cytosolic microbial DNA. PMID:26412652
NASA Astrophysics Data System (ADS)
Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan
2018-03-01
For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied experimentally.
Resonance-induced multimodal body-size distributions in ecosystems
Lampert, Adam; Tlusty, Tsvi
2013-01-01
The size of an organism reflects its metabolic rate, growth rate, mortality, and other important characteristics; therefore, the distribution of body size is a major determinant of ecosystem structure and function. Body-size distributions often are multimodal, with several peaks of abundant sizes, and previous studies suggest that this is the outcome of niche separation: species from distinct peaks avoid competition by consuming different resources, which results in selection of different sizes in each niche. However, this cannot explain many ecosystems with several peaks competing over the same niche. Here, we suggest an alternative, generic mechanism underlying multimodal size distributions, by showing that the size-dependent tradeoff between reproduction and resource utilization entails an inherent resonance that may induce multiple peaks, all competing over the same niche. Our theory is well fitted to empirical data in various ecosystems, in which both model and measurements show a multimodal, periodically peaked distribution at larger sizes, followed by a smooth tail at smaller sizes. Moreover, we show a universal pattern of size distributions, manifested in the collapse of data from ecosystems of different scales: phytoplankton in a lake, metazoans in a stream, and arthropods in forests. The demonstrated resonance mechanism is generic, suggesting that multimodal distributions of numerous ecological characters emerge from the interplay between local competition and global migration. PMID:23248320
A new stochastic algorithm for inversion of dust aerosol size distribution
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Yang, Ma-ying
2015-08-01
Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.
NASA Astrophysics Data System (ADS)
Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio
2018-03-01
We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvakumar, D.; Yogamalar, N. R.; Jayavel, R., E-mail: rjvel@annauniv.edu
Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in themore » synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.« less
NASA Astrophysics Data System (ADS)
Selvakumar, D.; Thenammai, A. N.; Yogamalar, N. R.; Hemamalini, R.; Jayavel, R.
2015-06-01
Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.
Hydrodynamic fractionation of finite size gold nanoparticle clusters.
Tsai, De-Hao; Cho, Tae Joon; DelRio, Frank W; Taurozzi, Julian; Zachariah, Michael R; Hackley, Vincent A
2011-06-15
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Giniyatullin, K. G.; Valeeva, A. A.; Smirnova, E. V.
2017-08-01
Particle-size distribution in soddy-podzolic and light gray forest soils of the Botanical Garden of Kazan Federal University has been studied. The cluster analysis of data on the samples from genetic soil horizons attests to the lithological heterogeneity of the profiles of all the studied soils. It is probable that they are developed from the two-layered sediments with the upper colluvial layer underlain by the alluvial layer. According to the discriminant analysis, the major contribution to the discrimination of colluvial and alluvial layers is that of the fraction >0.25 mm. The results of canonical analysis show that there is only one significant discriminant function that separates alluvial and colluvial sediments on the investigated territory. The discriminant function correlates with the contents of fractions 0.05-0.01, 0.25-0.05, and >0.25 mm. Classification functions making it possible to distinguish between alluvial and colluvial sediments have been calculated. Statistical assessment of particle-size distribution data obtained for the plow horizons on ten plowed fields within the garden indicates that this horizon is formed from colluvial sediments. We conclude that the contents of separate fractions and their ratios cannot be used as a universal criterion of the lithological heterogeneity. However, adequate combination of the cluster and discriminant analyses makes it possible to give a comprehensive assessment of the lithology of soil samples from data on the contents of sand and silt fractions, which considerably increases the information value and reliability of the results.
Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden
NASA Astrophysics Data System (ADS)
Wagner, Annemarie; Boman, Johan; Gatari, Michael J.
2008-12-01
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Göteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 µm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-Claire; Schleiss, Marc
2017-04-01
Urban catchments are typically characterised by a more flashy nature of the hydrological response compared to natural catchments. Predicting flow changes associated with urbanisation is not straightforward, as they are influenced by interactions between impervious cover, basin size, drainage connectivity and stormwater management infrastructure. In this study, we present an alternative approach to statistical analysis of hydrological response variability and basin flashiness, based on the distribution of inter-amount times. We analyse inter-amount time distributions of high-resolution streamflow time series for 17 (semi-)urbanised basins in North Carolina, USA, ranging from 13 to 238 km2 in size. We show that in the inter-amount-time framework, sampling frequency is tuned to the local variability of the flow pattern, resulting in a different representation and weighting of high and low flow periods in the statistical distribution. This leads to important differences in the way the distribution quantiles, mean, coefficient of variation and skewness vary across scales and results in lower mean intermittency and improved scaling. Moreover, we show that inter-amount-time distributions can be used to detect regulation effects on flow patterns, identify critical sampling scales and characterise flashiness of hydrological response. The possibility to use both the classical approach and the inter-amount-time framework to identify minimum observable scales and analyse flow data opens up interesting areas for future research.
Bubble size statistics during reionization from 21-cm tomography
NASA Astrophysics Data System (ADS)
Giri, Sambit K.; Mellema, Garrelt; Dixon, Keri L.; Iliev, Ilian T.
2018-01-01
The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction - the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods - and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Δz ∼ 0.5). We find that RSDs only marginally affect the bubble size distributions.
NASA Astrophysics Data System (ADS)
Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; Radney, James G.; Kolesar, Katheryn R.; Zhang, Qi; Setyan, Ari; O'Neill, Norman T.; Cappa, Christopher D.
2018-04-01
Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine
and coarse
modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.
Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; ...
2018-04-23
Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli
Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli
Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well withmore » other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less
NASA Astrophysics Data System (ADS)
Marty, Adam J.
The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored. A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM. The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 -- 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 -- 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates. A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.
NASA Technical Reports Server (NTRS)
Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.
1993-01-01
An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.
A general approach to double-moment normalization of drop size distributions
NASA Astrophysics Data System (ADS)
Lee, G. W.; Sempere-Torres, D.; Uijlenhoet, R.; Zawadzki, I.
2003-04-01
Normalization of drop size distributions (DSDs) is re-examined here. First, we present an extension of scaling normalization using one moment of the DSD as a parameter (as introduced by Sempere-Torres et al, 1994) to a scaling normalization using two moments as parameters of the normalization. It is shown that the normalization of Testud et al. (2001) is a particular case of the two-moment scaling normalization. Thus, a unified vision of the question of DSDs normalization and a good model representation of DSDs is given. Data analysis shows that from the point of view of moment estimation least square regression is slightly more effective than moment estimation from the normalized average DSD.
Patel, Lara A; Kindt, James T
2017-03-14
We introduce a global fitting analysis method to obtain free energies of association of noncovalent molecular clusters using equilibrated cluster size distributions from unbiased constant-temperature molecular dynamics (MD) simulations. Because the systems simulated are small enough that the law of mass action does not describe the aggregation statistics, the method relies on iteratively determining a set of cluster free energies that, using appropriately weighted sums over all possible partitions of N monomers into clusters, produces the best-fit size distribution. The quality of these fits can be used as an objective measure of self-consistency to optimize the cutoff distance that determines how clusters are defined. To showcase the method, we have simulated a united-atom model of methyl tert-butyl ether (MTBE) in the vapor phase and in explicit water solution over a range of system sizes (up to 95 MTBE in the vapor phase and 60 MTBE in the aqueous phase) and concentrations at 273 K. The resulting size-dependent cluster free energy functions follow a form derived from classical nucleation theory (CNT) quite well over the full range of cluster sizes, although deviations are more pronounced for small cluster sizes. The CNT fit to cluster free energies yielded surface tensions that were in both cases lower than those for the simulated planar interfaces. We use a simple model to derive a condition for minimizing non-ideal effects on cluster size distributions and show that the cutoff distance that yields the best global fit is consistent with this condition.
ERIC Educational Resources Information Center
Kim, Soyoung; Olejnik, Stephen
2005-01-01
The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…
NASA Astrophysics Data System (ADS)
Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.
2017-12-01
Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.
NASA Astrophysics Data System (ADS)
Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.
2018-01-01
The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.
Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores
NASA Astrophysics Data System (ADS)
Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.
2008-08-01
Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.