Improved Time-Lapsed Angular Scattering Microscopy of Single Cells
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.
By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.
Experimental study on pore structure and performance of sintered porous wick
NASA Astrophysics Data System (ADS)
He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng
2018-02-01
Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.
2016-04-01
The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.
Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E
2018-05-30
Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.
NASA Technical Reports Server (NTRS)
Hacker, Paul T.
1956-01-01
An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.
NASA Astrophysics Data System (ADS)
Liu, Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen, Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.
2007-04-01
This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly( D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.
Yokota, Miyo
2005-05-01
In the United States, the biologically admixed population is increasing. Such demographic changes may affect the distribution of anthropometric characteristics, which are incorporated into the design of equipment and clothing for the US Army and other large organizations. The purpose of this study was to examine multivariate craniofacial anthropometric distributions between biologically admixed male populations and single racial groups of Black and White males. Multivariate statistical results suggested that nose breadth and lip length were different between Blacks and Whites. Such differences may be considered for adjustments to respirators and chemical-biological protective masks. However, based on this pilot study, multivariate anthropometric distributions of admixed individuals were within the distributions of single racial groups. Based on the sample reported, sizing and designing for the admixed groups are not necessary if anthropometric distributions of single racial groups comprising admixed groups are known.
Effective Ice Particle Densities for Cold Anvil Cirrus
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica
2002-01-01
This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.
Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi
In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.
2010-01-01
High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
Holographic particle size extraction by using Wigner-Ville distribution
NASA Astrophysics Data System (ADS)
Chuamchaitrakool, Porntip; Widjaja, Joewono; Yoshimura, Hiroyuki
2014-06-01
A new method for measuring object size from in-line holograms by using Wigner-Ville distribution (WVD) is proposed. The proposed method has advantages over conventional numerical reconstruction in that it is free from iterative process and it can extract the object size and position with only single computation of the WVD. Experimental verification of the proposed method is presented.
In the early 1970s, it was understood that combustion particles were formed mostly in sizes below 1 um diameter, and windblown dust was suspended in sizes mostly above 1 um diameter. However, particle size distribution was thought of as a single mode. Particles were thought to f...
A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations
NASA Technical Reports Server (NTRS)
Mulrooney, Mark K.; Matney, Mark J.
2008-01-01
We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.
Nasr, M M; Ross, D L; Miller, N C
1997-10-01
The purpose of this study is to investigate the effect of drug load, the coating of impactor stages, and the design of cascade impactors on albuterol MDIs particle size distribution measurements. The results of the investigation will be used to explain the "loading effect" recently reported. Particle size distribution parameters of a commercial albuterol MDI were measured using both Andersen (AI) and Marple-Miller (MMI) Cascade Impactors, where plates were either left uncoated or coated with silicone or glycerin. A previously validated HPLC-EC method was used for the assay of albuterol collected by the impactor and in single spray content determinations. Coating impactor collection plates had an impact on measured MMAD and GSD values for single puff measurements but very little or no effect for the multi puff measurements. Due to particle bounce, the percent of albuterol fine particles deposited in the filter and impactor finer stages (< 1.10 microns in AI and < 1.25 microns in MMI) in uncoated single puff experiments was much higher in comparison to either coated single puff or multi-puff (coated and uncoated) measurements. Evaluation of drug load and plate coating are necessary to determine whether observed particle size distributions are representative of the generated aerosol or are the result of particle bounce and reentrainment. In order to minimize particle bounce, especially for single puff determinations, it may be useful to apply a thin layer of a sticky coating agent to the surfaces of impactor plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulford, Roberta Nancy
Particle sizes determined for a single lot of incoming Russian fuel and for a lot of fuel after aqueous processing are compared with particle sizes measured on fuel after ball-milling. The single samples of each type are believed to have particle size distributions typical of oxide from similar lots, as the processing of fuel lots is fairly uniform. Variation between lots is, as yet, uncharacterized. Sampling and particle size measurement methods are discussed elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.
Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less
Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.; ...
2017-01-19
Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less
Canpolat, Murat; Mourant, Judith R.
2003-12-09
Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.
USDA-ARS?s Scientific Manuscript database
Particle size distribution (PSD) is perhaps the most important physical parameter governing the airborne particle behavior. Various methods and techniques are available for conducting PSD analyses. Unfortunately, there is no single agreed upon method to determine the PSDs of particulate matter (PM) ...
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
Size distributions and failure initiation of submarine and subaerial landslides
ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.
2009-01-01
Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area affected by subaerial landslides is comparable to that calculated by slope stability analysis for submarine landslides. The area distribution of subaerial landslides from a single event may be determined by the size distribution of the morphology of the affected area, not by the initiation process. ?? 2009 Elsevier B.V.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1978-01-01
A unifying approach, based on a generalization of Pearson's differential equation of statistical theory, is proposed for both the representation of particulate size distribution and the interpretation of radiometric measurements in terms of this parameter. A single-parameter gamma-type distribution is introduced, and it is shown that inversion can only provide the dimensionless parameter, r/ab (where r = particle radius, a = effective radius, b = effective variance), at least when the distribution vanishes at both ends. The basic inversion problem in reconstructing the particle size distribution is analyzed, and the existing methods are reviewed (with emphasis on their capabilities) and classified. A two-step strategy is proposed for simultaneously determining the complex refractive index and reconstructing the size distribution of atmospheric particulates.
NASA Astrophysics Data System (ADS)
Delorme, Mathieu; Le Doussal, Pierre; Wiese, Kay Jörg
2016-05-01
The Brownian force model is a mean-field model for local velocities during avalanches in elastic interfaces of internal space dimension d , driven in a random medium. It is exactly solvable via a nonlinear differential equation. We study avalanches following a kick, i.e., a step in the driving force. We first recall the calculation of the distributions of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude. We extend this calculation to the joint density of local and global sizes within a single avalanche in the limit of an infinitesimal kick. When the interface is driven by a single point, we find new exponents τ0=5 /3 and τ =7 /4 , depending on whether the force or the displacement is imposed. We show that the extension of a "single avalanche" along one internal direction (i.e., the total length in d =1 ) is finite, and we calculate its distribution following either a local or a global kick. In all cases, it exhibits a divergence P (ℓ ) ˜ℓ-3 at small ℓ . Most of our results are tested in a numerical simulation in dimension d =1 .
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
Chandra, Navin; Singh, Deepesh Kumar; Sharma, Meenakshi; Upadhyay, Ravi Kant; Amritphale, S S; Sanghi, S K
2010-02-15
For the first time, single reverse microemulsion-assisted direct precipitation route has been successfully used to synthesize tetragonal zirconia nanoparticles in narrow size range. The synthesized powder was characterized using FT-IR, XRD and HRTEM techniques. The zirconia nanoparticles obtained were spherical in shape and has narrow particle size distribution in the range of 13-31nm and crystallite size in the range of 13-23nm. Copyright 2009 Elsevier Inc. All rights reserved.
The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles
NASA Astrophysics Data System (ADS)
Pauly, Tyler; Garrod, Robin T.
2016-02-01
Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.
Ostwald ripening of clays and metamorphic minerals
Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.
1990-01-01
Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.
The effect of bean origin and temperature on grinding roasted coffee
NASA Astrophysics Data System (ADS)
Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T.; Melot, Brent C.; Speirs, Rory W.; Hendon, Christopher H.
2016-04-01
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.
The effect of bean origin and temperature on grinding roasted coffee.
Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T; Melot, Brent C; Speirs, Rory W; Hendon, Christopher H
2016-04-18
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.
The effect of bean origin and temperature on grinding roasted coffee
Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T.; Melot, Brent C.; Speirs, Rory W.; Hendon, Christopher H.
2016-01-01
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily. PMID:27086837
Determining Size Distribution at the Phoenix Landing Site
NASA Astrophysics Data System (ADS)
Mason, E. L.; Lemmon, M. T.
2016-12-01
Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.
NASA Astrophysics Data System (ADS)
Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun
2017-05-01
This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 106 and detection limit of 1.0 × 10-7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.
Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman M.
2011-01-01
Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (ρP) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. PMID:21654635
Single-size thermometric measurements on a size distribution of neutral fullerenes.
Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F
2013-05-10
We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.
M. C. Neel; K. McKelvey; N. Ryman; M. W. Lloyd; R. Short Bull; F. W. Allendorf; M. K. Schwartz; R. S. Waples
2013-01-01
Use of genetic methods to estimate effective population size (Ne) is rapidly increasing, but all approaches make simplifying assumptions unlikely to be met in real populations. In particular, all assume a single, unstructured population, and none has been evaluated for use with continuously distributed species. We simulated continuous populations with local mating...
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Hamill, Patrick
2001-01-01
Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.
[Quantitative study of diesel/CNG buses exhaust particulate size distribution in a road tunnel].
Zhu, Chun; Zhang, Xu
2010-10-01
Vehicle emission is one of main sources of fine/ultra-fine particles in many cities. This study firstly presents daily mean particle size distributions of mixed diesel/CNG buses traffic flow by 4 days consecutive real world measurement in an Australia road tunnel. Emission factors (EFs) of particle size distribution of diesel buses and CNG buses are obtained by MLR methods, particle distributions of diesel buses and CNG buses are observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow are decomposed by two log-normal fitting curves for each 30 min interval mean scans, the degrees of fitting between combined fitting curves and corresponding in-situ scans for totally 90 fitting scans are from 0.972 to 0.998. Finally particle size distributions of diesel buses and CNG buses are quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters are 74.5-86.5 nm, geometric standard deviations are 1.88-2.05. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters are 19.9-22.9 nm, geometric standard deviations are 1.27-1.3.
Viking Lander image analysis of Martian atmospheric dust
NASA Technical Reports Server (NTRS)
Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.
1995-01-01
We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977, 1979) by deriving more accurate brightness closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius r(sub eff) is found to be 1.85 +/- 0.3 micrometers at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 micrometers at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance nu(sub eff) of the size distribution is equal to 0.5 +/- 0.2 micrometers. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollak et al. (1977, 1979) estimates.
Viking Lander image analysis of Martian atmospheric dust
NASA Technical Reports Server (NTRS)
Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.
1995-01-01
We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977,1979) by deriving more accurate brightnesses closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius (r(sub eff)) is found to be 1.85 +/- 0.3 microns at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 microns at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance (nu(eff)) of the size distribution is equal to 0.5 +/- 0.2 microns. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollack et al. (1977,1979) estimates.
1994-01-01
Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process. PMID:8057085
Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R
2015-09-01
Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.
Predominance of single bacterial cells in composting bioaerosols
NASA Astrophysics Data System (ADS)
Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie
2015-04-01
Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu
Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays amore » significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.« less
A scattering model for defoliated vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1986-01-01
A scattering model for defoliated vegetation is conceived as a layer of dielectric, finite-length cylinders with specified size and orientation distributions above an irregular ground surface. The scattering phase matrix of a single cylinder is computed, then the radiative transfer technique is applied to link volume scattering from vegetation to surface scattering from the soil surface. Polarized and depolarized scattering are computed and the effects of the cylinder size and orientation distributions are illustrated. It is found that size and orientation distributions have significant effects on the backscattered signal. The model is compared with scattering from defoliated trees and agricultural crops.
Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.
2011-01-01
The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.
Anthropic prediction for a large multi-jump landscape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz-Perlov, Delia, E-mail: delia@perlov.com
2008-10-15
The assumption of a flat prior distribution plays a critical role in the anthropic prediction of the cosmological constant. In a previous paper we analytically calculated the distribution for the cosmological constant, including the prior and anthropic selection effects, in a large toy 'single-jump' landscape model. We showed that it is possible for the fractal prior distribution that we found to behave as an effectively flat distribution in a wide class of landscapes, but only if the single-jump size is large enough. We extend this work here by investigating a large (N{approx}10{sup 500}) toy 'multi-jump' landscape model. The jump sizesmore » range over three orders of magnitude and an overall free parameter c determines the absolute size of the jumps. We will show that for 'large' c the distribution of probabilities of vacua in the anthropic range is effectively flat, and thus the successful anthropic prediction is validated. However, we argue that for small c, the distribution may not be smooth.« less
NASA Astrophysics Data System (ADS)
Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.
2017-06-01
Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.
NASA Astrophysics Data System (ADS)
Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko
2018-04-01
Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.
Statistical properties of four effect-size measures for mediation models.
Miočević, Milica; O'Rourke, Holly P; MacKinnon, David P; Brown, Hendricks C
2018-02-01
This project examined the performance of classical and Bayesian estimators of four effect size measures for the indirect effect in a single-mediator model and a two-mediator model. Compared to the proportion and ratio mediation effect sizes, standardized mediation effect-size measures were relatively unbiased and efficient in the single-mediator model and the two-mediator model. Percentile and bias-corrected bootstrap interval estimates of ab/s Y , and ab(s X )/s Y in the single-mediator model outperformed interval estimates of the proportion and ratio effect sizes in terms of power, Type I error rate, coverage, imbalance, and interval width. For the two-mediator model, standardized effect-size measures were superior to the proportion and ratio effect-size measures. Furthermore, it was found that Bayesian point and interval summaries of posterior distributions of standardized effect-size measures reduced excessive relative bias for certain parameter combinations. The standardized effect-size measures are the best effect-size measures for quantifying mediated effects.
COMPARISON OF TWO PARTICLE-SIZE SPECTROMETERS FOR AMBIENT AEROSOL MEASUREMENTS. (R827354C002)
There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for human health effects observed in epidemiological studies. Since there is no single instrument available for the measurement of the particle-size distribution over ...
Microphysical Processes Affecting the Pinatubo Volcanic Plume
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia
1996-01-01
In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.
The Risk of Adverse Impact in Selections Based on a Test with Known Effect Size
ERIC Educational Resources Information Center
De Corte, Wilfried; Lievens, Filip
2005-01-01
The authors derive the exact sampling distribution function of the adverse impact (AI) ratio for single-stage, top-down selections using tests with known effect sizes. Subsequently, it is shown how this distribution function can be used to determine the risk that a future selection decision on the basis of such tests will result in an outcome that…
Liu, Lang; Zhang, Wen-jie; Du, Shi-yong; Hou, Lu-jian; Han, Bin; Yang, Wen; Chen, Min-dong; Bai, Zhi-peng
2016-05-15
Single particle aerosol mass spectrometry (SPAMS) was deployed to continuously observe the aerosol particles of Beijing urban area from 2013-12 to 2014-11, and the hourly average data of sulfate, nitrate and ammonium (SNA) were obtained using the characteristic ion tracer method. The mixing state and size distribution of SNA were analyzed. In addition, based on Hysplit 48 h back air mass trajectory results in combination with Concentration Weighted Trajectory method (CWT), we obtained the seasonal potential source contribution area of SNA. The results showed that the mixture of sulfate, nitrate and ammonium in spring and summer was more stable than that in autumn and winter. The size distribution of sulfate and nitrate was very similar. The size distribution characteristics of SNA followed the order of autumn > summer > spring > winter. The potential source region of SNA had similar spatial distribution characteristics, and the potential source region of SNA was mainly located in Beijing and south areas, especially at Tianjin, Langfang, Hengshui, Baoding and Shijiazhuang.
An engineering approach to design of dextran microgels size fabricated by water/oil emulsification.
Salimi-Kenari, Hamed; Imani, Mohammad; Nodehi, Azizollah; Abedini, Hossein
2016-09-01
A correlation, based on fluid mechanics, has been investigated for the mean particle diameter of crosslinked dextran microgels (CDMs) prepared via a water/oil emulsification methodology conducted in a single-stirred vessel. To this end, non-dimensional correlations were developed to predict the mean particle size of CDMs as a function of Weber number, Reynolds number and viscosity number similar to ones introduced for liquid-liquid dispersions. Moreover, a Rosin-Rammler distribution function has been successfully applied to the microgel particle size distributions. The correlations were validated using experimentally obtained mean particle sizes for CDMs prepared at different stirring conditions. The validated correlation is especially applicable to medical and pharmaceutical applications where strict control on the mean particle size and size distribution of CDMs are extremely essential. [Formula: see text].
Characterisation of Fine Ash Fractions from the AD 1314 Kaharoa Eruption
NASA Astrophysics Data System (ADS)
Weaver, S. J.; Rust, A.; Carey, R. J.; Houghton, B. F.
2012-12-01
The AD 1314±12 yr Kaharoa eruption of Tarawera volcano, New Zealand, produced deposits exhibiting both plinian and subplinian characteristics (Nairn et al., 2001; 2004, Leonard et al., 2002, Hogg et al., 2003). Their widespread dispersal yielded volumes, column heights, and mass discharge rates of plinian magnitude and intensity (Sahetapy-Engel, 2002); however, vertical shifts in grain size suggest waxing and waning within single phases and time-breaks on the order of hours between phases. These grain size shifts were quantified using sieve, laser diffraction, and image analysis of the fine ash fractions (<1 mm in diameter) of some of the most explosive phases of the eruption. These analyses served two purposes: 1) to characterise the change in eruption intensity over time, and 2) to compare the three methods of grain size analysis. Additional analyses of the proportions of components and particle shape were also conducted to aid in the interpretation of the eruption and transport dynamics. 110 samples from a single location about 6 km from source were sieved at half phi intervals between -4φ to 4φ (16 mm - 63 μm). A single sample was then chosen to test the range of grain sizes to run through the Mastersizer 2000. Three aliquots were tested; the first consisted of each sieve size fraction ranging between 0φ (1000 μm) and <4φ (<63 μm, i.e. the pan). For example, 0, 0.5, 1, …, 4φ, and the pan were ran through the Mastersizer and then their results, weighted according to their sieve weight percents, were summed together to produce a total distribution. The second aliquot included 3 samples ranging between 0-2φ (1000-250 μm), 2.5-4φ (249-63 μm), and the pan. A single sample consisting of the total range of grain sizes between 0φ and the pan was used for the final aliquot. Their results were compared and it was determined that the single sample consisting of the broadest range of grain sizes yielded an accurate grain size distribution. This data was then compared with the sieve weight percent data, and revealed that there is a significant difference in size characterisation between sieving and the Mastersizer for size fractions between 0-3φ (1000-125 μm). This is due predominantly to the differing methods that sieving and the Mastersizer use to characterise a single particle, to inhomogeneity in grain density in each grain-size fraction, and to grain-shape irregularities. This led the Mastersizer to allocate grains from a certain sieve size fraction into coarser size fractions. Therefore, only the Mastersizer data from 3.5φ and below were combined with the coarser sieve data to yield total grain size distributions. This high-resolution analysis of the grain size data enabled subtle trends in grain size to be identified and related to short timescale eruptive processes.
Aerosol Optical Properties in Southeast Asia From AERONET Observations
NASA Astrophysics Data System (ADS)
Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.
2003-12-01
There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.
NASA Astrophysics Data System (ADS)
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi
2018-03-01
We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.
NASA Astrophysics Data System (ADS)
Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Roy, Maitreyee; Herrmann, Jan
2011-10-01
Nanoparticles and products incorporating nanoparticles are a growing branch of nanotechnology industry. They have found a broad market, including the cosmetic, health care and energy sectors. Accurate and representative determination of particle size distributions in such products is critical at all stages of the product lifecycle, extending from quality control at point of manufacture to environmental fate at the point of disposal. Determination of particle size distributions is non-trivial, and is complicated by the fact that different techniques measure different quantities, leading to differences in the measured size distributions. In this study we use both mono- and multi-modal dispersions of nanoparticle reference materials to compare and contrast traditional and novel methods for particle size distribution determination. The methods investigated include ensemble techniques such as dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS), as well as single particle techniques such as transmission electron microscopy (TEM) and microchannel resonator (ultra high-resolution mass sensor).
Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arciprete, F.; Fanfoni, M.; Patella, F.
2010-04-15
We present a detailed atomic-force-microscopy study of the effect of annealing on InAs/GaAs(001) quantum dots grown by molecular-beam epitaxy. Samples were grown at a low growth rate at 500 deg. C with an InAs coverage slightly greater than critical thickness and subsequently annealed at several temperatures. We find that immediately quenched samples exhibit a bimodal size distribution with a high density of small dots (<50 nm{sup 3}) while annealing at temperatures greater than 420 deg. C leads to a unimodal size distribution. This result indicates a coarsening process governing the evolution of the island size distribution function which is limitedmore » by the attachment-detachment of the adatoms at the island boundary. At higher temperatures one cannot ascribe a single rate-determining step for coarsening because of the increased role of adatom diffusion. However, for long annealing times at 500 deg. C the island size distribution is strongly affected by In desorption.« less
Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F
NASA Astrophysics Data System (ADS)
Sakaguchi, Daisaku; Le Amida, Oluwo; Ueki, Hironobu; Ishida, Masahiro
2008-03-01
In order to investigate the distribution of droplet sizes in the core region of diesel fuel spray, instantaneous measurement of droplet sizes was conducted by an advanced laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F is made up of two foci and the distance between them is 36 µm. The tested nozzle had a 0.2 mm diameter single-hole. The measurements of injection pressure, needle lift, and crank angle were synchronized with the measurement by the L2F at the position 10 mm downstream from the nozzle exit. It is clearly shown that the droplet near the spray axis is larger than that in the off-axis region under the needle full lift condition and that the spatial distribution of droplet sizes varies temporally. It is found that the probability density distribution of droplet sizes in the spray core region can be fitted to the Nukiyama-Tanasawa distribution in most injection periods.
Where Gibrat meets Zipf: Scale and scope of French firms
NASA Astrophysics Data System (ADS)
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2017-09-01
The proper characterization of the size distribution and growth of firms represents an important issue in economics and business. We use the Maximum Entropy approach to assess the plausibility of the assumption that firm size follows Lognormal or Pareto distributions, which underlies most recent works on the subject. A comprehensive dataset covering the universe of French firms allows us to draw two major conclusions. First, the Pareto hypothesis for the whole distribution should be rejected. Second, by discriminating across firms based on the number of products sold and markets served, we find that, within the class of multi-product companies active in multiple markets, the distribution converges to a Zipf's law. Conversely, Lognormal distribution is a good benchmark for small single-product firms. The size distribution of firms largely depends on firms' diversification patterns.
Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin
2008-05-01
For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.
Selbig, William R.; Bannerman, Roger T.
2011-01-01
The U.S Geological Survey, in cooperation with the Wisconsin Department of Natural Resources (WDNR) and in collaboration with the Root River Municipal Stormwater Permit Group monitored eight urban source areas representing six types of source areas in or near Madison, Wis. in an effort to improve characterization of particle-size distributions in urban stormwater by use of fixed-point sample collection methods. The types of source areas were parking lot, feeder street, collector street, arterial street, rooftop, and mixed use. This information can then be used by environmental managers and engineers when selecting the most appropriate control devices for the removal of solids from urban stormwater. Mixed-use and parking-lot study areas had the lowest median particle sizes (42 and 54 (u or mu)m, respectively), followed by the collector street study area (70 (u or mu)m). Both arterial street and institutional roof study areas had similar median particle sizes of approximately 95 (u or mu)m. Finally, the feeder street study area showed the largest median particle size of nearly 200 (u or mu)m. Median particle sizes measured as part of this study were somewhat comparable to those reported in previous studies from similar source areas. The majority of particle mass in four out of six source areas was silt and clay particles that are less than 32 (u or mu)m in size. Distributions of particles ranging from 500 (u or mu)m were highly variable both within and between source areas. Results of this study suggest substantial variability in data can inhibit the development of a single particle-size distribution that is representative of stormwater runoff generated from a single source area or land use. Continued development of improved sample collection methods, such as the depth-integrated sample arm, may reduce variability in particle-size distributions by mitigating the effect of sediment bias inherent with a fixed-point sampler.
Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.
2010-01-01
Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.
Size Effect on Specific Energy Distribution in Particle Comminution
NASA Astrophysics Data System (ADS)
Xu, Yongfu; Wang, Yidong
A theoretical study is made to derive an energy distribution equation for the size reduction process from the fractal model for the particle comminution. Fractal model is employed as a valid measure of the self-similar size distribution of comminution daughter products. The tensile strength of particles varies with particle size in the manner of a power function law. The energy consumption for comminuting single particle is found to be proportional to the 5(D-3)/3rd order of the particle size, D being the fractal dimension of particle comminution daughter. The Weibull statistics is applied to describe the relationship between the breakage probability and specific energy of particle comminution. A simple equation is derived for the breakage probability of particles in view of the dependence of fracture energy on particle size. The calculated exponents and Weibull coefficients are generally in conformity with published data for fracture of particles.
Study on the temperature field of large-sized sapphire single crystal furnace
NASA Astrophysics Data System (ADS)
Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.
2018-01-01
In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.
An online detection system for aggregate sizes and shapes based on digital image processing
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Chen, Sijia
2017-02-01
Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.
NASA Astrophysics Data System (ADS)
Berthold, T.; Milbradt, P.; Berkhahn, V.
2018-04-01
This paper presents a model for the approximation of multiple, spatially distributed grain size distributions based on a feedforward neural network. Since a classical feedforward network does not guarantee to produce valid cumulative distribution functions, a priori information is incor porated into the model by applying weight and architecture constraints. The model is derived in two steps. First, a model is presented that is able to produce a valid distribution function for a single sediment sample. Although initially developed for sediment samples, the model is not limited in its application; it can also be used to approximate any other multimodal continuous distribution function. In the second part, the network is extended in order to capture the spatial variation of the sediment samples that have been obtained from 48 locations in the investigation area. Results show that the model provides an adequate approximation of grain size distributions, satisfying the requirements of a cumulative distribution function.
Single-Cycle Versus Multicycle Proof Testing
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.
1992-01-01
Report compares single-cycle with multiple-cycle mechanical-stress tests of parts under mechanical stresses. Objective of proof testing: to screen out gross manufacturing or material deficiencies and provide additional assurance of quality. Report concludes that changes in distribution of crack sizes during multicycle proof testing depend on initial distribution, number of cycles, relationship between resistance of material and elastic/plastic fracture-mechanics parameter, relationship between load control and displacement control, and magnitude of applied load or displacement. Whether single-cycle or multicycle testing used depends on shape, material, and technique of fabrication of components tested.
Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.
NASA Astrophysics Data System (ADS)
Lenka, Maheswata; Sarkar, Debasis
2018-03-01
This work investigates the effect of internal seeding and an initial cooling/heating cycle on the final crystal size distribution (CSD) during a combined cooling/antisolvent crystallization of L-asparagine monohydrate from it's aqueous solution using isopropyl-alcohol as antisolvent. Internal seeds were generated by one-pot addition of various amounts of antisolvent to the crystallizer. It was then followed by a cooling/heating cycle to dissolve the fines produced and thus obtain a suitable initial seed. A combined cooling/antisolvent crystallization was then followed by employing a linear cooling profile with simultaneous addition of antisolvent with a constant mass flow rate to promote the growth of the internally generated seeds. The amount of initial antisolvent influences the characteristics of the internal seeds generated and the effect of initial amount of antisolvent on the final CSD is investigated. It was found that the introduction of a single cooling/heating cycle significantly improves the reproducibility of final CSD as well as the mean size. Overall, the study indicates that the application of internal seeding with a single cooling/heating cycle for fines dissolution is an effective technique to tailor crystal size distribution.
NASA Astrophysics Data System (ADS)
Yoshiura, Shintaro; Takahashi, Keitaro
2018-01-01
The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.
Spatial distribution of mineral dust single scattering albedo based on DREAM model
NASA Astrophysics Data System (ADS)
Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka
2016-04-01
Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.
Optical properties of silicon nanocrystals synthesized in supercritical fluids
NASA Astrophysics Data System (ADS)
Pell, Lindsay; Korgel, Brian A.
2002-11-01
We developed a supercritical solution phase synthesis of silicon nanocrystals. High temperature and pressure (500°C, >140 bar) conditions allow a wet chemical approach to this challenging synthesis. Diphenylsilane was used as a silicon precursor and long chain thiols and alcohols were used to sterically stabilize the luminescent nanocrystals. Moderate size separation was achieved via size exclusion chromatography using crosslinked styrene divinylbenzene beads. Size separated fractions of silicon nanocrystals exhibit quantum efficiencies of 12% while polydisperse samples have quantum efficiencies of 5%. Nanocrystal size distributions have been determined with transmission electron microscopy and further characterized with atomic force microscopy (AFM). These silicon nanocrystals have size tunable photoluminescence as indicated by their ensemble spectroscopy and further verified through AFM and single nanocrystal photoluminescence spectroscopy. Fluorescence intermittency (characteristic of single CdSe nanocrystals) is present in our isolated silicon nanocrystals and is one of the criteria used to distinguish single crystals from clusters of particles.
Sizing of single fluorescently stained DNA fragments by scanning microscopy
Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan
2003-01-01
We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931
Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution
Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.
2005-01-01
We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.
Neutron - Alpha irradiation response of superheated emulsion detectors
NASA Astrophysics Data System (ADS)
Felizardo, M.; Morlat, T.; Girard, T. A.; Kling, A.; Fernandes, A. C.; Marques, J. G.; Carvalho, F.; Ramos, A. R.
2017-08-01
We report new experimental investigations of the response of single superheated emulsion detectors with small droplet (<30 μm radii) size distributions to both α- and neutron irradiations. Analysis of the results in terms of the underlying detector physics yields a toy model which reasonably reproduces the observations, and identifies the initial energy of the α in the liquid and distribution of droplet sizes as primarily responsible for the detector capacity to distinguish between nuclear recoil and α events.
Enterprise Management Network Architecture Distributed Knowledge Base Support
1990-11-01
Advantages Potentially, this makes a distributed system more powerful than a conventional, centralized one in two ways: " First, it can be more reliable...does not completely apply [35]. The grain size of the processors measures the individual problem-solving power of the agents. In this definition...problem-solving power amounts to the conceptual size of a single action taken by an agent visible to the other agents in the system. If the grain is coarse
NASA Astrophysics Data System (ADS)
Zheng, Xuerong; Jin, Zhengguo; Liu, Hui; Wang, Yueqiu; Wang, Xin; Du, Haiyan
2013-02-01
Single-phase, well-dispersed Cu1.75S nanocrystals were synthesized by an ambient pressure, hydrazine hydrate and ethylenediamine co-assisted diethylene glycol based solution chemical process using copper chloride and thioacetamide as precursors at the temperature range from 180 to 210 °C. Influence of hydrazine hydrate and ethylenediamine adding amounts, synthetic temperature on crystal growth, size distribution and optical properties of the synthesized Cu1.75S nanocrystals were investigated by XRD, TEM, HRTEM, EDX and UV-vis measurements. The synthetic reaction at above 200 °C grew flaky-shaped nanocrystals with relatively narrow size distribution. The formation of single-phase Cu1.75S nanocrystals in the diethylene glycol based solution process might be involved in the presence of intermediate [Cu(en)n]1+ and [Cu(NH3)4]2+ complexes in reaction solution, providing a stable Cu(I) and Cu(II) valent-mixed precursor.
2017-01-01
Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847
Voronoi Cell Patterns: theoretical model and application to submonolayer growth
NASA Astrophysics Data System (ADS)
González, Diego Luis; Einstein, T. L.
2012-02-01
We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.
NASA Astrophysics Data System (ADS)
Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.
Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.
A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankman, C.; Gladman, B. J.; Kaib, N.
Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, whichmore » then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .« less
Particle size distributions were measured indoors and outdoors of a single, detached residence during the Fresno particulate matter exposure studies in winter (February 1-28, 1999) and spring (April 18-May 16, 1999). Data was collected for particle sizes ranging from about 0....
Effects of lint cleaning on lint trash particle size distribution
USDA-ARS?s Scientific Manuscript database
Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less
Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J
2013-01-16
Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.
NASA Technical Reports Server (NTRS)
Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.
1998-01-01
Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.
1998-08-01
Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo ω0. Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); ω0 varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of ω0. The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hanel [1976] with the exponent γ = 0.3 ± 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.
Single and simultaneous binary mergers in Wright-Fisher genealogies.
Melfi, Andrew; Viswanath, Divakar
2018-05-01
The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman coalescent assume a constant sample size. However, sample sizes have become quite large in human genetics. Therefore, we develop a convergence theory that allows the sample size to increase with population size. If the haploid population size is N and the sample size is N 1∕3-ϵ , ϵ>0, we prove that Wright-Fisher genealogies involve at most a single binary merger in each generation with probability converging to 1 in the limit of large N. Single binary merger or no merger in each generation of the genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N 1∕2-ϵ , Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations. Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1961-01-01
Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.
NASA Technical Reports Server (NTRS)
Craven, P. D.; Gary, G. A.
1972-01-01
The Mie theory of light scattering by spheres was used to calculate the scattered intensity functions resulting from single scattering in a polydispersed collection of spheres. The distribution used behaves according to the inverse fourth power law; graphs and tables for the angular dependence of the intensity and polarization for this law are given. The effects of the particle size range and the integration increment are investigated.
Fragment size distribution in viscous bag breakup of a drop
NASA Astrophysics Data System (ADS)
Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.
2015-11-01
In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 <= We <= 16 for Oh <= 0.1. Experiments are conducted using phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050
Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald
2013-01-01
Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are <0.6Gy(RBE) and <1.7% respectively. Conclusions For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423
In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.
Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel
2017-04-01
In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. Copyright © 2017 American Society for Microbiology.
In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content
Nogueira, Enrique; López-Urrutia, Ángel
2017-01-01
ABSTRACT In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. PMID:28115378
Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram
2010-01-21
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
Testing models of parental investment strategy and offspring size in ants.
Gilboa, Smadar; Nonacs, Peter
2006-01-01
Parental investment strategies can be fixed or flexible. A fixed strategy predicts making all offspring a single 'optimal' size. Dynamic models predict flexible strategies with more than one optimal size of offspring. Patterns in the distribution of offspring sizes may thus reveal the investment strategy. Static strategies should produce normal distributions. Dynamic strategies should often result in non-normal distributions. Furthermore, variance in morphological traits should be positively correlated with the length of developmental time the traits are exposed to environmental influences. Finally, the type of deviation from normality (i.e., skewed left or right, or platykurtic) should be correlated with the average offspring size. To test the latter prediction, we used simulations to detect significant departures from normality and categorize distribution types. Data from three species of ants strongly support the predicted patterns for dynamic parental investment. Offspring size distributions are often significantly non-normal. Traits fixed earlier in development, such as head width, are less variable than final body weight. The type of distribution observed correlates with mean female dry weight. The overall support for a dynamic parental investment model has implications for life history theory. Predicted conflicts over parental effort, sex investment ratios, and reproductive skew in cooperative breeders follow from assumptions of static parental investment strategies and omnipresent resource limitations. By contrast, with flexible investment strategies such conflicts can be either absent or maladaptive.
NASA Astrophysics Data System (ADS)
Reed, Jason; Hsueh, Carlin; Mishra, Bud; Gimzewski, James K.
2008-09-01
We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing.
Zhang, Chun-Hui; Zhang, Chun-Mei; Guo, Guang-Can; Wang, Qin
2018-02-19
At present, most of the measurement-device-independent quantum key distributions (MDI-QKD) are based on weak coherent sources and limited in the transmission distance under realistic experimental conditions, e.g., considering the finite-size-key effects. Hence in this paper, we propose a new biased decoy-state scheme using heralded single-photon sources for the three-intensity MDI-QKD, where we prepare the decoy pulses only in X basis and adopt both the collective constraints and joint parameter estimation techniques. Compared with former schemes with WCS or HSPS, after implementing full parameter optimizations, our scheme gives distinct reduced quantum bit error rate in the X basis and thus show excellent performance, especially when the data size is relatively small.
MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlichting, Hilke E.; Ofek, Eran O.; Gal-Yam, Avishay
2012-12-20
We present here the analysis of about 19,500 new star hours of low ecliptic latitude observations (|b| {<=} 20 Degree-Sign ) obtained by the Hubble Space Telescope's Fine Guidance Sensors over a time span of more than nine years, which is in addition to the {approx}12, 000 star hours previously analyzed by Schlichting et al. Our search for stellar occultations by small Kuiper Belt Objects (KBOs) yielded one new candidate event corresponding to a body with a 530 {+-} 70 m radius at a distance of about 40 AU. Using bootstrap simulations, we estimate a probability of Almost-Equal-To 5% thatmore » this event is due to random statistical fluctuations within the new data set. Combining this new event with the single KBO occultation reported by Schlichting et al. we arrive at the following results: (1) the ecliptic latitudes of 6. Degree-Sign 6 and 14. Degree-Sign 4 of the two events are consistent with the observed inclination distribution of larger, 100-km-sized KBOs. (2) Assuming that small, sub-kilometer-sized KBOs have the same ecliptic latitude distribution as their larger counterparts, we find an ecliptic surface density of KBOs with radii larger than 250 m of N(r > 250 m) = 1.1{sup +1.5}{sub -0.7} Multiplication-Sign 10{sup 7} deg{sup -2}; if sub-kilometer-sized KBOs have instead a uniform ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign then N(r > 250 m) = 4.4{sup +5.8}{sub -2.8} Multiplication-Sign 10{sup 6} deg{sup -2}. This is the best measurement of the surface density of sub-kilometer-sized KBOs to date. (3) Assuming the KBO size distribution can be well described by a single power law given by N(> r){proportional_to}r{sup 1-q}, where N(> r) is the number of KBOs with radii greater than r, and q is the power-law index, we find q = 3.8 {+-} 0.2 and q = 3.6 {+-} 0.2 for a KBO ecliptic latitude distribution that follows the observed distribution for larger, 100-km-sized KBOs and a uniform KBO ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign , respectively. (4) Regardless of the exact power law, our results suggest that small KBOs are numerous enough to satisfy the required supply rate for the Jupiter family comets. (5) We can rule out a single power law below the break with q > 4.0 at 2{sigma}, confirming a strong deficit of sub-kilometer-sized KBOs compared to a population extrapolated from objects with r > 45 km. This suggests that small KBOs are undergoing collisional erosion and that the Kuiper Belt is a true analog to the dust producing debris disks observed around other stars.« less
Monte Carlo modeling of single-molecule cytoplasmic dynein.
Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C
2005-08-23
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.
Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans
2014-07-09
Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W. Jr.; West, G.A.; Stacy, R.G.
1979-03-22
Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared intomore » lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having dimensions less than specified values.« less
Constraining martian atmospheric dust particle size distributions from MER Navcam observations.
NASA Astrophysics Data System (ADS)
Soderblom, J. M.; Smith, M. D.
2017-12-01
Atmospheric dust plays an important role in atmospheric dynamics by absorbing energy and influencing the thermal structure of the atmosphere [1]. The efficiency by which dust absorbs energy depends on its size and single-scattering albedo. Characterizing these properties and their variability is, thus, important in modeling atmospheric circulation. Near-sun observations of the martian sky from Viking Lander, Mars Pathfinder, and MER Pancam images have been used to characterize the atmospheric scattering phase function. The forward-scattering peak the atmospheric phase function is primarily controlled by the size of aerosol particles and is less sensitive to atmospheric opacity or particle shape and single-scattering albedo [2]. These observations, however, have been limited to scattering angles >5°. We use the MER Navcams, which experience little-to-no debilitating internal instrumental scattered light during near-Sun imaging, enabling measurements of the brightness of the martian sky down to very small scattering angles [3], making them more sensitive to aerosol particle size. Additionally, the Navcams band-pass wavelength is similar to the dust effective particle size, further increasing this sensitivity. These data sample a wide range of atmospheric conditions, including variations in the atmospheric dust loading across the entire martian year, as well as more rapid variations during the onset and dissipation of a global-scale dust storm. General circulation models (GCMs) predict a size-dependence for the transport of dust during dust storms that would result in both spatial (on regional-to-global scales) and temporal (days-to-months) variations in the dust size distribution [4]. The absolute calibration of these data, however, is limited. The instrument temperature measurement is limited to a single thermocouple on the Opportunity left Navcam CCD, and observations of the calibration target by Navcam are infrequent. We discuss ways to mitigate these uncertainties and provide improved recovery of dust particle size distributions from these data. [1] Gierasch and Goody, 1972, J. Atmos. Sci., 29, 400-402. [2] Hansen and Travis, 1974, Space Sci. Rev., 16, 527-610. [3] Soderblom et al., 2008; JGR E06S19. [4] Murphy et al., 1993, JGR 98(E2), 3197-3220.
NASA Technical Reports Server (NTRS)
Mitchell, David L.; Arnott, W. Patrick
1994-01-01
This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.
Single cell isolation process with laser induced forward transfer.
Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying
2017-01-01
A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation
NASA Astrophysics Data System (ADS)
Bianchi, G.; Sklar, L. S.
2016-12-01
Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.
NASA Technical Reports Server (NTRS)
Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.
1996-01-01
We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.
Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets
NASA Astrophysics Data System (ADS)
Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph
2017-04-01
It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.
Chemical release from single-PMMA microparticles monitored by CARS microscopy
NASA Astrophysics Data System (ADS)
Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus
2011-03-01
Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanping Guo; Abhishek Yadav; Tanju Karanfil
Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark
2006-01-01
Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...
2018-01-03
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Two sets of business card-sized lists of tips for prevention of bed bug infestations, one for general use around home, the other for travelers. Print a single card or a page of cards for distribution.
NASA Astrophysics Data System (ADS)
Dong, Xufeng; Guan, Xinchun; Ou, Jinping
2009-03-01
In the past ten years, there have been several investigations on the effects of particle size on magnetostrictive properties of polymer-bonded Terfenol-D composites, but they didn't get an agreement. To solve the conflict among them, Terfenol-D/unsaturated polyester resin composite samples were prepared from Tb0.3Dy0.7Fe2 powder with 20% volume fraction in six particle-size ranges (30-53, 53-150, 150-300, 300-450, 450-500 and 30-500μm). Then their magnetostrictive properties were tested. The results indicate the 53-150μm distribution presents the largest static and dynamic magnetostriction among the five monodispersed distribution samples. But the 30-500μm (polydispersed) distribution shows even larger response than 53-150μm distribution. It indicates the particle size level plays a doubleedged sword on magnetostrictive properties of magnetostrictive composites. The existence of the optimal particle size to prepare polymer-bonded Terfenol-D, whose composition is Tb0.3Dy0.7Fe2, is resulted from the competition between the positive effects and negative effects of increasing particle size. At small particle size level, the voids and the demagnetization effect decrease significantly with increasing particle size and leads to the increase of magnetostriction; while at lager particle size level, the percentage of single-crystal particles and packing density becomes increasingly smaller with increasing particle size and results in the decrease of magnetostriction. The reason for the other scholars got different results is analyzed.
The application of a linear algebra to the analysis of mutation rates.
Jones, M E; Thomas, S M; Clarke, K
1999-07-07
Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.
Statistics of opinion domains of the majority-vote model on a square lattice
NASA Astrophysics Data System (ADS)
Peres, Lucas R.; Fontanari, José F.
2010-10-01
The existence of juxtaposed regions of distinct cultures in spite of the fact that people’s beliefs have a tendency to become more similar to each other’s as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors’ opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L2 whereas the size of the largest cluster grows with lnL2 . The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model—Axelrod’s model—we found that these opinion domains are unstable to the effect of a thermal-like noise.
ERIC Educational Resources Information Center
Gold, Michael S.; Bentler, Peter M.; Kim, Kevin H.
2003-01-01
This article describes a Monte Carlo study of 2 methods for treating incomplete nonnormal data. Skewed, kurtotic data sets conforming to a single structured model, but varying in sample size, percentage of data missing, and missing-data mechanism, were produced. An asymptotically distribution-free available-case (ADFAC) method and structured-model…
In vitro ovine articular chondrocyte proliferation: experiments and modelling.
Mancuso, L; Liuzzo, M I; Fadda, S; Pisu, M; Cincotti, A; Arras, M; La Nasa, G; Concas, A; Cao, G
2010-06-01
This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed (1) was adopted for quantitative interpretation of these experimental data. The model is based on a 1-D (that is, mass-structured), single-staged population balance approach capable of taking into account contact inhibition at confluence. The model's parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model's parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at 'balanced growth', to be adequately predicted.
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators
Karampourniotis, Panagiotis D.; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy
2015-01-01
The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes’ thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set. PMID:26571486
NASA Technical Reports Server (NTRS)
Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.
2005-01-01
For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.
Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P
2013-12-17
Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.
Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction
NASA Astrophysics Data System (ADS)
Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.
2003-03-01
Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.
Influence of item distribution pattern and abundance on efficiency of benthic core sampling
Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.
2014-01-01
ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.
A possible divot in the Kuiper belt's scattered-object size distribution
NASA Astrophysics Data System (ADS)
Shankman, C.; Kavelaars, J.; Gladman, B.; Petit, J.
2014-07-01
The formation and evolution history of the Solar System, while not directly accessible, has measurable signatures in the present-day size distributions of the Trans-Neptunian Object (TNO) populations. The form of the size distribution is modelled as a power law with number going as size to some characteristic slope. Recent works have shown that a single power law does not match the observations across all sizes; the power law breaks to a different form [1, 2, 3]. The large- size objects record the accretion history, while the small-size objects record the collision history. The changes of size-distribution shape and slope as one moves from 'large' to 'medium' to 'small' KBOs are the signature needed to constrain the formation and collision history of the Solar System. The scattering TNOs are those TNOs undergoing strong (scattering) interactions Neptune. The scattering objects can come to pericentre in the giant planet region. This close-in pericentre passage allows for the observation of smaller objects, and thus for the constraint of the small-size end of the size distribution. Our recent analysis of the Canada France Ecliptic Plane Survey's (CFEPS) scattering objects revealed an exciting potential form for the scattering object size distribution - a divot (see Figure). Our divot (a sharp drop in the number of objects per unit size which then returns at a potentially different slope) matches our observations well and can simultaneously explain observed features in other inclined (so-called "hot") Kuiper Belt populations. In this scenario all of the hot populations would share the same source and have been implanted in the outer solar system through scattering processes. If confirmed, our divot would represent a new exciting paradigm for the formation history of the Kuiper Belt. Here we present the results of an extension of our previous work to include a new, deeper, Kuiper Belt survey. By the addition of two new faint scattering objects from this survey which, in tandem with the full characterizations of the survey's biases (acting like non- detections limits), we better constrain the form of the scattering object size distribution.
Pore water colloid properties in argillaceous sedimentary rocks.
Degueldre, Claude; Cloet, Veerle
2016-11-01
The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Klawonn, M.; Frazer, L. N.; Wolfe, C. J.; Houghton, B. F.; Rosenberg, M. D.
2014-03-01
Weak subplinian-plinian plumes pose frequent hazards to populations and aviation, yet many key parameters of these particle-laden plumes are, to date, poorly constrained. This study recovers the particle size-dependent mass distribution along the trajectory of a well-constrained weak plume by inverting the dispersion process of tephra fallout. We use the example of the 17 June 1996 Ruapehu eruption in New Zealand and base our computations on mass per unit area tephra measurements and grain size distributions at 118 sample locations. Comparisons of particle fall times and time of sampling collection, as well as observations during the eruption, reveal that particles smaller than 250 μm likely settled as aggregates. For simplicity we assume that all of these fine particles fell as aggregates of constant size and density, whereas we assume that large particles fell as individual particles at their terminal velocity. Mass fallout along the plume trajectory follows distinct trends between larger particles (d≥250 μm) and the fine population (d<250 μm) that are likely due to the two different settling behaviors (aggregate settling versus single-particle settling). In addition, we computed the resulting particle size distribution within the weak plume along its axis and find that the particle mode shifts from an initial 1φ mode to a 2.5φ mode 10 km from the vent and is dominated by a 2.5 to 3φ mode 10-180 km from vent, where the plume reaches the coastline and we do not have further field constraints. The computed particle distributions inside the plume provide new constraints on the mass transport processes within weak plumes and improve previous models. The distinct decay trends between single-particle settling and aggregate settling may serve as a new tool to identify particle sizes that fell as aggregates for other eruptions.
NASA Astrophysics Data System (ADS)
Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung
2011-10-01
We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.
NASA Technical Reports Server (NTRS)
Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.
2000-01-01
A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.
A numerical method for shock driven multiphase flow with evaporating particles
NASA Astrophysics Data System (ADS)
Dahal, Jeevan; McFarland, Jacob A.
2017-09-01
A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.
A comparison of single-cycle versus multiple-cycle proof testing strategies
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.
1990-01-01
An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading.
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Xing, Jian
2017-10-01
In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.
Size dependence of single-photon superradiance of cold and dilute atomic ensembles
NASA Astrophysics Data System (ADS)
Kuraptsev, A. S.; Sokolov, I. M.
2017-11-01
We report a theoretical investigation of angular distribution of a single-photon superradiance from cold and dilute atomic clouds. In the present work we focus our attention on the dependence of superradiance on the size and shape of the cloud. We analyze the dynamics of the afterglow of atomic ensemble excited by pulse radiation. Two theoretical approaches are used. The first is the quantum microscopic approach based on a coupled-dipole model. The second approach is random walk approximation. We show that the results obtained in both approaches coincide with a good accuracy for incoherent fluorescence excited by short resonant pulses. We also show that the superradiance decay rate changes with size differently for radiation emitted into different directions.
Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang
2017-11-15
In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.
Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.
Hammel, Ilan; Anaby, Debbie
2007-09-01
The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.
The Size Distribution of Near-Earth Objects Larger Than 10 m
NASA Astrophysics Data System (ADS)
Trilling, D. E.; Valdes, F.; Allen, L.; James, D.; Fuentes, C.; Herrera, D.; Axelrod, T.; Rajagopal, J.
2017-10-01
We analyzed data from the first year of a survey for Near-Earth Objects (NEOs) that we are carrying out with the Dark Energy Camera (DECam) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory. We implanted synthetic NEOs into the data stream to derive our nightly detection efficiency as a function of magnitude and rate of motion. Using these measured efficiencies and the solar system absolute magnitudes derived by the Minor Planet Center for the 1377 measurements of 235 unique NEOs detected, we directly derive, for the first time from a single observational data set, the NEO size distribution from 1 km down to 10 m. We find that there are {10}6.6 NEOs larger than 10 m. This result implies a factor of 10 fewer small NEOs than some previous results, though our derived size distribution is in good agreement with several other estimates.
Dimensions of stabident intraosseous perforators and needles.
Ramlee, R A; Whitworth, J
2001-09-01
Problems can be encountered inserting intraosseous injection needles through perforation sites. This in vitro study examined the variability and size compatibility of Stabident intraosseous injection components. The diameters of 40 needles and perforators from a single Stabident kit were measured in triplicate with a toolmakers microscope. One-way ANOVA revealed that mean needle diameter (0.411 mm) was significantly narrower than mean perforator diameter (0.427 mm) (p < 0.001). A frequency distribution plot revealed that needle diameter followed a normal distribution, indicating tight quality control during manufacture. The diameter of perforators was haphazardly distributed, with a clustering of 15% at the lower limit of the size range. However on no occasion was the diameter of a perforator smaller than that of an injection needle. We conclude that components of the Stabident intraosseous anaesthetic system are size-compatible, but there is greater and more haphazard variability in the diameter of perforators than injection needles.
NASA Astrophysics Data System (ADS)
Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.
2018-05-01
The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes.
Uhl, Jonathan T; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A W; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R; Liaw, P K; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A
2015-11-17
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.
2015-01-01
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less
TNOs as probes of planet building: the Plutino size- & colour-distributions
NASA Astrophysics Data System (ADS)
Alexandersen, Mike; Gladman, Brett; Kavelaars, JJ; Petit, Jean-Marc; Gwyn, Stephen; Pike, Rosemary E.; Shankman, Cory
2015-01-01
Planetesimals are the building blocks of giant planet cores; some are preserved as large transneptunian objects (TNOs). Previous work concluded steep power-law size-distributions for TNOs of diameters > 100 km. Recent results claim a dramatic roll-over or divot (sudden drop in number of objects at a transition size) in the size-distribution of Neptunian Trojans and scattering TNOs, with a significant lack of intermediate-size D<100 km planetesimals. One theoretical explanation is that planetesimals were born big, skipping the intermediate sizes, contrary to the expectation of bottom-up planetesimal formation.Using the Canada-France-Hawaii Telescope, our 32 sq.deg. survey, near RA=2 hr with limiting magnitude m_r=24.6, detected and tracked 77 TNOs and Centaurs for up to 28 months, providing both the high-quality orbits and the quantitative detection efficiency needed for precise modelling. We used the 18 Plutinos (3:2 Neptunian mean motion resonance) from our survey to constrain the size- and orbital-distribution model of this population. We show that the Plutino size-distribution cannot continue as a rising power-law past H_r ˜ 8.3 (D˜ 100 km); a sharp dramatic change must occur near this point. A single power-law is rejectable at >99% confidence; a double power law cannot be rejected outright, but appears to be a uncomfortable match to the available data. A divot, with the parameters found independently for scattering TNOs by Shankman et al. (2013, ApJ vol 764), provides an excellent match; the best match, found from an extensive parameter search, comes with only slightly different parameters; this size-distribution also satisfies the known Neptunian Trojan data.We also present g-r photometric colours for our Plutino sample, obtained with the Gemini North telescope in 2013-2014.Both large TNOs and small nearby Centaurs are known to feature a bimodal colour-distribution; however, recent work (Peixinho et al. 2012, A&A vol 546) has suggested that intermediate-size TNOs may not show bimodality. Our telescopically-expensive endeavour has provided us with unique insight into the colour-distribution of the physically smallest Plutinos.
TNOs as probes of planet building: the Plutino size- & colour-distributions
NASA Astrophysics Data System (ADS)
Alexandersen, Mike; Gladman, Brett; Kavelaars, Jj; Petit, Jean-Marc; Gwyn, Stephen; Shankman, Cory; Pike, Rosemary
2014-11-01
Planetesimals are the building blocks of giant planet cores; some are preserved as large transneptunian objects (TNOs). Previous work concluded steep power-law size-distributions for TNOs of diameters > 100 km. Recent results claim a dramatic roll-over or divot (sudden drop in number of objects at a transition size) in the size-distribution of Neptunian Trojans and scattering TNOs, with a significant lack of intermediate-size D<100 km planetesimals. One theoretical explanation is that planetesimals were born big, skipping the intermediate sizes, contrary to the expectation of bottom-up planetesimal formation. Using the Canada-France-Hawaii Telescope, our 32 sq.deg. survey, near RA=2 hr with limiting magnitude m_r=24.6, detected and tracked 77 TNOs and Centaurs for up to 28 months, providing both the high-quality orbits and the quantitative detection efficiency needed for precise modelling. We used the 18 Plutinos (3:2 Neptunian resonance) from our survey to constrain the size- and orbital-distribution model of this population. We show that the Plutino size-distribution cannot continue as a rising power-law past H_r˜ 8.3 (D˜ 100 km); a sharp dramatic change must occur near this point. A single power-law is rejectable at >99% confidence; a double power law cannot be rejected outright, but appears to be a uncomfortable match to the available data. A divot, with the parameters found independently for scattering TNOs by Shankman et al. (2013, ApJ vol 764), provides an excellent match; the best match, found from an extensive parameter search, comes with only slightly different parameters; this size-distribution also satisfies the known Neptunian Trojan data. Both large TNOs and small nearby Centaurs are known to feature a bimodal colour-distribution; however, recent work (Peixinho et al. 2012, A&A vol 546) has suggested that intermediate-size TNOs may not show bimodality. We present g-r photometric colours for our Plutino sample, obtained with the Gemini North telescope in 2013-2014. This telescopically-expensive endeavour has provided us with unique insight into the colour-distribution of the physically smallest Plutinos.
Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank
2018-02-12
Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.
2012-01-01
We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).
Electric field imaging of single atoms
Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi
2017-01-01
In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629
Investigations of cloud microphysical response to mixing using digital holography
NASA Astrophysics Data System (ADS)
Beals, Matthew Jacob
Cloud edge mixing plays an important role in the life cycle and development of clouds. Entrainment of subsaturated air affects the cloud at the microscale, altering the number density and size distribution of its droplets. The resulting effect is determined by two timescales: the time required for the mixing event to complete, and the time required for the droplets to adjust to their new environment. If mixing is rapid, evaporation of droplets is uniform and said to be homogeneous in nature. In contrast, slow mixing (compared to the adjustment timescale) results in the droplets adjusting to the transient state of the mixture, producing an inhomogeneous result. Studying this process in real clouds involves the use of airborne optical instruments capable of measuring clouds at the 'single particle' level. Single particle resolution allows for direct measurement of the droplet size distribution. This is in contrast to other 'bulk' methods (i.e. hot-wire probes, lidar, radar) which measure a higher order moment of the distribution and require assumptions about the distribution shape to compute a size distribution. The sampling strategy of current optical instruments requires them to integrate over a path tens to hundreds of meters to form a single size distribution. This is much larger than typical mixing scales (which can extend down to the order of centimeters), resulting in difficulties resolving mixing signatures. The Holodec is an optical particle instrument that uses digital holography to record discrete, local volumes of droplets. This method allows for statistically significant size distributions to be calculated for centimeter scale volumes, allowing for full resolution at the scales important to the mixing process. The hologram also records the three dimensional position of all particles within the volume, allowing for the spatial structure of the cloud volume to be studied. Both of these features represent a new and unique view into the mixing problem. In this dissertation, holographic data recorded during two different field projects is analyzed to study the mixing structure of cumulus clouds. Using Holodec data, it is shown that mixing at cloud top can produce regions of clear but humid air that can subside down along the edge of the cloud as a narrow shell, or advect down shear as a 'humid halo'. This air is then entrained into the cloud at lower levels, producing mixing that appears to be very inhomogeneous. This inhomogeneous-like mixing is shown to be well correlated with regions containing elevated concentrations of large droplets. This is used to argue in favor of the hypothesis that dilution can lead to enhanced droplet growth rates. I also make observations on the microscale spatial structure of observed cloud volumes recorded by the Holodec.
Planar Laser Imaging of Sprays for Liquid Rocket Studies
NASA Technical Reports Server (NTRS)
Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.
1990-01-01
A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.
Automatic Adaptation of Tunable Distributed Applications
2001-01-01
size, weight, and battery life, with a single CPU, less memory, smaller hard disk, and lower bandwidth network connectivity. The power of PDAs is...wireless, and bluetooth [32] facilities; thus achieving different rates of data transmission. 1 With the trend of “write once, run everywhere...applications, a single component can execute on multiple processors (or machines) in parallel. These parallel applications, written in a specialized language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleeman, M.J.; Schauer, J.J.; Cass, G.R.
A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution atmore » 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.« less
NASA Astrophysics Data System (ADS)
Deng, Jinyu; Li, Huihui; Dong, Kaifeng; Li, Run-Wei; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng
2018-03-01
We find that the misfit strain may lead to the oscillatory size distributions of heteroepitaxial nanostructures. In heteroepitaxial FePt thin films grown on single-crystal MgO substrate, ⟨110 ⟩ -oriented mazelike and granular patterns with "quantized" feature sizes are realized in scanning-electron-microscope images. The physical mechanism responsible for the size oscillations is related to the oscillatory nature of the misfit strain energy in the domain-matching epitaxial FePt /MgO system, which is observed by transmission electron microscopy. Based on the experimental observations, a model is built and the results suggest that when the FePt island sizes are an integer times the misfit dislocation period, the misfit strain can be completely canceled by the misfit dislocations. With applying the mechanism, small and uniform grain is obtained on the TiN (200) polycrystalline underlayer, which is suitable for practical application. This finding may offer a way to synthesize nanostructured materials with well-controlled size and size distribution by tuning the lattice mismatch between the epitaxial-grown heterostructure.
NASA Astrophysics Data System (ADS)
Tourell, Monique C.; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P.; Poh, Patrina S. P.; Loessner, Daniela; Momot, Konstantin I.
2017-02-01
Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment.
Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders
2013-09-07
The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.
RnaSeqSampleSize: real data based sample size estimation for RNA sequencing.
Zhao, Shilin; Li, Chung-I; Guo, Yan; Sheng, Quanhu; Shyr, Yu
2018-05-30
One of the most important and often neglected components of a successful RNA sequencing (RNA-Seq) experiment is sample size estimation. A few negative binomial model-based methods have been developed to estimate sample size based on the parameters of a single gene. However, thousands of genes are quantified and tested for differential expression simultaneously in RNA-Seq experiments. Thus, additional issues should be carefully addressed, including the false discovery rate for multiple statistic tests, widely distributed read counts and dispersions for different genes. To solve these issues, we developed a sample size and power estimation method named RnaSeqSampleSize, based on the distributions of gene average read counts and dispersions estimated from real RNA-seq data. Datasets from previous, similar experiments such as the Cancer Genome Atlas (TCGA) can be used as a point of reference. Read counts and their dispersions were estimated from the reference's distribution; using that information, we estimated and summarized the power and sample size. RnaSeqSampleSize is implemented in R language and can be installed from Bioconductor website. A user friendly web graphic interface is provided at http://cqs.mc.vanderbilt.edu/shiny/RnaSeqSampleSize/ . RnaSeqSampleSize provides a convenient and powerful way for power and sample size estimation for an RNAseq experiment. It is also equipped with several unique features, including estimation for interested genes or pathway, power curve visualization, and parameter optimization.
A multi-particle crushing apparatus for studying rock fragmentation due to repeated impacts
NASA Astrophysics Data System (ADS)
Huang, S.; Mohanty, B.; Xia, K.
2017-12-01
Rock crushing is a common process in mining and related operations. Although a number of particle crushing tests have been proposed in the literature, most of them are concerned with single-particle crushing, i.e., a single rock sample is crushed in each test. Considering the realistic scenario in crushers where many fragments are involved, a laboratory crushing apparatus is developed in this study. This device consists of a Hopkinson pressure bar system and a piston-holder system. The Hopkinson pressure bar system is used to apply calibrated dynamic loads to the piston-holder system, and the piston-holder system is used to hold rock samples and to recover fragments for subsequent particle size analysis. The rock samples are subjected to three to seven impacts under three impact velocities (2.2, 3.8, and 5.0 m/s), with the feed size of the rock particle samples limited between 9.5 and 12.7 mm. Several key parameters are determined from this test, including particle size distribution parameters, impact velocity, loading pressure, and total work. The results show that the total work correlates well with resulting fragmentation size distribution, and the apparatus provides a useful tool for studying the mechanism of crushing, which further provides guidelines for the design of commercial crushers.
NASA Astrophysics Data System (ADS)
Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.
2016-03-01
Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.
Thermally stable nanoparticles on supports
Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad
2012-11-13
An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.
Understanding asteroid collisional history through experimental and numerical studies
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.
1991-01-01
Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.
Understanding asteroid collisional history through experimental and numerical studies
NASA Astrophysics Data System (ADS)
Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.
1991-06-01
Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.
Method for forming thermally stable nanoparticles on supports
Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad
2013-08-20
An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.
NASA Astrophysics Data System (ADS)
Ueki, Hironobu; Ishida, Masahiro; Sakaguchi, Daisaku
2005-06-01
In order to investigate the effect of transient needle opening on early stage of spray behavior, simultaneous measurements of velocity and size of droplet were conducted by a newly developed laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F was consisted of two foci with a distance of 36 µm. The tested nozzle had a single hole with a diameter of 0.2 mm. The measurements of injection pressure, needle lift, and crank angle were synchronized with the spray measurement by the L2F at the position 10 mm downstream from the nozzle exit. It has been clearly shown that the velocity and size of droplet increase with needle valve opening and that the probability density distribution of droplet size can be fitted to the Nukiyama-Tanasawa distribution under the transient needle opening condition.
Jin, Hong-Ying; Li, Da-Wei; Zhang, Na; Gu, Zhen; Long, Yi-Tao
2015-06-10
We demonstrated a practical method to analyze carbohydrate-protein interaction based on single plasmonic nanoparticles by conventional dark field microscopy (DFM). Protein concanavalin A (ConA) was modified on large sized gold nanoparticles (AuNPs), and dextran was conjugated on small sized AuNPs. As the interaction between ConA and dextran resulted in two kinds of gold nanoparticles coupled together, which caused coupling of plasmonic oscillations, apparent color changes (from green to yellow) of the single AuNPs were observed through DFM. Then, the color information was instantly transformed into a statistic peak wavelength distribution in less than 1 min by a self-developed statistical program (nanoparticleAnalysis). In addition, the interaction between ConA and dextran was proved with biospecific recognition. This approach is high-throughput and real-time, and is a convenient method to analyze carbohydrate-protein interaction at the single nanoparticle level efficiently.
NASA Astrophysics Data System (ADS)
Kovalenko, I. D.; Doressoundiram, A.; Lellouch, E.; Vilenius, E.; Müller, T.; Stansberry, J.
2017-11-01
Context. Gravitationally bound multiple systems provide an opportunity to estimate the mean bulk density of the objects, whereas this characteristic is not available for single objects. Being a primitive population of the outer solar system, binary and multiple trans-Neptunian objects (TNOs) provide unique information about bulk density and internal structure, improving our understanding of their formation and evolution. Aims: The goal of this work is to analyse parameters of multiple trans-Neptunian systems, observed with Herschel and Spitzer space telescopes. Particularly, statistical analysis is done for radiometric size and geometric albedo, obtained from photometric observations, and for estimated bulk density. Methods: We use Monte Carlo simulation to estimate the real size distribution of TNOs. For this purpose, we expand the dataset of diameters by adopting the Minor Planet Center database list with available values of the absolute magnitude therein, and the albedo distribution derived from Herschel radiometric measurements. We use the 2-sample Anderson-Darling non-parametric statistical method for testing whether two samples of diameters, for binary and single TNOs, come from the same distribution. Additionally, we use the Spearman's coefficient as a measure of rank correlations between parameters. Uncertainties of estimated parameters together with lack of data are taken into account. Conclusions about correlations between parameters are based on statistical hypothesis testing. Results: We have found that the difference in size distributions of multiple and single TNOs is biased by small objects. The test on correlations between parameters shows that the effective diameter of binary TNOs strongly correlates with heliocentric orbital inclination and with magnitude difference between components of binary system. The correlation between diameter and magnitude difference implies that small and large binaries are formed by different mechanisms. Furthermore, the statistical test indicates, although not significant with the sample size, that a moderately strong correlation exists between diameter and bulk density. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Acoustic bubble sorting for ultrasound contrast agent enrichment.
Segers, Tim; Versluis, Michel
2014-05-21
An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)
2002-01-01
Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.
Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K.
2001-01-01
Advances in technology have resulted in a new instrument that is designed for in-situ determination of particle size spectra. Such an instrument that can measure undisturbed particle size distributions is much needed for sediment transport studies. The LISST-100 (Laser In-Situ Scattering and Transmissometry) uses the principle of laser diffraction to obtain the size distribution and volume concentration of suspended material in 32 size classes logarithmically spaced between 1.25 and 250 ??m. This paper describes a laboratory evaluation of the ability of LISST-100 to determine particle sizes using suspensions of single size, artificial particles. Findings show the instrument is able to determine particle size to within about 10% with increasing error as particle size increases. The instrument determines volume (or mass) concentration using a volume conversion factor Cv. This volume conversion factor is theoretically a constant. In the laboratory evaluation Cv is found to vary by a factor of about three over the particle size range between 5 and 200 ??m. Results from field studies in South San Francisco Bay show that values of mass concentration of suspended marine sediments estimated by LISST-100 agree favorably with estimates from optical backscatterance sensors if an appropriate value of Cv, according to mean size, is used and the assumed average particle (aggregate) density is carefully chosen. Analyses of size distribution of suspended materials in South San Francisco Bay over multiple tide cycles suggest the likelihood of different sources of sediment because of different size characteristics during flood and ebb cycles. ?? 2001 Elsevier Science B.V.
Szlavik, Robert B
2016-02-01
The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.
Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J
2017-01-15
The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La 3+ adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La 2 O 3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches
NASA Astrophysics Data System (ADS)
Eya, I. O.; Urama, J. O.; Chukwude, A. E.
2017-05-01
We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (I.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δν/ν), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.
Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com
We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir.more » In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.« less
A Sorting Statistic with Application in Neurological Magnetic Resonance Imaging of Autism.
Levman, Jacob; Takahashi, Emi; Forgeron, Cynthia; MacDonald, Patrick; Stewart, Natalie; Lim, Ashley; Martel, Anne
2018-01-01
Effect size refers to the assessment of the extent of differences between two groups of samples on a single measurement. Assessing effect size in medical research is typically accomplished with Cohen's d statistic. Cohen's d statistic assumes that average values are good estimators of the position of a distribution of numbers and also assumes Gaussian (or bell-shaped) underlying data distributions. In this paper, we present an alternative evaluative statistic that can quantify differences between two data distributions in a manner that is similar to traditional effect size calculations; however, the proposed approach avoids making assumptions regarding the shape of the underlying data distribution. The proposed sorting statistic is compared with Cohen's d statistic and is demonstrated to be capable of identifying feature measurements of potential interest for which Cohen's d statistic implies the measurement would be of little use. This proposed sorting statistic has been evaluated on a large clinical autism dataset from Boston Children's Hospital , Harvard Medical School , demonstrating that it can potentially play a constructive role in future healthcare technologies.
A Sorting Statistic with Application in Neurological Magnetic Resonance Imaging of Autism
Takahashi, Emi; Lim, Ashley; Martel, Anne
2018-01-01
Effect size refers to the assessment of the extent of differences between two groups of samples on a single measurement. Assessing effect size in medical research is typically accomplished with Cohen's d statistic. Cohen's d statistic assumes that average values are good estimators of the position of a distribution of numbers and also assumes Gaussian (or bell-shaped) underlying data distributions. In this paper, we present an alternative evaluative statistic that can quantify differences between two data distributions in a manner that is similar to traditional effect size calculations; however, the proposed approach avoids making assumptions regarding the shape of the underlying data distribution. The proposed sorting statistic is compared with Cohen's d statistic and is demonstrated to be capable of identifying feature measurements of potential interest for which Cohen's d statistic implies the measurement would be of little use. This proposed sorting statistic has been evaluated on a large clinical autism dataset from Boston Children's Hospital, Harvard Medical School, demonstrating that it can potentially play a constructive role in future healthcare technologies. PMID:29796236
Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel.
Leong, Thomas; Johansson, Linda; Mawson, Raymond; McArthur, Sally L; Manasseh, Richard; Juliano, Pablo
2016-01-01
The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5-20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed. Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cheng, Z.; Lou, S.
2017-12-01
Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.
Discrete epidemic models with arbitrary stage distributions and applications to disease control.
Hernandez-Ceron, Nancy; Feng, Zhilan; Castillo-Chavez, Carlos
2013-10-01
W.O. Kermack and A.G. McKendrick introduced in their fundamental paper, A Contribution to the Mathematical Theory of Epidemics, published in 1927, a deterministic model that captured the qualitative dynamic behavior of single infectious disease outbreaks. A Kermack–McKendrick discrete-time general framework, motivated by the emergence of a multitude of models used to forecast the dynamics of epidemics, is introduced in this manuscript. Results that allow us to measure quantitatively the role of classical and general distributions on disease dynamics are presented. The case of the geometric distribution is used to evaluate the impact of waiting-time distributions on epidemiological processes or public health interventions. In short, the geometric distribution is used to set up the baseline or null epidemiological model used to test the relevance of realistic stage-period distribution on the dynamics of single epidemic outbreaks. A final size relationship involving the control reproduction number, a function of transmission parameters and the means of distributions used to model disease or intervention control measures, is computed. Model results and simulations highlight the inconsistencies in forecasting that emerge from the use of specific parametric distributions. Examples, using the geometric, Poisson and binomial distributions, are used to highlight the impact of the choices made in quantifying the risk posed by single outbreaks and the relative importance of various control measures.
Modeling of debris disks in Single and Binary stars
NASA Astrophysics Data System (ADS)
García, L.; Gómez, M.
2016-10-01
Infrared space observatories such as Spitzer and Herschel have allowed the detection of likely analogs to the Kuiper Belt in single as well as binary systems. The aim of this work is to characterize debris disks in single and binary stars and to identify features shared by the disks in both types of systems, as well as possible differences. We compiled a sample of 25 single and 14 binary stars (ages > 100 Myr) with flux measurements at λ >100 μm and evidence of infrared excesses attributed to the presence of debris disks. Then, we constructed and modeled the observed spectral energy distributions (SEDs), and compared the parameters of the disks of both samples. Both types of disks are relatively free of dust in the inner region (< 3-5 AU) and extend beyond 100 AU. No significant differences in the mass and dust size distributions of both samples are found.
Topology of black hole binary-single interactions
NASA Astrophysics Data System (ADS)
Samsing, Johan; Ilan, Teva
2018-05-01
We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.
Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali
2018-01-09
We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.
NASA Astrophysics Data System (ADS)
Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali
2018-01-01
We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period 1d
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.
2011-01-01
Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models for winter weather and identify best practices present within these various schemes.
Single-step fabrication of homoepitaxial silicon nanocones by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Colniţă, Alia; Marconi, Daniel; Brătfălean, Radu Tiberiu; Turcu, Ioan
2018-04-01
The purpose of this work was to optimize a single-step fabrication process of silicon (Si) cones-like nanostructures on Si(111) reconstructed substrates. The substrate temperature is the most important parameter in the Si/Si growth, due to its high influence over the surface nanostructuring and the occurrence of well defined nanocones. We investigate the effect of different substrate temperatures on the density and size distributions of Si nanocones formed during the molecular beam epitaxy (MBE) deposition of Si/Si(111) 7 × 7 reconstructed surfaces. The nanocones were characterized using scanning tunnelling microscopy (STM) and the height and the bottom area distributions of the Si nanocones were assessed. It was found that the obtained distributions are interrelated suggesting the self-similarity of the nanostructures grown during the deposition protocol.
Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.
2015-01-01
The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; ...
2015-11-17
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less
Photoballistics of volcanic jet activity at Stromboli, Italy
NASA Technical Reports Server (NTRS)
Chouet, B.; Hamisevicz, N.; Mcgetchin, T. R.
1974-01-01
Two night eruptions of the volcano Stromboli were studied through 70-mm photography. Single-camera techniques were used. Particle sphericity, constant velocity in the frame, and radial symmetry were assumed. Properties of the particulate phase found through analysis include: particle size, velocity, total number of particles ejected, angular dispersion and distribution in the jet, time variation of particle size and apparent velocity distribution, averaged volume flux, and kinetic energy carried by the condensed phase. The frequency distributions of particle size and apparent velocities are found to be approximately log normal. The properties of the gas phase were inferred from the fact that it was the transporting medium for the condensed phase. Gas velocity and time variation, volume flux of gas, dynamic pressure, mass erupted, and density were estimated. A CO2-H2O mixture is possible for the observed eruptions. The flow was subsonic. Velocity variations may be explained by an organ pipe resonance. Particle collimation may be produced by a Magnus effect.
NASA Astrophysics Data System (ADS)
Lane, Rebecca E.; Korbie, Darren; Anderson, Will; Vaidyanathan, Ramanathan; Trau, Matt
2015-01-01
Exosomes are vesicles which have garnered interest due to their diagnostic and therapeutic potential. Isolation of pure yields of exosomes from complex biological fluids whilst preserving their physical characteristics is critical for downstream applications. In this study, we use 100 nm-liposomes from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol as a model system as a model system to assess the effect of exosome isolation protocols on vesicle recovery and size distribution using a single-particle analysis method. We demonstrate that liposome size distribution and ζ-potential are comparable to extracted exosomes, making them an ideal model for comparison studies. Four different purification protocols were evaluated, with liposomes robustly isolated by three of them. Recovered yields varied and liposome size distribution was unaltered during processing, suggesting that these protocols do not induce particle aggregation. This leads us to conclude that the size distribution profile and characteristics of vesicles are stably maintained during processing and purification, suggesting that reports detailing how exosomes derived from tumour cells differ in size to those from normal cells are reporting a real phenomenon. However, we hypothesize that larger particles present in most purified exosome samples represent co-purified contaminating non-exosome debris. These isolation techniques are therefore likely nonspecific and may co-isolate non-exosome material of similar physical properties.
GEANT4 distributed computing for compact clusters
NASA Astrophysics Data System (ADS)
Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.
2014-11-01
A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.
Complex refractive index of Martian dust - Wavelength dependence and composition
NASA Technical Reports Server (NTRS)
Pang, K.; Ajello, J. M.
1977-01-01
The size distribution and complex refractive index of Martian dust-cloud particles observed in 1971 with the Mariner 9 UV spectrometer are determined by matching the observed single-scattering albedo and phase function with Mie-scattering calculations for size distributions of spheres. Values of phase function times single-scattering albedo are presented for 12 wavelength intervals in the range from 190 to 350 nm, and best-fit values are obtained for the absorption index. It is found that the absorption index of the dust particles increases with decreasing wavelength from 350 to about 210 nm and then drops off shortward of 210 nm, with a structural shoulder occurring in the absorption spectrum between 240 and 250 nm. A search for a candidate material that can explain the strong UV absorption yields TiO2, whose anatase polymorph has an absorption spectrum matching that of the Martian dust. The TiO2 content of the dust particles is estimated to be a few percent or less.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Ayala-Valenzuela, Oscar; McDonald, Ross D.; Bulaevskii, Lev N.; Holesinger, Terry G.; Ronning, Filip; Weisse-Bernstein, Nina R.; Williamson, Todd L.; Mueller, Alexander H.; Hoffbauer, Mark A.; Rabin, Michael W.; Graf, Matthias J.
2013-05-01
The fabrication of high-quality thin superconducting films is essential for single-photon detectors. Their device performance is crucially affected by their material parameters, thus requiring reliable and nondestructive characterization methods after the fabrication and patterning processes. Important material parameters to know are the resistivity, superconducting transition temperature, relaxation time of quasiparticles, and uniformity of patterned wires. In this work, we characterize micropatterned thin NbN films by using transport measurements in magnetic fields. We show that from the instability of vortex motion at high currents in the flux-flow state of the IV characteristic, the inelastic lifetime of quasiparticles can be determined to be about 2 ns. Additionally, from the depinning transition of vortices at low currents, as a function of magnetic field, the size distribution of grains can be extracted. This size distribution is found to be in agreement with the film morphology obtained from scanning electron microscopy and high-resolution transmission electron microscopy images.
Morphology of single inhalable particle inside public transit biodiesel fueled bus.
Shandilya, Kaushik K; Kumar, Ashok
2010-01-01
In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.
G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe
2010-01-01
We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...
A three-limb amorphous magnetic circuit for three-phase 200 kVA distribution transformers
NASA Astrophysics Data System (ADS)
Kolano, R.; Wójcik, N.; Gawior, W.
1996-07-01
This paper describes the construction and method of preparation of a three-limb amorphous magnetic circuit. The circuit consists of three single cores: two smaller cores of the same size, surrounded by a third larger one with appropriate window dimensions. The no-load loss and exciting power of the single cores have been investigated as a function of the magnetic induction and stresses applied to the third core.
NASA Astrophysics Data System (ADS)
Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.
2015-12-01
The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.
A multimodal detection model of dolphins to estimate abundance validated by field experiments.
Akamatsu, Tomonari; Ura, Tamaki; Sugimatsu, Harumi; Bahl, Rajendar; Behera, Sandeep; Panda, Sudarsan; Khan, Muntaz; Kar, S K; Kar, C S; Kimura, Satoko; Sasaki-Yamamoto, Yukiko
2013-09-01
Abundance estimation of marine mammals requires matching of detection of an animal or a group of animal by two independent means. A multimodal detection model using visual and acoustic cues (surfacing and phonation) that enables abundance estimation of dolphins is proposed. The method does not require a specific time window to match the cues of both means for applying mark-recapture method. The proposed model was evaluated using data obtained in field observations of Ganges River dolphins and Irrawaddy dolphins, as examples of dispersed and condensed distributions of animals, respectively. The acoustic detection probability was approximately 80%, 20% higher than that of visual detection for both species, regardless of the distribution of the animals in present study sites. The abundance estimates of Ganges River dolphins and Irrawaddy dolphins fairly agreed with the numbers reported in previous monitoring studies. The single animal detection probability was smaller than that of larger cluster size, as predicted by the model and confirmed by field data. However, dense groups of Irrawaddy dolphins showed difference in cluster sizes observed by visual and acoustic methods. Lower detection probability of single clusters of this species seemed to be caused by the clumped distribution of this species.
Flight Investigation of the Effects of Pressure-Belt Tubing Size on Measured Pressure Distributions
NASA Technical Reports Server (NTRS)
Rivers, Natale A.; vanDam, Cornielious P.; Brown, Phillip W.; Rivers, Robert A.
2001-01-01
The pressure-belt technique is commonly used to measure pressure distributions on lifting and nonlifting surfaces where flush, through-the-surface measurements are not possible. The belts, made from strips of small-bore, flexible plastic tubing, are surface-mounted by a simple, nondestructive method. Additionally, the belts require minimal installation time, thus making them much less costly to install than flush-mounted pressure ports. Although pressure belts have been used in flight research since the early 1950s, only recently have manufacturers begun to produce thinner, more flexible tubing, and thin, strong adhesive tapes that minimize the installation-induced errors on the measurement of surface pressures. The objective of this investigation was to determine the effects of pressure-belt tubing size on the measurement of pressure distributions. For that purpose, two pressure belts were mounted on the right wing of a single-engine, propeller-driven research airplane. The outboard pressure belt served as a baseline for the measurement and the comparison of effects. Each tube had an outer diameter (OD) of 0.0625 in. The inboard belt was used to evaluate three different tube sizes: 0.0625-, 0.1250-, and 0.1875-in. OD. A computational investigation of tube size on pressure distribution also was conducted using the two-dimensional Multielement Streamtube Euler Solver (MSES) code.
Large-Scale Weibull Analysis of H-451 Nuclear- Grade Graphite Specimen Rupture Data
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Walker, Andrew; Baker, Eric H.; Murthy, Pappu L.; Bratton, Robert L.
2012-01-01
A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens excised from a single extruded graphite log. Strength variation was compared with specimen location, size, and orientation relative to the parent body. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and to investigate the strength distribution. The CARES/Life and WeibPar codes were used to investigate issues regarding the size effect, Weibull parameter consistency, and nonlinear stress-strain response. Overall, the Weibull distribution described the behavior of the pooled data very well. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV (Gen IV) high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Extensive appendixes are provided with this report to show all aspects of the rupture data and analytical results.
Effect of reaction-step-size noise on the switching dynamics of stochastic populations
NASA Astrophysics Data System (ADS)
Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael
2016-05-01
In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations.
Shandilya, Kaushik K; Kumar, Ashok
2011-06-15
This study presents the physical characteristics of fine particulate matter (PM) collected inside the urban-public transit buses in Toledo, OH. These buses run on 20% biodiesel blended with ultra-low sulfur diesel (ULSD) (B20). For risk analysis, it is crucial to know the modality of the size distribution and the shape factor of PM collected inside the bus. The number-size distribution, microstructure, and aspect ratio of fine PM filter samples collected in the urban-public transit buses were measured for three years (2007-2009), using an environmental scanning electron microscope (ESEM) coupled with energy dispersive X-ray spectrometry (EDX). Only the reproducible results from repeated experiments on ESEM and size distribution obtained by the GRIMM dust monitor were used in this study. The size distribution was found bi-modal in the winter and fall months and was primarily uni-modal during spring and summer. The aspect ratio for different filter samples collected inside the bus range from 2.4 to 3.6 in average value, with standard deviation ranging from 0.9 to 7.4. The square-shaped and oblong-shaped particles represent the single inhalable particle's morphology characteristics in the air of the Toledo transit buses. Copyright © 2011 Elsevier B.V. All rights reserved.
Gene expression distribution deconvolution in single-cell RNA sequencing.
Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R
2018-06-26
Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.
Quantifying fluorescence enhancement for slowly diffusing single molecules in plasmonic near fields
NASA Astrophysics Data System (ADS)
Caldarola, Martín; Pradhan, Biswajit; Orrit, Michel
2018-03-01
Gold nanorods are extensively used for single-molecule fluorescence enhancement as they are easy to synthesize, bio-compatible, and provide high light confinement at their nanometer-sized tips. The current way to estimate fluorescence enhancement relies on binned time traces or on fluorescence correlation spectroscopy. We report on novel ways to extract the enhancement factor in a single-molecule enhancement experiment, avoiding the arbitrary selection of one or a few high-intensity burst(s). These new estimates for the enhancement factor make use of the whole distribution of intensity bursts or of the interphoton delay distribution, which avoids the arbitrary binning of the fluorescence intensity time traces. We present experimental results on the bi-dimensional case, experimentally achieved using a lipid bilayer to support the diffusion of fluorophores. We support our findings with histograms of fluorescence bursts and with an analytical derivation of the interphoton delay distribution of (nearly) immobilized emitters from the fluorescence intensity profile.
NASA Astrophysics Data System (ADS)
Terada, T.; Sato, M.; Mochizuki, N.; Yamamoto, Y.; Tsunakawa, H.
2013-12-01
Magnetic properties of ferromagnetic minerals generally depend on their chemical composition, crystal structure, size, and shape. In the usual paleomagnetic study, we use a bulk sample which is the assemblage of magnetic minerals showing broad distributions of various magnetic properties. Microscopic and Curie-point observations of the bulk sample enable us to identify the constituent magnetic minerals, while other measurements, for example, stepwise thermal and/or alternating field demagnetizations (ThD, AFD) make it possible to estimate size, shape and domain state of the constituent magnetic grains. However, estimation based on stepwise demagnetizations has a limitation that magnetic grains with the same coercivity Hc (or blocking temperature Tb) can be identified as the single population even though they could have different size and shape. Dunlop and West (1969) carried out mapping of grain size and coercivity (Hc) using pTRM. However, it is considered that their mapping method is basically applicable to natural rocks containing only SD grains, since the grain sizes are estimated on the basis of the single domain theory (Neel, 1949). In addition, it is impossible to check thermal alteration due to laboratory heating in their experiment. In the present study we propose a new experimental method which makes it possible to estimate distribution of size and shape of magnetic minerals in a bulk sample. The present method is composed of simple procedures: (1) imparting ARM to a bulk sample, (2) ThD at a certain temperature, (3) stepwise AFD on the remaining ARM, (4) repeating the steps (1) ~ (3) with ThD at elevating temperatures up to the Curie temperature of the sample. After completion of the whole procedures, ARM spectra are calculated and mapped on the HC-Tb plane (hereafter called HC-Tb diagram). We analyze the Hc-Tb diagrams as follows: (1) For uniaxial SD populations, theoretical curve for a certain grain size (or shape anisotropy) is drawn on the Hc-Tb diagram. The curves are calculated using the single domain theory, since coercivity and blocking temperature of uniaxial SD grains can be expressed as a function of size and shape. (2) Boundary between SD and MD grains are calculated and drawn on the Hc-Tb diagram according to the theory by Butler and Banerjee (1975). (3) Theoretical predictions by (1) and (2) are compared with the obtained ARM spectra to estimate quantitive distribution of size, shape and domain state of magnetic grains in the sample. This mapping method has been applied to three samples: Hawaiian basaltic lava extruded in 1995, Ueno basaltic lava formed during Matsuyama chron, and Oshima basaltic lava extruded in 1986. We will discuss physical states of magnetic grains (size, shape, domain state, etc.) and their possible origins.
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
Gravitational Effects on Closed-Cellular-Foam Microstructure
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas
1996-01-01
Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.
NASA Astrophysics Data System (ADS)
Xu, R.; Prodanovic, M.
2017-12-01
Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable insights into the production optimization and enhanced oil recovery design.
A physically based catchment partitioning method for hydrological analysis
NASA Astrophysics Data System (ADS)
Menduni, Giovanni; Riboni, Vittoria
2000-07-01
We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.
Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.
Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia
2015-01-01
Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Cell size control and homeostasis in bacteria
NASA Astrophysics Data System (ADS)
Bradde, Serena; Taheri, Sattar; Sauls, John; Hill, Nobert; Levine, Petra; Paulsson, Johan; Vergassola, Massimo; Jun, Suckjoon
2015-03-01
How cells control their size is a fundamental question in biology. The mechanisms for sensing size, time, or a combination of the two are not supported by experimental evidence. By analysing distributions of size at division at birth and generation time of hundreds of thousands of Gram-negative E. coli and Gram-positive B. subtilis cells under a wide range of tightly controlled steady-state growth conditions, we are now in the position to validate different theoretical models. In this talk I will present all possible models in details and present a general mechanism that quantitatively explains all measurable aspects of growth and cell division at both population and single-cell levels.
NASA Astrophysics Data System (ADS)
Gong, Xianda; Zhang, Ci; Chen, Hong; Nizkorodov, Sergey A.; Chen, Jianmin; Yang, Xin
2016-04-01
A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 averaged 3.2 µg m-3, with the peak value of 12.1 µg m-3 at 04:26 LT on 7 December. The number of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into five major classes: (1) Pure BC; (2) BC attributed to biomass burning (BBBC); (3) K-rich BC-containing (KBC); (4) BC internally mixed with OC and ammonium sulfate (BCOC-SOx); (5) BC internally mixed with OC and ammonium nitrate (BCOC-NOx). The size distribution of internally mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ˜ 230 nm and droplet mode peaked around ˜ 380 nm, with a clear valley in the size distribution around ˜ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small rBC core (˜ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ˜ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The biomass burning particles had a larger rBC core (˜ 80-130 nm) and a thick ACT (˜ 110-300 nm). The highly aged traffic emissions had a smaller core (˜ 60-80 nm) and a very thick ACT (˜ 130-300 nm), which is larger than reported in any previous literature. A fast growth rate (˜ 20 nm h-1) of rBC with small core sizes was observed during the experiment. High concentrations pollutants like NO2 likely accelerated the aging process and resulted in a continuous size growth of rBC-containing particles from traffic emission.
Growth of nanostructures with controlled diameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos
2009-02-03
Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictablymore » prepared by selecting a suitable pore size of the framework structure.« less
NASA Astrophysics Data System (ADS)
Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.
2015-05-01
Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.
Individuality and universality in the growth-division laws of single E. coli cells
NASA Astrophysics Data System (ADS)
Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2016-01-01
The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.
Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations.
Balao, Francisco; Casimiro-Soriguer, Ramón; Talavera, María; Herrera, Javier; Talavera, Salvador
2009-10-01
Studying the spatial distribution of cytotypes and genome size in plants can provide valuable information about the evolution of polyploid complexes. Here, the spatial distribution of cytological races and the amount of DNA in Dianthus broteri, an Iberian carnation with several ploidy levels, is investigated. Sample chromosome counts and flow cytometry (using propidium iodide) were used to determine overall genome size (2C value) and ploidy level in 244 individuals of 25 populations. Both fresh and dried samples were investigated. Differences in 2C and 1Cx values among ploidy levels within biogeographical provinces were tested using ANOVA. Geographical correlations of genome size were also explored. Extensive variation in chromosomes numbers (2n = 2x = 30, 2n = 4x = 60, 2n = 6x = 90 and 2n = 12x =180) was detected, and the dodecaploid cytotype is reported for the first time in this genus. As regards cytotype distribution, six populations were diploid, 11 were tetraploid, three were hexaploid and five were dodecaploid. Except for one diploid population containing some triploid plants (2n = 45), the remaining populations showed a single cytotype. Diploids appeared in two disjunct areas (south-east and south-west), and so did tetraploids (although with a considerably wider geographic range). Dehydrated leaf samples provided reliable measurements of DNA content. Genome size varied significantly among some cytotypes, and also extensively within diploid (up to 1.17-fold) and tetraploid (1.22-fold) populations. Nevertheless, variations were not straightforwardly congruent with ecology and geographical distribution. Dianthus broteri shows the highest diversity of cytotypes known to date in the genus Dianthus. Moreover, some cytotypes present remarkable internal genome size variation. The evolution of the complex is discussed in terms of autopolyploidy, with primary and secondary contact zones.
Alam, Shah Jamal; Zhang, Xinyu; Romero-Severson, Ethan Obie; Henry, Christopher; Zhong, Lin; Volz, Erik M.; Brenner, Bluma G.; Koopman, James S.
2013-01-01
Episodic high-risk sexual behavior is common and can have a profound effect on HIV transmission. In a model of HIV transmission among men who have sex with men (MSM), changing the frequency, duration and contact rates of high-risk episodes can take endemic prevalence from zero to 50% and more than double transmissions during acute HIV infection (AHI). Undirected test and treat could be inefficient in the presence of strong episodic risk effects. Partner services approaches that use a variety of control options will be likely to have better effects under these conditions, but the question remains: What data will reveal if a population is experiencing episodic risk effects? HIV sequence data from Montreal reveals genetic clusters whose size distribution stabilizes over time and reflects the size distribution of acute infection outbreaks (AIOs). Surveillance provides complementary behavioral data. In order to use both types of data efficiently, it is essential to examine aspects of models that affect both the episodic risk effects and the shape of transmission trees. As a demonstration, we use a deterministic compartmental model of episodic risk to explore the determinants of the fraction of transmissions during acute HIV infection (AHI) at the endemic equilibrium. We use a corresponding individual-based model to observe AIO size distributions and patterns of transmission within AIO. Episodic risk parameters determining whether AHI transmission trees had longer chains, more clustered transmissions from single individuals, or different mixes of these were explored. Encouragingly for parameter estimation, AIO size distributions reflected the frequency of transmissions from acute infection across divergent parameter sets. Our results show that episodic risk dynamics influence both the size and duration of acute infection outbreaks, thus providing a possible link between genetic cluster size distributions and episodic risk dynamics. PMID:23438430
2010-01-01
examine the stability to oxidation of the silver nanoparticles , SERS measurements were carried out on a single dielectric ZnO nanowire core/silver...employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs...nature of silver, the Ag surface is easily oxidized in the air. Hence, it is important to understand the silver nanoparticle oxidation processes in
NASA Astrophysics Data System (ADS)
Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.
2013-04-01
Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
NASA Astrophysics Data System (ADS)
Hassan, A. H.; Fluke, C. J.; Barnes, D. G.
2012-09-01
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a “software as a service” manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.
Characterization of distinct Arctic aerosol accumulation modes and their sources
NASA Astrophysics Data System (ADS)
Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.
2018-06-01
In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the Arctic.
NASA Astrophysics Data System (ADS)
Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.
2011-10-01
Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.
NASA Technical Reports Server (NTRS)
Rudoff, R. C.; Bachalo, E. J.; Bachalo, W. D.; Oldenburg, J. R.
1992-01-01
The design, development, and testing of an icing cloud droplet sizing probe based upon the Phase Doppler Particle Analyzer (PDPA) are discussed. This probe is an in-situ laser interferometry based single particle measuring device capable of determining size distributions. The probe is designed for use in harsh environments such as icing tunnels and natural icing clouds. From the measured size distribution, Median Volume Diameter (MVD) and Liquid Water Content (LWC) may be determined. Both the theory of measurement and the mechanical aspects of the probe design and development are discussed. The MVD results from the probe are compared to an existing calibration based upon different instruments in a series of tests in the NASA Lewis Icing Research Tunnel. Agreement between the PDPA probe and the existing calibration is close for MVDs between 15 to 30 microns, but the PDPA results are considerably smaller for MVDs under 15 microns.
Design method for multi-user workstations utilizing anthropometry and preference data.
Mahoney, Joseph M; Kurczewski, Nicolas A; Froede, Erick W
2015-01-01
Past efforts have been made to design single-user workstations to accommodate users' anthropometric and preference distributions. However, there is a lack of methods for designing workstations for group interaction. This paper introduces a method for sizing workstations to allow for a personal work area for each user and a shared space for adjacent users. We first create a virtual population with the same anthropometric and preference distributions as an intended demographic of college-aged students. Members of the virtual population are randomly paired to test if their extended reaches overlap but their normal reaches do not. This process is repeated in a Monte Carlo simulation to estimate the total percentage of groups in the population that will be accommodated for a workstation size. We apply our method to two test cases: in the first, we size polygonal workstations for two populations and, in the second, we dimension circular workstations for different group sizes. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Permeability and 3-Dimensional Melt Distribution in Partially Molten Rocks
NASA Astrophysics Data System (ADS)
Zhu, Wen-Lu; Gaetani, Glenn; Fusseis, Florian
2010-05-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle, as well as interpretations of the geochemical and geophysical observations at ocean ridges. For a system containing a single solid phase of isotropic interfacial energy, chemical and mechanical equilibrium requires a constant mean curvature of solid-melt interfaces and a single dihedral angle. Under these conditions, a simple power-law relationship between permeability, grain size and melt fraction, has been derived [e.g., von Bargen and Waff, 1986]. However, microstructural observations on texturally equilibrated, partially molten rocks reveal that the melt distribution is more complex than predicted by the isotropic model. Several factors, such as non-hydrostatic stress, anisotropic interfacial energy, or the presence of a second solid phase, will alter the power-law relationship. Better estimates for the permeability of partially molten rock require an accurate assessment of 3-dimensional melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2-D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along 3-grain junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have carried out the first high quality non-destructive imaging of 3-dimensional melt distribution in experimentally equilibrated olivine-basalt aggregates [Zhu et al., 2009]. Microtomographic images of melt distribution were obtained on 1 mm cylindrical cores with melt fractions of 0.2, 0.1, and 0.02, at a spatial resolution of 0.7 microns. Textual information such as melt channel size and channel connectivity was determined using AVIZO and MATLAB. Our data indicate that as melt fraction decreases from 0.2 to 0.02, grain size increases slightly whereas melt interconnectivity decreases. Network modeling and the Lattice Boltzmann method provide a quantitative link between the macroscale transport properties and microscale melt distribtution. Incorporating our quantitative 3-D melt distribution data into these models allow us to simulate melt transport and, thereby, calculate the permeability and electrical conductivity of partially molten peridotite, especially at low melt fractions.
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
A ubiquitous ice size bias in simulations of tropical deep convection
NASA Astrophysics Data System (ADS)
Stanford, McKenna W.; Varble, Adam; Zipser, Ed; Strapp, J. Walter; Leroy, Delphine; Schwarzenboeck, Alfons; Potts, Rodney; Protat, Alain
2017-08-01
The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) joint field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions (PSDs), and vertical velocity (w) in high ice water content regions of mature and decaying tropical mesoscale convective systems (MCSs). The resulting dataset is used here to explore causes of the commonly documented high bias in radar reflectivity within cloud-resolving simulations of deep convection. This bias has been linked to overly strong simulated convective updrafts lofting excessive condensate mass but is also modulated by parameterizations of hydrometeor size distributions, single particle properties, species separation, and microphysical processes. Observations are compared with three Weather Research and Forecasting model simulations of an observed MCS using different microphysics parameterizations while controlling for w, TWC, and temperature. Two popular bulk microphysics schemes (Thompson and Morrison) and one bin microphysics scheme (fast spectral bin microphysics) are compared. For temperatures between -10 and -40 °C and TWC > 1 g m-3, all microphysics schemes produce median mass diameters (MMDs) that are generally larger than observed, and the precipitating ice species that controls this size bias varies by scheme, temperature, and w. Despite a much greater number of samples, all simulations fail to reproduce observed high-TWC conditions ( > 2 g m-3) between -20 and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes greater than 1 mm in diameter. Although more mass is distributed to large particle sizes relative to those observed across all schemes when controlling for temperature, w, and TWC, differences with observations are significantly variable between the schemes tested. As a result, this bias is hypothesized to partly result from errors in parameterized hydrometeor PSD and single particle properties, but because it is present in all schemes, it may also partly result from errors in parameterized microphysical processes present in all schemes. Because of these ubiquitous ice size biases, the frequently used microphysical parameterizations evaluated in this study inherently produce a high bias in convective reflectivity for a wide range of temperatures, vertical velocities, and TWCs.
A model of litter size distribution in cattle.
Bennett, G L; Echternkamp, S E; Gregory, K E
1998-07-01
Genetic increases in twinning of cattle could result in increased frequency of triplet or higher-order births. There are no estimates of the incidence of triplets in populations with genetic levels of twinning over 40% because these populations either have not existed or have not been documented. A model of the distribution of litter size in cattle is proposed. Empirical estimates of ovulation rate distribution in sheep were combined with biological hypotheses about the fate of embryos in cattle. Two phases of embryo loss were hypothesized. The first phase is considered to be preimplantation. Losses in this phase occur independently (i.e., the loss of one embryo does not affect the loss of the remaining embryos). The second phase occurs after implantation. The loss of one embryo in this stage results in the loss of all embryos. Fewer than 5% triplet births are predicted when 50% of births are twins and triplets. Above 60% multiple births, increased triplets accounted for most of the increase in litter size. Predictions were compared with data from 5,142 calvings by 14 groups of heifers and cows with average litter sizes ranging from 1.14 to 1.36 calves. The predicted number of triplets was not significantly different (chi2 = 16.85, df = 14) from the observed number. The model also predicted differences in conception rates. A cow ovulating two ova was predicted to have the highest conception rate in a single breeding cycle. As mean ovulation rate increased, predicted conception to one breeding cycle increased. Conception to two or three breeding cycles decreased as mean ovulation increased because late-pregnancy failures increased. An alternative model of the fate of ova in cattle based on embryo and uterine competency predicts very similar proportions of singles, twins, and triplets but different conception rates. The proposed model of litter size distribution in cattle accurately predicts the proportion of triplets found in cattle with genetically high twinning rates. This model can be used in projecting efficiency changes resulting from genetically increasing the twinning rate in cattle.
Recordati, Camilla; De Maglie, Marcella; Bianchessi, Silvia; Argentiere, Simona; Cella, Claudia; Mattiello, Silvana; Cubadda, Francesco; Aureli, Federica; D'Amato, Marilena; Raggi, Andrea; Lenardi, Cristina; Milani, Paolo; Scanziani, Eugenio
2016-02-29
Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.
Li, Xuanxuan; Spence, John C. H.; Hogue, Brenda G.; ...
2017-09-22
X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherentmore » diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xuanxuan; Spence, John C. H.; Hogue, Brenda G.
X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherentmore » diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.« less
NASA Astrophysics Data System (ADS)
Parekh, K.; Upadhyay, R. V.; Mehta, R. V.; Aswal, V. K.
2008-03-01
The experimental investigations of a nearly monodispersed magnetic fluid, containing a ternary Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} (MZ5) magnetic fluid, are carried out using XRD, TEM, Small Angle Neutron Scattering (SANS) and a SQUID magnetometer. The XRD and TEM measurements give the particle size to be 7.5 and 8.4 nm respectively, and confirms the single phase cubic spinel structure. The size distribution retrieved from TEM is found to be very narrow (<10{%}). Room temperature magnetic measurement fits with the Langevin's function modified for the particle size distribution as well as for the particle-particle interaction parameter. M(H)-measurements as a function of field for different temperatures show that the system is superparamagnetic at room temperature and develops coercivity at 5 K. Figs 4, Refs 12.
Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery
NASA Astrophysics Data System (ADS)
Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan
2013-11-01
A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka
2015-04-01
Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be connected with the TC content of this fraction, but more research is needed. In agricultural areas micro aggregate fraction plays important role in nutrient supply thus understanding the erosion process is necessary because of the better protection in the future.
NASA Astrophysics Data System (ADS)
Hasan, M.-A.; Knall, J.; Barnett, S. A.; Rockett, A.; Sundgren, J.-E.
1987-10-01
A single-grid electron-impact ultrahigh vacuum (UHV) compatible low-energy ion gun capable of operating with a low vapor pressure solid source material such as In is presented. The gun consists of a single chamber which integrates the functions of an effusion cell, a vapor transport tube, and a glow discharge ionizer. The initial results of experiments designed to study the role of ion/surface interactions during nucleation and the early stages of crystal growth in UHV revealed that, for deposition on amorphous substrates, the use of a partially ionized In(+) beam resulted in a progressive shift towards larger island sizes, a decreased rate of secondary nucleation, and a more uniform island size distribution.
Linear-sweep voltammetry of a soluble redox couple in a cylindrical electrode
NASA Technical Reports Server (NTRS)
Weidner, John W.
1991-01-01
An approach is described for using the linear sweep voltammetry (LSV) technique to study the kinetics of flooded porous electrodes by assuming a porous electrode as a collection of identical noninterconnected cylindrical pores that are filled with electrolyte. This assumption makes possible to study the behavior of this ideal electrode as that of a single pore. Alternatively, for an electrode of a given pore-size distribution, it is possible to predict the performance of different pore sizes and then combine the performance values.
Structural and magnetic studies of nanocrystalline Y{sub 2}Ir{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Vinod Kumar, E-mail: vinodd@iitk.ac.in; Mukhopadhyay, Soumik
2015-06-24
In this paper, we discuss synthesis of Y{sub 2}Ir{sub 2}O{sub 7} nanoparticles via chemical solution process. Structural analysis shows single cubic phase with Fd-3m space group symmetry. The particle size and distribution were studied by Transmission Electron Microscopy experiments. The average particle size turns out to be 50nm, which is in good agreement with the XRD results. Magnetic characterization shows no evidence of long range ordering even in presence of strong correlations.
2015-04-01
monodisperse particles. ENPs in environmental samples will likely have much broader size distributions and thus FFF-ICP-MS was tested over a greater...Figure 6). Resolution is based on ICP-MS sensitivity, and will likely decrease as the difference in particle diameter decreases. Second, this...Alvarez. 2006. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environmental Science
SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A; Yin, F; Wu, Q
2015-06-15
Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less
Size distribution of particle-phase molecular markers during a severe winter pollution episode.
Kleeman, Michael J; Riddle, Sarah G; Jakober, Chris A
2008-09-01
Airborne particulate matter was collected using filter samplers and cascade impactors in six size fractions below 1.8 microm during a severe winter air pollution event at three sites in the Central Valley of California. The smallest size fraction analyzed was 0.056 < Dp <0.1 microm particle diameter, which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Separate samples were collected during the daytime (10 a.m. to 6 p.m. PST) and nighttime (8 p.m. to 8 a.m. PST) to characterize diurnal patterns. Each sample was extracted with organic solvents and analyzed using gas chromatography mass spectrometry for molecular markers that can be used for size-resolved source apportionment calculations. Colocated impactor and filter measurements were highly correlated (R8 > 0.8) for retene, benzo[ghi]flouranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, coronene, MW302 polycyclic aromatic hydrocarbon (PAHs), 17beta(H)-21alpha(H)-30-norhopane, 17alpha(H)-21beta(H)-hopane, alphabetabeta-20R-C29-ethylcholestane, levoglucosan, and cholesterol. Of these compounds, levoglucosan was present in the highest concentration (60-2080 ng m(-3)) followed by cholesterol (6-35 ng m(-3)), PAHs (2-38 ng m(-3)), and hopanes and steranes (0-2 ng m(-3)). Nighttime concentrations were higher than daytime concentrations in all cases. Organic compound size distributions were generally similar to the total carbon size distributions during the nighttime but showed greater variability during the daytime. This may reflect the dominance of fresh emission in the stagnant surface layer during the evening hours and the presence of aged organic aerosol at the surface during the daytime when the atmosphere is better mixed. All of the measured organic compound particle size distributions had a single mode that peaked somewhere between 0.18 and 0.56 microm, but the width of each distribution varied by compound. Cholesterol generally had the broadest particle size distribution, while benzo[ghi]perylene and 17alpha(H)-21beta(H)-29-norhopane generally had sharper peaks. The difference between the size distributions of the various particle-phase organic compounds reflects the fact that these compounds exist in particles emitted from different sources. The results of the current study will prove useful for size-resolved source apportionment exercises.
Coagulation-Fragmentation Model for Animal Group-Size Statistics
NASA Astrophysics Data System (ADS)
Degond, Pierre; Liu, Jian-Guo; Pego, Robert L.
2017-04-01
We study coagulation-fragmentation equations inspired by a simple model proposed in fisheries science to explain data for the size distribution of schools of pelagic fish. Although the equations lack detailed balance and admit no H-theorem, we are able to develop a rather complete description of equilibrium profiles and large-time behavior, based on recent developments in complex function theory for Bernstein and Pick functions. In the large-population continuum limit, a scaling-invariant regime is reached in which all equilibria are determined by a single scaling profile. This universal profile exhibits power-law behavior crossing over from exponent -2/3 for small size to -3/2 for large size, with an exponential cutoff.
Nanoparticle size detection limits by single particle ICP-MS for 40 elements.
Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul
2014-09-02
The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were obtained using spICP-MS. The use of this methodology confirms that the observed minimum detectable sizes are consistent with the calculated Dmin values. Overall, this work identifies the elements and nanoparticles to which current spICP-MS approaches can be applied, in order to enable quantification of very small nanoparticles at low concentrations in aqueous media.
Radar volume reflectivity estimation using an array of ground-based rainfall drop size detectors
NASA Astrophysics Data System (ADS)
Lane, John; Merceret, Francis; Kasparis, Takis; Roy, D.; Muller, Brad; Jones, W. Linwood
2000-08-01
Rainfall drop size distribution (DSD) measurements made by single disdrometers at isolated ground sites have traditionally been used to estimate the transformation between weather radar reflectivity Z and rainfall rate R. Despite the immense disparity in sampling geometries, the resulting Z-R relation obtained by these single point measurements has historically been important in the study of applied radar meteorology. Simultaneous DSD measurements made at several ground sites within a microscale area may be used to improve the estimate of radar reflectivity in the air volume surrounding the disdrometer array. By applying the equations of motion for non-interacting hydrometers, a volume estimate of Z is obtained from the array of ground based disdrometers by first calculating a 3D drop size distribution. The 3D-DSD model assumes that only gravity and terminal velocity due to atmospheric drag within the sampling volume influence hydrometer dynamics. The sampling volume is characterized by wind velocities, which are input parameters to the 3D-DSD model, composed of vertical and horizontal components. Reflectivity data from four consecutive WSR-88D volume scans, acquired during a thunderstorm near Melbourne, FL on June 1, 1997, are compared to data processed using the 3D-DSD model and data form three ground based disdrometers of a microscale array.
Anterior chamber blood cell differentiation using spectroscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Qian, Ruobing; McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.
2018-02-01
There is great clinical importance in identifying cellular responses in the anterior chamber (AC) which can indicate signs of hyphema (an accumulation of red blood cells (RBCs)) or aberrant intraocular inflammation (an accumulation of white blood cells (WBCs)). These responses are difficult to diagnose and require specialized equipment such as ophthalmic microscopes and specialists trained in examining the eye. In this work, we applied spectroscopic OCT to differentiate between RBCs and subtypes of WBCs, including neutrophils, lymphocytes and monocytes, both in vitro and in ACs of porcine eyes. We located and tracked single cells in OCT volumetric images, and extracted the spectroscopic data of each cell from the detected interferograms using short-time Fourier Transform (STFT). A look-up table of Mie spectra was generated and used to correlate the spectroscopic data of single cells to their characteristic sizes. The accuracy of the method was first validated on 10um polystyrene microspheres. For RBCs and subtypes of WBCs, the extracted size distributions based on the best Mie spectra fit were significantly different between each cell type by using the Wilcoxon rank-sum test. A similar size distribution of neutrophils was also acquired in the measurements of cells introduced into the ACs of porcine eyes, further supporting spectroscopic OCT for potentially differentiating and quantifying blood cell types in the AC in vivo.
Simulation of alnico coercivity
Ke, Liqin; Skomski, Ralph; Hoffmann, Todd D.; ...
2017-07-10
Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. Furthemore, the maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. In both the exchange interaction between connected rods and magnetostatic we consider the interaction between rods, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of themore » Fe-Co phase, all factors that can be tuned with appropriate chemistry and thermal-magnetic annealing.« less
NASA Astrophysics Data System (ADS)
Turowski, Jens; Badoux, Alexandre; Bunte, Kristin; Rickli, Christian; Federspiel, Nicole
2013-04-01
Coarse particulate organic matter (CPOM) spans sizes from 1 mm particles, weighing less than 1 mg, to large logs and whole trees, which may weigh several hundred kilograms. Different size and weight classes play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the weight distribution of CPOM transported in a mountain stream. This exponent is independent of discharge and valid for particle weights spanning almost seven orders of magnitude. Together with a rating curve of CPOM transport rates with discharge, we discuss the importance of the scaling exponent for measuring strategies, natural hazard mitigation and ecosystems.
Sub- and supercritical jet disintegration
NASA Astrophysics Data System (ADS)
DeSouza, Shaun; Segal, Corin
2017-04-01
Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.
Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states
NASA Astrophysics Data System (ADS)
de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.
2015-12-01
Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.
Analysis of Noise Mechanisms in Cell-Size Control.
Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai
2017-06-06
At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and heavy-tailed cell-size distributions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats
Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin
2014-01-01
Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs. PMID:25565843
NASA Astrophysics Data System (ADS)
Zhang, Yuzhou; Xu, Junbo; He, Xianfeng
2018-07-01
The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.
NASA Technical Reports Server (NTRS)
Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.;
2016-01-01
An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an improved correlation with the measured AOD during the DRAGON-NE Asia campaign. The correlation between the new AOD and AERONET value shows a regression slope of 1.00, while the comparison of the original AOD data retrieved using the original aerosol model shows a slope of 1.08. The change of y-offset is not significant, and the correlation coefficients for the comparisons of the original and new AOD are 0.87 and 0.85, respectively. The tendency of the original aerosol model to overestimate the retrieved AOD is significantly improved by using the SSA values in addition to size distribution and refractive index obtained using the new model.
The social architecture of capitalism
NASA Astrophysics Data System (ADS)
Wright, Ian
2005-02-01
A dynamic model of the social relations between workers and capitalists is introduced. The model self-organises into a dynamic equilibrium with statistical properties that are in close qualitative and in many cases quantitative agreement with a broad range of known empirical distributions of developed capitalism, including the power-law firm size distribution, the Laplace firm and GDP growth distribution, the lognormal firm demises distribution, the exponential recession duration distribution, the lognormal-Pareto income distribution, and the gamma-like firm rate-of-profit distribution. Normally these distributions are studied in isolation, but this model unifies and connects them within a single causal framework. The model also generates business cycle phenomena, including fluctuating wage and profit shares in national income about values consistent with empirical studies. The generation of an approximately lognormal-Pareto income distribution and an exponential-Pareto wealth distribution demonstrates that the power-law regime of the income distribution can be explained by an additive process on a power-law network that models the social relation between employers and employees organised in firms, rather than a multiplicative process that models returns to investment in financial markets. A testable consequence of the model is the conjecture that the rate-of-profit distribution is consistent with a parameter-mix of a ratio of normal variates with means and variances that depend on a firm size parameter that is distributed according to a power-law.
Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus
Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less
Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses
Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; ...
2016-10-07
Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less
Middleware for big data processing: test results
NASA Astrophysics Data System (ADS)
Gankevich, I.; Gaiduchok, V.; Korkhov, V.; Degtyarev, A.; Bogdanov, A.
2017-12-01
Dealing with large volumes of data is resource-consuming work which is more and more often delegated not only to a single computer but also to a whole distributed computing system at once. As the number of computers in a distributed system increases, the amount of effort put into effective management of the system grows. When the system reaches some critical size, much effort should be put into improving its fault tolerance. It is difficult to estimate when some particular distributed system needs such facilities for a given workload, so instead they should be implemented in a middleware which works efficiently with a distributed system of any size. It is also difficult to estimate whether a volume of data is large or not, so the middleware should also work with data of any volume. In other words, the purpose of the middleware is to provide facilities that adapt distributed computing system for a given workload. In this paper we introduce such middleware appliance. Tests show that this middleware is well-suited for typical HPC and big data workloads and its performance is comparable with well-known alternatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
2016-04-28
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Fuel-injector/air-swirl characterization
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.; Russell, S.
1988-01-01
Experimental data on the characteristics of the spray produced by a gas-turbine engine airblast fuel injector are reported. The data acquired include the mass-flux distribution measured by use of a high-resolution spray patternator; the gas-phase velocity field measured by use of a two-component laser Doppler velocimeter, and the liquid droplet size and velocity distributions measured by use of a single-component phase-Doppler anemometer. The data are intended for use in assessments of two-phase flow computational methods as applied to combustor design procedures.
NASA Astrophysics Data System (ADS)
Kondo, Daiyu; Sato, Shintaro; Awano, Yuji
2006-05-01
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.
NASA Astrophysics Data System (ADS)
Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.
2010-12-01
Aerosols play a significant role in regulating Earth’s climate. Absorbing aerosols typically constitute a small fraction of ambient particle mass but can contribute significantly to direct and indirect climate forcing depending on size, mixing state, concentration, chemical composition, and vertical and spatial distribution. Aerosols may also significantly affect tropical storm/hurricane dynamics through direct light absorption and activation as cloud nuclei. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 to characterize aerosol during the NASA GRIP (Genesis and Rapid Intensification Processes; August-September 2010) mission. The majority of flight time was spent at high altitude (greater than 9 km) and thus much of the sampling was done in the free troposphere, including extensive sampling in the vicinity of tropical storm systems and more diffuse cirrus clouds. With operations based in Fort Lauderdale, FL and St. Croix, U.S. Virgin Islands, a large geographic region was sampled including much of the Gulf of Mexico and tropical Atlantic Ocean. Observations are reported for light-absorbing carbon aerosol (mainly black carbon, BC) primarily using a single particle soot photometer (SP2). The SP2 employs single-particle laser-induced incandescence to provide a mass-specific measurement not subject to scattering interference that is optimal for the low concentration environments like those encountered during GRIP. BC mass concentrations, 100-500 nm size distributions, and mixing state (i.e. coating thickness of scattering material) are presented. Total and sub-micron aerosol absorption coefficients (principally from BC and dust aerosol) are reported using a particle soot absorption photometer (PSAP) along with comparisons with calculated absorption coefficients derived from SP2 observations in various conditions. In addition, dust aerosol is specifically identified using optical and aerodynamic size distributions obtained from an optical particle counter (OPC) and aerodynamic particle sizer (APS), respectively, as well as by filter-based analyses of chemical composition. BC and dust concentrations, size distribution, and optical properties are reported for clear-sky conditions and in the regions surrounding tropical storms to better understand the radial and vertical distribution of light-absorbing aerosol associated with hurricanes. Observations during GRIP are compared to an extensive characterization of the Saharan Air Layer (SAL) made during the 2006 NAMMA (NASA African Monsoon Multidisciplinary Analyses) mission to assess changes in concentration and aerosol size distribution during transport and cloud interaction.
NASA Technical Reports Server (NTRS)
Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.
2001-01-01
Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius. Finally, a method is devised to obtain the size of the distributed source during the cardiac cycle.
Universality in stochastic exponential growth.
Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R
2014-07-11
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Universality in Stochastic Exponential Growth
NASA Astrophysics Data System (ADS)
Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.
2014-07-01
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Aged boreal biomass-burning aerosol size distributions from BORTAS 2011
NASA Astrophysics Data System (ADS)
Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.
2015-02-01
Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the young-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in the plume dilution rates.
Optical Characterization of Single Plasmonic Nanoparticles
Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan
2015-01-01
This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351
Voronoi cell patterns: Theoretical model and applications
NASA Astrophysics Data System (ADS)
González, Diego Luis; Einstein, T. L.
2011-11-01
We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.
Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace
NASA Astrophysics Data System (ADS)
Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam
2015-02-01
As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2-12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10-420 nm were 10,000-40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1-10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.
Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera
NASA Astrophysics Data System (ADS)
Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.
2017-12-01
From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.
Zhou, Min; Dick, Jeffrey E; Bard, Allen J
2017-12-06
We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.
NASA Technical Reports Server (NTRS)
Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul
2016-01-01
Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.
NASA Astrophysics Data System (ADS)
Verma, Arjun; Privman, Vladimir
2018-02-01
We study approach to the large-time jammed state of the deposited particles in the model of random sequential adsorption. The convergence laws are usually derived from the argument of Pomeau which includes the assumption of the dominance, at large enough times, of small landing regions into each of which only a single particle can be deposited without overlapping earlier deposited particles and which, after a certain time are no longer created by depositions in larger gaps. The second assumption has been that the size distribution of gaps open for particle-center landing in this large-time small-gaps regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a recently introduced model of random sequential adsorption on patterned one-dimensional substrates that suggest that the second assumption must be generalized. We argue that a region exists in the parameter space of the studied model in which the gap-size distribution in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another region, the distribution develops a threshold property, i.e., there are no small gaps below a certain gap size. We discuss the implications of these findings for new asymptotic power-law and exponential-modified-by-a-power-law convergences to jamming in irreversible one-dimensional deposition.
Determining size-specific emission factors for environmental tobacco smoke particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.
Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less
Crystallography of rare galactic honeycomb structure near supernova 1987a
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
Transneptunians as probes of planet building: The Plutino size distribution
NASA Astrophysics Data System (ADS)
Alexandersen, M.; Gladman, B.; Kavelaars, J.; Petit, J.; Gwyn, S.
2014-07-01
Planetesimals that formed during planet formation are the building blocks of giant planet cores; some are preserved as large transneptunian objects (TNOs). Previous work has shown steep power-law size distributions for TNOs of diameters > 100 km. Recent results claim a dramatic roll-over or divot in the size distribution of Neptunian Trojans (1:1 resonance with Neptune) and scattering TNOs, with a significant lack of intermediate-size D < 100 km planetesimals [1,2,3]. One theoretical explanation for this is that planetesimals were born big, skipping the intermediate sizes, contrary to the expectation of bottom-up planetesimal formation. Exploration of the TNO size distribution requires more precisely calibrated detections in order to improve statistics on these results. We have searched a 32 sq.deg. area near RA=2 hr to an r-band limiting magnitude of m_r=24.6 using the Canada-France-Hawaii Telescope. This coverage was near the Neptunian L4 region to maximise our detection rate, as this is where Neptunian Trojans reside and where Plutinos (and several other resonant populations) come to perihelion. This program successfully detected and tracked 77 TNOs and Centaurs for up to 17 months, giving us both the high-quality orbits and the quantitative detection efficiency needed for precise modelling. Among our detections were one Uranian Trojan, two Neptunian Trojans, 18 Plutinos (3:2 resonance with Neptune) and other resonant objects. We test TNO size and orbital-distribution models using a survey simulator, which simulates the detectability of model objects, accounting for the survey biases. We show that the Plutino size distribution cannot continue as a rising power law past H_r˜8.3 (equivalent to ˜100 km). A single power law is found rejectable at 99.5 % confidence, and a knee (a broken power law to a softer slope) is also rejectable. A divot (sudden drop in number of objects at a transition size), with parameters found independently for scattering TNOs by Shankman et al. [2], provides an excellent match. Due to our study's high-quality detection efficiency and sensitivity to H magnitudes well past the transition, we will show that the Plutino population shares an abrupt deficit of TNOs with D slightly below about 100 km.
Stochastic theory of size exclusion chromatography by the characteristic function approach.
Dondi, Francesco; Cavazzini, Alberto; Remelli, Maurizio; Felinger, Attila; Martin, Michel
2002-01-18
A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamental role of the 'ergodic' hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models. Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.
Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David
2014-01-01
As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and may be impossible to collect at time intervals less than discharge-independent changes in suspended-sediment concentration can occur (< hours). Therefore, our physically based multi-frequency acoustic method shows promise as a cost-effective, valid approach for calculating suspended-sediment loads in river at a level of accuracy sufficient for many scientific and management purposes.
Michiels, Bart; Heyvaert, Mieke; Onghena, Patrick
2018-04-01
The conditional power (CP) of the randomization test (RT) was investigated in a simulation study in which three different single-case effect size (ES) measures were used as the test statistics: the mean difference (MD), the percentage of nonoverlapping data (PND), and the nonoverlap of all pairs (NAP). Furthermore, we studied the effect of the experimental design on the RT's CP for three different single-case designs with rapid treatment alternation: the completely randomized design (CRD), the randomized block design (RBD), and the restricted randomized alternation design (RRAD). As a third goal, we evaluated the CP of the RT for three types of simulated data: data generated from a standard normal distribution, data generated from a uniform distribution, and data generated from a first-order autoregressive Gaussian process. The results showed that the MD and NAP perform very similarly in terms of CP, whereas the PND performs substantially worse. Furthermore, the RRAD yielded marginally higher power in the RT, followed by the CRD and then the RBD. Finally, the power of the RT was almost unaffected by the type of the simulated data. On the basis of the results of the simulation study, we recommend at least 20 measurement occasions for single-case designs with a randomized treatment order that are to be evaluated with an RT using a 5% significance level. Furthermore, we do not recommend use of the PND, because of its low power in the RT.
Determination of the optimal sample size for a clinical trial accounting for the population size.
Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin
2017-07-01
The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-seas fish wars generate marine reserves
Herrera, Guillermo E.; Moeller, Holly V.
2016-01-01
The effective management of marine fisheries is an ongoing challenge at the intersection of biology, economics, and policy. One way in which fish stocks—and their habitats—can be protected is through the establishment of marine reserves, areas that are closed to fishing. Although the potential economic benefits of such reserves have been shown for single-owner fisheries, their implementation quickly becomes complicated when more than one noncooperating harvester is involved in fishery management, which is the case on the high seas. How do multiple self-interested actors distribute their fishing effort to maximize their individual economic gains in the presence of others? Here, we use a game theoretic model to compare the effort distributions of multiple noncooperating harvesters with the effort distributions in the benchmark sole owner and open access cases. In addition to comparing aggregate rent, stock size, and fishing effort, we focus on the occurrence, size, and location of marine reserves. We show that marine reserves are a component of many noncooperative Cournot–Nash equilibria. Furthermore, as the number of harvesters increases, (i) both total unfished area and the size of binding reserves (those that actually constrain behavior) may increase, although the latter eventually asymptotically decreases; (ii) total rents and stock size both decline; and (iii) aggregate effort used (i.e., employment) can either increase or decrease, perhaps nonmonotonically. PMID:26976560
NASA Astrophysics Data System (ADS)
Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.
2016-03-01
A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.
High-seas fish wars generate marine reserves.
Herrera, Guillermo E; Moeller, Holly V; Neubert, Michael G
2016-04-05
The effective management of marine fisheries is an ongoing challenge at the intersection of biology, economics, and policy. One way in which fish stocks-and their habitats-can be protected is through the establishment of marine reserves, areas that are closed to fishing. Although the potential economic benefits of such reserves have been shown for single-owner fisheries, their implementation quickly becomes complicated when more than one noncooperating harvester is involved in fishery management, which is the case on the high seas. How do multiple self-interested actors distribute their fishing effort to maximize their individual economic gains in the presence of others? Here, we use a game theoretic model to compare the effort distributions of multiple noncooperating harvesters with the effort distributions in the benchmark sole owner and open access cases. In addition to comparing aggregate rent, stock size, and fishing effort, we focus on the occurrence, size, and location of marine reserves. We show that marine reserves are a component of many noncooperative Cournot-Nash equilibria. Furthermore, as the number of harvesters increases, (i) both total unfished area and the size of binding reserves (those that actually constrain behavior) may increase, although the latter eventually asymptotically decreases; (ii) total rents and stock size both decline; and (iii) aggregate effort used (i.e., employment) can either increase or decrease, perhaps nonmonotonically.
NASA Astrophysics Data System (ADS)
van de Giesen, Nicolaas; Hut, Rolf; ten Veldhuis, Marie-claire
2017-04-01
If one can assume that drop size distributions can be effectively described by a generalized gamma function [1], one can estimate this function on the basis of the distribution of time intervals between drops hitting a certain area. The arrival of a single drop is relatively easy to measure with simple consumer devices such as cameras or piezoelectric elements. Here we present an open-hardware design for the electronics and statistical processing of an intervalometer that measures time intervals between drop arrivals. The specific hardware in this case is a piezoelectric element in an appropriate housing, combined with an instrumentation op-amp and an Arduino processor. Although it would not be too difficult to simply register the arrival times of all drops, it is more practical to only report the main statistics. For this purpose, all intervals below a certain threshold during a reporting interval are summed and counted. We also sum the scaled squares, cubes, and fourth powers of the intervals. On the basis of the first four moments, one can estimate the corresponding generalized gamma function and obtain some sense of the accuracy of the underlying assumptions. Special attention is needed to determine the lower threshold of the drop sizes that can be measured. This minimum size often varies over the area being monitored, such as is the case for piezoelectric elements. We describe a simple method to determine these (distributed) minimal drop sizes and present a bootstrap method to make the necessary corrections. Reference [1] Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.
Functional mapping of cell surface proteins with localized stimulation of single cells
NASA Astrophysics Data System (ADS)
Sun, Bingyun; Chiu, Daniel T.
2003-11-01
This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.
An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples
Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.
2015-01-01
Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069
Avogaro, Laura; Querido, Emmanuelle; Dalachi, Myriam; Jantsch, Michael F; Chartrand, Pascal; Cusanelli, Emilio
2018-04-16
Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.
2015-01-01
In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology. PMID:25093451
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
Dietary specialization is linked to reduced species durations in North American fossil canids
NASA Astrophysics Data System (ADS)
Balisi, Mairin; Casey, Corinna; Van Valkenburgh, Blaire
2018-04-01
How traits influence species persistence is a fundamental question in ecology, evolution and palaeontology. We test the relationship between dietary traits and both species duration and locality coverage over 40 million years in North American canids, a clade with considerable ecomorphological disparity and a dense fossil record. Because ecomorphological generalization-broad resource use-may enable species to withstand disturbance, we predicted that canids of average size and mesocarnivory would exhibit longer durations and wider distributions than specialized larger or smaller species. Second, because locality coverage might reflect dispersal ability and/or survivability in a range of habitats, we predicted that high coverage would correspond with longer durations. We find a nonlinear relationship between species duration and degree of carnivory: species at either end of the carnivory spectrum tend to have shorter durations than mesocarnivores. Locality coverage shows no relationship with size, diet or duration. To test whether generalization (medium size, mesocarnivory) corresponds to an adaptive optimum, we fit trait evolution models to previously generated canid phylogenies. Our analyses identify no single optimum in size or diet. Instead, the primary model of size evolution is a classic Cope's Rule increase over time, while dietary evolution does not conform to a single model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mllett, Paul; McDeavitt, Sean; Deo, Chaitanya
This proposal will investigate the stability of bimodal pore size distributions in metallic uranium and uranium-zirconium alloys during sintering and re-sintering annealing treatments. The project will utilize both computational and experimental approaches. The computational approach includes both Molecular Dynamics simulations to determine the self-diffusion coefficients in pure U and U-Zr alloys in single crystals, grain boundaries, and free surfaces, as well as calculations of grain boundary and free surface interfacial energies. Phase-field simulations using MOOSE will be conducted to study pore and grain structure evolution in microstructures with bimodal pore size distributions. Experiments will also be performed to validate themore » simulations, and measure the time-dependent densification of bimodal porous compacts.« less
NASA Astrophysics Data System (ADS)
Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas
2017-01-01
Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.
NASA Astrophysics Data System (ADS)
Alexandersen, Mike; Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Gwyn, Stephen D. J.; Shankman, Cory J.; Pike, Rosemary E.
2016-11-01
The trans-Neptunian objects (TNOs) preserve evidence of planet building processes in their orbital and size distributions. While all populations show steep size distributions for large objects, a relative deficit of Neptunian trojans and scattering objects with diameters of D < 100 km has been detected. We investigated this deficit with a 32 square degree survey, in which we detected 77 TNOs that are brighter than a limiting r-band magnitude of 24.6. Our plutino sample (18 objects in 3:2 mean-motion resonance with Neptune) shows a deficit of D < 100 km objects, rejecting a single power-law size distribution at >99% confidence. Combining our survey with the Canada-France Ecliptic Plane Survey, we perform a detailed analysis of the allowable parameters for the plutino size distribution, including knees and divots. We surmise the existence of 9000 ± 3000 plutinos with an absolute magnitude of H r ≤ 8.66 and {37000}-10000+12000 with H r ≤ 10.0 (95% confidence). Our survey also discovered one temporary Uranian trojan, one temporary Neptunian trojan, and one stable Neptunian trojan, for which we estimate populations of {110}-100+500, {210}-200+900, and {150}-140+600 with H r ≤ 10.0, respectively. All three populations are thus less numerous than the main belt asteroids (592 asteroids with H r ≤ 10.0). With such population sizes, the temporary Neptunian trojans cannot be previously stable trojans diffusing out of the resonance now; they must be recently captured Centaurs or scattering objects. As the bias against the detection of objects grows with larger semimajor axes, our discovery of three 3:1 resonators and one 4:1 resonator adds to the growing evidence that the high-order resonances are far more populated than is typically predicted.
Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations
Balao, Francisco; Casimiro-Soriguer, Ramón; Talavera, María; Herrera, Javier; Talavera, Salvador
2009-01-01
Background and Aims Studying the spatial distribution of cytotypes and genome size in plants can provide valuable information about the evolution of polyploid complexes. Here, the spatial distribution of cytological races and the amount of DNA in Dianthus broteri, an Iberian carnation with several ploidy levels, is investigated. Methods Sample chromosome counts and flow cytometry (using propidium iodide) were used to determine overall genome size (2C value) and ploidy level in 244 individuals of 25 populations. Both fresh and dried samples were investigated. Differences in 2C and 1Cx values among ploidy levels within biogeographical provinces were tested using ANOVA. Geographical correlations of genome size were also explored. Key Results Extensive variation in chromosomes numbers (2n = 2x = 30, 2n = 4x = 60, 2n = 6x = 90 and 2n = 12x =180) was detected, and the dodecaploid cytotype is reported for the first time in this genus. As regards cytotype distribution, six populations were diploid, 11 were tetraploid, three were hexaploid and five were dodecaploid. Except for one diploid population containing some triploid plants (2n = 45), the remaining populations showed a single cytotype. Diploids appeared in two disjunct areas (south-east and south-west), and so did tetraploids (although with a considerably wider geographic range). Dehydrated leaf samples provided reliable measurements of DNA content. Genome size varied significantly among some cytotypes, and also extensively within diploid (up to 1·17-fold) and tetraploid (1·22-fold) populations. Nevertheless, variations were not straightforwardly congruent with ecology and geographical distribution. Conclusions Dianthus broteri shows the highest diversity of cytotypes known to date in the genus Dianthus. Moreover, some cytotypes present remarkable internal genome size variation. The evolution of the complex is discussed in terms of autopolyploidy, with primary and secondary contact zones. PMID:19633312
Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles
Baek, Miri; Chung, Hae-Eun; Yu, Jin; Lee, Jung-A; Kim, Tae-Hyun; Oh, Jae-Min; Lee, Won-Jae; Paek, Seung-Min; Lee, Jong Kwon; Jeong, Jayoung; Choy, Jin-Ho; Choi, Soo-Jin
2012-01-01
Background This study explored the pharmacokinetics, tissue distribution, and excretion profile of zinc oxide (ZnO) nanoparticles with respect to their particle size in rats. Methods Two ZnO nanoparticles of different size (20 nm and 70 nm) were orally administered to male and female rats, respectively. The area under the plasma concentration-time curve, tissue distribution, excretion, and the fate of the nanoparticles in organs were analyzed. Results The plasma zinc concentration of both sizes of ZnO nanoparticles increased during the 24 hours after administration in a dose-dependent manner. They were mainly distributed to organs such as the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender. Elimination kinetics showed that a small amount of ZnO nanoparticles was excreted via the urine, while most of nanoparticles were excreted via the feces. Transmission electron microscopy and x-ray absorption spectroscopy studies in the tissues showed no noticeable ZnO nanoparticles, while new Zn-S bonds were observed in tissues. Conclusion ZnO nanoparticles of different size were not easily absorbed into the bloodstream via the gastrointestinal tract after a single oral dose. The liver, lung, and kidney could be possible target organs for accumulation and toxicity of ZnO nanoparticles was independent of particle size or gender. ZnO nanoparticles appear to be absorbed in the organs in an ionic form rather than in a particulate form due to newly formed Zn-S bonds. The nanoparticles were mainly excreted via the feces, and smaller particles were cleared more rapidly than the larger ones. ZnO nanoparticles at a concentration below 300 mg/kg were distributed in tissues and excreted within 24 hours. These findings provide crucial information on possible acute and chronic toxicity of ZnO nanoparticles in potential target organs. PMID:22811602
Particulate contamination spectrometer. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.
1975-01-01
A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.
Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.
Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K
2017-07-19
Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.
Impact erosion of terrestrial planetary atmospheres
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
1992-01-01
I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.
Impact erosion of terrestrial planetary atmospheres
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
1993-01-01
I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.
Growing stock levels in even-aged ponderosa pine
Clifford A. Myers
1967-01-01
Growth of the most widely distributed pine in North America is under joint study by the western Forest and Range Experiment Stations of the U. S. Forest Service. Young, even-aged ponderosa pine (Pinus ponderosa Laws.) stands are being examined over a wide range of tree sizes, stand densities, and site index. The single plan that co-...
Electroencephalogy (EEG) Feedback in Decision-Making
2015-08-26
19 Variability in individual subject BCI classification...approach traditionally used in single-trial BCI (Brain-Computer Interface) tasks suggested a similar effect-size and scalp distribution. However...situation. Although nearly all BCI paradigms have used a variant of the RSVP technique, there was no indication in the literature as to why this was
ERIC Educational Resources Information Center
Kim, Soyoung; Olejnik, Stephen
2005-01-01
The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…
Vogel, Michael W; Vegh, Viktor; Reutens, David C
2013-05-01
This paper investigates optimal placement of a localized single-axis magnetometer for ultralow field (ULF) relaxometry in view of various sample shapes and sizes. The authors used finite element method for the numerical analysis to determine the sample magnetic field environment and evaluate the optimal location of the single-axis magnetometer. Given the different samples, the authors analysed the magnetic field distribution around the sample and determined the optimal orientation and possible positions of the sensor to maximize signal strength, that is, the power of the free induction decay. The authors demonstrate that a glass vial with flat bottom and 10 ml volume is the best structure to achieve the highest signal out of samples studied. This paper demonstrates the importance of taking into account the combined effects of sensor configuration and sample parameters for signal generation prior to designing and constructing ULF systems with a single-axis magnetometer. Through numerical simulations the authors were able to optimize structural parameters, such as sample shape and size, sensor orientation and location, to maximize the measured signal in ultralow field relaxometry.
The availability and marginal costs of dependent employer-sponsored health insurance.
Miller, G Edward; Vistnes, Jessica; Buettgens, Matthew; Dubay, Lisa
2017-01-21
In this study, we examine differences by firm size in the availability of dependent coverage and the incremental cost of such coverage. We use data from the Medical Expenditure Panel Survey - Insurance Component (MEPS-IC) to show that among employees eligible for single coverage, dependent coverage was almost always available for employees in large firms (100 or more employees) but not in smaller firms, particularly those with fewer than 10 employees. In addition, when dependent coverage was available, eligible employees in smaller firms were more likely than employees in large firms to face two situations that represented the extremes of the incremental cost distribution: (1) they paid nothing for single or family coverage or (2) they paid nothing for single coverage but faced a high contribution for family coverage. These results suggest that firm size may be an important factor in policy assessments, such as analyses of the financial implications for families excluded from subsidized Marketplace coverage due to affordable offers of single coverage or of potential rollbacks to public coverage for children.
Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.
Heidenreich, Andreas; Jortner, Joshua
2011-02-21
We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.
In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10x10 and 40x40 cm{sup 2} field sizes. The BEAMnrc parameters/techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections,more » (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe-Heitler) was used as the ''base line'' for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were {approx}935 ({approx}111 min on a single 2.6 GHz processor) and {approx}200 ({approx}45 min on a single processor) for the 10x10 field size with 50 million histories and 40x40 cm{sup 2} field size with 100 million histories, respectively, using the VRT directional bremsstrahlung splitting (DBS) with no electron splitting. When DBS was used with electron splitting and combined with augmented charged particle range rejection, a technique recently introduced in BEAMnrc, relative efficiencies were {approx}420 ({approx}253 min on a single processor) and {approx}175 ({approx}58 min on a single processor) for the 10x10 and 40x40 cm{sup 2} field sizes, respectively. Calculations of the Siemens Primus treatment head with VMC++ produced relative efficiencies of {approx}1400 ({approx}6 min on a single processor) and {approx}60 ({approx}4 min on a single processor) for the 10x10 and 40x40 cm{sup 2} field sizes, respectively. BEAMnrc PHSP calculations with DBS alone or DBS in combination with charged particle range rejection were more efficient than the other efficiency enhancing techniques used. Using VMC++, accurate simulations of the entire linac treatment head were performed within minutes on a single processor. Noteworthy differences ({+-}1%-3%) in the mean energy, planar fluence, and angular and spectral distributions were observed with the NIST bremsstrahlung cross sections compared with those of Bethe-Heitler (BEAMnrc default bremsstrahlung cross section). However, MC calculated dose distributions in water phantoms (using combinations of VRTs/AEITs and cross-section data) agreed within 2% of measurements. Furthermore, MC calculated dose distributions in a simulated water/air/water phantom, using NIST cross sections, were within 2% agreement with the BEAMnrc Bethe-Heitler default case.« less
NASA Astrophysics Data System (ADS)
Moebius, F.; Or, D.
2012-12-01
Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.
Structural distributions from single-molecule measurements as a tool for molecular mechanics
Hanson, Jeffrey A.; Brokaw, Jason; Hayden, Carl C.; Chu, Jhih-Wei; Yang, Haw
2011-01-01
A mechanical view provides an attractive alternative for predicting the behavior of complex systems since it circumvents the resource-intensive requirements of atomistic models; however, it remains extremely challenging to characterize the mechanical responses of a system at the molecular level. Here, the structural distribution is proposed to be an effective means to extracting the molecular mechanical properties. End-to-end distance distributions for a series of short poly-L-proline peptides with the sequence PnCG3K-biotin (n = 8, 12, 15 and 24) were used to experimentally illustrate this new approach. High-resolution single-molecule Förster-type resonance energy transfer (FRET) experiments were carried out and the conformation-resolving power was characterized and discussed in the context of the conventional constant-time binning procedure for FRET data analysis. It was shown that the commonly adopted theoretical polymer models—including the worm-like chain, the freely jointed chain, and the self-avoiding chain—could not be distinguished by the averaged end-to-end distances, but could be ruled out using the molecular details gained by conformational distribution analysis because similar polymers of different sizes could respond to external forces differently. Specifically, by fitting the molecular conformational distribution to a semi-flexible polymer model, the effective persistence lengths for the series of short poly-L-proline peptides were found to be size-dependent with values of ~190 Å, ~67 Å, ~51 Å, and ~76 Å for n = 8, 12, 15, and 24, respectively. A comprehensive computational modeling was carried out to gain further insights for this surprising discovery. It was found that P8 exists as the extended all-trans isomaer whereas P12 and P15 predominantly contained one proline residue in the cis conformation. P24 exists as a mixture of one-cis (75%) and two-cis (25%) isomers where each isomer contributes to an experimentally resolvable conformational mode. This work demonstrates the resolving power of the distribution-based approach, and the capacity of integrating high-resolution single-molecule FRET experiments with molecular modeling to reveal detailed structural information about the conformation of molecules on the length scales relevant to the study of biological molecules. PMID:22661822
Lazzari, Maurizio; Bettini, Simone; Ciani, Franco; Franceschini, Valeria
2008-10-01
The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.
Park, Seongjin; Lansac, Yves; Jang, Yun Hee
2018-06-07
A polymeric network of 1-(4-tritylphenyl)urea (TPU) built via layer-by-layer cross-linking polymerization has been proposed to be an excellent mesh equipped with single-molecule-thick pores (i.e., cyclic poly-TPU rings), which can sieve glucose (∼0.7 nm) out of its mixture with urea for hemodialysis applications. Monte Carlo search for the lowest-energy conformation of various sizes of poly-TPU rings unravels the origin of narrow pore size distribution, which is around the sizes of dimer and trimer rings (0.3-0.8 nm). Flexible rings larger than the dimer and trimer rings, in particular tetramer rings, prefer a twisted conformation in the shape of the infinity symbol (∞, which looks like two dimer rings joined together) locked by a hydrogen bond between diphenylurea linker groups facing each other. Translocation energy profiles across these TPU rings reveal their urea-versus-glucose sieving mechanism: glucose is either too large (to enter dimers and twisted tetramers) or too perfectly fit (to exit trimers), leaving only a dimer-sized free space in the ring, whereas smaller-sized urea and water pass through these effective dimer-sized rings (bare dimers, twisted tetramers, and glucose-filled trimers) without encountering a substantial energy barrier or trap.
1989-06-01
coefficients vortex circulation, symbols used in vorticity plots representing circulation values derived from different vortex core models injection...derived from different vortex core models dimensionless core size parameter: t wice the a verage core radius divided by t h e i n jection hole...Wall Heating, xjd=109.2, m=0.5, Single Injection Hole Vortex w, Temp. Difference Range (.5- 2.5) degree s 91. Local Temperature Distribution
Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H
2013-06-21
Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation.
Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H
2013-01-01
Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of 5 lung cancer patients of varying tumor size (50.4–167.1cc) and motion amplitude (2.9–30.1mm). Treatments were planned assuming delivery in 35×2.5Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the 5 patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior (SI) motion amplitude alone. Larger spot sizes (σ ~9–16mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0±4.4% (1 standard deviation) in a single fraction compared to 86.1±13.1% for smaller spots (σ ~2–4mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation. PMID:23689035
Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity
NASA Astrophysics Data System (ADS)
Krebs, J.; Rao, S. I.; Verheyden, S.; Miko, C.; Goodall, R.; Curtin, W. A.; Mortensen, A.
2017-07-01
Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 μm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale.
Yoon, Se Jin; Noh, Si Cheol; Choi, Heung Ho
2007-01-01
The infrared diagnosis device provides two-dimensional images and patient-oriented results that can be easily understood by the inspection target by using infrared cameras; however, it has disadvantages such as large size, high price, and inconvenient maintenance. In this regard, this study has proposed small-sized diagnosis device for body heat using a single infrared sensor and implemented an infrared detection system using a single infrared sensor and an algorithm that represents thermography using the obtained data on the temperature of the point source. The developed systems had the temperature resolution of 0.1 degree and the reproducibility of +/-0.1 degree. The accuracy was 90.39% at the error bound of +/-0 degree and 99.98% at that of +/-0.1 degree. In order to evaluate the proposed algorithm and system, the infrared images of camera method was compared. The thermal images that have clinical meaning were obtained from a patient who has lesion to verify its clinical applicability.
Experiments on Spray from a Rolling Tire
NASA Astrophysics Data System (ADS)
Radovich, Charles; Browand, Fred
2010-11-01
A novel laboratory apparatus has been built to understand the mechanisms and statistics of droplet production for spray emerging from a rolling tire. Using high-speed imaging, water passing through a single circumferential groove was observed to leave the tire contact patch in the form of a liquid sheet of non-uniform thickness. The sheet breaks into droplets as a result of several, organized instabilities. Measurements for the breakup length of the liquid sheet showed a dependence on Weber number proportional to We-1/6, for Weber numbers of 2700, 10900 and 24400. A technique to identify and size water droplets was developed and the distribution of droplet sizes was determined as a function of Weber number. At We = 2700, droplet sizes between 80 and 9000μm were detected, with a mean diameter near 800μm. Both the range of droplet sizes and the mean diameter were found to decrease with increasing Weber number as (approximately) We-1/2. Correlation Image Velocimetry (CIV) was used to estimate the distribution of droplet velocities as a function of droplet size. The spread of droplet velocities about the tire peripheral speed is strongly correlated with droplet size. The spread can be estimated by a simple physical model incorporating rigid droplets subject to gravity and drag.
Schoville, Sean D; Graening, G O
2013-11-21
We provide an updated checklist and comprehensive distributional record of Grylloblatta (Grylloblattodea: Grylloblattidae) in North America. These distribution records are based upon a thorough review of the literature, as well as unpublished data of the authors and colleagues. Thirteen species of Grylloblatta are currently described, with up to 16 additional taxa awaiting formal description. Distributional data shows that endemism of Grylloblatta is high and geographic range size is typically small: the median geographical area of 13 species and six putative species is 179 km2. It is clear that there is a general lack of knowledge of species range limits and local population sizes; for example, three Grylloblatta species are known from just a single locality and less than 15 specimens each. Conservation status ranks are suggested in order to update the IUCN Red List and national Natural Heritage Network Database. Finally, we describe the natural history and seasonality of Grylloblatta, discuss their unique biogeography, and provide recommendations for future surveys of grylloblattid species by highlighting known distributional gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willitsford, Adam H.; Brown, David M.; Brown, Andrea M.
2014-08-28
Multi-wavelength laser transmittance was measured during a series of open-air propellant burn tests at Alliant Techsystems, Inc., in Elkton, MD, in May 2012. A Mie scattering model was combined with an alumina optical properties model in a simple single-scatter approach to fitting plume transmittance. Wavelength-dependent plume transmission curves were fit to the measured multi-wave- length transmittance data to infer plume particle size distributions at several heights in the plume. Tri-modal lognormal distributions described transmittance data well at all heights. Overall distributions included a mode with nanometer-scale diameter, a second mode at a diameter of ~0.5 µm, and a third, largermore » particle mode. Larger parti- cles measured 2.5 µm in diameter at 34 cm (14 in.) above the burning propellant surface, but grew to 4 µm in diameter at a height of 57 cm (22 in.), indicative of particle agglomeration in progress as the plume rises. This report presents data, analysis, and results from the study.« less
2011-01-01
Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509
Pore-scale modeling of saturated permeabilities in random sphere packings.
Pan, C; Hilpert, M; Miller, C T
2001-12-01
We use two pore-scale approaches, lattice-Boltzmann (LB) and pore-network modeling, to simulate single-phase flow in simulated sphere packings that vary in porosity and sphere-size distribution. For both modeling approaches, we determine the size of the representative elementary volume with respect to the permeability. Permeabilities obtained by LB modeling agree well with Rumpf and Gupte's experiments in sphere packings for small Reynolds numbers. The LB simulations agree well with the empirical Ergun equation for intermediate but not for small Reynolds numbers. We suggest a modified form of Ergun's equation to describe both low and intermediate Reynolds number flows. The pore-network simulations agree well with predictions from the effective-medium approximation but underestimate the permeability due to the simplified representation of the porous media. Based on LB simulations in packings with log-normal sphere-size distributions, we suggest a permeability relation with respect to the porosity, as well as the mean and standard deviation of the sphere diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges
2016-02-15
Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less
The effects of dispersal patterns on marine reserves: does the tail wag the dog?
Lockwood, Dale R; Hastings, Alan; Botsford, Louis W
2002-05-01
The concept of marine reserves as a method of improving management of fisheries is gaining momentum. While the list of benefits from reserves is frequently promoted, precise formulations of theory to support reserve design are not fully developed. To determine the size of reserves and the distances between reserves an understanding of the requirements for persistence of local populations is required. Unfortunately, conditions for persistence are poorly characterized, as are the larval dispersal patterns on which persistence depends. With the current paucity of information regarding meroplanktonic larval transport processes, understanding the robustness of theoretical results to larval dispersal is of key importance. From this formulation a broad range of dispersal patterns are analyzed. Larval dispersal is represented by a probability distribution that defines the fraction of successful settlers from an arbitrary location, the origin of the distribution, to any other location along the coast. While the effects of specific dispersal patterns have been investigated for invasion processes, critical habitat size and persistence issues have generally been addressed with only one or two dispersal types. To that end, we formulate models based on integrodifference equations that are spatially continuous and temporally discrete. We consider a range of dispersal distributions from leptokurtic to platykurtic. The effect of different dispersal patterns is considered for a single isolated reserve of varying size receiving no external larvae, as well as multiple reserves with varying degrees of connectivity. While different patterns result in quantitative differences in persistence, qualitatively similar effects across all patterns are seen in both single- and multiple reserve models. Persistence in an isolated reserve requires a size that is approximately twice the mean dispersal distance and regardless of the dispersal pattern the population in a patch is not persistent if the reserve size is reduced to just the mean dispersal distance. With an idealized coastline structure consisting of an infinite line of equally spaced reserves separated by regions of coastline in which reproduction is nil, the relative settlement as a function of the fraction of coastline and size of reserve is qualitatively very similar over a broad range of dispersal patterns. The upper limit for the minimum fraction of coastline held in reserve is about 40%. As the fraction of coastline is reduced, the minimum size of reserve becomes no more than 1.25 times the mean dispersal distance.
NASA Astrophysics Data System (ADS)
Chubar, O.; Couprie, M.-E.
2007-01-01
CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength — this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use.
Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation
NASA Technical Reports Server (NTRS)
Harris, F. S., Jr.; McCormick, M. P.
1973-01-01
Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.
NASA Astrophysics Data System (ADS)
Webler, G. D.; Rodrigues, W. C.; Silva, A. E. S.; Silva, A. O. S.; Fonseca, E. J. S.; Degenhardt, M. F. S.; Oliveira, C. L. P.; Otubo, L.; Barros Filho, D. A.
2018-04-01
Hydroxyapatite is one of the most important biomaterials whose application mainly extends to implants and drug delivery. This work will discuss the changes in the pore size distribution of hydroxyapatite when there are latex beads present during the synthesis. These changes were monitored using different techniques: small angle X-ray scattering, X-ray diffraction, thermal gravimetrical analysis, N2 adsorption, scanning and transmission electron microscopy. Latex beads and hydroxyapatite form a single nanocomposite with well-distinguished inorganic and organic phases. Latex bead removal in the temperature range of 300-600 °C did not modify the original crystalline structure of hydroxyapatite. However, the latex beads favored an increase in the adsorption capacity of mesopores at temperatures higher than their glassy transition (Tg). The main result of this research work consists on the increase of surface area and pore size distribution obtained after the removal of latex beads template. Latex beads have been used in a different approach changing the porosity of hydroxyapatite scaffolds not only introducing new routes for cell integration but also broadening the pore size distribution which can result in a more high efficiency for drug release in living cells.
A continuum theory of grain size evolution and damage
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.
2009-01-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energies (which controls damage). In the absence of deformation, only two mechanisms that increase the average grain size are allowed by the second law of thermodynamics. One mechanism, involving continuous diffusive mass transport from small to large grains, captures the essential components of normal grain growth theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of grains and is described using a Smoluchovski formalism. With the inclusion of deformational work and damage, the theory predicts two mechanisms for which the thermodynamic requirement of entropy positivity always forces large grains to shrink and small ones to grow. The first such damage-driven mechanism involving continuous mass transfer from large to small grains tends to homogenize the distribution of grain size toward its initial mean grain size. The second damage mechanism favors the creation of small grains by discontinuous division of larger grains and reduces the mean grain size with time. When considered separately, most of these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical moments such as the mean, variance, and skewness) can all be described by a single grain scale, such as the mean or maximum. However, the combination of mechanisms, e.g., one that captures the competition between continuous coarsening and mean grain size reduction by breakage, does not generally permit a self-similar solution for the grain size distribution, which contradicts the classic assumption that grain growth laws allowing for both coarsening and recrystallization can be treated with a single grain scale such as the mean size.
Progress in Application of Generalized Wigner Distribution to Growth and Other Problems
NASA Astrophysics Data System (ADS)
Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto; Gonzalez, Diego Luis
We recap the use of the (single-parameter) Generalized Wigner Distribution (GWD) to analyze capture-zone distributions associated with submonolayer epitaxial growth. We discuss recent applications to physical systems, as well as key simulations. We pay particular attention to how this method compares with other methods to assess the critical nucleus size characterizing growth. The following talk discusses a particular case when special insight is needed to reconcile the various methods. We discuss improvements that can be achieved by going to a 2-parameter fragmentation approach. At a much larger scale we have applied this approach to various distributions in socio-political phenomena (areas of secondary administrative units [e.g., counties] and distributions of subway stations). Work at UMD supported by NSF CHE 13-05892.
Life history correlates of adult size in the malaria vector Anopheles darlingi.
Lounibos, L P; Nishimura, N; Conn, J; Lourenço-de-Oliveira, R
1995-01-01
Adult dry weights of laboratory-reared Anopheles darlingi were highly correlated with wing lengths, which were used to estimate size variation in natural populations of this species. Significant differences in mean wing lengths of females trapped at baits were detected among collections in the same week at one site, but not between three sites in Brazil and Bolivia. Relatively higher variability of wing lengths, compared to collections of other Anopheles (Nyssorhynchus), and platykurtic size distributions in large, single-night collections suggested that An. darlingi females caught at baits emerged from heterogenous larval habitats. No relationship was detected between parous state and the body size of wild-caught females. Adult males and females of laboratory-reared An. darlingi did not differ in body size. This absence of sexual size dimorphism is rare among mosquitoes and has not been noted previously in the genus Anopheles.
Michaels, Chris A.; Cook, Robert F.
2016-01-01
Maps of residual stress distributions arising from anisotropic thermal expansion effects in a polycrystalline alumina are generated using fluorescence microscopy. The shifts of both the R1 and R2 ruby fluorescence lines of Cr in alumina are used to create maps with sub-µm resolution of either the local mean and shear stresses or local crystallographic a- and c-stresses in the material, with approximately ± 1 MPa stress resolution. The use of single crystal control materials and explicit correction for temperature and composition effects on line shifts enabled determination of the absolute values and distributions of values of stresses. Temperature correction is shown to be critical in absolute stress determination. Experimental determinations of average stress parameters in the mapped structure are consistent with assumed equilibrium conditions and with integrated large-area measurements. Average crystallographic stresses of order hundreds of MPa are determined with characteristic distribution widths of tens of MPa. The stress distributions reflect contributions from individual clusters of stress in the structure; the cluster size is somewhat larger than the grain size. An example application of the use of stress maps is shown in the calculation of stress-intensity factors for fracture in the residual stress field. PMID:27563163
NASA Astrophysics Data System (ADS)
Kydd, Jocelyn; Rajakaruna, Harshana; Briski, Elizabeta; Bailey, Sarah
2018-03-01
Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles that might be particularly useful if correction factors can be developed for known differences in well-studied aquatic ecosystems.
Light scattering by hexagonal ice crystals with distributed inclusions
NASA Astrophysics Data System (ADS)
Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin
2016-07-01
Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.
NASA Astrophysics Data System (ADS)
Reid, K.; Murphy, E. J.; Loeb, V.; Hewitt, R. P.
2002-07-01
Understanding the demographics of Antarctic krill over large scales may be complicated by regional differences in the processes that govern population structure. The influence of regional differences in growth and mortality on population size structure was examined using data on the length-frequency distribution of krill in the Scotia Sea using samples from the South Shetland Islands and South Georgia collected annually from 1991 to 2000. A correction function, which took account of the higher growth rate at South Georgia, produced a consistent similarity in the position of the modal size classes that was not present in the raw data. Optimising the mortality rate, to minimise the differences in the growth corrected length-frequency distribution, suggested a higher mortality rate at South Georgia that the South Shetlands. The intra-specific variations in growth and mortality rates are consistent with published values and with other Euphausiids species. Having accounted for the demographic plasticity, it is apparent that strong recruitment of the smallest size class of krill is represented in both populations simultaneously. It appears that first-year krill are advected into different regions of the Scotia Sea where the resultant population size structure is determined by regional differences in growth and mortality. The majority of the commercial harvest of krill in the Antarctic occurs in a relatively small number of regional fisheries within the Scotia Sea and is managed using population models based on a single set of demographic parameters. Where substantial differences in these parameters exist between fishing areas, the calculation of catch limits should take these differences into account.
Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation
2010-01-01
Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. Conclusion Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity. PMID:21126342
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.
1980-01-01
The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.
NASA Astrophysics Data System (ADS)
Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.
2011-05-01
Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.
The numerical simulation of flow field characteristics for single vortex column in different shapes
NASA Astrophysics Data System (ADS)
Shangchang, Yu; Hanxiao, Liu; Wenhua, Li; Ying, Guo
2017-11-01
The coagulation technology of turbulence can improve the PM2.5 removal efficiency of ESP effectively, which is a hot technology researched by the scholars and manufacture. The turbulence produced by vortex column is the main power supply in the turbulence coagulation device, the velocity distribution, turbulence intensity, turbulence viscosity and pressure loss of single vortex column in different shapes and sizes were calculated in this paper. The turbulence produced by angle-steel had a better velocity and character than cylindrical vortex, and if the size of angle-steel and cylindrical vortex was bigge, the turbulence effect of the flow field would become better, but the pressure loss of different shapes would increase. We need to ensure the turbulence effect as well as minimize unnecessary pressure loss in practical applications.
NASA Astrophysics Data System (ADS)
Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy
2018-03-01
Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.
Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size
Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.
2014-01-01
We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.
Volatile particles measured by vapor-particle separator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Meng -Dawn; Corporan, Edwin
Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less
Volatile particles measured by vapor-particle separator
Cheng, Meng -Dawn; Corporan, Edwin
2016-08-25
Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less
NASA Technical Reports Server (NTRS)
Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert
2016-01-01
In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.
Unveiling adaptation using high-resolution lineage tracking
NASA Astrophysics Data System (ADS)
Blundell, Jamie; Levy, Sasha; Fisher, Daniel; Petrov, Dmitri; Sherlock, Gavin
2013-03-01
Human diseases such as cancer and microbial infections are adaptive processes inside the human body with enormous population sizes: between 106 -1012 cells. In spite of this our understanding of adaptation in large populations is limited. The key problem is the difficulty in identifying anything more than a handful of rare, large-effect beneficial mutations. The development and use of molecular barcodes allows us to uniquely tag hundreds of thousands of cells and enable us to track tens of thousands of adaptive mutations in large yeast populations. We use this system to test some of the key theories on which our understanding of adaptation in large populations is based. We (i) measure the fitness distribution in an evolving population at different times, (ii) identify when an appreciable fraction of clones in the population have at most a single adaptive mutation and isolate a large number of clones with independent single adaptive mutations, and (iii) use this clone collection to determine the distribution of fitness effects of single beneficial mutations.
Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...
2016-06-10
Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension ( D max) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bulletmore » rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large D max, near-infrared single-scattering albedo and asymmetry parameter ( g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less
Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads
NASA Technical Reports Server (NTRS)
Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui
1997-01-01
Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.
Self-Gravitating Fundamental Strings and Black Holes
NASA Technical Reports Server (NTRS)
Damour, T.; Veneziano, G.
1999-01-01
The configuration of typically highly excited M much greater than M(sub s) which is approximately equal to alpha(prime) to the 1/2 power string states is considered as the string coupling g is adiabatically increased. The size distribution of very massive single string states is studied and the mass shift, due to a long-range gravitational, dilatonic, and axionic attraction, is estimated.
Process for making carbon foam
Klett, James W.
2000-01-01
The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Prechamber Compression-Ignition Engine Performance
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1938-01-01
Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.
Physicochemical properties of respirable-size lunar dust
NASA Astrophysics Data System (ADS)
McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.
2015-02-01
We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.
Spatially modulated structural colour in bird feathers.
Parnell, Andrew J; Washington, Adam L; Mykhaylyk, Oleksandr O; Hill, Christopher J; Bianco, Antonino; Burg, Stephanie L; Dennison, Andrew J C; Snape, Mary; Cadby, Ashley J; Smith, Andrew; Prevost, Sylvain; Whittaker, David M; Jones, Richard A L; Fairclough, J Patrick A; Parker, Andrew R
2015-12-21
Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.
Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2.
Wang, Yi; Zhang, Dun; Wang, Jin
2017-12-01
Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion were synthesized by direct coprecipitation at room temperature. They are shown to be viable peroxidase mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 . Kinetic analysis indicated typical Michaelis-Menten catalytic behavior. The findings were used to design a colorimetric assay for H 2 O 2 , best measured at 652 nm. The method has a linear response in the 60 to 200 μM H 2 O 2 concentration range, with a 2 μM detection limit. Benefitting from the chemical stability of the microrods, the method is well reproducible. It also is easily performed and highly specific. Graphic abstract Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion can efficiently catalyze the oxidation reaction of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue color change.
Spatially modulated structural colour in bird feathers
Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.
2015-01-01
Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. PMID:26686280
NASA Astrophysics Data System (ADS)
Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav
2018-04-01
Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (<0.17 μm) PM fractions were collected by high volume cascade impactor in Prague city center. Particles were examined using electron microscopy and their elemental composition was determined by energy dispersive X-ray spectroscopy. Larger or smaller particles, not corresponding to the impaction cut points, were found in all fractions, as they occur in agglomerates and are impacted according to their aerodynamic diameter. Elemental composition of particles in size-segregated fractions varied significantly. Ns-soot occurred in all size fractions. Metallic nanospheres were found in accumulation fractions, but not in ultrafine fraction where ns-soot, carbonaceous particles, and inorganic salts were identified. Dynamic light scattering was used to measure particle size distribution in water and in cell culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.
Safe leads and lead changes in competitive team sports.
Clauset, A; Kogan, M; Redner, S
2015-06-01
We investigate the time evolution of lead changes within individual games of competitive team sports. Exploiting ideas from the theory of random walks, the number of lead changes within a single game follows a Gaussian distribution. We show that the probability that the last lead change and the time of the largest lead size are governed by the same arcsine law, a bimodal distribution that diverges at the start and at the end of the game. We also determine the probability that a given lead is "safe" as a function of its size L and game time t. Our predictions generally agree with comprehensive data on more than 1.25 million scoring events in roughly 40,000 games across four professional or semiprofessional team sports, and are more accurate than popular heuristics currently used in sports analytics.
Safe leads and lead changes in competitive team sports
NASA Astrophysics Data System (ADS)
Clauset, A.; Kogan, M.; Redner, S.
2015-06-01
We investigate the time evolution of lead changes within individual games of competitive team sports. Exploiting ideas from the theory of random walks, the number of lead changes within a single game follows a Gaussian distribution. We show that the probability that the last lead change and the time of the largest lead size are governed by the same arcsine law, a bimodal distribution that diverges at the start and at the end of the game. We also determine the probability that a given lead is "safe" as a function of its size L and game time t . Our predictions generally agree with comprehensive data on more than 1.25 million scoring events in roughly 40 000 games across four professional or semiprofessional team sports, and are more accurate than popular heuristics currently used in sports analytics.
Compaction of Chromite Cumulates applying a Centrifuging Piston-Cylinder
NASA Astrophysics Data System (ADS)
Manoochehri, S.; Schmidt, M. W.
2012-12-01
Stratiform accumulations of chromite cumulates, such as the UG2 chromitite layer in the Bushveld Complex, is a common feature in most of the large layered mafic intrusions. The time scales and mechanics of gravitationally driven crystal settling and compaction and the feasibility of these processes for the formation of such cumulate layers is investigated through a series of high temperature (1280-1300 °C) centrifuge-assisted experiments at 100-2000 g, 0.4-0.6 GPa. A mixture of natural chromite, with defined grain sizes (means of 5 μm, 13 μm, and 52 μm), and a melt with a composition thought to represent the parental magma of the Bushveld Complex, was first chemically and texturally equilibrated at static conditions and then centrifuged. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. This layer was analysed for porosity, mean grain size, size distribution and also travelling distance of chromite crystals. The experimentally observed mechanical settling velocity of chromite grains in a suspension with ~ 24 vol% crystals is calculated to be about half (~ 0.53) of the Stokes settling velocity, consistent with a sedimentation exponent n of 2.35±0.3. The settling leads to a porosity of about 52 % in the chromite layer. Formation times of chromite orthocumulates with initial crystal content in the melt of 1 % and grain sizes of 2 mm are thus around 0.6 m/day. To achieve more compacted chromite piles, centrifugation times and acceleration were increased. Within each experiment the crystal content of the cumulate layer increases downward almost linearly at least in the lower 2/3 of the cumulate pile. Although porosity in the lowermost segment of the chromite layer decreases with increasing effective stress integrated over time, the absolute decrease is smaller than for experiments with olivine (from a previous study). Formation times of a ½ meter single chromite layer with 70 vol% chromite, is calculated to be around 20 years whereas this value is around 0.4 years for olivine cumulates. When considering a natural outcrop of a layered intrusion with multiple layers of about 50 meters height, adcumulate formation time decreases to a few months. With increasing the effective stress integrated over time, applied during centrifugation, crystal size distribution histograms move slightly toward larger grain sizes, but looking at mean grain sizes, a narrow range of changes can be observed. Classic crystal size distribution profiles corrected for real 3D sizes (CSDCorrectin program) of the chromite grains in different experiments illustrate a collection of parallel log-linear trends at larger grain sizes with a very slight overturn at small grain sizes. This is in close agreement with the idealized CSD plots of adcumulus growth.
Global Particle Size Distributions: Measurements during the Atmospheric Tomography (ATom) Project
NASA Astrophysics Data System (ADS)
Brock, C. A.; Williamson, C.; Kupc, A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Schuh, H.; Erdesz, F.
2016-12-01
The Atmospheric Tomography (ATom) project is a three-year NASA-sponsored program to map the spatial and temporal distribution of greenhouse gases, reactive species, and aerosol particles from the Arctic to the Antarctic. In situ measurements are being made on the NASA DC-8 research aircraft, which will make four global circumnavigations of the Earth over the mid-Pacific and mid-Atlantic Oceans while continuously profiling between 0.2 and 13 km altitude. In situ microphysical measurements will provide an unique and unprecedented dataset of aerosol particle size distributions between 0.004 and 50 µm diameter. This unbiased, representative dataset allows investigation of new particle formation in the remote troposphere, placing strong observational constraints on the chemical and physical mechanisms that govern particle formation and growth to cloud-active sizes. Particles from 0.004 to 0.055 µm are measured with 10 condensation particle counters. Particles with diameters from 0.06 to 1.0 µm are measured with one-second resolution using two ultra-high sensitivity aerosol size spectrometers (UHSASes). A laser aerosol spectrometer (LAS) measures particle size distributions between 0.12 and 10 µm in diameter. Finally, a cloud, aerosol and precipitation spectrometer (CAPS) underwing optical spectrometer probe sizes ambient particles with diameters from 0.5 to 50 µm and images and sizes precipitation-sized particles. Additional particle instruments on the payload include a high-resolution time-of-flight aerosol mass spectrometer and a single particle laser-ablation aerosol mass spectrometer. The instruments are calibrated in the laboratory and on the aircraft. Calibrations are checked in flight by introducing four sizes of polystyrene latex (PSL) microspheres into the sampling inlet. The CAPS probe is calibrated using PSL and glass microspheres that are aspirated into the sample volume. Comparisons between the instruments and checks with the calibration aerosol indicate flight performance within uncertainties expected from laboratory calibrations. Analysis of data from the first ATom circuit in August 2016 shows high concentrations of newly formed particles in the tropical middle and upper troposphere and Arctic lower troposphere.
Evolution of Particle Size Distributions in Fragmentation Over Time
NASA Astrophysics Data System (ADS)
Charalambous, C. A.; Pike, W. T.
2013-12-01
We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under grinding conditions, or as discrete steps, such as with impact events. In both cases our model gives the energy associated with the fragmentation in terms of the developing surface area of the population. We show the agreement of our model to the evolution of particle size distributions associated with episodic and continuous fragmentation and how the evolution of some popular fractals may be represented using this approach. C. A. Charalambous and W. T. Pike (2013). Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model. Abstract Submitted to the AGU 46th Fall Meeting. Bird, N. R. A., Watts, C. W., Tarquis, A. M., & Whitmore, A. P. (2009). Modeling dynamic fragmentation of soil. Vadose Zone Journal, 8(1), 197-201. Reid, K. J. (1965). A solution to the batch grinding equation. Chemical Engineering Science, 20(11), 953-963. Turcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research: Solid Earth 91(B2), 1921-1926.
NASA Astrophysics Data System (ADS)
Huang, D.; Liu, Y.
2014-12-01
The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.
LaRue, Bobby L; Sinha, Sudhir K; Montgomery, Anne H; Thompson, Robyn; Klaskala, Lauren; Ge, Jianye; King, Jonathan; Turnbough, Meredith; Budowle, Bruce
2012-01-01
Retrotransposable elements (REs), consisting of long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs), are a group of markers that can be useful for human identity testing. Until now, however, due to the inherent size difference (up to 6 kb in some instances) associated with insertion and null alleles (or INNULs), the use of REs for facilitated population studies has not been sought or practical. The size of the insertion elements (from a few hundred to several thousand bp) has proven to limit their utility as a marker because of the inefficient amplicon yield with PCR. A novel primer design now facilitates INNUL marker testing. A preliminary panel of single-locus markers was developed to evaluate the potential of typing these insertion elements. Nine INNULs (5 Alu and 4 LINEs) were typed in three major North American populations and analyzed for population genetic features. In addition, the variation of each marker among the sample populations provides insight of its potential use as individual identification or ancestral marker. INNUL markers were developed into fluorescently labeled single-loci PCR. Nine markers were developed with amplicons that were less than 180 bp in length, and, depending on the locus amplicons of the INNULs, alleles varied in size from 50 to 1 bp. This allele size is noteworthy because the insertion alleles of the 9 loci range in size from 297 to 6,195 bp. The allele distribution of the INNULs was assessed and analyzed in three major North American populations. Upon observation of the distribution of the alleles in three major North American populations, the markers generally met Hardy-Weinberg expectations, and there was little evidence of detectable levels of linkage disequilibrium. Due to varying distributions of the alleles in the major population groups tested, some of the markers might be better suited for use as an individual identification marker, while others are better suited for bio-ancestral studies. Using the primer design strategy described in our work, SINEs and (for the first time, to our knowledge) LINEs can be utilized as markers for studying population genetic variation that is more amenable to the limitations of the PCR technique. This study lays the foundation for future work of developing a multiplex panel of INNUL markers that can be used as a single-tube assay for human identity testing utilizing small amplicons (<180 bp), which could be useful for ancient or degraded forensic DNA samples. Copyright © 2012 S. Karger AG, Basel.
A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen
2010-01-01
As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.
The size distribution of Pacific Seamounts
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Jordan, Thomas H.
1987-11-01
An analysis of wide-beam, Sea Beam and map-count data in the eastern and southern Pacific confirms the hypothesis that the average number of "ordinary" seamounts with summit heights h ≥ H can be approximated by the exponential frequency-size distribution: v(H) = vo e-βH. The exponential model, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model. The exponential model provides a good first-order description of the summit-height distribution over a very broad spectrum of seamount sizes, from small cones (h < 300 m) to tall composite volcanoes (h > 3500 m). The distribution parameters obtained from 157,000 km of wide-beam profiles in the eastern and southern Pacific Ocean are vo = (5.4 ± 0.65) × 10-9m-2 and β = (3.5 ± 0.21) × 10-3 m-1, yielding an average of 5400 ± 650 seamounts per million square kilometers, of which 170 ± 17 are greater than one kilometer in height. The exponential distribution provides a reference for investigating the populations of not-so-ordinary seamounts, such as those on hotspot swells and near fracture zones, and seamounts in other ocean basins. If we assume that volcano height is determined by a hydraulic head proportional to the source depth of the magma column, then our observations imply an approximately exponential distribution of source depths. For reasonable values of magma and crustal densities, a volcano with the characteristic height β-1 = 285 m has an apparent source depth on the order of the crustal thickness.
Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric
2015-11-07
A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.
Scaling Theory of Polyelectrolyte Nanogels
NASA Astrophysics Data System (ADS)
Qu, Li-Jian
2017-08-01
The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014
Remote Sensing of Aerosol using MODIS, MODIS+CALIPSO and with the AEROSAT Concept
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.
2002-01-01
In the talk I shall review the MODIS use of spectral information to derive aerosol size distribution, optical thickness and reflected spectral flux. The accuracy and validation of the MODIS products will be discussed. A few applications will be shown: inversion of combined MODIS+lidar data, aerosol Anthropogenic direct forcing, and dust deposition in the Atlantic Ocean. I shall also discuss the aerosol information that MODIS is measuring: real ref index, single scattering albedo, size of fine and coarse modes, and describe the AEROSAT concept that uses bright desert and glint to derive aerosol absorption.
Crystal Growth of Undoped and Doped ZnSe
NASA Technical Reports Server (NTRS)
Davis, Swanson L.; Chen, K.-T.; George, M. A.; Shi, D. T.; Collins, W. E.; Burger, Arnold
1997-01-01
The surface morphology of freshly cleaved ZnSe single crystal grown by the physical vapor transport (PVT) method was investigated by Atomic Force Microscopy (AFM) and the results were correlated with Differential Scanning Calorimetry (DSC) data. Selenium precipitates have been revealed in undoped doped ZnSe crystals having a size of about 50 nm. A transition temperature around 221 C in the DSC measurements is interpreted as the eutectic temperature of Se-saturated ZnSe. The AFM images of doped ZnSe also show that possible Cr clusters are uniformly distributed and they have an estimated size of about 6 nm.
NASA Astrophysics Data System (ADS)
Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.
2016-12-01
On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.
Impact and Cratering History of the Pluto System
NASA Astrophysics Data System (ADS)
Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.
2014-11-01
The observational opportunity of the New Horizons spacecraft fly-through of the Pluto system in July 2015 requires a current understanding of the Kuiper belt dynamical sub-populations to accurately interpret the cratering history of the surfaces of Pluto and its satellites. We use an Opik-style collision probability code to compute impact rates and impact velocity distributions onto Pluto and its binary companion Charon from the Canada-France Ecliptic Plane Survey (CFEPS) model of classical and resonant Kuiper belt populations (Petit et al., 2011; Gladman et al., 2012) and the scattering model of Kaib et al. (2011) calibrated to Shankman et al. (2013). Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with diameter d>100 km) connects to smaller objects, we compute cratering rates using three simple impactor size distribution extrapolations (a single power-law, a power-law with a knee, and a power-law with a divot) as well as the "curvy" impactor size distributions from Minton et al. (2012) and Schlichting et al. (2013). Current size distribution uncertainties cause absolute ages computed for Pluto surfaces to be entirely dependent on the extrapolation to small sizes and thus uncertain to a factor of approximately 6. We illustrate the relative importance of each Kuiper belt sub-population to Pluto's cratering rate, both now and integrated into the past, and provide crater retention ages for several cases. We find there is only a small chance a crater with diameter D>200 km has been created on Pluto in the past 4 Gyr. The 2015 New Horizons fly-through coupled with telescope surveys that cover objects with diameters d=10-100 km should eventually drop current crater retention age uncertainties on Pluto to <30%. In addition, we compute the "disruption timescale" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra.
NASA Astrophysics Data System (ADS)
Rowland, David J.; Biteen, Julie S.
2017-04-01
Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.
Diffraction data of core-shell nanoparticles from an X-ray free electron laser
Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...
2017-04-11
X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less
Dietary specialization is linked to reduced species durations in North American fossil canids
Casey, Corinna; Van Valkenburgh, Blaire
2018-01-01
How traits influence species persistence is a fundamental question in ecology, evolution and palaeontology. We test the relationship between dietary traits and both species duration and locality coverage over 40 million years in North American canids, a clade with considerable ecomorphological disparity and a dense fossil record. Because ecomorphological generalization—broad resource use—may enable species to withstand disturbance, we predicted that canids of average size and mesocarnivory would exhibit longer durations and wider distributions than specialized larger or smaller species. Second, because locality coverage might reflect dispersal ability and/or survivability in a range of habitats, we predicted that high coverage would correspond with longer durations. We find a nonlinear relationship between species duration and degree of carnivory: species at either end of the carnivory spectrum tend to have shorter durations than mesocarnivores. Locality coverage shows no relationship with size, diet or duration. To test whether generalization (medium size, mesocarnivory) corresponds to an adaptive optimum, we fit trait evolution models to previously generated canid phylogenies. Our analyses identify no single optimum in size or diet. Instead, the primary model of size evolution is a classic Cope's Rule increase over time, while dietary evolution does not conform to a single model. PMID:29765649
Ice nucleation rates of single protein complexes and single macromolecules
NASA Astrophysics Data System (ADS)
Stratmann, F.; Wex, H.; Niedermeier, D.; Hartmann, S.; Augustin, S.; Clauss, T.; Voigtlaender, J.; Pummer, B.; Grothe, H.
2012-12-01
With our flow-tube LACIS (Leipzig Aerosol cloud Interaction Simulator), we measured immersion freezing of droplets containing biological ice nucleating (IN) agents. From our measurements, we were able to deduce ice nucleation rates for single IN protein complexes (for Snomax) and for IN macromolecules (in the case of Birch pollen). For the measurements, aerosol particles were produced from solutions/suspensions of either Snomax (deadened and partly fractionalized pseudomonas syringae bacteria) or of Birch pollen washing water (BW in the following). All particles were dried and size selected before entering LACIS. In LACIS, particles were activated to droplets, and we measured the fraction of all droplets that froze (F(ice)) as function of temperature. For Snomax, a strong increase in F(ice) was observed around -7 to -10°C, for BW around -19 to -25°C, respectively. After this initial steep increase, F(ice) stayed constant for both examined substances down to -35°C. We found that the values of F(ice) in the plateau region depended on the dry particle size. The initial solution used to generate the particles contained parts of bacteria with ice active protein complexes on them in the case of Snomax, or IN macromolecules in the case of BW (Pummer et al., 2011). We show that the distribution of the IN proteins or IN molecules in the aerosol particles follows the Poisson distribution. With this knowledge, derivation of the ice nucleation rates for single IN protein complexes or for single IN macromolecules is possible. Combining the Poisson distribution with a stochastic model and using the derived nucleation rates, we can reproduce not only our measurements for both examined substances, but also past measurements done for Snomax and even pseudomonas syringae bacteria. As an additional peculiarity, we seem to observe two different macromolecules being ice active for Birch trees growing in Central Europe or Northern Europe, with the latter initiating freezing at slightly warmer temperatures. Pummer, B. G. et al. (2012), Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Aerosol Chem. Phys., 12, 2541-2550.
Emergence of jams in the generalized totally asymmetric simple exclusion process
NASA Astrophysics Data System (ADS)
Derbyshev, A. E.; Povolotsky, A. M.; Priezzhev, V. B.
2015-02-01
The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014, 10.1088/1742-5468/2012/05/P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as an isolated particle. We are interested in the large time behavior of this process on a ring in the whole range of the parameter λ controlling the interaction. We study the stationary state correlations, the cluster size distribution, and the large-time fluctuations of integrated particle current. When λ is finite, we find the usual TASEP-like behavior: The correlation length is finite; there are only clusters of finite size in the stationary state and current fluctuations belong to the Kardar-Parisi-Zhang universality class. When λ grows with the system size, so does the correlation length. We find a nontrivial transition regime with clusters of all sizes on the lattice. We identify a crossover parameter and derive the large deviation function for particle current, which interpolates between the case considered by Derrida-Lebowitz and a single-particle diffusion.
Fine tuning of size and morphology of magnetite nanoparticles synthesized by microemulsion
NASA Astrophysics Data System (ADS)
Singh, Pinki; Upadhyay, Chandan
2018-05-01
The synthesis parameters crucially affect the physical and chemical parameters of nanoparticles. Magnetite (Fe3O4) nanoparticles were synthesized using microemulsion method. This method does not require high temperature synthesis, nitrogen environment and/or pH regulation during synthesis process. We are presenting here a systematic study on role of different associated parameters of microemulsion synthesis method on the formation of Fe3O4 nanoparticles. From X-ray Diffraction and Transmission Electron Micoscopy data analysis the size of synthesized particles were observed to be <10 nm. The critical concentration of ferrous-ferric solution to obtain particles in single phase has been found to be ≤0.09 M and ≤0.184 M, respectively. The variation of molar concentration (0.01 M ≤x≤ 0.1 M) of CTAB leads to formation of Fe3O4 nano-scale particles of distinct morphologies e.g. nano-cubes, pentagons and spheres. The number of ferrous and ferric ions involved in the formation decides the size of the nanoparticles. The single crystallographic phase is obtained in reaction temperature range of 65° C
NASA Technical Reports Server (NTRS)
Mcdonell, V. G.; Samuelsen, G. S.
1989-01-01
Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.
Size control of Au NPs supported by pH operation
NASA Astrophysics Data System (ADS)
Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi
2017-07-01
Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.
The missing impact craters on Venus
NASA Technical Reports Server (NTRS)
Speidel, D. H.
1993-01-01
The size-frequency pattern of the 842 impact craters on Venus measured to date can be well described (across four standard deviation units) as a single log normal distribution with a mean crater diameter of 14.5 km. This result was predicted in 1991 on examination of the initial Magellan analysis. If this observed distribution is close to the real distribution, the 'missing' 90 percent of the small craters and the 'anomalous' lack of surface splotches may thus be neither missing nor anomalous. I think that the missing craters and missing splotches can be satisfactorily explained by accepting that the observed distribution approximates the real one, that it is not craters that are missing but the impactors. What you see is what you got. The implication that Venus crossing impactors would have the same type of log normal distribution is consistent with recently described distribution for terrestrial craters and Earth crossing asteroids.
Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M
2010-03-08
The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.
NASA Technical Reports Server (NTRS)
Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.
2016-01-01
A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).
Passivity-Based Automated Design of Stable Multi-Feedback Distributed Power Delivery Systems
2017-03-01
thous ce the comple hapes are com e combined no ibiting a reduc rent loads wi o the size of The location o the center of t ber of the fin uced...Nu co ,736 318 578 776 ng scenario i y system. Th ted system i rent loads. I power supplie ocation of th fies the qualit the distribute tomated...ansient respon A to 788 mA oltages of, r lustrated in Fi b) igure 6. Expe single LDO re b) measured tr ased on thes arallel LDO oltage droop o
Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.
2011-01-01
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.
Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment
NASA Astrophysics Data System (ADS)
Lee, Youngdae; Park, Hong Soo; Kim, Sang Chul; Moon, Dae-Sik; Lee, Jae-Joon; Kim, Dong-Jin; Cha, Sang-Mok
2018-05-01
We investigate surface brightness profiles (SBPs) of dwarf galaxies in field, group, and cluster environments. With deep BV I images from the Korea Microlensing Telescope Network Supernova Program, SBPs of 38 dwarfs in the NGC 2784 group are fitted by a single-exponential or double-exponential model. We find that 53% of the dwarfs are fitted with single-exponential profiles (“Type I”), while 47% of the dwarfs show double-exponential profiles; 37% of all dwarfs have smaller sizes for the outer part than the inner part (“Type II”), while 10% have a larger outer than inner part (“Type III”). We compare these results with those in the field and in the Virgo cluster, where the SBP types of 102 field dwarfs are compiled from a previous study and the SBP types of 375 cluster dwarfs are measured using SDSS r-band images. As a result, the distributions of SBP types are different in the three environments. Common SBP types for the field, the NGC 2784 group, and the Virgo cluster are Type II, Type I and II, and Type I and III profiles, respectively. After comparing the sizes of dwarfs in different environments, we suggest that since the sizes of some dwarfs are changed due to environmental effects, SBP types are capable of being transformed and the distributions of SBP types in the three environments are different. We discuss possible environmental mechanisms for the transformation of SBP types. Based on data collected at KMTNet Telescopes and SDSS.
Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2018-06-07
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.
A microphysical parameterization of aqSOA and sulfate formation in clouds
NASA Astrophysics Data System (ADS)
McVay, Renee; Ervens, Barbara
2017-07-01
Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yao; Ma, Kai; Kao, Teresa
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
NASA Technical Reports Server (NTRS)
Hajela, P.; Chen, J. L.
1986-01-01
The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
Sun, Yao; Ma, Kai; Kao, Teresa; ...
2017-08-15
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
NASA Technical Reports Server (NTRS)
Mishchenko, Michael; Hansen, James E. (Technical Monitor)
2001-01-01
The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.
Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar
NASA Astrophysics Data System (ADS)
Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.
2017-12-01
Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(12), 5239-5251. Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G.: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements, J. Atmos. Sci., 59, 2373-2384, doi:10.1175/1520-0469(2002)0592.0.CO;2, 2002.
Development of an ejecta particle size measurement diagnostic based on Mie scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, Martin Michael; Buttler, William Tillman; Frayer, Daniel K.
The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived bymore » Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.« less
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
Behnke, Sabrina; Parker, Albert E; Woodall, Dawn; Camper, Anne K
2011-10-01
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.
NASA Astrophysics Data System (ADS)
Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss
2018-01-01
TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.
Fang, Xiuqi; Cheng, Xiaoqian; Zhang, Yuerou; Zhang, Lijie Grace; Keidar, Michael
2018-01-01
A novel highly controllable process of Carbon Encapsulated Magnetic Nanoparticles (CEMNs) synthesis in arc discharge plasma has been developed. In this work, both the size distribution and the purity of the CEMNs have been made more controllable by adding an external magnetic field. It is shown that with the increase of the external magnetic field, the CEMNs get a better separation from the carbon impurities and the size distribution become narrower. This conclusion is valid for Fe, Ni and Fe+Ni CEMNs synthesis. In order to assess biomedical potential of these CEMNs, the cytotoxicity has also been measured for the human breast adenocarcinoma cell line MDA-MB-231. It was concluded that the CEMNs with the concentration in cell of about 0.0001-0.01ug/ml are not toxic. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yue; Xu, Ke; Jiang, Weilin
Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less
Viscosity and transient electric birefringence study of clay colloidal aggregation.
Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot
2002-02-01
We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.
Colloidal heteroaggregation: a strategy to prepare composite materials
NASA Astrophysics Data System (ADS)
López-López, J. M.; Schmitt, A.; Moncho-Jordá, A.; Hidalgo-Álvarez, R.
2009-01-01
In this work, we make use of single-cluster light-scattering (SCLS) experiments and Brownian dynamics (BD) simulations in order to investigate the formation of binary clusters of oppositely-charged colloidal particles by heteroaggregation processes. Two parameters determinate the stability, size and structure of the clusters: the relative concentration of both species x and the range of the particle-particle interactions κa. SCLS experiments reveal that stable binary clusters arise in asymmetric systems when particle-particle interactions are long-ranged. These stable aggregates group in bell-shaped distributions that correspond to compact clusters with different orders, i.e., with a given number of minority particles. It is found that x controls the distribution of the clusters among the different orders and κa determine the average size of the clusters belonging to each order. Finally, BD simulations allow us to interpret all these results within the the frame of the classic Hogg-Healy-Fuersternau theory.
Cao, Yue; Xu, Ke; Jiang, Weilin; ...
2015-07-03
Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less
Microgels: Structure, Dynamics, and Possible Applications.
NASA Astrophysics Data System (ADS)
McKenna, John; Streletzky, Kiril
2007-03-01
We cross-linked Hydropxypropylcellulose (HPC) polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a transition to a fewer modes around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. Our experiments prove that microgel particles shrink under volume phase transition. The shrinkage is reversible and depends on the amount of cross-linker, salt and polymer concentrations and rate of heating. Reversibility of microgel volume phase transition property might be particularly useful for a controlled drug delivery and release.
Biomass burning dominates brown carbon absorption in the rural southeastern United States
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Guo, H.; Xu, L.; Weber, R. J.; Ng, N. L.; Allen, H. M.; Ayres, B. R.; Baumann, K.; Cohen, R. C.; Draper, D. C.; Duffey, K. C.; Edgerton, E.; Fry, J. L.; Hu, W. W.; Jimenez, J. L.; Palm, B. B.; Romer, P.; Stone, E. A.; Wooldridge, P. J.; Brown, S. S.
2015-01-01
carbon aerosol consists of light-absorbing organic particulate matter with wavelength-dependent absorption. Aerosol optical extinction, absorption, size distributions, and chemical composition were measured in rural Alabama during summer 2013. The field site was well located to examine sources of brown carbon aerosol, with influence by high biogenic organic aerosol concentrations, pollution from two nearby cities, and biomass burning aerosol. We report the optical closure between measured dry aerosol extinction at 365 nm and calculated extinction from composition and size distribution, showing agreement within experiment uncertainties. We find that aerosol optical extinction is dominated by scattering, with single-scattering albedo values of 0.94 ± 0.02. Black carbon aerosol accounts for 91 ± 9% of the total carbonaceous aerosol absorption at 365 nm, while organic aerosol accounts for 9 ± 9%. The majority of brown carbon aerosol mass is associated with biomass burning, with smaller contributions from biogenically derived secondary organic aerosol.
Growth Mechanism of Microbial Colonies
NASA Astrophysics Data System (ADS)
Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel
Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.
Accurate stratospheric particle size distributions from a flat plate collection surface
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Mackinnon, I. D. R.
1985-01-01
Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.
Reflectance of micron-sized dust particles retrieved with the Umov law
NASA Astrophysics Data System (ADS)
Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy
2017-03-01
The maximum positive polarization Pmax that initially unpolarized light acquires when scattered from a particulate surface inversely correlates with its geometric albedo A. In the literature, this phenomenon is known as the Umov law. We investigate the Umov law in application to single-scattering submicron and micron-sized agglomerated debris particles, model particles that have highly irregular morphology. We find that if the complex refractive index m is constrained to Re(m)=1.4-1.7 and Im(m)=0-0.15, model particles of a given size distribution have a linear inverse correlation between log(Pmax) and log(A). This correlation resembles what is measured in particulate surfaces, suggesting a similar mechanism governing the Umov law in both systems. We parameterize the dependence of log(A) on log(Pmax) of single-scattering particles and analyze the airborne polarimetric measurements of atmospheric aerosols reported by Dolgos & Martins in [1]. We conclude that Pmax ≈ 50% measured by Dolgos & Martins corresponds to very dark aerosols having geometric albedo A=0.019 ± 0.005.
Characterizing the size and shape of sea ice floes
Gherardi, Marco; Lagomarsino, Marco Cosentino
2015-01-01
Monitoring drift ice in the Arctic and Antarctic regions directly and by remote sensing is important for the study of climate, but a unified modeling framework is lacking. Hence, interpretation of the data, as well as the decision of what to measure, represent a challenge for different fields of science. To address this point, we analyzed, using statistical physics tools, satellite images of sea ice from four different locations in both the northern and southern hemispheres, and measured the size and the elongation of ice floes (floating pieces of ice). We find that (i) floe size follows a distribution that can be characterized with good approximation by a single length scale , which we discuss in the framework of stochastic fragmentation models, and (ii) the deviation of their shape from circularity is reproduced with remarkable precision by a geometric model of coalescence by freezing, based on random Voronoi tessellations, with a single free parameter expressing the shape disorder. Although the physical interpretations remain open, this advocates the parameters and as two independent indicators of the environment in the polar regions, which are easily accessible by remote sensing. PMID:26014797
Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas
2016-01-01
In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892
Nondestructive ultrasonic characterization of armor grade silicon carbide
NASA Astrophysics Data System (ADS)
Portune, Andrew Richard
Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy exhibited favorable agreement between predicted and observed distributions. Developed techniques were applied to large sample areas using scanning acoustic spectroscopy to map variations in the size distribution and concentration of grains and solid inclusions within the bulk microstructure. The experiments performed in this thesis form the foundation of a novel characterization technique capable of mapping variations in sample composition which could be extended to a wide range of dense polycrystalline heterogeneous materials.
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-02-01
Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
High throughput nonparametric probability density estimation
Farmer, Jenny
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Domenico, Giovanni, E-mail: didomenico@fe.infn.it; Cardarelli, Paolo; Taibi, Angelo
Purpose: The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiographmore » of a simple test object, acquired with a suitable magnification. Methods: The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. Results: In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. Conclusions: The method was proven to be effective for simulated images and the results of the experimental test suggest that it could be considered as an alternative technique for focal spot distribution evaluation. The method offers the possibility to measure the actual focal spot size and emission distribution at the same exposure conditions as clinical routine, avoiding high tube loading as in the case of the pin-hole imaging technique.« less
Di Domenico, Giovanni; Cardarelli, Paolo; Contillo, Adriano; Taibi, Angelo; Gambaccini, Mauro
2016-01-01
The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. The method was proven to be effective for simulated images and the results of the experimental test suggest that it could be considered as an alternative technique for focal spot distribution evaluation. The method offers the possibility to measure the actual focal spot size and emission distribution at the same exposure conditions as clinical routine, avoiding high tube loading as in the case of the pin-hole imaging technique.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
2017-07-01
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.
Collapse dynamics of ultrasound contrast agent microbubbles
NASA Astrophysics Data System (ADS)
King, Daniel Alan
Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.
Species survival and scaling laws in hostile and disordered environments
NASA Astrophysics Data System (ADS)
Rocha, Rodrigo P.; Figueiredo, Wagner; Suweis, Samir; Maritan, Amos
2016-10-01
In this work we study the likelihood of survival of single-species in the context of hostile and disordered environments. Population dynamics in this environment, as modeled by the Fisher equation, is characterized by negative average growth rate, except in some random spatially distributed patches that may support life. In particular, we are interested in the phase diagram of the survival probability and in the critical size problem, i.e., the minimum patch size required for surviving in the long-time dynamics. We propose a measure for the critical patch size as being proportional to the participation ratio of the eigenvector corresponding to the largest eigenvalue of the linearized Fisher dynamics. We obtain the (extinction-survival) phase diagram and the probability distribution function (PDF) of the critical patch sizes for two topologies, namely, the one-dimensional system and the fractal Peano basin. We show that both topologies share the same qualitative features, but the fractal topology requires higher spatial fluctuations to guarantee species survival. We perform a finite-size scaling and we obtain the associated scaling exponents. In addition, we show that the PDF of the critical patch sizes has an universal shape for the 1D case in terms of the model parameters (diffusion, growth rate, etc.). In contrast, the diffusion coefficient has a drastic effect on the PDF of the critical patch sizes of the fractal Peano basin, and it does not obey the same scaling law of the 1D case.
Life history, diversity and distribution: A study of Japanese pteridophytes
Guo, Q.; Kato, Masako; Ricklefs, R.E.
2003-01-01
Many studies address the relationships between diversity or distribution and attributes of the physical environment. However, how these relationships are connected to variation in life history is poorly understood. This is particularly true in the case of pteridophytes. Japanese ferns and their allies comprise one of the best-known pteridophyte floras in the world. We analyzed ca 600 species of Japanese pteridophytes for which there is detailed information on distribution, reproduction, and chromosome number. Species richness was greatest in groups with a single reproductive mode (sexual, followed by apogamous), but distribution was greatest in species groups with multiple reproductive modes: sexual plus either sterile (irregular in meiosis) or apogamous. Geographical ranges varied greatly among species with small chromosome numbers but were uniformly small among species having high chromosome numbers. Seasonally green (mostly summer green) species had significantly larger distribution ranges than evergreen species. Endemic species had higher proportions of apogamy and sterility than non-endemic species. Seasonally green species had significantly larger distributional ranges, and a smaller proportion of species with apogamous reproduction, than evergreen species. There was no clear relationship between distribution and spore size, either among endemic species, non-endemic species, or all species combined. There was no relationship between spore size and chromosome number when all species were combined. However, positive relationships were detected within three of the nine largest genera, suggesting potential phylogenetic effects. We concluded that habitat availability, rather than dispersability, may be the limiting factor for the distribution of pteridophytes in Japan.
Life history, diversity and distribution: a study of Japanese pteridophytes
Guo, Q.; Kato, Masako; Ricklefs, R.E.
2003-01-01
Many studies address the relationships between diversity or distribution and attributes of the physical environment. However, how these relationships are connected to variation in life history is poorly understood. This is particularly true in the case of pteridophytes. Japanese ferns and their allies comprise one of the best-known pteridophyte floras in the world. We analyzed ca 600 species of Japanese pteridophytes for which there is detailed information on distribution, reproduction, and chromosome number. Species richness was greatest in groups with a single reproductive mode (sexual, followed by apogamous), but distribution was greatest in species groups with multiple reproductive modes: sexual plus either sterile (irregular in meiosis) or apogamous. Geographical ranges varied greatly among species with small chromosome numbers but were uniformly small among species having high chromosome numbers. Seasonally green (mostly summer green) species had significantly larger distribution ranges than evergreen species. Endemic species had higher proportions of apogamy and sterility than non-endemic species. Seasonally green species had significantly larger distributional ranges, and a smaller proportion of species with apogamous reproduction, than evergreen species. There was no clear relationship between distribution and spore size, either among endemic species, non-endemic species, or all species combined. There was no relationship between spore size and chromosome number when all species were combined. However, positive relationships were detected within three of the nine largest genera, suggesting potential phylogenetic effects. We concluded that habitat availability, rather than dispersability, may be the limiting factor for the distribution of pteridophytes in Japan.
[Experimental study on characteristics of biodiesel exhausted particle].
Ge, Yun-shan; He, Chao; Han, Xiu-kun; Wu, Si-jin; Lu, Xiao-ming
2007-07-01
A particle emission experiment of a direct-injection turbocharged diesel engine with biodiesel and diesel was carried out. A pump of 80 L/min and fiber glass filters with diameter of 90 mm was used to sample engine particles in exhaust pipe. The size distribution, soluble organic fraction (SOF) and 16 polycyclic aromatic hydrocarbons (PAHs) of particles were analyzed by a laser diffraction particle size analyzer and GC-MS. The results indicate that the volume weighted size distribution of biodiesel particle is single-peak and its median diameter d(0.5) and mean diameter d32 are decreased with the increasing speed. At the high speed the d32 and d(0.5) of biodiesel are larger than those of diesel, and quite the contrary at the low speed. SOF mass concentration and mass percentage of biodiesel are 12.3 - 31.5 mg/m3 and 38.2% - 58.0% respectively, which are much higher than those of diesel. The total PAHs emission concentration of biodiesel is 2.9 - 4.7 microg/m3 lower than that of diesel as much as 29.1% - 92.4%.
Jia, Xuewei; Liu, Qingye; Zou, Siwei; Xu, Xiaojuan; Zhang, Lina
2015-03-06
We report on a green procedure for the stabilization of selenium nanoparticles (SeNPs) by a naturally occurring β-glucan with triple helical conformation known as Lentinan (t-LNT) in water after denaturing into single chains (s-LNT) at 140 °C. The results demonstrated that the s-LNT can interact with SeNPs through Se-O-H interaction. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectra, UV/vis, X-ray diffraction (XRD) and dynamic light scattering (DLS) showed that s-LNT coated SeNPs to form a stable nano-composite Se/s-LNT, leading to good dispersion of SeNPs. Especially, the as-prepared Se/s-LNT composite in the solution could remain homogeneous and translucent for 30 days without any precipitates. Different size distribution of SeNPs was prepared by simply controlling the concentrations of selenite sodium and the corresponding reducing agent ascorbic acid. The size effect of SeNPs on anti-tumor activity was revealed that the SeNPs with more evenly particle size distribution show the higher anticancer activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermocapillary flow contribution to dropwise condensation heat transfer
NASA Astrophysics Data System (ADS)
Phadnis, Akshay; Rykaczewski, Konrad
2017-11-01
With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.
Evaluations of the Method to Measure Black Carbon Particles Suspended in Rainwater and Snow Samples
NASA Astrophysics Data System (ADS)
Ohata, S.; Moteki, N.; Schwarz, J. P.; Fahey, D. W.; Kondo, Y.
2012-12-01
The mass concentrations and size distributions of black carbon (BC) particles in rainwater and snow are important parameters for improved understanding of the wet deposition of BC, is a key process in quantifying the impacts of BC on climate. In this study, we have evaluated a new method to measure these parameters. The approach consists of an ultrasonic nebulizer (USN) used in conjunction with a Single Particle Soot Photometer (SP2). The USN converts sample water into micron-size droplets at a constant rate and then extracts airborne BC particles by dehydrating the water droplets. The mass of individual BC particles is measured by the SP2, based on the laser-induced incandescence technique. The combination of the USN and SP2 enabled the measurement of BC particles using only small amount of sample water, typically 10 ml (Ohata et al., 2011). However, the loss of BC during the extraction process depends on their size. We determined the size-dependent extraction efficiency using polystyrene latex spheres (PSLs) with twelve different diameters between 100-1050 nm. The PSL concentrations in water were determined by the light extinction of at 532nm. The extraction efficiency of the USN showed broad maximum in the diameter range of 200-500nm, and decreased substantially at larger sizes. The extraction efficiency determined using the PSL standards agreed to within ±40% with that determined using laboratory-generated BC concentration standards. We applied this method to the analysis of rainwater collected in Tokyo and Okinawa over the East China Sea. Measured BC size distributions in all rainwater samples showed negligible contribution of the BC particles larger than 600nm to the total BC amounts. However, for BC particles in surface snow collected in Greenland and Antarctica, size distributions were sometimes shifted to much larger size ranges.
Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Grunewald, E.; Knight, R.
2008-12-01
The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.
Effect of Surface Pressure Integration Methodology on Launch Vehicle Buffet Forcing Functions
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.
2016-01-01
The 2014 test of the Space Launch System (SLS) Rigid Buffet Model conducted at the NASA Langley Transonic Dynamics Tunnel employed an extremely high number of unsteady pressure transducers. The high channel count provided an opportunity to examine the effect of transducer placement on the resulting buffet forcing functions (BFFs). Rings of transducers on the forward half of the model were employed to simulate a single-body vehicle. The impact of transducer density, circumferential distribution, and loss of a single transducer on the resulting BFFs were examined. Rings of transducers on the aft half of the SLS model were employed to examine the effect of transducer density and circumferential distribution on BFFs for a multi-body configuration. Transducer placement considerations with respect to model size, facility infrastructure, and data acquisition system capabilities, which affect the integration process, are also discussed.
Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2015-05-01
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
Bankruptcy risk model and empirical tests
Podobnik, Boris; Horvatic, Davor; Petersen, Alexander M.; Urošević, Branko; Stanley, H. Eugene
2010-01-01
We analyze the size dependence and temporal stability of firm bankruptcy risk in the US economy by applying Zipf scaling techniques. We focus on a single risk factor—the debt-to-asset ratio R—in order to study the stability of the Zipf distribution of R over time. We find that the Zipf exponent increases during market crashes, implying that firms go bankrupt with larger values of R. Based on the Zipf analysis, we employ Bayes’s theorem and relate the conditional probability that a bankrupt firm has a ratio R with the conditional probability of bankruptcy for a firm with a given R value. For 2,737 bankrupt firms, we demonstrate size dependence in assets change during the bankruptcy proceedings. Prepetition firm assets and petition firm assets follow Zipf distributions but with different exponents, meaning that firms with smaller assets adjust their assets more than firms with larger assets during the bankruptcy process. We compare bankrupt firms with nonbankrupt firms by analyzing the assets and liabilities of two large subsets of the US economy: 2,545 Nasdaq members and 1,680 New York Stock Exchange (NYSE) members. We find that both assets and liabilities follow a Pareto distribution. The finding is not a trivial consequence of the Zipf scaling relationship of firm size quantified by employees—although the market capitalization of Nasdaq stocks follows a Pareto distribution, the same distribution does not describe NYSE stocks. We propose a coupled Simon model that simultaneously evolves both assets and debt with the possibility of bankruptcy, and we also consider the possibility of firm mergers. PMID:20937903
Su, Hongsheng
2017-12-18
Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.
Wang, C; Ke, S Y; Yang, J; Hu, W D; Qiu, F; Wang, R F; Yang, Y
2015-03-13
The dependence of the electronic properties of a single Ge/Si quantum dot (QD) grown by the ion-beam sputtering deposition technique on growth temperature and QD diameter is investigated by conductive atomic force microscopy (CAFM). The Si-Ge intermixing effect is demonstrated to be important for the current distribution of single QDs. The current staircase induced by the Coulomb blockade effect is observed at higher growth temperatures (>700 °C) due to the formation of an additional barrier between dislocated QDs and Si substrate for the resonant tunneling of holes. According to the proposed single-hole-tunneling model, the fact that the intermixing effect is observed to increase as the incoherent QD size decreases may explain the increase in the starting voltage of the current staircase and the decrease in the current step width.
NASA Astrophysics Data System (ADS)
Gupta, P.; Williams, G. V. M.; Hübner, R.; Vajandar, S.; Osipowicz, T.; Heinig, K.-H.; Becker, H.-W.; Markwitz, A.
2017-04-01
Mono-energetic cobalt implantation into hydrogenated diamond-like carbon at room temperature results in a bimodal distribution of implanted atoms without any thermal treatment. The ˜100 nm thin films were synthesised by mass selective ion beam deposition. The films were implanted with cobalt at an energy of 30 keV and an ion current density of ˜5 μA cm-2. Simulations suggest the implantation profile to be single Gaussian with a projected range of ˜37 nm. High resolution Rutherford backscattering measurements reveal that a bimodal distribution evolves from a single near-Gaussian distribution as the fluence increases from 1.2 to 7 × 1016 cm-2. Cross-sectional transmission electron microscopy further reveals that the implanted atoms cluster into nanoparticles. At high implantation doses, the nanoparticles assemble primarily in two bands: one near the surface with nanoparticle diameters of up to 5 nm and the other beyond the projected range with ˜2 nm nanoparticles. The bimodal distribution along with the nanoparticle formation is explained with diffusion enhanced by energy deposited during collision cascades, relaxation of thermal spikes, and defects formed during ion implantation. This unique distribution of magnetic nanoparticles with the bimodal size and range is of significant interest to magnetic semiconductor and sensor applications.
Effect of stochastic grain heating on cold dense clouds chemistry
NASA Astrophysics Data System (ADS)
Chen, Long-Fei; Chang, Qiang; Xi, Hong-Wei
2018-06-01
The temperatures of dust grains play important roles in the chemical evolution of molecular clouds. Unlike large grains, the temperature fluctuations of small grains induced by photons may be significant. Therefore, if the grain size distribution is included in astrochemical models, the temperatures of small dust grains may not be assumed to be constant. We simulate a full gas-grain reaction network with a set of dust grain radii using the classical MRN grain size distribution and include the temperature fluctuations of small dust grains. Monte Carlo method is used to simulate the real-time dust grain's temperature fluctuations which is caused by the external low energy photons and the internal cosmic ray induced secondary photons. The increase of dust grains radii as ice mantles accumulate on grain surfaces is also included in our models. We found that surface CO2 abundances in models with grain size distribution and temperature fluctuations are more than one order of magnitude larger than those with single grain size. Small amounts of terrestrial complex organic molecules (COMs) can also be formed on small grains due to the temperature spikes induced by external low energy photons. However, cosmic ray induced secondary photons overheat small grains so that surface CO sublime and less radicals are formed on grains surfaces, thus the production of surface CO2 and COMs decreases by about one order of magnitude. The overheating of small grains can be offset by grain growth so that the formation of surface CO2 and COMs becomes more efficient.
The kilometer-sized Main Belt asteroid population revealed by Spitzer
NASA Astrophysics Data System (ADS)
Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.
2015-06-01
Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42
Statistical tests and identifiability conditions for pooling and analyzing multisite datasets
Zhou, Hao Henry; Singh, Vikas; Johnson, Sterling C.; Wahba, Grace
2018-01-01
When sample sizes are small, the ability to identify weak (but scientifically interesting) associations between a set of predictors and a response may be enhanced by pooling existing datasets. However, variations in acquisition methods and the distribution of participants or observations between datasets, especially due to the distributional shifts in some predictors, may obfuscate real effects when datasets are combined. We present a rigorous statistical treatment of this problem and identify conditions where we can correct the distributional shift. We also provide an algorithm for the situation where the correction is identifiable. We analyze various properties of the framework for testing model fit, constructing confidence intervals, and evaluating consistency characteristics. Our technical development is motivated by Alzheimer’s disease (AD) studies, and we present empirical results showing that our framework enables harmonizing of protein biomarkers, even when the assays across sites differ. Our contribution may, in part, mitigate a bottleneck that researchers face in clinical research when pooling smaller sized datasets and may offer benefits when the subjects of interest are difficult to recruit or when resources prohibit large single-site studies. PMID:29386387
Scalable Technology for a New Generation of Collaborative Applications
2007-04-01
of the International Symposium on Distributed Computing (DISC), Cracow, Poland, September 2005. Classic Paxos vs. Fast Paxos: Caveat Emptor, Flavio...grou or able and fast multicast primitive to layer under high-level latency across dimensions as varied as group size [10, 17],abstractions such as...servers, networked via fast , dedicated interconnects. The system to subscribe to a fraction of the equities on the software stack running on a single
Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.
1982-12-01
systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that
Smooth DNA transport through a narrowed pore geometry.
Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Wanunu, Meni
2014-11-18
Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35-20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics.
A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.
Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E
2015-01-01
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.
A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size
Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.
2015-01-01
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745
ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.
About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to bemore » in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.« less
NASA Astrophysics Data System (ADS)
Clancy, R. Todd; Wolff, Michael J.; Christensen, Philip R.
2003-09-01
Emission phase function (EPF) observations taken in 1999-2001 by Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) support the broadest study of Martian aerosol properties to date. TES solar band and infrared (IR) spectral EPF sequences are analyzed to obtain first-time seasonal/latitudinal distributions of visible optical depths, particle sizes, and single scattering phase functions. This combined angular and wavelength coverage enables identification of two distinct ice cloud types over 45°S-45°N. Type 1 ice clouds exhibit small particle sizes (reff = 1-2 μm) and a distinctive backscattering increase. They are most prevalent in the southern hemisphere during aphelion, but also appear more widely distributed in season and latitude as topographic and high-altitude (>=20 km) ice hazes. Type 2 ice clouds exhibit larger particle sizes (reff = 3-4 μm), a distinct side-scattering minimum at 90-100° phase angles (characteristic of a change in particle shape relative to the type 1), and appear most prominently in the northern subtropical aphelion cloud belt. The majority of retrieved dust visible-to-IR optical depth ratios are indicative of reff = 1.5 +/- 0.1 μm, consistent with Pathfinder and Viking/Mariner 9 reanalyses. However, increased ratios (2.7 versus 1.7) appear frequently in the northern hemisphere over LS = 50-200°, indicating substantially smaller dust particles sizes (reff = 1.0 +/- 0.2 μm) at this time. In addition, larger (reff = 1.8-2.5 μm) dust particles were observed locally in the southern hemisphere during the peak of the 2001 global dust storm. Detailed spectral modeling of the TES visible band pass indicates agreement of EPF-derived dust single scattering albedos (0.92-0.94) with the spectrally resolved results from Pathfinder observations.
NASA Astrophysics Data System (ADS)
Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin
2017-06-01
Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.
NASA Technical Reports Server (NTRS)
Heinrich, J.
1980-01-01
The microstructure of reaction sintered silicon nitride (RSSN) was changed over a wide range by varying the grain density, grain size of the silicon starting powder, nitriding conditions, and by introducing artificial pores. The influence of single microstructural parameters on mechanical properties like room temperature strength, creep behavior, and resistance to thermal shock was investigated. The essential factors influencing these properties were found to be total porosity, pore size distribution, and the fractions of alpha and beta Si3N4. In view of high temperature engineering applications of RSSN, potentials for optimizing the material's properties by controlled processing are discussed.
Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov
2017-09-01
Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermodynamics of firms' growth
Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo
2015-01-01
The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828
Evaluation of Gas Phase Dispersion in Flotation under Predetermined Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Młynarczykowska, Anna; Oleksik, Konrad; Tupek-Murowany, Klaudia
2018-03-01
Results of various investigations shows the relationship between the flotation parameters and gas distribution in a flotation cell. The size of gas bubbles is a random variable with a specific distribution. The analysis of this distribution is useful to make mathematical description of the flotation process. The flotation process depends on many variable factors. These are mainly occurrences like collision of single particle with gas bubble, adhesion of particle to the surface of bubble and detachment process. These factors are characterized by randomness. Because of that it is only possible to talk about the probability of occurence of one of these events which directly affects the speed of the process, thus a constant speed of flotation process. Probability of the bubble-particle collision in the flotation chamber with mechanical pulp agitation depends on the surface tension of the solution, air consumption, degree of pul aeration, energy dissipation and average feed particle size. Appropriate identification and description of the parameters of the dispersion of gas bubbles helps to complete the analysis of the flotation process in a specific physicochemical conditions and hydrodynamic for any raw material. The article presents the results of measurements and analysis of the gas phase dispersion by the size distribution of air bubbles in a flotation chamber under fixed hydrodynamic conditions. The tests were carried out in the Laboratory of Instrumental Methods in Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineerin, AGH Univeristy of Science and Technology in Krakow.
Thermodynamics of firms' growth.
Zambrano, Eduardo; Hernando, Alberto; Fernández Bariviera, Aurelio; Hernando, Ricardo; Plastino, Angelo
2015-11-06
The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1,155,142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing 'free' creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. © 2015 The Authors.
Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L
2016-09-06
Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.
Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions
Landers, Mark N.; Sturm, Terry W.
2013-01-01
Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.
NASA Astrophysics Data System (ADS)
Sohrabi, Mehdi
2017-11-01
A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.
Sohrabi, Mehdi
2017-11-01
A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.
NASA Astrophysics Data System (ADS)
Neuper, Malte; Ehret, Uwe
2014-05-01
The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the Gini index, Rosenbluth index) were calculated and compared to the synoptic situation in general and the atmospheric stability in special. The indices were then related to the drop size distributions and the rain rate. Special emphasis was laid in an objective distinction between stratiform and convective precipitation and hereby altered droplet size distribution, respectively Z/R relationship. In our presentation we will show how convective and stratiform precipitation becomes manifest in the different distribution indices, which in turn are thought to represent different patterns in the radar image. We also present and discuss the correlation between these distribution indices and the evolution of the drop size distribution and the rain rate and compare a dynamically adopted Z/R relation to the standard Marshall-Palmer Z/R relation.
Micrometer-sized TPM emulsion droplets with surface-mobile binding groups
NASA Astrophysics Data System (ADS)
van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.
2018-03-01
Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.
3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer
NASA Technical Reports Server (NTRS)
Lane, John
2012-01-01
Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has also been modified to read standardized disdrometer data format (Joss-Waldvogel format). Other modifications to the software involve accounting for vertical ambient wind motion, as well as evaporation of the raindrop during its flight time.
Digital Quantification of Proteins and mRNA in Single Mammalian Cells.
Albayrak, Cem; Jordi, Christian A; Zechner, Christoph; Lin, Jing; Bichsel, Colette A; Khammash, Mustafa; Tay, Savaş
2016-03-17
Absolute quantification of macromolecules in single cells is critical for understanding and modeling biological systems that feature cellular heterogeneity. Here we show extremely sensitive and absolute quantification of both proteins and mRNA in single mammalian cells by a very practical workflow that combines proximity ligation assay (PLA) and digital PCR. This digital PLA method has femtomolar sensitivity, which enables the quantification of very small protein concentration changes over its entire 3-log dynamic range, a quality necessary for accounting for single-cell heterogeneity. We counted both endogenous (CD147) and exogenously expressed (GFP-p65) proteins from hundreds of single cells and determined the correlation between CD147 mRNA and the protein it encodes. Using our data, a stochastic two-state model of the central dogma was constructed and verified using joint mRNA/protein distributions, allowing us to estimate transcription burst sizes and extrinsic noise strength and calculate the transcription and translation rate constants in single mammalian cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.
Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek
2017-08-17
Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.
Monitoring the shorebirds of North America: Towards a unified approach
Skagen, S.K.; Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.L.; Morrison, R.I.G.
2003-01-01
The Program for Regional and International Shorebird Monitoring (PRISM) has recently developed a single blueprint for monitoring shorebirds in Canada and the United States in response to needs identified by recent shorebird conservation plans. The goals of PRISM are to: (1) estimate the size of breeding populations of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. The initial focus has been on developing methods to estimate trends in population size. A three-part approach for estimating trends includes: (1) breeding surveys in arctic, boreal, and temperate regions, (2) migration surveys, and (3) wintering surveys.
Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays
Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan
2012-01-01
In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, . Because of thermal fluctuations, fractional filament steps are only detectable as long as . The corresponding fractional filament step size is where is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be , and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number depends on the elastic stalk properties and is reduced to for linear springs with a nonzero rest length. Furthermore, is shown to depend quadratically on the motor step size . Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number . Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface. PMID:22927953
Effect of dipolar moments in domain sizes of lipid bilayers and monolayers
NASA Astrophysics Data System (ADS)
Travesset, A.
2006-08-01
Lipid domains are found in systems such as multicomponent bilayer membranes and single component monolayers at the air-water interface. It was shown by Keller et al. [J. Phys. Chem. 91, 6417 (1987)] that in monolayers, the size of the domains results from balancing the line tension, which favors the formation of a large single circular domain, against the electrostatic cost of assembling the dipolar moments of the lipids. In this paper, we present an exact analytical expression for the electric potential, ion distribution, and electrostatic free energy for different problems consisting of three different slabs with different dielectric constants and Debye lengths, with a circular homogeneous dipolar density in the middle slab. From these solutions, we extend the calculation of domain sizes for monolayers to include the effects of finite ionic strength, dielectric discontinuities (or image charges), and the polarizability of the dipoles and further generalize the calculations to account for domains in lipid bilayers. In monolayers, the size of the domains is dependent on the different dielectric constants but independent of ionic strength. In asymmetric bilayers, where the inner and outer leaflets have different dipolar densities, domains show a strong size dependence with ionic strength, with molecular-sized domains that grow to macroscopic phase separation with increasing ionic strength. We discuss the implications of the results for experiments and briefly consider their relation to other two dimensional systems such as Wigner crystals or heteroepitaxial growth.
Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Fenton; Johnson, Gary E.; Royer, Ida M.
2011-07-01
This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) asmore » threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. • Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. • Run timing for small-size fish (~65-90 mm) peaked (702 fish) on December 18. Downstream passage of small-size juvenile fish was variable, occurring on two days in the spring, eight days in the summer, and at times throughout late fall and winter. A total of 7,017 ± 690 small-size fish passed through the turbine penstock intakes during the study period. • Relatively few fish passed into the ROs when they were open in summer (2 fish/d) and winter (8 fish/d). • Fish were surface-oriented with 62-80% above 10 m deep. The highest percentage of fish (30-60%) was in the 5-10 m depth bin. We draw the following conclusions from the study. • The non-obtrusive hydroacoustic data from this study are reliable because passage estimates and patterns were similar with those observed in the direct capture data from the tailrace screw trap and were consistent with distribution patterns observed in other studies of juvenile salmonid passage at dams. • Fish passage at LOP was apparently affected but not dominated by dam operations and reservoir elevation. • The surface-oriented vertical distribution of fish we observed supports development of surface passage or collector devices. In summary, the high-resolution spatially and temporally data reported herein provide detailed estimates of vertical, horizontal, diel, daily, and seasonal passage and distributions at LOP during March 2010 through January 2011. This information is applicable to management decisions on design and development of surface passage and collections devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above Lookout Point Dam.« less
Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf
2007-10-15
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.
NASA Astrophysics Data System (ADS)
Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens
2018-03-01
An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.
NASA Astrophysics Data System (ADS)
Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco
2015-04-01
Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a sampling head, allows the sampling of Martian atmosphere with embedded dust. The captured dust grains are detected by an Optical System and then ejected into the atmosphere. MicroMED is a miniaturization of the instrument MEDUSA, developed for the Humboldt payload of the ExoMars mission. An Elegant Breadboard has been developed and tested and successfully demonstrates the instrument performances. The design and performance test results will be discussed.
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Arnott, W. P.; Atkinson, D. B.; Barnard, J.; Beranek, J.; Cappa, C. D.; Chand, D.; Dubey, M. K.; Easter, R. C.; Flowers, B. A.; Gyawali, M. S.; Jobson, B. T.; Pekour, M. S.; Riemer, N. S.; Subramanian, R.; Song, C.; Zelenyuk, A.
2011-12-01
Atmospheric black carbon (BC) particles readily absorb both upwelling and downwelling broadband radiation and are thought to be second only to CO2 in contributing to global warming. However large uncertainties still exist in the global estimates of BC radiative forcing, which depend not only on our ability to accurately simulate the global loading and distribution of BC, but also on the precise knowledge of the mixing state and morphology of BC particles due to aging. To this end, one of the objectives of the Carbonaceous Aerosols and Radiative Effects Study (CARES) conducted in Sacramento, CA, during June 2010 was to investigate the evolution of urban BC particles and the associated optical properties, with the overarching goal of improving their process-level model representations. The daytime Sacramento urban plume was routinely transported to the northeast into the Sierra Nevada foothills area rich in biogenic emissions, and the aged aerosols were often recirculated back into the urban area the next morning. The CARES campaign observational strategy was designed to take advantage of this flow pattern by setting up two observation supersites - one located within the Sacramento urban area, referred to as the "T0 site," and another located about 24 km to the northeast in Cool, CA, a small town in the rural foothills area, referred to as the "T1 site." BC size distribution and mixing state were measured at both the sites with single particle soot photometry (SP2). The single particle mass spectrometer SPLAT II was also deployed at the T0 site to characterize the size, composition (mixing state), density, and morphology of BC and non-BC containing particles. Non-refractory aerosol species were measured by Aerodyne aerosol mass spectrometer (AMS). Aerosol light absorption and scattering (or extinction) at multiple wavelengths were measured using several techniques, including photoacoustic, cavity ring-down, nephelometer as well as the filter-based particle/soot absorption photometer (PSAP). Other supporting measurements include aerosol size distribution and key trace gases (NOx, NOy, O3, and volatile organic compounds). The combined data thus provides a unique opportunity to characterize BC aging and its effect on optical properties. In this paper, we will present results from a local optical closure study for selected 10-minute samples at the T0 urban site using the particle-resolved version of the comprehensive aerosol model MOSAIC coupled to a shell/core Mie code. Sensitivity of the predicted optical properties to various measurements and model representations of particle composition, mixing state, size bin resolution, and refractive indices will be examined.
Single-crystal growth, structure refinement and the properties of Bis(glycine) Strontium Chloride
NASA Astrophysics Data System (ADS)
Balaji, S. R.; Balu, T.; Rajasekaran, T. R.
2018-02-01
Single crystals of Bis (glycine) Strontium Chloride (BGSC) were grown by means of slow evaporation process by using analar grade Glycine and Strontium Chloride Hexahydrate as a parent compound from its aqueous solution at room temperature. The final chemical composition, [{{Sr}}{({{{C}}}2{{{H}}}5{{{NO}}}2)}2{{{Cl}}}2].{{{H}}}4{{{O}}}3+{{{H}}}8{{{O}}}3, formed were metallic light colorless block, about the size of 28 mm × 9 mm × 8 mm. A single-crystal x-ray diffraction study revealed an ordered superstructure with orthorhombic symmetry that could be assigned to the space group Pbcn. The structure in BGSC, revealed in the electron density distribution was analyzed by the direct methods (SHELXS-2014) and refined by least squares full matrix method (SHELXL-2014). The crystal structure, including anisotropic atomic displacement parameters for each atom and isotropic atomic displacement parameters for hydrogen atom, was refined to R1 = 0.0395, wR2 = 0.0776 using 1097 independent reflections. The FTIR spectrum of BGSC confirms the protonation of amino groups and the different molecular groups present in BGSC vibrate in different modes. Reverse Indentation Size Effect (RISE) was revealed in BGSC in the micro-hardness analysis using Vicker’s micro-hardness analysis. DTA and DSC results ruled out the possibility of structural change independent of mass change. The AFM studies shows fine nano size fiber like structure of the grown crystals.
Leitte, Arne Marian; Schlink, Uwe; Herbarth, Olf; Wiedensohler, Alfred; Pan, Xiao-Chuan; Hu, Min; Richter, Matthia; Wehner, Birgit; Tuch, Thomas; Wu, Zhijun; Yang, Minjuan; Liu, Liqun; Breitner, Susanne; Cyrys, Josef; Peters, Annette; Wichmann, H-Erich; Franck, Ulrich
2011-04-01
The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. Data on particle size distributions from 3 nm to 1 µm; PM10 (PM ≤ 10 µm), nitrogen dioxide (NO(2)), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single- and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. Associations of respiratory ERV with NO(2) concentrations and 100-1,000 nm particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles < 50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO(2). Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO(2) concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM(10) or particle number concentrations in Beijing.
Beyond Gaussians: a study of single spot modeling for scanning proton dose calculation
Li, Yupeng; Zhu, Ronald X.; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong
2013-01-01
Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field-size effects on dose output. In the present study, we developed a pencil-beam algorithm for scanning-proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil-beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field-size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy. PMID:22297324
NASA Astrophysics Data System (ADS)
Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.
2018-02-01
In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.
Ca-Mediated Electroformation of Cell-Sized Lipid Vesicles
Tao, Fei; Yang, Peng
2015-01-01
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca2+) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca2+ Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process. PMID:25950604
Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.
Santo, Islane Espirito; Campardelli, Roberta; Albuquerque, Elaine Cabral; Vieira De Melo, Silvio A B; Reverchon, Ernesto; Della Porta, Giovanna
2015-11-01
Supercritical fluid extraction using a high-pressure packed tower is proposed not only to remove the ethanol residue from liposome suspensions but also to affect their size and distribution leading the production of nanosomes. Different operating pressures, temperatures, and gas to liquid ratios were explored and ethanol was successfully extracted up to a value of 400 ppm; liposome size and distribution were also reduced by the supercritical processing preserving their integrity, as confirmed by Z-potential data and Trasmission Electron Microscopy observations. Operating at 120 bar and 38°C, nanosomes with a mean diameter of about 180 ± 40 nm and good storage stability were obtained. The supercritical processing did not interfere on drug encapsulation, and no loss of entrapped drug was observed when the water-soluble fluorescein was loaded as a model compound. Fluorescein encapsulation efficiency was 30% if pure water was used during the supercritical extraction as processing fluid; whereas an encapsulation efficiency of 90% was obtained if the liposome suspension was processed in water/fluorescein solution. The described technology is easy to scale up to an industrial production and merge in one step the solvent extraction, liposome size engineering, and an excellent drug encapsulation in a single operation unit. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ca-mediated electroformation of cell-sized lipid vesicles.
Tao, Fei; Yang, Peng
2015-05-07
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca(2+)) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca(2+) Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process.
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
NASA Astrophysics Data System (ADS)
Rezaee, Sahar; Ghobadi, Nader
2018-06-01
The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.
Characterization of single grain by observing magnetic ejection and rotation in microgravity
NASA Astrophysics Data System (ADS)
Uyeda, Chiaki
A simple and nondestructive method to perform material identification on a single particle is desired in various fields of material science that is concerned with nano-sized particles. We propose a method of identification based on magnetization data, which is obtained from field-induced translation and rotation in microgravity [1]. Material identification is possible from magnetization data because an intrinsic value of susceptibility and anisotropy is assigned to every material according to a data book that compiles the published values [2]. Preliminary ob-servation on free translational motion due to repulsive field-gradient force was reported for mm-sized crystal of corundum [1] and other oxides. Rotational oscillation was observed for various diamagnetic single-crystals in homogeneous field [2]. In order to examine the capability of the above-mentioned material characterization, translation and rotation motion was observed for sub-millimeter-sized quartz, calcite and forsterite in microgravity condition (MGLAB, Japan, duration: 4.5s). It is expected from motional equations that the 2 motions are independent to mass of particles, In a given field distribution, acceleration of translation is expected to be uniquely determined from intrinsic susceptibility of sample. The above properties are exam-ined in the present work by varying experimental parameters. It is noted that observation of the above two motions in microgravity serve as a useful method to detect magnetization of single small particles, be cause the system is free of both sample holder and mass measure-ment. It is expected that magnetization can be measured on a isolated small sample down to nano-level, in condition that motion of the sample is observable. For both susceptibility and anisotropy, range of observed values using microgravity cover the range of compiled published values [2]. Hence material identification is possible for solid material in general. Diamagnetic magnetization and its anisotropy derive from three-dimensional distribution of localized elec-trons. In case of organic materials, origin of magnetization was consistently explained in terms of molecular-orbital method. The investigation was not performed on oxide crystals partly because the experimental values were not reported for most of the material[4]. Improvement of sensitivity using microgravity condition was necessary in order to understand the overall relationship between electron distribution and anisotropy of susceptibility. [1] K. Hisayoshi et al: J.Phys.: Conf. Ser., (2009) 156 012021. [2] R. Guputa: "Landort Bornstein" New Series II (1983) 445. [3]C.Uyeda et al.(206)Jpn.J.appl.Phys.43 L124 [4]C.Uyeda et al.: Appl. Phys. Lett. (1983) 094103.
A scoring scheme for evaluating magnetofossil identifications
NASA Astrophysics Data System (ADS)
Kopp, R. E.; Kirschvink, J. L.
2007-12-01
In many Quaternary lacustrine and marine settings, fossil magnetotactic bacteria are a major contributor to sedimentary magnetization [1]. Magnetite particles produced by magnetotactic bacteria have traits, shaped by natural selection, that increase the efficiency with which the bacteria utilize iron and also facilitate the recognition of the particles' biological origin. In particular, magnetotactic bacteria generally produce particles with characteristic shapes and narrow size and shape distributions that lie within the single domain stability field. The particles have effective positive magnetic anisotropy, produced by alignment in chains and frequently by particle elongation. In addition, the crystals are often nearly stochiometric and have few crystallographic defects. Yet, despite these distinctive traits, there are few identified magnetofossils that predate the Quaternary, and many putative identifications are highly controversial. We propose a six-criteria scoring scheme for evaluating identifications based on the quality of the geological, magnetic, and electron microscopic evidence. Our criteria are: (1) whether the geological context is well-constrained stratigraphically, and whether paleomagnetic evidence suggests a primary magnetization; (2) whether magnetic or microscopic evidence support the presence of significant single-domain magnetite; (3) whether magnetic or ferromagnetic resonance evidence indicates narrow size and shape distributions, and whether microscopic evidence reveals single-domain particles with truncated edges, elongate single-domain particles, and/or narrow size and shape distributions; (4) whether ferromagnetic resonance, low-temperature magnetic, or electron microscopic evidence reveals the presence of chains; (5) whether low-temperature magnetometry, energy dispersive X-ray spectroscopy, or other techniques demonstrate the near-stochiometry of the particles; and (6) whether high-resolution TEM indicates the near- absence of crystallographic defects. We use criterion 1 to set the threshold for determining whether a magnetofossil identification is robust. Criteria 3 and 4 are assigned numerical scores that range from 0 to 4, while criteria 2, 5, and 6 are evaluated based on presence or absence. Based on this scheme, the oldest robust magnetofossils yet found come from the Cretaceous chalk beds of southern England [2], though Lower Cambrian limestones of the Pestrotsvet Formation, Siberia Platform, only marginally fail to meet our robust criteria [3]. Although magnetofossils have also been reported from Proterozoic, Archean, and Martian rocks, none of these identifications are robust. References: [1] R. E. Kopp and J. L. Kirschvink (2007). Earth Sci. Rev. doi:10.1016/j.earscirev.2007.08.001. [2] P. Montgomery et al. (1998). Earth Planet. Sci. Lett. 156: 209-224. [3] S. B. R. Chang et al. (1987). Phys. Earth Planet. Int. 46: 289-303.
Radio pulsar glitches as a state-dependent Poisson process
NASA Astrophysics Data System (ADS)
Fulgenzi, W.; Melatos, A.; Hughes, B. D.
2017-10-01
Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.
NASA Astrophysics Data System (ADS)
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-01
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-07
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Kannan, C; Ramanujam, R
2017-07-01
In this research work, a comparative evaluation on the mechanical and microstructural characteristics of aluminium based single and hybrid reinforced nanocomposites was carried out. The manufacture of a single reinforced nanocomposite was conducted with the distribution of 2 wt.% nano alumina particles (avg. particle size 30-50 nm) in the molten aluminium alloy of grade AA 7075; while the hybrid reinforced nanocomposites were produced with of 4 wt.% silicon carbide (avg. particle size 5-10 µm) and 2 wt.%, 4 wt.% nano alumina particles. Three numbers of single reinforced nanocomposites were manufactured through stir casting with reinforcements preheated to different temperatures viz. 400 °C, 500 °C, and 600 °C. The stir cast procedure was extended to fabricate two hybrid reinforced nanocomposites with reinforcements preheated to 500 °C prior to their inclusion. A single reinforced nanocomposite was also developed by squeeze casting with a pressure of 101 MPa. Mechanical and physical properties such as density, hardness, ultimate tensile strength, and impact strength were evaluated on all the developed composites. The microstructural observation was carried out using optical and scanning electron microscopy. On comparison with base alloy, an improvement of 63.7% and 81.1% in brinell hardness was observed for single and hybrid reinforced nanocomposites respectively. About 16% higher ultimate tensile strength was noticed with the squeeze cast single reinforced nanocomposite over the stir cast.
Effects of Planetary Gear Ratio on Mean Service Life
NASA Technical Reports Server (NTRS)
Savage, M.; Rubadeux, K. L.; Coe, H. H.
1996-01-01
Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.
2017-01-01
We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-03-16
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.
NASA Astrophysics Data System (ADS)
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-03-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-01-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns. PMID:25779306
Behnke, Sabrina; Parker, Albert E.; Woodall, Dawn; Camper, Anne K.
2011-01-01
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture. PMID:21856824
The ranking probability approach and its usage in design and analysis of large-scale studies.
Kuo, Chia-Ling; Zaykin, Dmitri
2013-01-01
In experiments with many statistical tests there is need to balance type I and type II error rates while taking multiplicity into account. In the traditional approach, the nominal [Formula: see text]-level such as 0.05 is adjusted by the number of tests, [Formula: see text], i.e., as 0.05/[Formula: see text]. Assuming that some proportion of tests represent "true signals", that is, originate from a scenario where the null hypothesis is false, power depends on the number of true signals and the respective distribution of effect sizes. One way to define power is for it to be the probability of making at least one correct rejection at the assumed [Formula: see text]-level. We advocate an alternative way of establishing how "well-powered" a study is. In our approach, useful for studies with multiple tests, the ranking probability [Formula: see text] is controlled, defined as the probability of making at least [Formula: see text] correct rejections while rejecting hypotheses with [Formula: see text] smallest P-values. The two approaches are statistically related. Probability that the smallest P-value is a true signal (i.e., [Formula: see text]) is equal to the power at the level [Formula: see text], to an very good excellent approximation. Ranking probabilities are also related to the false discovery rate and to the Bayesian posterior probability of the null hypothesis. We study properties of our approach when the effect size distribution is replaced for convenience by a single "typical" value taken to be the mean of the underlying distribution. We conclude that its performance is often satisfactory under this simplification; however, substantial imprecision is to be expected when [Formula: see text] is very large and [Formula: see text] is small. Precision is largely restored when three values with the respective abundances are used instead of a single typical effect size value.
Pitch-based carbon foam and composites
Klett, James W.
2001-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-16
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-02
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2002-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G
2010-12-06
Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
2017-11-13
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
NASA Astrophysics Data System (ADS)
Dong, Qingchen; Qu, Wenshan; Liang, Wenqing; Guo, Kunpeng; Xue, Haibin; Guo, Yuanyuan; Meng, Zhengong; Ho, Cheuk-Lam; Leung, Chi-Wah; Wong, Wai-Yeung
2016-03-01
Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium.Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium. Electronic supplementary information (ESI) available: PXRD, EDX and SEM original data. See DOI: 10.1039/c6nr00034g
NASA Technical Reports Server (NTRS)
Younquist, Robert; Haskell, William; Immer, Christopher; Cox, Bobby; Lane, John
2009-01-01
An inexpensive and simple hail monitor design has been developed that has a single piezoelectric ceramic disc and uses a metal plate as a sounding board. The structure is durable and able to withstand the launch environment. This design has several advantages over a multi-ceramic sensor, including reduced cost and complexity, increased durability, and improvement in impact response uniformity over the active surface. However, the most important characteristic of this design is the potential to use frequency discrimination between the spectrum created from raindrop impact and a hailstone impact. The sound of hail hitting a metal plate is distinctly different from the sound of rain hitting the same plate. This fortuitous behavior of the pyramid sensor may lead to a signal processing strategy, which is inherently more reliable than one depending on amplitude processing only. The initial concept has been im proved by forming a shallow pyramid structure so that hail is encouraged to bounce away from the sensor so as not to be counted more than once. The sloped surface also discourages water from collecting. Additionally, the final prototype version includes a mounting box for the piezo-ceramic, which is offset from the pyramid apex, thus helping to reduce non-uniform response (see Figure 2). The frequency spectra from a single raindrop impact and a single ice ball impact have been compared. The most notable feature of the frequency resonant peaks is the ratio of the 5.2 kHz to 3.1 kHz components. In the case of a raindrop, this ratio is very small. But in the case of an ice ball, the ratio is roughly one third. This frequency signature of ice balls should provide a robust method for discriminating raindrops from hailstones. Considering that hail size distributions (HSDs) and fall rates are roughly 1 percent that of rainfall, hailstone sizes range from a few tenths of a centimeter to several centimeters. There may be considerable size overlap between large rain and small hail. As hail occurs infrequently at KSC, the ideal HSD measurement sensor needs to have a collection area roughly 100 times greater than a raindrop-size distribution sensor or disdrometer. The sensitivity should be such that it can detect and count very small hail in the midst of intense rainfall consisting of large raindrop sizes. The dynamic range and durability should allow measurement of the largest hail sizes, and the operation and calibration strategy should consider the infrequent occurrence of hail fall over the KSC area.
Gallegos, Críspulo; Valencia, Concepción; Partal, Pedro; Franco, José M; Maglio, Omay; Abrahamsson, Malin; Brito-de la Fuente, Edmundo
2012-08-01
The droplet size of commercial fish oil-containing injectable lipid emulsions, including conformance to United States Pharmacopeia (USP) standards on fat-globule size, was investigated. A total of 18 batches of three multichamber parenteral products containing the emulsion SMOFlipid as a component were analyzed. Samples from multiple lots of the products were evaluated to determine compliance with standards on the volume-weighted percentage of fat exceeding 0.05% (PFAT(5)) specified in USP chapter 729 to ensure the physical stability of i.v. lipid emulsions. The products were also analyzed to determine the effects of various storage times (3, 6, 9, and 12 months) and storage temperatures (25, 30, and 40 °C) on product stability. Larger-size lipid particles were quantified via single-particle optical sensing (SPOS). The emulsion's droplet-size distribution was determined via laser light scattering. SPOS and light-scattering analysis demonstrated mean PFAT(5) values well below USP-specified globule-size limits for all the tested products under all study conditions. In addition, emulsion aging at any storage temperature in the range studied did not result in a significant increase of PFAT(5) values, and mean droplet-size values did not change significantly during storage of up to 12 months at temperatures of 25-40 °C. PFAT(5) values were below the USP upper limits in SMOFlipid samples from multiple lots of three multichamber products after up to 12 months of storage at 25 or 30 °C or 6 months of storage at 40 °C.
Power laws, discontinuities and regional city size distributions
Garmestani, A.S.; Allen, Craig R.; Gallagher, C.M.
2008-01-01
Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux.
Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli
Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose
2016-01-01
ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid on aggregate positioning differs between conditions, causing aggregate numbers at midcell to differ in cell division events, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, we find that aggregate segregation to the cell poles is most pronounced in cells with mid-sized nucleoids. We conclude that the energy-free process of the midcell exclusion of aggregates partially loses effectiveness under stressful conditions. PMID:26728194