Sample records for size distribution surface

  1. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  2. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  3. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  4. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    USDA-ARS?s Scientific Manuscript database

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...

  5. Deviation from Power Law Behavior in Landslide Phenomenon

    NASA Astrophysics Data System (ADS)

    Li, L.; Lan, H.; Wu, Y.

    2013-12-01

    Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.

  6. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  7. A scattering model for defoliated vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    A scattering model for defoliated vegetation is conceived as a layer of dielectric, finite-length cylinders with specified size and orientation distributions above an irregular ground surface. The scattering phase matrix of a single cylinder is computed, then the radiative transfer technique is applied to link volume scattering from vegetation to surface scattering from the soil surface. Polarized and depolarized scattering are computed and the effects of the cylinder size and orientation distributions are illustrated. It is found that size and orientation distributions have significant effects on the backscattered signal. The model is compared with scattering from defoliated trees and agricultural crops.

  8. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    USGS Publications Warehouse

    Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.

    1997-01-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.

  9. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    NASA Astrophysics Data System (ADS)

    Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.

    1997-03-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.

  10. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring

    Treesearch

    Kristin Bunte; Steven R. Abt

    2001-01-01

    This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...

  11. A New Model of Size-graded Soil Veneer on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; McKay, David S.

    2005-01-01

    Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.

  12. Scaling of size distributions of C60 and C70 fullerene surface islands

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Berdnikov, Y.; Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.

    2017-06-01

    We present experimental data and a theoretical analysis for the size distributions of C60 and C70 surface islands deposited onto In-modified Si(111)√3 × √3-Au surface under different conditions. We show that both fullerene islands feature an analytic Vicsek-Family scaling shape where the scaled size distributions are given by a power law times an incomplete beta-function with the required normalization. The power exponent in this distribution corresponds to the fractal shape of two-dimensional islands, confirmed by the experimentally observed morphologies. Quite interestingly, we do not see any significant difference between C60 and C70 fullerenes in terms of either scaling parameters or temperature dependence of the diffusion constants. In particular, we deduce the activation energy for surface diffusion of ED = 140 ± 10 meV for both types of fullerenes.

  13. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  14. Preparing rock powder specimens of controlled size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P.

    1968-01-01

    Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.

  15. Spatial organization of surface nanobubbles and its implications in their formation process.

    PubMed

    Lhuissier, Henri; Lohse, Detlef; Zhang, Xuehua

    2014-02-21

    We study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it. The precise correlation suggests that the nanobubbles grow by diffusion of the gas from the bulk rather than by diffusion of the gas adsorbed on the surface. Lastly, the size distribution of the nanobubbles is found to be well described by a log-normal distribution.

  16. Near-infrared scattering as a dust diagnostic

    NASA Astrophysics Data System (ADS)

    Saajasto, Mika; Juvela, Mika; Malinen, Johanna

    2018-06-01

    Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.

  17. Distribution, characterization, and exposure of MC252 oil in the supratidal beach environment.

    PubMed

    Lemelle, Kendall R; Elango, Vijaikrishnah; Pardue, John H

    2014-07-01

    The distribution and characteristics of MC252 oil:sand aggregates, termed surface residue balls (SRBs), were measured on the supratidal beach environment of oil-impacted Fourchon Beach in Louisiana (USA). Probability distributions of 4 variables, surface coverage (%), size of SRBs (mm(2) of projected area), mass of SRBs per m(2) (g/m(2)), and concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in the SRBs (mg of crude oil component per kg of SRB) were determined using parametric and nonparametric statistical techniques. Surface coverage of SRBs, an operational remedial standard for the beach surface, was a gamma-distributed variable ranging from 0.01% to 8.1%. The SRB sizes had a mean of 90.7 mm(2) but fit no probability distribution, and a nonparametric ranking was used to describe the size distributions. Concentrations of total PAHs ranged from 2.5 mg/kg to 126 mg/kg of SRB. Individual PAH concentration distributions, consisting primarily of alkylated phenanthrenes, dibenzothiophenes, and chrysenes, did not consistently fit a parametric distribution. Surface coverage was correlated with an oil mass per unit area but with a substantial error at lower coverage (i.e., <2%). These data provide probabilistic risk assessors with the ability to specify uncertainty in PAH concentration, exposure frequency, and ingestion rate, based on SRB characteristics for the dominant oil form on beaches along the US Gulf Coast. © 2014 SETAC.

  18. Extreme Rock Distributions on Mars and Implications for Landing Safety

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.

    2001-01-01

    Prior to the landing of Mars Pathfinder, the size-frequency distribution of rocks from the two Viking landing sites and Earth analog surfaces was used to derive a size-frequency model, for nomimal rock distributions on Mars. This work, coupled with extensive testing of the Pathfinder airbag landing system, allowed an estimate of what total rock abundances derived from thermal differencing techniques could be considered safe for landing. Predictions based on this model proved largely correct at predicting the size-frequency distribution of rocks at the Mars Pathfinder site and the fraction of potentially hazardous rocks. In this abstract, extreme rock distributions observed in Mars Orbiter Camera (MOC) images are compared with those observed at the three landing sites and model distributions as an additional constraint on potentially hazardous surfaces on Mars.

  19. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1996-01-01

    A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.

  20. 4D Imaging of Salt Precipitation during Evaporation from Saline Porous Media Influenced by the Particle Size Distribution

    NASA Astrophysics Data System (ADS)

    Norouzi Rad, M.; Shokri, N.

    2014-12-01

    Understanding the physics of water evaporation from saline porous media is important in many processes such as evaporation from porous media, vegetation, plant growth, biodiversity in soil, and durability of building materials. To investigate the effect of particle size distribution on the dynamics of salt precipitation in saline porous media during evaporation, we applied X-ray micro-tomography technique. Six samples of quartz sand with different grain size distributions were used in the present study enabling us to constrain the effects of particle and pore sizes on salt precipitation patterns and dynamics. The pore size distributions were computed using the pore-scale X-ray images. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for one day with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of fewer evaporation sites at the surface. The presence of more preferential evaporation sites at the surface of finer sands significantly modified the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size covering larger area at the surface as opposed to the thicker patchy crusts in samples with larger particle sizes. Our results provide new insights regarding the physics of salt precipitation in porous media during evaporation.

  1. Confinement of surface waves at the air-water interface to control aerosol size and dispersity

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.

    2017-11-01

    The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.

  2. Reconstruction of sediment transport pathways in modern microtidal sand flat by multiple classification analysis

    NASA Astrophysics Data System (ADS)

    Yamashita, S.; Nakajo, T.; Naruse, H.

    2009-12-01

    In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.

  3. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles.

    PubMed

    Noël, A; Truchon, G; Cloutier, Y; Charbonneau, M; Maghni, K; Tardif, R

    2017-04-01

    There is currently no consensus on the best exposure metric(s) for expressing nanoparticle (NP) dose. Although surface area has been extensively studied for inflammatory responses, it has not been as thoroughly validated for cytotoxicity or oxidative stress effects. Since inhaled NPs deposit and interact with lung cells based on agglomerate size, we hypothesize that mass concentration combined with aerosol size distribution is suitable for NP risk assessment. The objective of this study was to evaluate different exposure metrics for inhaled 5 nm titanium dioxide aerosols composed of small (SA < 100 nm) or large (LA > 100 nm) agglomerates at 2, 7, and 20 mg/m 3 on rat lung inflammatory, cytotoxicity, and oxidative stress responses. We found a significant positive correlation ( r = 0.98, p < 0.01) with the inflammatory reaction, measured by the number of neutrophils and the mass concentration when considering all six (SA + LA) aerosols. This correlation was similar ( r = 0.87) for total surface area. Regarding cytotoxicity and oxidative stress responses, measured by lactate dehydrogenase and 8-isoprostane, respectively, and mass or total surface area as an exposure metric, we observed significant positive correlations only with SA aerosols for both the mass concentration and size distribution ( r > 0.91, p < 0.01), as well as for the total surface area ( r > 0.97, p < 0.01). These data show that mass or total surface area concentrations alone are insufficient to adequately predict oxidant and cytotoxic pulmonary effects. Overall, our study indicates that considering NP size distribution along with mass or total surface area concentrations contributes to a more mechanistic discrimination of pulmonary responses to NP exposure.

  4. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  5. The coevolution of bed roughness, grain clustering, surface armoring, hydraulic roughness, and sediment transport rate in experimental coarse alluvial channels: implications for long-term effects of gravel augmentation

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.; Aronovitz, A. C.

    2012-12-01

    We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.

  6. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal

    USGS Publications Warehouse

    Radlinski, A.P.; Mastalerz, Maria; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P.

    2004-01-01

    This paper discusses the applicability of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques for determining the porosity, pore size distribution and internal specific surface area in coals. The method is noninvasive, fast, inexpensive and does not require complex sample preparation. It uses coal grains of about 0.8 mm size mounted in standard pellets as used for petrographic studies. Assuming spherical pore geometry, the scattering data are converted into the pore size distribution in the size range 1 nm (10 A??) to 20 ??m (200,000 A??) in diameter, accounting for both open and closed pores. FTIR as well as SAXS and SANS data for seven samples of oriented whole coals and corresponding pellets with vitrinite reflectance (Ro) values in the range 0.55% to 5.15% are presented and analyzed. Our results demonstrate that pellets adequately represent the average microstructure of coal samples. The scattering data have been used to calculate the maximum surface area available for methane adsorption. Total porosity as percentage of sample volume is calculated and compared with worldwide trends. By demonstrating the applicability of SAXS and SANS techniques to determine the porosity, pore size distribution and surface area in coals, we provide a new and efficient tool, which can be used for any type of coal sample, from a thin slice to a representative sample of a thick seam. ?? 2004 Elsevier B.V. All rights reserved.

  7. Structural changes of casein micelles in a calcium gradient film.

    PubMed

    Gebhardt, Ronald; Burghammer, Manfred; Riekel, Christian; Roth, Stephan Volkher; Müller-Buschbaum, Peter

    2008-04-09

    Calcium gradients are prepared by sequentially filling a micropipette with casein solutions of varying calcium concentration and spreading them on glass slides. The casein film is formed by a solution casting process, which results in a macroscopically rough surface. Microbeam grazing incidence small-angle X-ray scattering (microGISAXS) is used to investigate the lateral size distribution of three main components in casein films: casein micelles, casein mini-micelles, and micellar calcium phosphate. At length scales within the beam size the film surface is flat and detection of size distribution in a macroscopic casein gradient becomes accessible. The model used to analyze the data is based on a set of three log-normal distributed particle sizes. Increasing calcium concentration causes a decrease in casein micelle diameter while the size of casein mini-micelles increases and micellar calcium phosphate particles remain unchanged.

  8. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using large scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Durand, Olivier; Soulard, Laurent

    2015-06-01

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics (MD) simulations. A generic 3D tin crystal with a sinusoidal free surface roughness is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, 2D sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, within which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model reproduces quantitatively experimental profiles and may help in their analysis.

  9. Exploring the Influence of Impervious Surface Density and Shape on Urban Heat Islands in the Northeast USA Using MODIS and Landsat

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.

    2011-01-01

    Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.

  10. Nature of the Martian surface as inferred from the particle-size distribution of lunar-surface material.

    NASA Technical Reports Server (NTRS)

    Mason, C. C.

    1971-01-01

    Analysis of lunar particle size distribution data indicates that the surface material is composed of two populations. One population is caused by comminution from the impact of the larger-sized meteorites, while the other population is caused by the melting of fine material by the impact of smaller-sized meteorites. The results are referred to Mars, and it is shown that the Martian atmosphere would vaporize the smaller incoming meteorites and retard the incoming meteorites of intermediate and large size, causing comminution and stirring of the particulate layer. The combination of comminution and stirring would result in fine material being sorted out by the prevailing circulation of the Martian atmosphere and the material being transported to regions where it could be deposited. As a result, the Martian surface in regions of prevailing upward circulation is probably covered by either a rubble layer or by desert pavement; regions of prevailing downward circulation are probably covered by sand dunes.

  11. Flight Investigation of the Effects of Pressure-Belt Tubing Size on Measured Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Rivers, Natale A.; vanDam, Cornielious P.; Brown, Phillip W.; Rivers, Robert A.

    2001-01-01

    The pressure-belt technique is commonly used to measure pressure distributions on lifting and nonlifting surfaces where flush, through-the-surface measurements are not possible. The belts, made from strips of small-bore, flexible plastic tubing, are surface-mounted by a simple, nondestructive method. Additionally, the belts require minimal installation time, thus making them much less costly to install than flush-mounted pressure ports. Although pressure belts have been used in flight research since the early 1950s, only recently have manufacturers begun to produce thinner, more flexible tubing, and thin, strong adhesive tapes that minimize the installation-induced errors on the measurement of surface pressures. The objective of this investigation was to determine the effects of pressure-belt tubing size on the measurement of pressure distributions. For that purpose, two pressure belts were mounted on the right wing of a single-engine, propeller-driven research airplane. The outboard pressure belt served as a baseline for the measurement and the comparison of effects. Each tube had an outer diameter (OD) of 0.0625 in. The inboard belt was used to evaluate three different tube sizes: 0.0625-, 0.1250-, and 0.1875-in. OD. A computational investigation of tube size on pressure distribution also was conducted using the two-dimensional Multielement Streamtube Euler Solver (MSES) code.

  12. Tin particle size measurements in high explosively driven shockwave experiments using Mie scattering method

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team

    2014-03-01

    Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.

  13. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah

    2017-06-15

    A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New Constraints on the Rock Size Distribution on the Moon from Diviner Infrared Measurements

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Hayne, P. O.; Piqueux, S.; Bandfield, J. L.; Ghent, R. R.; Williams, J. P.; Paige, D. A.

    2015-12-01

    Most of the Moon's surface is covered by fine-grained regolith produced by impacts, but rocks of various sizes are also present. Rock abundances can be used to distinguish different surface units and quantify the ages of craters [1,2]. Furthermore, the size distribution of a population of rocks reflects the process by which they were formed and fragmented [3]. Knowing the distribution of rock sizes on the Moon can improve our understanding of regolith generation, evolution, and distribution, can be used to select landing sites, and can provide insight into the processes that have shaped the lunar surface. The high thermal inertia of rocks compared to fine-grained regolith leads to multiple temperatures within the field of view of nighttime multispectral data returned from the Lunar Reconnaissance Orbiter (LRO) Diviner thermal radiometer. This data has been used to map the rock abundance across the lunar surface [1]. However, the derived rock abundance is not constant over the course of the lunar night; small rocks cool faster than large rocks and eventually become indistinguishable from regolith using Diviner data. Thus the detectable rock abundance will decrease over the course of the lunar night. Here we use this change in measured rock abundance with time to constrain the size distribution of rock fragments, and map its variation across the lunar surface. We will show results from this study and discuss the implications for the geologic processes shaping the lunar surface. [1] Bandfield J. L. et al. (2011) JGR, 116, E00H02. [2] Ghent R. R. et al. (2014) Geology, 42, no. 12, 1059-1062. [3] Hartmann W. K. (1969) Icarus, 10, 201-213. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  15. On the diffraction pattern of bundled rare-earth silicide nanowires on Si(0 0 1).

    PubMed

    Timmer, F; Bahlmann, J; Wollschläger, J

    2017-11-01

    Motivated by the complex diffraction pattern observed for bundled rare-earth silicide nanowires on the Si(0 0 1) surface, we investigate the influence of the width and the spacing distribution of the nanowires on the diffraction pattern. The diffraction pattern of the bundled rare-earth silicide nanowires is analyzed by the binary surface technique applying a kinematic approach to diffraction. Assuming a categorical distribution for the (individual) nanowire size and a Poisson distribution for the size of the spacing between adjacent nanowire-bundles, we are able to determine the parameters of these distributions and derive an expression for the distribution of the nanowire-bundle size. Additionally, the comparison of our simulations to the experimental diffraction pattern reveal that a (1  ×  1)-periodicity on top of the nanowires has to be assumed for a good match.

  16. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  17. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  18. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  19. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  20. Effects of Droplet Size on Intrusion of Sub-Surface Oil Spills

    NASA Astrophysics Data System (ADS)

    Adams, Eric; Chan, Godine; Wang, Dayang

    2014-11-01

    We explore effects of droplet size on droplet intrusion and transport in sub-surface oil spills. Negatively buoyant glass beads released continuously to a stratified ambient simulate oil droplets in a rising multiphase plume, and distributions of settled beads are used to infer signatures of surfacing oil. Initial tests used quiescent conditions, while ongoing tests simulate currents by towing the source and a bottom sled. Without current, deposited beads have a Gaussian distribution, with variance increasing with decreasing particle size. Distributions agree with a model assuming first order particle loss from an intrusion layer of constant thickness, and empirically determined flow rate. With current, deposited beads display a parabolic distribution similar to that expected from a source in uniform flow; we are currently comparing observed distributions with similar analytical models. Because chemical dispersants have been used to reduce oil droplet size, our study provides one measure of their effectiveness. Results are applied to conditions from the `Deep Spill' field experiment, and the recent Deepwater Horizon oil spill, and are being used to provide ``inner boundary conditions'' for subsequent far field modeling of these events. This research was made possible by grants from Chevron Energy Technology Co., through the Chevron-MITEI University Partnership Program, and BP/The Gulf of Mexico Research Initiative, GISR.

  1. Adsorption energy distribution of carbon tetrachloride on carbon nanofiber arrays prepared by template synthesis

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hsin; Shr, Jin-Fang; Wu, Chu-Fu; Hsieh, Chien-Te

    2008-02-01

    The influence of pore size distribution on adsorption energy distributions (AEDs) of aligned carbon nanofiber (CNF) arrays in vapor phase was conducted in the present study. A template-assisted synthesis was employed to fabricate aligned CNF arrays with different pore size distributions (PSDs). Adsorption isotherms of CCl 4 onto the CNF arrays were investigated within an entire pressure of 0.05-0.18 atm at 30 °C. The adsorptive surface coverage was found to decrease with the average pore size, indicating the presence of heterogeneity for gas adsorption. An AED model was postulated to describe the heterogeneous surface consisting of numerous surface pitchwises that obey a localized Langmuir model. It was found that all CNF arrays exhibit a similar Gaussian-type AED, in where the peak adsorption energy shifts to a higher energy with decreasing the pore size of CNFs. This finding can be ascribed to a fact that micropores are major providers of adsorption sites, whereas in mesopores only weaker adsorption is observed, thus resulting in the shift of energy distribution. An excellent prediction to the adsorption isotherms of CCl 4 by the AED model indicates that the PSD of CNFs acts a crucial factor in affecting the adsorptive coverage.

  2. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  3. The effect of microstructure on the performance of Li-ion porous electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Ding-Wen

    By combining X-ray tomography data and computer-generated porous elec- trodes, the impact of microstructure on the energy and power density of lithium-ion batteries is analyzed. Specifically, for commercial LiMn2O4 electrodes, results indi- cate that a broad particle size distribution of active material delivers up to two times higher energy density than monodisperse-sized particles for low discharge rates, and a monodisperse particle size distribution delivers the highest energy and power density for high discharge rates. The limits of traditionally used microstructural properties such as tortuosity, reactive area density, particle surface roughness, morphological anisotropy were tested against degree of particle size polydispersity, thus enabling the identification of improved porous architectures. The effects of critical battery processing parameters, such as layer compaction and carbon black, were also rationalized in the context of electrode performance. While a monodisperse particle size distribution exhibits the lowest possible tortuosity and three times higher surface area per unit volume with respect to an electrode conformed of a polydisperse particle size distribution, a comparable performance can be achieved by polydisperse particle size distributions with degrees of polydispersity less than 0.2 of particle size standard deviation. The use of non-spherical particles raises the tortuosity by as much as three hundred percent, which considerably lowers the power performance. However, favorably aligned particles can maximize power performance, particularly for high discharge rate applications.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boreyko, Jonathan B; Collier, Pat

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effectmore » dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.« less

  5. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  6. The influence of sediment transport rate on the development of structure in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure

  7. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire powder through one adjustable parameter that was linked to the size distribution. It is important to note that when the engineered substrates (hemispherical indentations) were applied, it was possible to extract both powder size distribution and effective Hamaker constant information from the simulated centrifuge adhesion experiments. Experimental validation of the simulated technique was performed with a silica powder dispersed onto a stainless steel substrate with no engineered surface features. Though the proof-of-concept work was accomplished for indented substrates, non-ideal, relatively flat (non-indented) substrates were used experimentally to demonstrate that the technique can be extended to this case. The experimental data was then used within the newly developed simulation procedure to show its application to real systems. In the absence of engineered features on the substrates, it was necessary to specify the size distribution of the powder as an input to the simulator. With this information, it was possible to extract an effective Hamaker constant distribution and when the effective Hamaker constant distribution was applied in conjunction with the size distribution, the observed adhesion force distribution was described precisely. An equation was developed that related the normalized effective Hamaker constants (normalized by the particle diameter) to the particle diameter was formulated from the effective Hamaker constant distribution. It was shown, by application of the equation, that the adhesion behavior of an ideal (smooth, spherical) powder with an experimentally-validated, effective Hamaker constant distribution could be used to effectively represent that of a realistic powder. Thus, the roughness effects and size variations of a real powder are captured in this one distributed parameter (effective Hamaker constant distribution) which provides a substantial improvement to the existing technique. This can lead to better optimization of powder processing by enhancing powder behavior models.

  8. Volume and surface area size distribution, water mass and model fitting of GCE/CASE/WATOX marine aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.

    1990-06-01

    As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.

  9. Improving alpine-region spectral unmixing with optimal-fit snow endmembers

    NASA Technical Reports Server (NTRS)

    Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff

    1995-01-01

    Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.

  10. Remote sensing of floe size distribution and surface topography

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Thorndike, A. S.

    1984-01-01

    Floe size can be measured by several properties p- for instance, area or mean caliper diameter. Two definitions of floe size distribution seem particularly useful. F(p), the fraction of area covered by floes no smaller than p; and N(p), the number of floes per unit area no smaller than p. Several summertime distributions measured are a graph, their slopes range from -1.7 to -2.5. The variance of an estimate is also calculated.

  11. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag reduction performance and robustness of superhydrophobic surfaces.

  12. Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors.

    PubMed

    Young, Christine; Lin, Jianjian; Wang, Jie; Ding, Bing; Zhang, Xiaogang; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Hossain, Shahriar A; Khan, Junayet Hossain; Ide, Yusuke; Kim, Jeonghun; Henzie, Joel; Wu, Kevin C-W; Kobayashi, Naoya; Yamauchi, Yusuke

    2018-04-20

    Mesoporous carbon can be synthesized with good control of surface area, pore-size distribution, and porous architecture. Although the relationship between porosity and supercapacitor performance is well known, there are no thorough reports that compare the performance of numerous types of carbon samples side by side. In this manuscript, we describe the performance of 13 porous carbon samples in supercapacitor devices. We suggest that there is a "critical pore size" at which guest molecules can pass through the pores effectively. In this context, the specific surface area (SSA) and pore-size distribution (PSD) are used to show the point at which the pore size crosses the threshold of critical size. These measurements provide a guide for the development of new kinds of carbon materials for supercapacitor devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of grain size, mineralogy, and acid-extractable grain coatings on the distribution of the fallout radionuclides 7Be, 10Be, 137Cs, and 210Pb in river sediment

    NASA Astrophysics Data System (ADS)

    Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas

    2017-01-01

    Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.

  14. Drug release through liposome pores.

    PubMed

    Dan, Nily

    2015-02-01

    Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.

    2000-01-01

    Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.

  16. Effect of stochastic grain heating on cold dense clouds chemistry

    NASA Astrophysics Data System (ADS)

    Chen, Long-Fei; Chang, Qiang; Xi, Hong-Wei

    2018-06-01

    The temperatures of dust grains play important roles in the chemical evolution of molecular clouds. Unlike large grains, the temperature fluctuations of small grains induced by photons may be significant. Therefore, if the grain size distribution is included in astrochemical models, the temperatures of small dust grains may not be assumed to be constant. We simulate a full gas-grain reaction network with a set of dust grain radii using the classical MRN grain size distribution and include the temperature fluctuations of small dust grains. Monte Carlo method is used to simulate the real-time dust grain's temperature fluctuations which is caused by the external low energy photons and the internal cosmic ray induced secondary photons. The increase of dust grains radii as ice mantles accumulate on grain surfaces is also included in our models. We found that surface CO2 abundances in models with grain size distribution and temperature fluctuations are more than one order of magnitude larger than those with single grain size. Small amounts of terrestrial complex organic molecules (COMs) can also be formed on small grains due to the temperature spikes induced by external low energy photons. However, cosmic ray induced secondary photons overheat small grains so that surface CO sublime and less radicals are formed on grains surfaces, thus the production of surface CO2 and COMs decreases by about one order of magnitude. The overheating of small grains can be offset by grain growth so that the formation of surface CO2 and COMs becomes more efficient.

  17. Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Dey, Ranabir; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder

    2018-05-01

    We show that electrowetting (EW) with structured electrodes significantly modifies the distribution of drops condensing onto flat hydrophobic surfaces by aligning the drops and by enhancing coalescence. Numerical calculations demonstrate that drop alignment and coalescence are governed by the drop-size-dependent electrostatic energy landscape that is imposed by the electrode pattern and the applied voltage. Such EW-controlled migration and coalescence of condensate drops significantly alter the statistical characteristics of the ensemble of droplets. The evolution of the drop size distribution displays self-similar characteristics that significantly deviate from classical breath figures on homogeneous surfaces once the electrically induced coalescence cascades set in beyond a certain critical drop size. The resulting reduced surface coverage, coupled with earlier drop shedding under EW, enhances the net heat transfer.

  18. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: “Herniated” HDL, a common feature in diabetes

    PubMed Central

    Amigó, Núria; Mallol, Roger; Heras, Mercedes; Martínez-Hervás, Sergio; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles; Plana, Núria; Yanes, Óscar; Masana, Lluís; Correig, Xavier

    2016-01-01

    Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects. PMID:26778677

  19. Determination of hydrogen abundance in selected lunar soils

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  20. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Vincent, Jean-Baptiste; Güttler, Carsten; Lee, Jui-Chi; Bertini, Ivano; Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Giacomini, Lorenza; Lucchetti, Alice; Barbieri, Cesare; Cremonese, Gabriele; Naletto, Giampiero; Pommerol, Antoine; El-Maarry, Mohamed R.; Besse, Sébastien; Küppers, Michael; La Forgia, Fiorangela; Lazzarin, Monica; Thomas, Nicholas; Auger, Anne-Thérèse; Sierks, Holger; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst U.; Agarwal, Jessica; A'Hearn, Michael F.; Barucci, Maria A.; Bertaux, Jean-Loup; Da Deppo, Vania; Davidsson, Björn; De Cecco, Mariolino; Debei, Stefano; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Groussin, Olivier; Gutierrez, Pedro J.; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kramm, J.-Rainer; Kürt, Ekkehard; Lara, Luisa M.; Lin, Zhong-Yi; Lopez Moreno, Jose J.; Magrin, Sara; Marchi, Simone; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Oklay, Nilda; Preusker, Frank; Scholten, Frank; Tubiana, Cecilia

    2015-11-01

    Aims: We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44-2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results: We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.

  1. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  2. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  3. The micrometeoroid complex and evolution of the lunar regolith

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Morrison, D. A.; Gault, D. E.; Oberbeck, V. R.; Quaide, W. L.; Vedder, J. F.; Brownlee, D. E.; Hartung, J. B.

    1974-01-01

    The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids.

  4. Implications of Atmospheric Test Fallout Data for Nuclear Winter.

    NASA Astrophysics Data System (ADS)

    Baker, George Harold, III

    1987-09-01

    Atmospheric test fallout data have been used to determine admissable dust particle size distributions for nuclear winter studies. The research was originally motivated by extreme differences noted in the magnitude and longevity of dust effects predicted by particle size distributions routinely used in fallout predictions versus those used for nuclear winter studies. Three different sets of historical data have been analyzed: (1) Stratospheric burden of Strontium -90 and Tungsten-185, 1954-1967 (92 contributing events); (2) Continental U.S. Strontium-90 fallout through 1958 (75 contributing events); (3) Local Fallout from selected Nevada tests (16 events). The contribution of dust to possible long term climate effects following a nuclear exchange depends strongly on the particle size distribution. The distribution affects both the atmospheric residence time and optical depth. One dimensional models of stratospheric/tropospheric fallout removal were developed and used to identify optimum particle distributions. Results indicate that particle distributions which properly predict bulk stratospheric activity transfer tend to be somewhat smaller than number size distributions used in initial nuclear winter studies. In addition, both ^{90}Sr and ^ {185}W fallout behavior is better predicted by the lognormal distribution function than the prevalent power law hybrid function. It is shown that the power law behavior of particle samples may well be an aberration of gravitational cloud stratification. Results support the possible existence of two independent particle size distributions in clouds generated by surface or near surface bursts. One distribution governs late time stratospheric fallout, the other governs early time fallout. A bimodal lognormal distribution is proposed to describe the cloud particle population. The distribution predicts higher initial sunlight attenuation and lower late time attenuation than the power law hybrid function used in initial nuclear winter studies.

  5. A Quantitative Test of the Applicability of Independent Scattering to High Albedo Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1993-01-01

    To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...

  6. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables.

    PubMed

    Hewett, P

    1995-02-01

    Particle size distributions were measured for fumes from mild steel (MS) and stainless steel (SS); shielded metal arc welding (SMAW) and gas metal arc welding (GMAW) consumables. Up to six samples of each type of fume were collected in a test chamber using a micro-orifice uniform deposit (cascade) impactor. Bulk samples were collected for bulk fume density and specific surface area analysis. Additional impactor samples were collected using polycarbonate substrates and analyzed for elemental content. The parameters of the underlying mass distributions were estimated using a nonlinear least squares analysis method that fits a smooth curve to the mass fraction distribution histograms of all samples for each type of fume. The mass distributions for all four consumables were unimodal and well described by a lognormal distribution; with the exception of the GMAW-MS and GMAW-SS comparison, they were statistically different. The estimated mass distribution geometric means for the SMAW-MS and SMAW-SS consumables were 0.59 and 0.46 micron aerodynamic equivalent diameter (AED), respectively, and 0.25 micron AED for both the GMAW-MS and GMAW-SS consumables. The bulk fume densities and specific surface areas were similar for the SMAW-MS and SMAW-SS consumables and for the GMAW-MS and GMAW-SS consumables, but differed between SMAW and GMAW. The distribution of metals was similar to the mass distributions. Particle size distributions and physical properties of the fumes were considerably different when categorized by welding method. Within each welding method there was little difference between MS and SS fumes.

  7. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be connected with the TC content of this fraction, but more research is needed. In agricultural areas micro aggregate fraction plays important role in nutrient supply thus understanding the erosion process is necessary because of the better protection in the future.

  8. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  9. Determining Size Distribution at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Mason, E. L.; Lemmon, M. T.

    2016-12-01

    Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.

  10. The effect of bean origin and temperature on grinding roasted coffee

    NASA Astrophysics Data System (ADS)

    Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T.; Melot, Brent C.; Speirs, Rory W.; Hendon, Christopher H.

    2016-04-01

    Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.

  11. The effect of bean origin and temperature on grinding roasted coffee.

    PubMed

    Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T; Melot, Brent C; Speirs, Rory W; Hendon, Christopher H

    2016-04-18

    Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.

  12. The effect of bean origin and temperature on grinding roasted coffee

    PubMed Central

    Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T.; Melot, Brent C.; Speirs, Rory W.; Hendon, Christopher H.

    2016-01-01

    Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily. PMID:27086837

  13. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    NASA Astrophysics Data System (ADS)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  14. Molecular Transporters for Desalination Applications

    DTIC Science & Technology

    2014-08-02

    Collaborative and commercially available state-of-the-art test  Zeolite template based synthesis II. Summary of key results and challenges For the...size setting CNT diameter. The tightest distribution of SWCNTs reported (Lu group, Duke Univ.) was achieved by loading catalyst into zeolite with the...pore size nominally acting to set the size of catalyst on the surface. However nano particles and CNTs grow on the surface of the zeolite , thus

  15. Ejecta Particle Size Distributions for Shock Loaded Sn And Al Targets

    DTIC Science & Technology

    1999-06-01

    respectively. For the first time, particle distributions that results from microjet production will be presented. Results from these experiments will...performed. For the first time, particle size distributions that result from microjet production will be presented. The energy in the microjets will...the metal to break up as a shock wave moves through the material. The figure also shows that if there are surface finish variations, microjets will

  16. Automatic rocks detection and classification on high resolution images of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Aboudan, A.; Pacifici, A.; Murana, A.; Cannarsa, F.; Ori, G. G.; Dell'Arciprete, I.; Allemand, P.; Grandjean, P.; Portigliotti, S.; Marcer, A.; Lorenzoni, L.

    2013-12-01

    High-resolution images can be used to obtain rocks location and size on planetary surfaces. In particular rock size-frequency distribution is a key parameter to evaluate the surface roughness, to investigate the geologic processes that formed the surface and to assess the hazards related with spacecraft landing. The manual search for rocks on high-resolution images (even for small areas) can be a very intensive work. An automatic or semi-automatic algorithm to identify rocks is mandatory to enable further processing as determining the rocks presence, size, height (by means of shadows) and spatial distribution over an area of interest. Accurate rocks and shadows contours localization are the key steps for rock detection. An approach to contour detection based on morphological operators and statistical thresholding is presented in this work. The identified contours are then fitted using a proper geometric model of the rocks or shadows and used to estimate salient rocks parameters (position, size, area, height). The performances of this approach have been evaluated both on images of Martian analogue area of Morocco desert and on HiRISE images. Results have been compared with ground truth obtained by means of manual rock mapping and proved the effectiveness of the algorithm. The rock abundance and rocks size-frequency distribution derived on selected HiRISE images have been compared with the results of similar analyses performed for the landing site certification of Mars landers (Viking, Pathfinder, MER, MSL) and with the available thermal data from IRTM and TES.

  17. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  18. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; hide

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  19. Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification.

    PubMed

    Wei, Yi; Wang, Yuxia; Wang, Lianyan; Hao, Dongxia; Ma, Guanghui

    2011-10-15

    Amphiphilic co-polymer, which can maintain the stability of proteins and increase the protein loading efficiency, is considered as an exploring-worthy biodegrade polymer for drug delivery. However, amphiphilic microcapsules prepared by conventional methods, such like mechanical stirring and spray-drying methods, exhibit broad size distributions due to its hydrophilic sequences, leading to poor reproducibility. In this study, we employed poly(monomethoxypoly ethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA), one of common amphiphilic polymers, as model to focus on investigating the process parameters and mechanisms to prepare PELA microcapsules with narrow size distribution and regular sphericity by combining premix membrane emulsification and double emulsion technique. The coarse double emulsion with broad size distribution was repeatedly pressed through Shirasu Porous Glass (SPG) membrane with relatively high pressure to form the fine emulsion with narrow size distribution. Then, the microcapsules with narrow size distribution can be obtained by solvent extraction method. It was found that it was more difficult to obtain PELA microcapsules with narrow size distribution and smooth surface due to its amphiphilic property, compared with the cases of PLA and PLGA. The smooth surface morphology was found to be related to several factors including internal water phase with less volume, slower stirring rate during solidification and using ethyl acetate as oil phase. It was also found that mass ratio of hydrophilic mPEG, stabilizer PVA concentration in external water phase and transmembrane pressure played important role on the distribution of microcapsules size. The suitable preparation conditions were determined as follows: for the membrane with pore size of 2.8 μm, the mass ratio of PLA/mPEG was 19:1, volume ratio of W(1)/O was 1:10 and O/W(2) was 1:5, PVA concentration (w/v) was 1.0%, magnetic stirring rate during solidification was 60 rpm and 300 kPa was chosen as transmembrane pressure. There was a linear relationship between the diameter of microcapsules and the pore size of the membranes. Finally, by manipulating the process parameters, PELA microcapsules with narrow size distributions (coefficient of variation was less than 15%), smooth morphology and various sizes, were obtained. Most importantly, the key factors affecting fabrication have been revealed and mechanisms were illustrated in detail, which would shed light on the research of amphiphilic polymer formulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Constraining ejecta particle size distributions with light scattering

    NASA Astrophysics Data System (ADS)

    Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William

    2017-06-01

    The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.

  1. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

    PubMed

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-10-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

  2. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length

    PubMed Central

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-01-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094

  3. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  4. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  5. Effect of shape and size of lung and chest wall on stresses in the lung

    NASA Technical Reports Server (NTRS)

    Vawter, D. L.; Matthews, F. L.; West, J. B.

    1975-01-01

    To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).

  6. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    PubMed Central

    Cai, Yang; Wang, Xiaosong; Yuan, Shijian

    2017-01-01

    Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening. PMID:28772658

  7. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which inmore » turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.« less

  8. Sub-surface mechanical damage distributions during grinding of fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Wong, L L; Miller, P E

    2005-11-28

    The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a singlemore » exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific understanding of SSD formation can provide a means to establish recipes to fabricate SSD-free, laser damage resistant optical surfaces.« less

  9. The clouds of Venus. II - An investigation of the influence of coagulation on the observed droplet size distribution

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.

    1977-01-01

    An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.

  10. Contribution of the hydrostatic pressure to the shape of silver island particles

    NASA Astrophysics Data System (ADS)

    Anno, E.; Hoshino, R.

    1984-09-01

    We have investigated the shape change of silver island particles caused by the surface energy reduction. When the surface energy was reduced by the reaction with hydrogen sulfide, the flattening of the particles was observed. As is well known, the similar shape change takes place when the particle size increases. Therefore, the particle shape is considered to depend both on the surface energy and the particle size. From this consideration, we predict the contribution of the hydrostatic pressure P to the particle shape. As evidence of this contribution, we consider the existence of the critical size below which P is larger than the adhesive force FA between deposit and substrate surface. Investigating the influence of the flattening due to the surface energy reduction on the size distribution, the critical size is found and estimated to be about 80 Å in diameter. This value is comparable with that estimated from the condition P = FA.

  11. Comparison of aerosol volume size distributions between column and surface measurements downwind of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Choi, Y.; Ghim, Y. S.

    2015-12-01

    The aerosol volume size distribution is one of the most important parameters in retrieving aerosol optical properties and studying radiative forcing. The column-integrated aerosol volume size distribution for AERONET was obtained from inversion product level 1.5 (22 bins between 0.1 and 30 μm in diameter) from the measurements of CIMEL sunphotometer (CE-318); that for SKYNET was obtained using skyrad.pack V5 (20 bins, 0.02-33 μm) from the measurements of PREDE skyradiometer (POM-02). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer system consisting of a scanning mobility particle scanner (Grimm, Model 5.419; 89 bins, 0.005-0.35 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement was conducted in Yongin, downwind of Seoul, Korea, from April 30 to June 27, 2015. The measurement site is located on the rooftop of a five-story building on the hill (37.34°N, 127.27°E, 167 m above sea level) in the global campus of Hankuk University of Foreign Studies. To investigate the discrepancy in effective diameter and fine mode volume fraction, we compared the volume size distributions when the measurement time coincided within 5 minutes because the measurement intervals were different between instruments.

  12. Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu

    2017-06-01

    This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.

  13. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.

    PubMed

    Lu, Jennifer Q; Yi, Sung Soo

    2006-04-25

    A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

  14. Improved particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  15. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea.

    PubMed

    Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A

    2015-06-15

    Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  17. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation, accretionary pellet formation, rapid surface sealing and infiltration-excess overland flow generation whilst a coarse surface layer demonstrated exclusively rainsplash-driven particle detachment throughout the rainfall simulations. This experimental protocol has the potential to quantitatively examine the effects of a variety of individual parameters in RTL initiation under controlled conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays amore » significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.« less

  19. Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach.

    PubMed

    Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard

    2017-10-12

    The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the representativeness of the two models described in the first part of this study. They were also used to calculate the VSSA values and these calculated values were compared to the experimental results. For narrow particle size distributions, both models give similar VSSA values quite comparable to the experimental ones. But when the particle size distribution broadens or is of multi-bimodal shape, as theoretically predicted, one model leads to VSSA values higher than the experimental ones while the other most often leads to VSSA values lower than the experimental ones. The experimental VSSA approach then appears as a reliable, simple screening tool to identify nano and non-nano-materials. The modelling approach cannot be used as a formal identification tool but could be useful to screen for potential effects of shape, polydispersity and size, for example to compare various possible nanoforms.

  20. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  1. Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Lucchetti, Alice; Bertini, Ivano; Marzari, Francesco; A'Hearn, Michael F.; La Forgia, Fiorangela; Lazzarin, Monica; Naletto, Giampiero; Barbieri, Cesare

    2016-01-01

    Aims: We derive the size-frequency distribution of boulders on comet 103P/Hartley 2, which are computed from the images taken by the Deep Impact/HRI-V imaging system. We indicate the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the High Resolution Imager-Visible CCD camera on 4 November 2010. Boulders ≥10 m were identified and manually extracted from the datasets with the software ArcGIS. We derived the global size-frequency distribution of the illuminated side of the comet (~50%) and identified the power-law indexes characterizing the two lobes of 103P. The three-pixel sampling detection, together with the shadowing of the surface, enables unequivocally detection of boulders scattered all over the illuminated surface. Results: We identify 332 boulders ≥10 m on the imaged surface of the comet, with a global number density of nearly 140/km2 and a cumulative size-frequency distribution represented by a power law with index of -2.7 ± 0.2. The two lobes of 103P show similar indexes, I.e., -2.7 ± 0.2 for the bigger lobe (called L1) and -2.6+ 0.2/-0.5 for the smaller lobe (called L2). The similar power-law indexes and similar maximum boulder sizes derived for the two lobes both point toward a similar fracturing/disintegration phenomena of the boulders as well as similar lifting processes that may occur in L1 and L2. The difference in the number of boulders per km2 between L1 and L2 suggests that the more diffuse H2O sublimation on L1 produce twice the boulders per km2 with respect to those produced on L2 (primary activity CO2 driven). The 103P comet has a lower global power-law index (-2.7 vs. -3.6) with respect to 67P. The global differences between the two comets' activities, coupled with a completely different surface geomorphology, make 103P hardly comparable to 67P. A shape distribution analysis of boulders ≥30 m performed on 103P suggests that the cometary boulders show more elongated shapes when compared to collisional laboratory fragments as well as to the boulders present on the surfaces of 25 143 Itokawa and 433 Eros asteroids. Consequently, this supports the interpretation that cometary boulders have different origins with respect to the impact-related asteroidal boulders.

  2. Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus

    2017-10-01

    The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (<10 km), the solar wind leads to a depletion of fine grains (<100µm) on the surface. Ground observations of the two asteroids currently targeted by spacecraft, Ryugu (Hayabusa-2) and Bennu (OSIRIS-REx), indicate that their surfaces could be covered in mm- to cm-sized regolith grains. As these small bodies have surface gravity levels below 10-5g, g being the Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes <250 µm have revealed a transition of the grain behavior from a gravity-dominated regime to a cohesion-dominated regime when the local gravity level reaches values below 10-3g. This is in good agreement with analytical and simulation studies for these grain sizes. From the expected grain sizes at the surfaces of Ryugu and Bennu, we have now focused on larger grain sizes ranging from mm to cm. We have carried out a series of experiments to study the cohesion behavior of such larger grains of asteroid regolith simulant. The simulant used was CI Orgueil of Deep Space Industries. Experiments included laboratory tabletop avalanching, compression and shear force measurements, as well as low-velocity impacts under microgravity.Our goal is to determine if the grain size distribution has an influence on the cohesion behavior of the regolith and if we can validate numerical simulation results with experimental measurements. We will discuss the implications of our results for sample return or landing missions to small bodies such as asteroids or Martian moons.

  3. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.

  4. Field sampling of loose erodible material: A new method to consider the full particle-size range

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Gill, Thomas E.

    2017-04-01

    The aerodynamic entrainment of sand and dust is determined by the atmospheric forces exerted onto the soil surface and by the soil-surface condition. If aerodynamic forces are strong enough to generate sand and dust lifting, the entrained sediment amount still critically depends on the supply of loose particles readily available for lifting. This loose erodible material (LEM) is sometimes defined as the thin layer of loose particles on top of a crusted surface. Here, we more generally define LEM as loose particles or particle aggregates available for entrainment, which may or may not overlay a soil crust. Field sampling of LEM is difficult and only few attempts have been made. Motivated by saltation as the most efficient process to generate dust emission, methods have focused on capturing LEM in the sand-size range or on determining the potential of a soil surface to be eroded by aerodynamic forces and particle impacts. Here, our focus is to capture the full particle-size distribution of LEM in situ, including the dust and sand-size range, to investigate the potential and likelihood of dust emission mechanisms (aerodynamic entrainment, saltation bombardment, aggregate disintegration) to occur. A new vacuum method is introduced and its capability to sample LEM without significant alteration of the LEM particle-size distribution is investigated.

  5. An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples

    PubMed Central

    Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.

    2015-01-01

    Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069

  6. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  7. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE PAGES

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...

    2017-03-22

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  8. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  9. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    NASA Astrophysics Data System (ADS)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  10. Ceramic powder for sintering materials

    NASA Technical Reports Server (NTRS)

    Akiya, H.; Saito, A.

    1984-01-01

    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed.

  11. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  12. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  13. Properties and Fluxes of Primary Marine Aerosol Generated Via Detrainment of Turbulence-Modulated Bubble Plumes from Fresh North Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.

  14. STREAMBED PARTICLE SIZE FROM PEBBLE COUNTS USING VISUALLY ESTIMATED SIZE CLSASES: JUNK OR USEFUL DATA?

    EPA Science Inventory

    In large-scale studies, it is often neither feasible nor necessary to obtain the large samples of 400 particles advocated by many geomorphologists to adequately quantify streambed surface particle-size distributions. Synoptic surveys such as U.S. Environmental Protection Agency...

  15. Differential Effects of Monovalent Cations and Anions on Key Nanoparticle Attributes

    EPA Science Inventory

    Understanding the key particle attributes such as particle size, size distribution and surface charge of both the nano- and micron-sized particles is the first step in drug formulation as such attributes are known to directly influence several characteristics of drugs including d...

  16. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  17. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO{sub 2} adsorption performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargazi, Ghasem, E-mail: g.sargazi@gmail.com; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran; Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com

    2017-06-15

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2{sup k-1} factorial design experiments, and the response surfacemore » optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m{sup 2}/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO{sub 2} adsorption. - Graphical abstract: A facile route was used for fabrication of a new metal -organic framework based on tantalum nanostructures that have high surface area, considerable porosity, homogenous morphology, and small size distribution.« less

  18. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  19. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  20. Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    NASA Technical Reports Server (NTRS)

    Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.

    2007-01-01

    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.

  1. Pigments, size and distribution of Synechococcus spp. in the Black Sea

    NASA Astrophysics Data System (ADS)

    Uysal, Zahit

    2000-03-01

    Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).

  2. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    PubMed

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  3. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  4. The VMC Survey. XXIX. Turbulence-controlled Hierarchical Star Formation in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sun, Ning-Chen; de Grijs, Richard; Cioni, Maria-Rosa L.; Rubele, Stefano; Subramanian, Smitha; van Loon, Jacco Th.; Bekki, Kenji; Bell, Cameron P. M.; Ivanov, Valentin D.; Marconi, Marcella; Muraveva, Tatiana; Oliveira, Joana M.; Ripepi, Vincenzo

    2018-05-01

    In this paper we report a clustering analysis of upper main-sequence stars in the Small Magellanic Cloud, using data from the VMC survey (the VISTA near-infrared YJK s survey of the Magellanic system). Young stellar structures are identified as surface overdensities on a range of significance levels. They are found to be organized in a hierarchical pattern, such that larger structures at lower significance levels contain smaller ones at higher significance levels. They have very irregular morphologies, with a perimeter–area dimension of 1.44 ± 0.02 for their projected boundaries. They have a power-law mass–size relation, power-law size/mass distributions, and a log-normal surface density distribution. We derive a projected fractal dimension of 1.48 ± 0.03 from the mass–size relation, or of 1.4 ± 0.1 from the size distribution, reflecting significant lumpiness of the young stellar structures. These properties are remarkably similar to those of a turbulent interstellar medium, supporting a scenario of hierarchical star formation regulated by supersonic turbulence.

  5. Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers

    USDA-ARS?s Scientific Manuscript database

    Sprinkler drop size distribution and associated drop velocities have a major influence on sprinkler performance in regards to application intensity, uniformity of water application, wind drift, evaporation losses and kinetic energy transferred to the soil surface. Sprinkler drop size measurements a...

  6. A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China.

    PubMed

    Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei

    2016-02-01

    The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.

  7. Surface-sediment grain-size distribution and sediment transport in the subaqueous Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Stattegger, K.; Nittrouer, C.; Phung, P. V.; Liu, P.; DeMaster, D. J.; Bui, D. V.; Le, A. D.; Nguyen, T. N.

    2016-02-01

    Collected surface-sediment samples in coastal water around Mekong Delta (from distributary channels to Ca Mau Peninsula) were analyzed to determine surface-sediment grain-size distribution and sediment-transport trend in the subaqueous Mekong Delta. The grain-size data set of 238 samples was obtained by using the laser instrument Mastersizer 2000 and LS Particle Size Analyzer. Fourteen samples were selected for geochemical analysis (total-organic and carbonate content). These geochemical results were used to assist in interpreting variations of granulometricparamenters along the cross-shore transects. Nine transects were examined from CungHau river mouth to Ca Mau Peninsula and six thematic maps on the whole study area were made. The research results indicate that: (1) generally, the sediment becomes finer from the delta front downwards to prodelta and becomes coarser again and poorer sorted on the adjacent inner shelf due to different sources of sediment; (2) sediment-granulometry parameters vary among sedimentary sub-environments of the underwater part of Mekong Delta, the distance from sediment source and hydrodynamic regime controlling each region; (3) the net sediment transport is southwest toward the Ca Mau Peninsula.

  8. Interpretations of family size distributions: The Datura example

    NASA Astrophysics Data System (ADS)

    Henych, Tomáš; Holsapple, Keith A.

    2018-04-01

    Young asteroid families are unique sources of information about fragmentation physics and the structure of their parent bodies, since their physical properties have not changed much since their birth. Families have different properties such as age, size, taxonomy, collision severity and others, and understanding the effect of those properties on our observations of the size-frequency distribution (SFD) of family fragments can give us important insights into the hypervelocity collision processes at scales we cannot achieve in our laboratories. Here we take as an example the very young Datura family, with a small 8-km parent body, and compare its size distribution to other families, with both large and small parent bodies, and created by both catastrophic and cratering formation events. We conclude that most likely explanation for the shallower size distribution compared to larger families is a more pronounced observational bias because of its small size. Its size distribution is perfectly normal when its parent body size is taken into account. We also discuss some other possibilities. In addition, we study another common feature: an offset or "bump" in the distribution occurring for a few of the larger elements. We hypothesize that it can be explained by a newly described regime of cratering, "spall cratering", which controls the majority of impact craters on the surface of small asteroids like Datura.

  9. The effects of surface finish and grain size on the strength of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  10. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) asmore » threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. • Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. • Run timing for small-size fish (~65-90 mm) peaked (702 fish) on December 18. Downstream passage of small-size juvenile fish was variable, occurring on two days in the spring, eight days in the summer, and at times throughout late fall and winter. A total of 7,017 ± 690 small-size fish passed through the turbine penstock intakes during the study period. • Relatively few fish passed into the ROs when they were open in summer (2 fish/d) and winter (8 fish/d). • Fish were surface-oriented with 62-80% above 10 m deep. The highest percentage of fish (30-60%) was in the 5-10 m depth bin. We draw the following conclusions from the study. • The non-obtrusive hydroacoustic data from this study are reliable because passage estimates and patterns were similar with those observed in the direct capture data from the tailrace screw trap and were consistent with distribution patterns observed in other studies of juvenile salmonid passage at dams. • Fish passage at LOP was apparently affected but not dominated by dam operations and reservoir elevation. • The surface-oriented vertical distribution of fish we observed supports development of surface passage or collector devices. In summary, the high-resolution spatially and temporally data reported herein provide detailed estimates of vertical, horizontal, diel, daily, and seasonal passage and distributions at LOP during March 2010 through January 2011. This information is applicable to management decisions on design and development of surface passage and collections devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above Lookout Point Dam.« less

  11. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl4 with crown ether alkalide.

    PubMed

    Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A

    2014-02-07

    Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.

  12. The magnetized sheath of a dusty plasma with grains size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less

  13. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

    PubMed Central

    Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki

    2017-01-01

    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell–based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724

  14. Study the fragment size distribution in dynamic fragmentation of laser shock loding tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu

    2017-06-01

    Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.

  15. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  16. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    PubMed

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  17. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  18. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  19. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Miller, P E; Menapace, J A

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and its influence on the resulting crack distribution. The results of these studies are summarized in references 1-7. In the second area of polishing, we conducted a series of experiments showing the influence of rogue particles (i.e., particles in the polishing slurry that are larger than base particles) on the creation of scratches on polished surfaces. Scratches can be thought of a as a specific type of sub-surface damage. The characteristics (width, length, type of fractures, concentration) were explained in terms of the rogue particle size, the rogue particle material, and the viscoelastic properties of the lap. The results of these studies are summarized in references 6-7. In the third area of etching, we conducted experiments aimed at understanding the effect of HF:NH{sub 4}F acid etching on surface fractures on fused silica. Etching can be used as a method: (a) to expose sub-surface mechanical damage, (b) to study the morphology of specific mechanical damage occurring by indentation, and (c) to convert a ground surface containing a high concentration of sub-surface mechanical damage into surface roughness. Supporting models have been developed to describe in detail the effect of etching on the morphology and evolution of surface cracks. The results of these studies are summarized in references 8-9. In the fourth area of scratch forensics or scratch fractography, a set of new scratch forensic rule-of-thumbs were developed in order to aid the optical fabricator and process engineer to interpret the cause of scratches and digs on surfaces. The details of how these rules were developed are described in each of the references included in this summary (1-9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs that have been developed in this study. In the fifth and final area of laser damage, we demonstrated that the removal of such surface fractures from the surface during optical fabrication can dramatically improve the laser damage.« less

  20. Atomistic modeling of dropwise condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L.; Muralidhar, K.

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smallermore » sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast,Jerome; Mei,Fan; Hubbe,John

    Most of the instruments were deployed on the ARM Aerial Facility (AAF) Gulfstream-159 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Aerosol microphysical property measurements supplemented routine ARM aerosol measurements made at the surface. The G-1 completed transects over the SGP Central Facility at multiple altitudes within the boundary layer, and within and above clouds.

  2. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  3. Inverse design of a proper number, shapes, sizes, and locations of coolant flow passages

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1992-01-01

    During the past several years we have developed an inverse method that allows a thermal cooling system designer to determine proper sizes, shapes, and locations of coolant passages (holes) in, say, an internally cooled turbine blade, a scram jet strut, a rocket chamber wall, etc. Using this method the designer can enforce a desired heat flux distribution on the hot outer surface of the object, while simultaneously enforcing desired temperature distributions on the same hot outer surface as well as on the cooled interior surfaces of each of the coolant passages. This constitutes an over-specified problem which is solved by allowing the number, sizes, locations and shapes of the holes to adjust iteratively until the final internally cooled configuration satisfies the over-specified surface thermal conditions and the governing equation for the steady temperature field. The problem is solved by minimizing an error function expressing the difference between the specified and the computed hot surface heat fluxes. The temperature field analysis was performed using our highly accurate boundary integral element code with linearly varying temperature along straight surface panels. Examples of the inverse design applied to internally cooled turbine blades and scram jet struts (coated and non-coated) having circular and non-circular coolant flow passages will be shown.

  4. The regional abundance and size distribution of lakes and reservoirs in the United States and implication for estimates of global lake extent

    USGS Publications Warehouse

    McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies (< 0.001 km2) may be comparable with the number of lakes > 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.

  5. A corrected model for static and dynamic electromechanical instability of narrow nanotweezers: Incorporation of size effect, surface layer and finite dimensions

    NASA Astrophysics Data System (ADS)

    Koochi, Ali; Hosseini-Toudeshky, Hossein; Abadyan, Mohamadreza

    2018-03-01

    Herein, a corrected theoretical model is proposed for modeling the static and dynamic behavior of electrostatically actuated narrow-width nanotweezers considering the correction due to finite dimensions, size dependency and surface energy. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory is employed to consider the coupling effect of surface stresses and size phenomenon. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals (vdW) force and the fringing field effect. The proposed model is beneficial for the precise modeling of the narrow nanotweezers in nano-scale.

  6. Probe measurements and numerical model predictions of evolving size distributions in premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Filippo, A.; Sgro, L.A.; Lanzuolo, G.

    2009-09-15

    Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter ofmore » 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)« less

  7. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  8. Objective assessment of the effect of pupil size upon the power distribution of multifocal contact lenses.

    PubMed

    Papadatou, Eleni; Del Águila-Carrasco, Antonio J; Esteve-Taboada, José J; Madrid-Costa, David; Cerviño-Expósito, Alejandro

    2017-01-01

    To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses. Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed. The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about -3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens. In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient's visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.

  9. The Variation of Planetary Surfaces' Structure and Size Distribution with Depth

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2014-12-01

    The particle, rock and boulder size distribution of a planetary surface bring important implications not only to crucial aspects of future missions but also to the better understanding of planetary and earth sciences. By exploiting a novel statistical model, the evolution of particle fragmentation phenomena can be understood in terms of a descriptive maturity index, a measure of the number of fragmentation events that have produced the soil. This statistical model, which is mathematically constructed via fundamental physical principles, has been validated by terrestrial mineral grinding data and impact experiments. Applying the model to planetary surfaces, the number of fragmentation events is determined by production function curves that quantify the degree of impact cratering. The model quantifies the variation of the maturity index of the regolith with depth, with a high maturity index at the surface decreasing to a low index corresponding to the megaregolith of a blocky population and fractured bedrock. The measured lunar and martian particle size distributions at the surface is well matched by the model over several orders of magnitude. The continuous transition invoked by the model can be furthermore synthesised to provide temporal and spatial visualisations of the internal architecture of the Martian and Lunar regolith. Finally, the model is applied to the risk assessment and success criteria of future mission landings as well as drilling on planetary surfaces. The solutions to a variety of planetary fragmentation related problems can be found via exact mathematical foundations or through simulations using the particle population provided by the model's maturation.

  10. Measurment of threshold friction velocities at potential dust sources in semi-arid regions

    NASA Astrophysics Data System (ADS)

    King, Matthew A.

    The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.

  11. Percent area coverage through image analysis

    NASA Astrophysics Data System (ADS)

    Wong, Chung M.; Hong, Sung M.; Liu, De-Ling

    2016-09-01

    The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.

  12. The morphology of cometary dust: Subunit size distributions down to tens of nanometres

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus

    2017-04-01

    The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.

  13. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  14. Estimating the Grain Size Distribution of Mars based on Fragmentation Theory and Observations

    NASA Astrophysics Data System (ADS)

    Charalambous, C.; Pike, W. T.; Golombek, M.

    2017-12-01

    We present here a fundamental extension to the fragmentation theory [1] which yields estimates of the distribution of particle sizes of a planetary surface. The model is valid within the size regimes of surfaces whose genesis is best reflected by the evolution of fragmentation phenomena governed by either the process of meteoritic impacts, or by a mixture with aeolian transportation at the smaller sizes. The key parameter of the model, the regolith maturity index, can be estimated as an average of that observed at a local site using cratering size-frequency measurements, orbital and surface image-detected rock counts and observations of sub-mm particles at landing sites. Through validation of ground truth from previous landed missions, the basis of this approach has been used at the InSight landing ellipse on Mars to extrapolate rock size distributions in HiRISE images down to 5 cm rock size, both to determine the landing safety risk and the subsequent probability of obstruction by a rock of the deployed heat flow mole down to 3-5 m depth [2]. Here we focus on a continuous extrapolation down to 600 µm coarse sand particles, the upper size limit that may be present through aeolian processes [3]. The parameters of the model are first derived for the fragmentation process that has produced the observable rocks via meteorite impacts over time, and therefore extrapolation into a size regime that is affected by aeolian processes has limited justification without further refinement. Incorporating thermal inertia estimates, size distributions observed by the Spirit and Opportunity Microscopic Imager [4] and Atomic Force and Optical Microscopy from the Phoenix Lander [5], the model's parameters in combination with synthesis methods are quantitatively refined further to allow transition within the aeolian transportation size regime. In addition, due to the nature of the model emerging in fractional mass abundance, the percentage of material by volume or mass that resides within the transported fraction on Mars can be estimated. The parameters of the model thus allow for a better understanding of the regolith's history which has implications to the origin of sand on Mars. [1] Charalambous, PhD thesis, ICL, 2015 [2] Golombek et al., Space Science Reviews, 2016 [3] Kok et al., ROPP, 2012 [4] McGlynn et al., JGR, 2011 [5] Pike et al., GRL, 2011

  15. Fourier spectra of resonant nuclear forward scattering: lineshape dependence on absorber thickness distribution

    NASA Astrophysics Data System (ADS)

    Rykov, A. I.; Nomura, K.; Wang, J.

    2013-08-01

    We report on recent developments in the analysis of nuclear forward scattering (NFS) using the Fourier transformation of measured time spectra. In the frequency domain, it is shown that the lineshape is generally described by the convolution of two intensity factors. One of them is Lorentzian related to free decay. We derived the expressions for the second factor related to the Frenkel exciton polariton formed in Mössbauer media. For stray particles of a powder spread over a 2D surface the particle size distribution can be derived from Mössbauer thickness distribution. The thickness-related lineshape is deconvolved through sharpening the Fourier NFS spectra. The lineshapes in these sharpened spectra are theoretically expressed via the parameters of the particle size distributions. Through fitting the lineshapes with our theoretical expressions the particle size distribution parameters were determined.

  16. Predictive modelling of grain-size distributions from marine electromagnetic profiling data using end-member analysis and a radial basis function network

    NASA Astrophysics Data System (ADS)

    Baasch, B.; Müller, H.; von Dobeneck, T.

    2018-07-01

    In this work, we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine-learning techniques. Non-negative matrix factorization is used to determine grain-size end-members from sediment surface samples. Four end-members were found, which well represent the variety of sediments in the study area. A radial basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.

  17. Predictive modelling of grain size distributions from marine electromagnetic profiling data using end-member analysis and a radial basis function network

    NASA Astrophysics Data System (ADS)

    Baasch, B.; M"uller, H.; von Dobeneck, T.

    2018-04-01

    In this work we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine learning techniques. Nonnegative matrix factorisation is used to determine grain-size end-members from sediment surface samples. Four end-members were found which well represent the variety of sediments in the study area. A radial-basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.

  18. Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.

    2016-02-01

    We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.

  19. Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Schweiger, Axel; Steele, Michael; Stern, Harry

    2015-05-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. In this work, we have developed a FSD theory that is coupled to the ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. To focus only on the properties of mechanical floe size redistribution, the FSD theory is implemented in a simplified ITD and FSD sea ice model for idealized numerical experiments. Model results show that the simulated cumulative floe number distribution (CFND) follows a power law as observed by satellites and airborne surveys. The simulated values of the exponent of the power law, with varying levels of ice breakups, are also in the range of the observations. It is found that floe size redistribution and the resulting FSD and mean floe size do not depend on how floe size categories are partitioned over a given floe size range. The ability to explicitly simulate multicategory FSD and ITD together may help to incorporate additional model physics, such as FSD-dependent ice mechanics, surface exchange of heat, mass, and momentum, and wave-ice interactions.

  20. The Lunar Rock Size Frequency Distribution from Diviner Infrared Measurements

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Hayne, P. O.; Piqueux, S.; Bandfield, J.; Williams, J. P.; Ghent, R. R.; Paige, D. A.

    2016-12-01

    Knowledge of the rock size frequency distribution on a planetary body is important for understanding its geologic history and for selecting landing sites. The rock size frequency distribution can be estimated by counting rocks in high resolution images, but most bodies in the solar system have limited areas with adequate coverage. We propose an alternative method to derive and map rock size frequency distributions using multispectral thermal infrared data acquired at multiple times during the night. We demonstrate this new technique for the Moon using data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer in conjunction with three dimensional thermal modeling, leveraging the differential cooling rates of different rock sizes. We assume an exponential rock size frequency distribution, which has been shown to yield a good fit to rock populations in various locations on the Moon, Mars, and Earth [2, 3] and solve for the best radiance fits as a function of local time and wavelength. This method presents several advantages: 1) unlike other thermally derived rock abundance techniques, it is sensitive to rocks smaller than the diurnal skin depth; 2) it does not result in apparent decrease in rock abundance at night; and 3) it can be validated using images taken at the lunar surface. This method yields both the fraction of the surface covered in rocks of all sizes and the exponential factor, which defines the rate of drop-off in the exponential function at large rock sizes. We will present maps of both these parameters for the Moon, and provide a geological interpretation. In particular, this method reveals rocks in the lunar highlands that are smaller than previous thermal methods could detect. [1] Bandfield J. L. et al. (2011) JGR, 116, E00H02. [2] Golombek and Rapp (1997) JGR, 102, E2, 4117-4129. [3] Cintala, M.J. and K.M. McBride (1995) NASA Technical Memorandum 104804.

  1. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canadian Space Agency (CSA), and Environment and Climate Change Canada (ECCC). In addition, the Alert GAW Observatory is supported by ECCC.

  2. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; Xie, Xiaoxun; Wang, Hongli; Li, Jiandong; Shi, Zhengguo; Liu, Yangang

    2018-01-01

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10 m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution, and size distribution.

  3. Distribution of 28 elements in size fractions of lunar mare and highlands soils

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Wasson, J. T.

    1977-01-01

    Four volatile, six siderophile and 18 generally lithophile elements were determined in six sieve fractions of mare soil 15100 (moderately mature) and seven sieve fractions of highlands soil 66080 (highly mature). Previous work (Boynton et al., 1976) showed that the volatile elements in lunar soils were enriched in the finest size fraction relative to the coarsest factors by up to about 20. The present investigation tests Boynton's interpretation that the distribution pattern of the volatiles indicates the presence of two components: a volume-correlated component having volatile concentrations independent of grain size and a surface-correlated component with concentration increasing with decreasing grain size.

  4. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made to confirm this. Results of routine flight patterns designed to examine the spatial, vertical, and day-to-day variability of the aerosol will be presented and the link between the aerosol at the surface and aloft will be quantified. This presentation will emphasize the regional character of the aerosol and will assess its influence on cloud microphysics.

  5. A diffuse radar scattering model from Martian surface rocks

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  6. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  7. Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.

    PubMed

    Grime, John M A; Khan, Malek O

    2010-10-12

    A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.

  8. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15- 25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to present uncertainties in the impactor size distribution between d = 1- 100km , computing absolute ages for the surface of Pluto is entirely dependent on the extrapolation to small sizes and thus fraught with uncertainty. We show, however, what the ages would be for several cases and illustrate the relative importance of each Kuiper belt sub-population to the cratering rate, both now and integrated into the past. In addition, we compute the largest "fresh" crater expected to have formed in 1 Gyr on the surface of Pluto and in 3 Gyr on Charon (to 95% confidence) and use the "wavy" size distribution models to predict whether these largest "fresh" craters will provide surfaces for which portions of the crater production function can be measured should most of the target's surface appear saturated. The fly-through results coupled with telescopic surveys that bridge current uncertainties in the d = 10- 100km regime should eventually result in the population estimate uncertainties for the Kuiper belt sub-populations, and thus the impact fluxes onto Pluto and Charon, dipping to < 30 % . We also compute "disruption timescales" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra. We find that none of the four satellites have likely undergone a catastrophic disruption and reassembly event in the past ≈ 4Gyr . In addition, we find that for a knee size distribution with αfaint ⩽ 0.4 (down to sub-km diameters), satellites of all sizes are able to survive catastrophic disruption over the past 4 Gyr.

  9. Ejecta Production and Properties

    NASA Astrophysics Data System (ADS)

    Williams, Robin

    2017-06-01

    The interaction of an internal shock with the free surface of a dense material leads to the production of jets of particulate material from the surface into its environment. Understanding the processes which control the production of these jets -- both their occurrence, and properties such as the mass, velocity, and particle size distribution of material injected -- has been a topic of active research at AWE for over 50 years. I will discuss the effect of material physics, such as strength and spall, on the production of ejecta, drawing on experimental history and recent calculations, and consider the processes which determine the distribution of particle sizes which result as ejecta jets break up. British Crown Owned Copyright 2017/AWE.

  10. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-05-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.

  11. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks.

    PubMed

    Ding, Xiangyan; Li, Feilong; Zhao, Youxuan; Xu, Yongmei; Hu, Ning; Cao, Peng; Deng, Mingxi

    2018-04-23

    This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures.

  12. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks

    PubMed Central

    Ding, Xiangyan; Li, Feilong; Xu, Yongmei; Cao, Peng; Deng, Mingxi

    2018-01-01

    This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures. PMID:29690580

  13. Chemical properties and particle-size distribution of 39 surface-mine spoils in southern West Virginia

    Treesearch

    William T. Plass; Willis G. Vogel

    1973-01-01

    A survey of 39 surface-mine sites in southern West Virginia showed that most of the spoils from current mining operations had a pH of 5.0 or higher. Soil-size material averaged 37 percent of the weight of the spoils sampled. A major problem for the establishment of vegetation was a deficiency of nitrogen and phosphorus. This can be corrected with additions of...

  14. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    NASA Astrophysics Data System (ADS)

    Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.

  15. Ensemble modeling of very small ZnO nanoparticles.

    PubMed

    Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian

    2011-01-14

    The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.

  16. Model of adipose tissue cellularity dynamics during food restriction.

    PubMed

    Soula, H A; Géloën, A; Soulage, C O

    2015-01-07

    Adipose tissue and adipocytes play a central role in the pathogenesis of metabolic diseases related to obesity. Size of fat cells depends on the balance of synthesis and mobilization of lipids and can undergo important variations throughout the life of the organism. These variations usually occur when storing and releasing lipids according to energy demand. In particular when confronted to severe food restriction, adipocyte releases its lipid content via a process called lipolysis. We propose a mathematical model that combines cell diameter distribution and lipolytic response to show that lipid release is a surface (radius squared) limited mechanism. Since this size-dependent rate affects the cell׳s shrinkage speed, we are able to predict the cell size distribution evolution when lipolysis is the only factor at work: such as during an important food restriction. Performing recurrent surgical biopsies on rats, we measured the evolution of adipose cell size distribution for the same individual throughout the duration of the food restriction protocol. We show that our microscopic model of size dependent lipid release can predict macroscopic size distribution evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  18. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  19. Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.

    2015-12-01

    Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.

  20. Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels

    NASA Astrophysics Data System (ADS)

    Monsalve Sepulveda, A.; Yager, E.

    2013-12-01

    Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each patch class, and then added the bedload fluxes for each patch to calculate the reach-averaged sediment transport rate. Sediment mobility in patches was highly dependent on the patch's class and location relative to the thalweg and large roughness elements. Compared to deterministic formulations, the use of distributions of shear stress improved predictions of bedload transport in steep mountain channels.

  1. Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles.

    PubMed

    Nakamura, Michihiro; Ozaki, Shuji; Abe, Masahiro; Doi, Hiroyuki; Matsumoto, Toshio; Ishimura, Kazunori

    2010-08-01

    Thiol-organosilica particles of a narrow size distribution, made from 3-mercaptopropyltrimethoxysilane (MPMS), were prepared by means of a one-pot synthesis. We examined three synthetic conditions at high temperature (100 degrees C), including the Stöber synthesis and two entirely aqueous syntheses. Under all conditions, the sizes of MPMS particles were well controlled, and the average of the coefficient of variation for the size distribution was less than 20%. The incubation times required for formation of MPMS particles were shorter at high temperature than at low temperature. MPMS particles internally functionalized with fluorescent dye were also prepared by means of the same one-pot synthesis. On flow cytometry analysis these MPMS particles showed distinct peaks of scattering due to well-controlled sizes of particles as well as due to fluorescence signals. Real-time observation of interaction between fluorescent MPMPS particles and cultured cells could be observed under fluorescent microscopy with bright light. The surface of the as-prepared MPMS particles contained exposed mercaptopropyl residues, and the ability to adsorb proteins was at least 6 times higher than that of gold nanopaticles. In addition, fluorescein-labeled proteins adsorbed to the surface of the particles were quantitatively detected at the pg/ml level by flow cytometry. MPMS particles surface functionalized with anti-CD20 antibody using adsorption could bind with lymphoma cells expressing CD20 specifically. In this paper, we demonstrated the possibility of size-controlled thiol-organosilica particles for wild range of biological applications. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  2. Model Simulation of Diurnal Vertical Migration Patterns of Different-Sized Colonies of Microcystis Employing a Particle Trajectory Approach.

    PubMed

    Chien, Yu Ching; Wu, Shian Chee; Chen, Wan Ching; Chou, Chih Chung

    2013-04-01

    Microcystis , a genus of potentially harmful cyanobacteria, is known to proliferate in stratified freshwaters due to its capability to change cell density and regulate buoyancy. In this study, a trajectory model was developed to simulate the cell density change and spatial distribution of Microcystis cells with nonuniform colony sizes. Simulations showed that larger colonies migrate to the near-surface water layer during the night to effectively capture irradiation and become heavy enough to sink during daytime. Smaller-sized colonies instead took a longer time to get to the surface. Simulation of the diurnally varying Microcystis population profile matched the observed pattern in the field when the radii of the multisized colonies were in a beta distribution. This modeling approach is able to take into account the history of cells by keeping track of their positions and properties, such as cell density and the sizes of colonies. It also serves as the basis for further developmental modeling of phytoplanktons that are forming colonies and changing buoyancy.

  3. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  4. Respiration in heterotrophic unicellular eukaryotic organisms.

    PubMed

    Fenchel, Tom

    2014-08-01

    Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Human preocular mucins reflect changes in surface physiology.

    PubMed

    Berry, M; Ellingham, R B; Corfield, A P

    2004-03-01

    Mucin function is associated with both peptide core and glycosylation characteristics. The authors assessed whether structural alterations occurring during mucin residence in the tear film reflect changes in ocular surface physiology. Ocular surface mucus was collected from normal volunteers as N-acetyl cysteine (NAcCys) washes or directly from the speculum after cataract surgery. To assess the influence of surface health on mucins, NAcCys washings were also obtained from patients with symptoms, but no clinical signs of dry eye (symptomatics). Mucins were extracted in guanidine hydrochloride (GuHCl) with protease inhibitors. Buoyant density of mucin species, a correlate of glycosylation density, was followed by reactivity with anti-peptide core antibodies. Mucin hydrodynamic volume was assessed by gel filtration on Sepharose CL2B. Surface fluid and mucus contained soluble forms of MUC1, MUC2, MUC4, and MUC5AC and also the same species requiring DTT solubilisation. Reactivity with antibodies to MUC2 and MUC5AC peaked at 1.3-1.5 g/ml in normals, while dominated by underglycosylated forms in symptomatics. Surface mucins were predominantly smaller than intracellular species. MUC2 size distributions were different in symptomatics and normals, while those of MUC5AC were similar in these two groups. A reduction in surface mucin size indicates post-secretory cleavage. Dissimilarities in surface mucin glycosylation and individual MUC size distributions in symptomatics suggest changes in preocular mucin that might precede dry eye signs.

  6. Human preocular mucins reflect changes in surface physiology

    PubMed Central

    Berry, M; Ellingham, R B; Corfield, A P

    2004-01-01

    Background/aims: Mucin function is associated with both peptide core and glycosylation characteristics. The authors assessed whether structural alterations occurring during mucin residence in the tear film reflect changes in ocular surface physiology. Methods: Ocular surface mucus was collected from normal volunteers as N-acetyl cysteine (NAcCys) washes or directly from the speculum after cataract surgery. To assess the influence of surface health on mucins, NAcCys washings were also obtained from patients with symptoms, but no clinical signs of dry eye (symptomatics). Mucins were extracted in guanidine hydrochloride (GuHCl) with protease inhibitors. Buoyant density of mucin species, a correlate of glycosylation density, was followed by reactivity with anti-peptide core antibodies. Mucin hydrodynamic volume was assessed by gel filtration on Sepharose CL2B. Results: Surface fluid and mucus contained soluble forms of MUC1, MUC2, MUC4, and MUC5AC and also the same species requiring DTT solubilisation. Reactivity with antibodies to MUC2 and MUC5AC peaked at 1.3–1.5 g/ml in normals, while dominated by underglycosylated forms in symptomatics. Surface mucins were predominantly smaller than intracellular species. MUC2 size distributions were different in symptomatics and normals, while those of MUC5AC were similar in these two groups. Conclusions: A reduction in surface mucin size indicates post-secretory cleavage. Dissimilarities in surface mucin glycosylation and individual MUC size distributions in symptomatics suggest changes in preocular mucin that might precede dry eye signs. PMID:14977773

  7. Analysis of atomic force microscopy data for surface characterization using fuzzy logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Mousa, Amjed, E-mail: aalmousa@vt.edu; Niemann, Darrell L.; Niemann, Devin J.

    2011-07-15

    In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional searchmore » technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: {yields} A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. {yields} The technique is applicable to different surfaces regardless of their densities. {yields} Fuzzy logic technique does not require manual adjustment of the algorithm parameters. {yields} The technique can quantitatively capture differences between surfaces. {yields} This technique yields more realistic structure boundaries compared to other methods.« less

  8. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    PubMed

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  10. Spatial distribution of impact craters on Deimos

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  11. Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution.

    PubMed

    Enders, Kristina; Lenz, Robin; Stedmon, Colin A; Nielsen, Torkel G

    2015-11-15

    We studied abundance, size and polymer type of microplastic down to 10μm along a transect from the European Coast to the North Atlantic Subtropical Gyre (NASG) using an underway intake filtration technique and Raman micro-spectrometry. Concentrations ranged from 13 to 501itemsm(-3). Highest concentrations were observed at the European coast, decreasing towards mid-Atlantic waters but elevated in the western NASG. We observed highest numbers among particles in the 10-20μm size fraction, whereas the total volume was highest in the 50-80μm range. Based on a numerical model size-dependent depth profiles of polyethylene microspheres in a range from 10-1000μm were calculated and show a strong dispersal throughout the surface mixed layer for sizes smaller than 200μm. From model and field study results we conclude that small microplastic is ubiquitously distributed over the ocean surface layer and has a lower residence time than larger plastic debris in this compartment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  13. Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.; Lai, I.-L.; Lee, J.-C.; Cheng, Y.-C.; Li, Y.; Lin, Z.-Y.; Vincent, J.-B.; Besse, S.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hviid, S. F.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; López-Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Michalik, H.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Thomas, N.; Toth, E.; Tubiana, C.

    2016-06-01

    Aims: We aim to characterize the circular depressions of comet 67P/Churyumov-Gerasimenko and investigate whether such surface morphology of a comet nucleus is related to the cumulative sublimation effect since becoming a Jupiter family comet (JFC). Methods: The images from the Rosetta/OSIRIS science camera experiment are used to construct size frequency distributions of the circular depression structures on comet 67P and they are compared with those of the JFCs 81P/Wild 2, 9P/Tempel 1, and 103P/Hartley 2. The orbital evolutionary histories of these comets over the past 100 000 yr are analyzed statistically and compared with each other. Results: The global distribution of the circular depressions over the surface of 67P is charted and classified. Descriptions are given to the characteristics and cumulative size frequency distribution of the identified features. Orbital statistics of the JFCs visited by spacecraft are derived. Conclusions: The size frequency distribution of the circular depressions is found to have a similar power law distribution to those of 9P/Tempel 1 and 81P/Wild 2. This might imply that they could have been generated by the same process. Orbital integration calculation shows that the surface erosion histories of 81P/Wild 2, and 9P/Tempel 1 could be shorter than those of 67P, 103 P/Hartley 2 and 19P/Borrelly. From this point of view, the circular depressions could be dated back to the pre-JFC phase or the transneptunian phase of these comets. The north-south asymmetry in the distribution of the circular depressions could be associated with the heterogeneous structure of the nucleus of comet 67P and/or the solar insolation history.

  14. Modeling pore corrosion in normally open gold- plated copper connectors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less

  15. Geoscientific Mapping of Vesta by the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.

  16. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    NASA Astrophysics Data System (ADS)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  17. Size distribution of particle-phase molecular markers during a severe winter pollution episode.

    PubMed

    Kleeman, Michael J; Riddle, Sarah G; Jakober, Chris A

    2008-09-01

    Airborne particulate matter was collected using filter samplers and cascade impactors in six size fractions below 1.8 microm during a severe winter air pollution event at three sites in the Central Valley of California. The smallest size fraction analyzed was 0.056 < Dp <0.1 microm particle diameter, which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Separate samples were collected during the daytime (10 a.m. to 6 p.m. PST) and nighttime (8 p.m. to 8 a.m. PST) to characterize diurnal patterns. Each sample was extracted with organic solvents and analyzed using gas chromatography mass spectrometry for molecular markers that can be used for size-resolved source apportionment calculations. Colocated impactor and filter measurements were highly correlated (R8 > 0.8) for retene, benzo[ghi]flouranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, coronene, MW302 polycyclic aromatic hydrocarbon (PAHs), 17beta(H)-21alpha(H)-30-norhopane, 17alpha(H)-21beta(H)-hopane, alphabetabeta-20R-C29-ethylcholestane, levoglucosan, and cholesterol. Of these compounds, levoglucosan was present in the highest concentration (60-2080 ng m(-3)) followed by cholesterol (6-35 ng m(-3)), PAHs (2-38 ng m(-3)), and hopanes and steranes (0-2 ng m(-3)). Nighttime concentrations were higher than daytime concentrations in all cases. Organic compound size distributions were generally similar to the total carbon size distributions during the nighttime but showed greater variability during the daytime. This may reflect the dominance of fresh emission in the stagnant surface layer during the evening hours and the presence of aged organic aerosol at the surface during the daytime when the atmosphere is better mixed. All of the measured organic compound particle size distributions had a single mode that peaked somewhere between 0.18 and 0.56 microm, but the width of each distribution varied by compound. Cholesterol generally had the broadest particle size distribution, while benzo[ghi]perylene and 17alpha(H)-21beta(H)-29-norhopane generally had sharper peaks. The difference between the size distributions of the various particle-phase organic compounds reflects the fact that these compounds exist in particles emitted from different sources. The results of the current study will prove useful for size-resolved source apportionment exercises.

  18. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  19. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  20. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Fung, Inez

    1994-01-01

    A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).

  1. Effect of sacrificial agents on the dispersion of metal cocatalysts for photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Cao, Shaowen; Shen, Baojia; Huang, Qian; Chen, Zhe

    2018-06-01

    Surface photodeposition of noble metal cocatalyst has been regarded as an effective approach to facilitate the separation of charge carriers and reduce the over-potential of water reduction, thus to enhance the photocatalytic H2-production activities of semiconductor photocatalyst. Herein, the influences of sacrificial agents used in the photodeposition process on the dispersion of noble metal nanoparticles are investigated, via a series of technique of photocatalytic hydrogen evolution test, microstructure analysis and photoelectrochemical measurement. As a result, the sacrificial agents are found to show large impact on the loading amount, particle size and distribution of different metals on the surface of g-C3N4. The real loading amount of Pt and Au is higher in methanol solution than that in triethanolamine solution. Better distribution and smaller size of Pt nanoparticles are achieved in the presence of methanol; while better distribution and smaller size of Au nanoparticles are achieved in the presence of triethanolamine. As a result, quite different charge transfer ability is achieved for the synthesized Pt and Au decorated g-C3N4, which subsequently leads to disparate photocatalytic activities of the same g-C3N4 photocatalyst under various conditions. The finding in this work indicates that the valid deposition content, particle size and distribution of metal cocatalysts should be carefully taken into account when comparing the photocatalytic activities among various samples.

  2. Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties

    NASA Astrophysics Data System (ADS)

    Araujo, L. L.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Llewellyn, D. J.; Kluth, P.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.

    2008-09-01

    A combination of conventional and synchrotron-based techniques has been used to characterize the size-dependent structural and thermal properties of Ge nanocrystals (NCs) embedded in a silica (a-SiO2) matrix. Ge NC size distributions with four different diameters ranging from 4.0 to 9.0 nm were produced by ion implantation and thermal annealing as characterized with small-angle x-ray scattering and transmission electron microscopy. The NCs were well represented by the superposition of bulklike crystalline and amorphous environments, suggesting the formation of an amorphous layer separating the crystalline NC core and the a-SiO2 matrix. The amorphous fraction was quantified with x-ray-absorption near-edge spectroscopy and increased as the NC diameter decreased, consistent with the increase in surface-to-volume ratio. The structural parameters of the first three nearest-neighbor shells were determined with extended x-ray-absorption fine-structure (EXAFS) spectroscopy and evolved linearly with inverse NC diameter. Specifically, increases in total disorder, interatomic distance, and the asymmetry in the distribution of distances were observed as the NC size decreased, demonstrating that finite-size effects govern the structural properties of embedded Ge NCs. Temperature-dependent EXAFS measurements in the range of 15-300 K were employed to probe the mean vibrational frequency and the variation of the interatomic distance distribution (mean value, variance, and asymmetry) with temperature for all NC distributions. A clear trend of increased stiffness (higher vibrational frequency) and decreased thermal expansion with decreasing NC size was evident, confirming the close relationship between the variation of structural and thermal/vibrational properties with size for embedded Ge NCs. The increase in surface-to-volume ratio and the presence of an amorphous Ge layer separating the matrix and crystalline NC core are identified as the main factors responsible for the observed behavior, with the surrounding a-SiO2 matrix also contributing to a lesser extent. Such results are compared to previous reports and discussed in terms of the influence of the surface-to-volume ratio in objects of nanometer dimensions.

  3. Straight from the source's mouth; a quantitative study of grain-size export for an entire active rift, the Corinth Rift, central Greece

    NASA Astrophysics Data System (ADS)

    Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; Brooke, Sam A. S.; McNeill, Lisa C.; Gawthorpe, Robert L.

    2017-04-01

    The volumes, grain sizes and characteristics of sediment supplied from source catchments fundamentally controls basin stratigraphy. However, to date, few studies have constrained sediment budgets, including grain size, released into an active rift basin at a regional scale. The Gulf of Corinth, central Greece, is one of the most rapidly extending rifts in the world, with geodetic measurements of 5 mm/yr in the East to 15 mm/yr in the West. It has well-constrained climatic and tectonic boundary conditions and bedrock lithologies are well-characterised. It is therefore an ideal natural laboratory to study the grain-size export for a rift. In the field, we visited the river mouths of 49 catchments draining into the Corinth Gulf, which in total drain 83% of the rift. At each site, hydraulic geometries, surface grain-size of channel bars and full-weighted grain-size distributions of river sediment were obtained. The surface grain-size was measured using the Wolman point count method and the full-weighted grain-size distribution of the bedload by in-situ sieving. In total, approximately 17,000 point counts and 3 tonnes of sediment were processed. The grain-size distributions show an overall increase from East to West on the southern coast of the gulf, with largest grain-sizes exported from the Western rift catchments. D84 ranges from 20 to 110 mm, however 50% of D84 grain-sizes are less than 40 mm. Subsequently, we derived the full Holocene sediment budget for the Corinth Gulf by combining our grain size data with catchment sediment fluxes, constrained using the BQART model and calibrated to known Holocene sediment volumes in the basin from seismic data (c.f. Watkins et al., in review). This is the first time such a budget has been derived for the Corinth Rift. Finally, our estimates of sediment budgets and grain sizes were compared to regional uplift constraints, fault distributions, slip rates and lithology to identify the relative importance of these controls on sediment supply to the basin.

  4. Comparison of Aerosol Volume Size Distributions between Surface and Ground-based Remote Sensing Measurements Downwind of Seoul, Korea during MAPS-Seoul

    NASA Astrophysics Data System (ADS)

    Kim, P.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.

  5. Effects of crystallite size on the structure and magnetism of ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Zhu, Mengqiang; Koopal, Luuk K.

    2015-12-15

    The structure and magnetic properties of nano-sized (1.6 to 4.4 nm) ferrihydrite samples are systematically investigated through a combination of X-ray diffraction (XRD), X-ray pair distribution function (PDF), X-ray absorption spectroscopy (XAS) and magnetic analyses. The XRD, PDF and Fe K-edge XAS data of the ferrihydrite samples are all fitted well with the Michel ferrihydrite model, indicating similar local-, medium- and long-range ordered structures. PDF and XAS fitting results indicate that, with increasing crystallite size, the average coordination numbers of Fe–Fe and the unit cell parameter c increase, while Fe2 and Fe3 vacancies and the unit cell parameter a decrease.more » Mössbauer results indicate that the surface layer is relatively disordered, which might have been caused by the random distribution of Fe vacancies. These results support Hiemstra's surface-depletion model in terms of the location of disorder and the variations of Fe2 and Fe3 occupancies with size. Magnetic data indicate that the ferrihydrite samples show antiferromagnetism superimposed with a ferromagnetic-like moment at lower temperatures (100 K and 10 K), but ferrihydrite is paramagnetic at room temperature. In addition, both the magnetization and coercivity decrease with increasing ferrihydrite crystallite size due to strong surface effects in fine-grained ferrihydrites. Smaller ferrihydrite samples show less magnetic hyperfine splitting and a lower unblocking temperature (T B) than larger samples. The dependence of magnetic properties on grain size for nano-sized ferrihydrite provides a practical way to determine the crystallite size of ferrihydrite quantitatively in natural environments or artificial systems.« less

  6. Modeling the Effect of Grain Size Mixing on Thermal Inertia Values Derived from Diurnal and Seasonal THEMIS Measurements

    NASA Astrophysics Data System (ADS)

    McCarty, C.; Moersch, J.

    2017-12-01

    Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS observations may prove to be a new way of distinguishing surfaces that have relatively uniform grain sizes from those that have mixed grain sizes. Assessing the effects of different geologic processes can be aided by noting variations in grain size distributions, so this method may be useful as a new way to extract geologic interpretations from the THEMIS thermal data set.

  7. Recovering 3D Particle Size Distributions from 2D Sections

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Olson, Daniel A.

    2017-01-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible and practical method to do this, show which of these techniques gives the most faithful conversions, and provide (online) short computer codes to calculate both 2D- 3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter. Proper determination of particle size distributions in chondrites - for chondrules, CAIs, and metalgrains - is of basic importance for assessing the processes of formation and/or of accretion of theseparticles into their parent bodies. To date, most information of this sort is gathered from 2D samplescut from a rock such as in microscopic analysis of thin sections, or SEM maps of planar surfaces(Dodd 1976, Hughes 1978a,b; Rubin and Keil 1984, Rubin and Grossman 1987, Grossman et al1988, Rubin 1989, Metzler et al 1992, Kuebler et al 1999, Nelson and Rubin 2002, Schneider et al 2003, Hezel et al 2008; Fisher et al 2014; for an exhaustive review with numerous references seeFriedrich et al 2014). While qualitative discrimination between chondrite types can readily be doneusing data of this sort, any deeper exploration of the processes by which chondrite constituents werecreated or emplaced into their parent requires a more quantitative approach.

  8. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.

  9. Analysis of particulates on tape lift samples

    NASA Astrophysics Data System (ADS)

    Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling

    2014-09-01

    Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.

  10. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    DOE PAGES

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; ...

    2018-01-18

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less

  11. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less

  12. Ceres and the terrestrial planets impact cratering record

    NASA Astrophysics Data System (ADS)

    Strom, R. G.; Marchi, S.; Malhotra, R.

    2018-03-01

    Dwarf planet Ceres, the largest object in the Main Asteroid Belt, has a surface that exhibits a range of crater densities for a crater diameter range of 5-300 km. In all areas the shape of the craters' size-frequency distribution is very similar to those of the most ancient heavily cratered surfaces on the terrestrial planets. The most heavily cratered terrain on Ceres covers ∼15% of its surface and has a crater density similar to the highest crater density on <1% of the lunar highlands. This region of higher crater density on Ceres probably records the high impact rate at early times and indicates that the other 85% of Ceres was partly resurfaced after the Late Heavy Bombardment (LHB) at ∼4 Ga. The Ceres cratering record strongly indicates that the period of Late Heavy Bombardment originated from an impactor population whose size-frequency distribution resembles that of the Main Belt Asteroids.

  13. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets

    PubMed Central

    Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren

    2014-01-01

    The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292

  14. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  15. The spatial distribution of major and trace elements in the surface sediments from the northeastern Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Ge, Q.; Xue, Z. G.

    2017-12-01

    Major and trace elements contents and grain size were analyzed for surface sediments retrieved from the northeastern Beibu (Tonkin) Gulf. The study area was divided into four zones: Zone I locates in the northeastern coastal area of the gulf, which received large amount of the fluvial materials from local rivers; Zone II locates in the center of the study area, where surface sediments is from multiple sources; Zone III locates in the Qiongzhou Strait, which is dominated by material from the Pearl River and Hainan Island; Zone IV locates in the southwest of the study area, and the sediments mainly originated from the Red River. Statistical analyses of sediment geochemical characteristics reveal that grain size is the leading factor for elementary distribution, which is also influenced by hydrodynamics, mineral composition of terrigenous sediments, anthropogenic activity, and authigenic components.

  16. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  17. The mixing of rain with near-surface water

    Treesearch

    Dennis F. Houk

    1976-01-01

    Rain experiments were run with various temperature differences between the warm rain and the cool receiving water. The rain intensities were uniform and the raindrop sizes were usually uniform (2.2 mm, 3.6 mm, and 5.5 mm diameter drops). Two drop size distributions were also used.

  18. Growth energetics of germanium quantum dots by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Richard Joseph

    Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. We also describe experimental methods of island growth and characterization in order to understand the relevant physical processes and to interpret experimental observations for comparison with simulation. We show that pyramidal Ge islands with rebonded step {105} facets are energetically favorable compared to growth of planar Ge (2 x 8) on Si(001). We determine how the chemical potential of these islands varies with size, lateral spacing, and wetting layer thickness. We also illustrate the atomic-level structure of these islands with favorable formation energy. Intermixing can occur between the growing Ge film and the Si substrate. We show that although Ge prefers to wet the surface, entropy drives some fraction into the underlying layers. We present a simple model of intermixing by equilibration of the top crystal layers. The equilibration is performed with a flexible lattice Monte Carlo simulation. Ultimately, intermixing produces a temperature-dependent graded Ge concentration. The resulting chemical potential leads to the onset of islanding after 3-4 monolayers of deposition, consistent with experimental observations. The distribution of island sizes on a surface is determined by the relation of island energy to size. We find that there exists a minimum-energy island size due to the interaction of surface energy and bulk relaxation. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The distributions, with peak populations around 86 000 atoms, compare favorably with experiment. This work explores the driving force in growth of Ge on Si(001). The knowledge derived here explains why islanding occurs and provides guidance for the control of island self-assembly to construct useful microelectronic devices from quantum dots.

  19. Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors

    NASA Astrophysics Data System (ADS)

    Auras-Schudnagies, Anabelle; Kroon, Dick; Ganssen, Gerald; Hemleben, Christoph; Van Hinte, Jan E.

    1989-10-01

    Living planktonic foraminiferal and pteropod distribution patterns in the western Arabian Sea, Gulf of Aden and Red Sea, collected during two summer cruises (1984, 1985), reflect the hydrographical system that is mainly controlled by a combination of monsoonal winds and evaporation rates. Spinose species constitute the majority of the planktonic foraminiferal assemblages in the Red Sea during both monsoonal seasons. The non-spinose species Globorotalia menardii, Neogloboquadrina dutertrei and Pulleniatina obliquiloculata, which are always abundant in the Arabian Sea, are present only during winter inflow. The intensity and duration of these inflowing surface currents control their distribution pattern. Stable oxygen isotope ratios show that G. menardii survives but ceases to grow north of Bab el Mandeb, while N. dutertrei continues to grow. Trends in the foraminiferal distribution in surface waters compare well with those of the sea floor, as far as larger specimens (>250 μm) are concerned, but differ for the small ones. Surface distribution patterns of small-sized specimens and juvenile/neanic stages of large-sized fully grown species do not correspond to those in the core top samples. The distribution pattern of living pteropods in the Red Sea is closely related to distinct water masses and corresponds to the distribution in top core sediments. Pteropods are absent in the sediments of the Gulf of Aden and the western Arabian Sea due to dissolution. Peak abundances of various pteropods and foraminifers indicate the presence of local upwelling processes in the Bab el Mandeb area. Determining these dynamics allows for the reconstruction of ancient oceanic environments and climatic interactions in the area.

  20. Dual-polarization characteristics of the radar ocean return in the presence of rain

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Kumagai, H.; Kozu, T.

    1992-01-01

    Experimental data are presented on the polarimetric and dual-wavelength characteristics of the ocean surface in the presence of rain. To explain a portion of the variability observed in scatter plots under rain conditions, a storm model is used that incorporates measured drop size distributions. The fairly large variability indicates that effects of drop size distribution and the presence of partially melted particles can introduce a significant error in the estimate of attenuation. This effect is especially significant in the case of a 10-GHz radar under high rain rates. A surface reference method at this frequency will tend to overestimate the rain attenuation unless melting layer attenuation is properly taken into account. Observations of the cross-polarization return in stratiform rain over an ocean surface show three distinct components. Two of these correspond to aspherical, nonaligned particles in the melting layer seen in the direct and mirror-image returns. The remaining part depends both on the off-nadir depolarization by the surface and on the rain medium. A possible mechanism for this latter effect is the bistatic scattering from the rain to the surface.

  1. In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.

    2016-12-01

    Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.

  2. A first generation dynamic ingress, redistribution and transport model of soil track-in: DIRT.

    PubMed

    Johnson, D L

    2008-12-01

    This work introduces a spatially resolved quantitative model, based on conservation of mass and first order transfer kinetics, for following the transport and redistribution of outdoor soil to, and within, the indoor environment by track-in on footwear. Implementations of the DIRT model examined the influence of room size, rug area and location, shoe size, and mass transfer coefficients for smooth and carpeted floor surfaces using the ratio of mass loading on carpeted to smooth floor surfaces as a performance metric. Results showed that in the limit for large numbers of random steps the dual aspects of deposition to and track-off from the carpets govern this ratio. Using recently obtained experimental measurements, historic transport and distribution parameters, cleaning efficiencies for the different floor surfaces, and indoor dust deposition rates to provide model boundary conditions, DIRT predicts realistic floor surface loadings. The spatio-temporal variability in model predictions agrees with field observations and suggests that floor surface dust loadings are constantly in flux; steady state distributions are hardly, if ever, achieved.

  3. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    PubMed

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  4. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.

    PubMed

    Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J

    2013-01-16

    Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.

  5. [Size distribution characteristics of particulate matter in the top areas of coke oven].

    PubMed

    Xie, Qiuyan; Zhao, Hongwei; Yu, Tao; Ning, Zhaojun; Li, Jinmu; Niu, Yong; Zheng, Yuxin; Zhao, Xiulan; Duan, Huawei

    2015-03-01

    To systematically evaluate the environmental exposure information of coke oven workers, we investigated the concentration and size distribution characteristics of the particle matter (PM) in the top working area of coke oven. The aerodynamic particle sizer spectrometer was employed to collect the concentration and size distribution information of PM at a top working area. The PM was divided into PM ≤ 1.0 µm, 1.0 µm < PM ≤ 2.5 µm, 2.5 µm < PM ≤ 5.0 µm, 5.0 µm < PM ≤ 10.0 µm and PM>10.0 µm based on their aerodynamic diameters. The number concentration, surface area concentration, and mass concentration were analyzed between different groups. We also conducted the correlation analysis on these parameters among groups. We found the number and surface area concentration of top area particulate was negatively correlated with particle size, but mass concentration curve showed bimodal type with higher point at PM = 1.0 µm and PM = 5.0 µm. The average number concentration of total particulate matter in the top working area was 661.27 number/cm³, surface area concentration was 523.92 µm²/cm³, and mass concentration was 0.12 mg/m³. The most number of particulate matter is not more than 1 µm (PM(1.0)), and its number concentration and surface area concentration accounted for 96.85% and 67.01% of the total particles respectively. In the correlation analysis, different particle size correlated with the total particulate matter differently. And the characteristic parameters of PM2.5 cannot fully reflect the total information of particles. The main particulate matter pollutants in the top working area of coke oven is PM1.0, and it with PM(5.0) can account for a large proportion in the mass concentration of PM. It suggest that PM1.0 and PM(5.0) should be considered for occupational health surveillance on the particulate matter in the top area of coke oven.

  6. Maritime Infrared Propagation: Particle Size Distribution Measurements Using a Helicopter-Borne Aerosol Counter.

    DTIC Science & Technology

    1981-09-01

    COUNTER by R. R. Allan S. Craig SUMMARY -Particle size distribution measurements were made on nine successive days in late August 1980 using a PMS FSSP-100...aerosol counter flown on a Wessex Mk 5 helicopter. In all, 14 flights were made giving data at two heights, 30 and 100 ft above the sea surface...aerosol content over deep water. It was a specific recommendation of TTCP-JAG9 that airborne aerosol measurements should be made in conjunction with al

  7. A generalized threshold model for computing bed load grain size distribution

    NASA Astrophysics Data System (ADS)

    Recking, Alain

    2016-12-01

    For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.

  8. Dust lifting in GEM-Mars using a roughness length map

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Neary, L.; Whiteway, J. A.; Hébrard, E.

    2013-09-01

    Lifting of size distributed dust due to surface wind stress and dust devils has been implemented in the GEM-Mars 3D-GCM. It turned out that a detailed surface roughness length map was necessary to bring the simulated dust opacities in accordance with observations.

  9. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    NASA Astrophysics Data System (ADS)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  10. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics.

    PubMed

    Lehofer, Bernhard; Bloder, Florian; Jain, Pritesh P; Marsh, Leigh M; Leitinger, Gerd; Olschewski, Horst; Leber, Regina; Olschewski, Andrea; Prassl, Ruth

    2014-11-01

    The objective of this study was to evaluate the impact of nebulization on liposomes with specific surface characteristics by applying three commercially available inhaler systems (air-jet, ultrasonic and vibrating-mesh). Conventional liposome formulations composed of phosphatidylcholine and cholesterol were compared to sterically stabilized PEGylated liposomes and cationic polymer coated liposomes.Liposomes of similar size (between 140 and 165 nm in diameter with polydispersity indices <0.1) were prepared by dry lipid film rehydration followed by size extrusion. Their stability upon nebulization was determined in terms of size, polydispersity index and leakage using a fluorescence quenching system. The transport efficiencies of the nebulizer devices and the influences of both salt and liposomes on the droplet size distribution of the aerosol were investigated. While the droplet size of the aerosol decreased with increasing salt concentration the liposomes had no influence on the droplet size distribution. The output of the nebulizers in terms of liposomal transport efficiencies differed significantly among the nebulizer principles (20–100%, p < 0.05), with the vibrating-mesh nebulizers being the most effective. The integrity of the conventional liposomes was almost unaffected by the atomization process, while polymer coated and especially positively charged liposomes showed enhanced leakage. The release rates for the hydrophilic model drug system were highest for the vibrating-mesh nebulizers regardless of the surface characteristics of the liposomes (increasing from 10% to 20% and 50% for the conventional, PEGylated and positively charged formulations, respectively). In view of surface modified liposomes our data suggest that drug delivery via nebulization necessitates the finding of a compromise between nebulizer efficiency, formulation stability and drug release profile to accomplish the development of tailored formulations suitable for advanced inhalation therapy.

  11. Study of bituminous surface treatments in Virginia : Phase II, Summer, 1964 : Distribution characteristics of materials, effectiveness of one size aggregate, setting time.

    DOT National Transportation Integrated Search

    1970-01-01

    Distribution Characteristics of Materials: Ten bituminous distributors and ten chip spreading operations were investigated the former by cotton pad, cup, and trough tests; the latter by measuring the distance covered by a truckload and by placing pan...

  12. Vertical distribution of the prokaryotic cell size in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.

    2012-12-01

    Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.

  13. Coupling Stable Water Isotopes in Vapor and Precipitation to Raindrop Size Distributions at a Mid-latitude Tall-tower Site to Evaluate the Role of Rain Evaporation in Boundary Layer Moisture Recycling

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D.

    2016-12-01

    The continental boundary layer moisture balance plays an important role in regulating water and energy exchange between the surface and the atmosphere, yet the mechanisms associated with moistening and drying are both poorly observed and modeled. Stable water isotope ratio measurements can provide insights into air mass origins, convection dynamics and mechanisms dominating atmosphere-land surface water fluxes. Profiles can be exploited to improve estimates of boundary layer moistening associated with evaporation of falling precipitation and contributions from surface evapotranspiration. We present two years of in situ tower-based measurements of isotope ratios of water vapor and precipitation (δD and δ18O) and raindrop size distributions from the Boulder Atmospheric Observatory (BAO) tall-tower site in Erie, Colorado. Isotope vapor measurements were made at 1 Hz with a full cycle from the surface to 300 meters recorded every 80 minutes. At the surface and 300m, water samples were collected during precipitation events and raindrop sizes were measured continuously using Parsivel instruments. We use this unique suite of measurements and, in particular, exploit the differences between the surface and 300m observations to constrain the surface layer hydrological mass balance during and after rain events, and evaluate parameterization choices for rain evaporation and moisture recycling in current isotope-enabled climate models. Aggregate raindrop size measurements showed shifts from populations of smaller raindrops at 300m to larger raindrops at the surface, contrary to what is expected for rain evaporation. Convective storms resulted in more uniform signatures between the surface and 300m, as well as longer isotope equilibration and adjustment time scales, whereas low Dexcess signatures (<9 to negative) during stratiform drizzle events were indicative of a greater degree of rain evaporation. Our observational results suggest that water vapor-rain equilibration is rarely achieved, and modification of the kinetic fractionation factor is necessary to better capture drop-size related isotope changes. This has implications not only for refining current global climate models, but also for interpreting proxy records connected to rainfall signatures that aid in understanding past hydrology.

  14. Ca-Mediated Electroformation of Cell-Sized Lipid Vesicles

    PubMed Central

    Tao, Fei; Yang, Peng

    2015-01-01

    Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca2+) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca2+ Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process. PMID:25950604

  15. Ca-mediated electroformation of cell-sized lipid vesicles.

    PubMed

    Tao, Fei; Yang, Peng

    2015-05-07

    Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca(2+)) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca(2+) Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process.

  16. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    NASA Astrophysics Data System (ADS)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  17. Evaluation of Model Microphysics within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is approx 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were approx 0.25 m/s too slow, while the SBU-YLIN was 0.25 to 0.5 m/s too fast. Overall, the BMPs simulate a size distribution close to the observed for D < 4 mm in the dendritic, plates, and mixed habit periods. The model BMPs underestimate the size distribution when large aggregates were observed. For D > 6 mm in the dendrites, side planes, and mixed habit periods, the BMPs are likely not simulating enough aggregation to create a larger size distribution, although the MORR (double moment) scheme seemed to perform best. These SBNY results will be compared with some results from GCPEx for a warm frontal snow band observed at 18 February 2012.

  18. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too slow, while the SBU-YLIN was 0.25 to 0.5 meters per second too fast. Overall, the BMPs simulate a size distribution close to the observed for D < 4 mm in the dendritic, plates, and mixed habit periods. The model BMPs underestimate the size distribution when large aggregates were observed. For D > 6 mm in the dendrites, side planes, and mixed habit periods, the BMPs are likely not simulating enough aggregation to create a larger size distribution, although the MORR (double moment) scheme seemed to perform best. These SBNY results will be compared with some results from GCPEx for a warm frontal snow band observed at 18 February 2012.

  19. Highly Efficient Antibacterial Surfaces Based on Bacterial/Cell Size Selective Microporous Supports.

    PubMed

    Vargas-Alfredo, Nelson; Santos-Coquillat, Ana; Martínez-Campos, Enrique; Dorronsoro, Ane; Cortajarena, Aitziber L; Del Campo, Adolfo; Rodríguez-Hernández, Juan

    2017-12-27

    We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells. The strategy proposed is based on the different size of bacteria (1-4 μm) in comparison with mammalian cells (above 20 μm) that permit the bacteria to enter in contact with the inner part of micrometer-sized pores where the antimicrobial functionality are placed. On the contrary, mammalian cells, larger in terms of size, remain at the top surface, thus reducing adverse cytotoxic effects and improving the biocompatibility of the substrates. For this purpose, we fabricated well-ordered functional microporous substrates (3-5 μm) using the breath figures approach that enabled the selective functionalization of the pore cavity, whereas the rest of the surface remained unaffected. Microporous surfaces were prepared from polymer blends comprising a homopolymer (i.e., polystyrene) and a block copolymer (either polystyrene-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) or a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate)). As a result, porous surfaces with a narrow size distribution and a clear enrichment of the PDMAEMA or the quaternized PDMAEMA block inside the pores were obtained that, in the case of the quaternized PDMAEMA, provided an excellent antimicrobial activity to the films.

  20. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  1. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore

    2016-06-01

    The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in particular, if these are used after inappropriate storage conditions.

  2. Structural characterization of casein micelles: shape changes during film formation.

    PubMed

    Gebhardt, R; Vendrely, C; Kulozik, U

    2011-11-09

    The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. © 2011 IOP Publishing Ltd

  3. Improving Simulations of Fine Dust Surface Concentrations over the Western United States by Optimizing the Particle Size Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Kok, Jasper F.; Henze, Daven

    2013-06-28

    To improve estimates of remote contributions of dust to fine particulate matter (PM2.5) in the western United States, new dust particle size distributions (PSDs) based upon scale-invariant fragmentation theory (Kok_PSD) with constraints from in situ measurements (IMP_PSD) are implemented in a chemical transport model (GEOS-Chem). Compared to initial simulations, this leads to reductions in the mass of emitted dust particles with radii <1.8 mm by 40%-60%. Consequently, the root-mean-square error in simulated fine dust concentrations compared to springtime surface observations in the western United States is reduced by 67%-81%. The ratio of simulated fine to coarse PM mass is alsomore » improved, which is not achievable by reductions in total dust emissions. The IMP_PSD best represents the PSD of dust transported from remote sources and reduces modeled PM2.5 concentrations up to 5 mg/m3 over the western United States, which is important when considering sources contributing to nonattainment of air quality standards. Citation: Zhang, L., J. F. Kok, D. K. Henze, Q. Li, and C. Zhao (2013), Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution, Geophys. Res. Lett., 40, 3270-3275, doi:10.1002/grl.50591.« less

  4. Size effects in MgO cube dissolution.

    PubMed

    Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver

    2015-03-10

    Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.

  5. Decoding Size Distribution Patterns in Marine and Transitional Water Phytoplankton: From Community to Species Level

    PubMed Central

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  6. Using quantitative analysis to understand the current and past physical processes that sculpted the Philae landing site

    NASA Astrophysics Data System (ADS)

    Poulet, Francois; Lucchetti, Alice; Bibring, Jean-Pierre; Langevin, Yves; Carter, John; Delbo, Marco; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Le Mouélic, Stéphane; Mottola, Stefano; Pilorget, Cédric; Vincendon, Mathieu; Cremonese, Gabriele

    2015-11-01

    The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., Science, 2015). The panorama acquired by CIVA at the landing site on the 67P comet reveals a rough terrain dominated by fractures and agglomerates of consolidated materials. While the composition of these materials is unknown, they provide unique structures to constrain the conditions prevailing at the surface of a comet. A quantitative analysis of the microscopic structures (grains that look like pebbles and fractures) will be presented. The pebble size distribution will be compared to the size distribution of other cometary materials such as boulders at the touchdown site (Mottola et al. Science, 2015), boulders surrounding the landing site (Lucchetti et al., A&A, submitted), >7m sized boulders globally distributed on the comet (Pajola et al., A&A, 2015), grains collected by the COSIMA experiment onboard Rosetta (Langevin et al., JGR, submitted) as well as population of grains remotely observed in coma and jets of other comets. The nature of the pebbles will be then discussed in relation to both endogenic and exogenic processes that could explain their formation. The fractures exhibit two different size distributions that are correlated to the texture of the landscape. Among different physical processes, we will evaluate whether thermal fatigue induced by diurnal temperature variations (Delbo et al. Nature, 2014) could be a mechanism of surficial fragmentation.

  7. Particle size distribution variance in untreated urban runoff and its implication on treatment selection.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2015-11-15

    Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Lunar Dust Characterization Activity at GRC

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.

    2008-01-01

    The fidelity of lunar simulants as compared to actual regolith is evaluated using Figures of Merit (FOM) which are based on four criteria: Particle Size, Particle Shape, Composition, and Density of the bulk material. In practice, equipment testing will require other information about both the physical properties (mainly of the dust fraction) and composition as a function of particle size. At Glenn Research Center (GRC) we are involved in evaluating a number of simulant properties of consequence to testing of lunar equipment in a relevant environment, in order to meet Technology Readiness Level (TRL) 6 criteria. Bulk regolith has been characterized for many decades, but surprisingly little work has been done on the dust fraction (particles less than 20 micrometers in diameter). GRC is currently addressing the information shortfall by characterizing the following physical properties: Particle Size Distribution, Adhesion, Abrasivity, Surface Energy, Magnetic Susceptibility, Tribocharging and Surface Chemistry/Reactivity. Since some of these properties are also dependent on the size of the particles we have undertaken the construction of a six stage axial cyclone particle separator to fractionate dust into discrete particle size distributions for subsequent evaluation of these properties. An introduction to this work and progress to date will be presented.

  9. Probing size-dependent electrokinetics of hematite aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedra-Królik, Karolina; Rosso, Kevin M.; Zarzycki, Piotr

    Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (f), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mappingmore » procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, a-Fe2O3). We found that the electrophoretic mobility and f-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size.« less

  10. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  11. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    PubMed

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A microwave scattering model for layered vegetation

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.

    1992-01-01

    A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.

  13. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.

    PubMed

    Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan

    2017-07-12

    Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive to real time particle concentration and size distribution. Averaged particle concentration over 24-h period will inevitably misrepresent the sensible information critical for realistic inhalation risk assessment. Particle size distribution carries very important information in determining human airway dosimetry. A pure number or mass concentration recommendation on the exposure limit at workplace is insufficient. A particle size distribution, together with the deposition equations, is critical to recognize the actual exposure risks. In addition, human airway dosimetry in number, mass and surface area varies significantly. A complete inhalation risk assessment requires the knowledge of toxicity mechanisms in response to each individual metric. Further improvements in these areas are needed.

  14. Incoherent light-induced self-organization of molecules.

    PubMed

    Kandjani, S Ahmadi; Barille, R; Dabos-Seignon, S; Nunzi, J M; Ortyl, E; Kucharski, S

    2005-12-01

    Although coherent light is usually required for the self-organization of regular spatial patterns from optical beams, we show that peculiar light-matter interaction can break this evidence. In the traditional method of recording laser-induced periodic surface structures, a light intensity distribution is produced at the surface of a polymer film by an interference between two coherent optical beams. We report on the self-organization followed by propagation of a surface relief pattern. It is induced in a polymer film by using a low-power and small-size coherent beam assisted by a high-power and large-size incoherent and unpolarized beam. We demonstrate that we can obtain large size and well-organized patterns starting from a dissipative interaction. Our experiments open new directions to improving optical processing systems.

  15. Computational and Experimental Studies of Microstructure-Scale Porosity in Metallic Fuels for Improved Gas Swelling Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mllett, Paul; McDeavitt, Sean; Deo, Chaitanya

    This proposal will investigate the stability of bimodal pore size distributions in metallic uranium and uranium-zirconium alloys during sintering and re-sintering annealing treatments. The project will utilize both computational and experimental approaches. The computational approach includes both Molecular Dynamics simulations to determine the self-diffusion coefficients in pure U and U-Zr alloys in single crystals, grain boundaries, and free surfaces, as well as calculations of grain boundary and free surface interfacial energies. Phase-field simulations using MOOSE will be conducted to study pore and grain structure evolution in microstructures with bimodal pore size distributions. Experiments will also be performed to validate themore » simulations, and measure the time-dependent densification of bimodal porous compacts.« less

  16. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    PubMed

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Friction angle measurements on a naturally formed gravel streambed: Implications for critical boundary shear stress

    Treesearch

    John M. Buffington; William E. Dietrich; James W. Kirchner

    1992-01-01

    We report the first measurements of friction angles for a naturally formed gravel streambed. For a given test grain size placed on a bed surface, friction angles varied from 10º to over 100º; friction angle distributions can be expressed as a function of test grain size, median bed grain size, and bed sorting parameter. Friction angles decrease with increasing grain...

  18. Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions

    USGS Publications Warehouse

    Rees, Terry F.

    1990-01-01

    Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.

  19. Role of Pb for Ag growth on H-passivated Si(1 0 0) surfaces

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Satpati, B.; Joseph, B.; Dev, B. N.

    2005-08-01

    We have deposited Ag on hydrogen passivated Si(1 0 0) surfaces under high vacuum conditions at room temperature. The deposition, followed by annealing at 250 °C for 30 min, produced silver islands of an average lateral size 36±14 nm. Depositing a small amount of Pb prior to Ag deposition reduced the average island size to 14±5 nm. A small amount of Pb, initially present at the Ag-Si interface, is found to be segregating to the surface of Ag after annealing. Both these aspects, namely, reduction of the island size and Pb floating on the Ag surface conform to the surfactant action of Pb. Samples have been characterized by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). A selective etching process that preferentially removes Pb, in conjunction with RBS, was used to detect surface segregation of Pb involving depth scales below the resolution of conventional RBS. The annealing and etching process leaves only smaller Ag islands on the surface with complete removal of Pb. Ag growth in the presence of Pb leads to smaller Ag islands with a narrower size distribution.

  20. Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information

    USGS Publications Warehouse

    Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.

    2009-01-01

    The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.

  1. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  2. Sputnik Planitia, Pluto Convection Cell Surface Velocities of ~10 Centimeters per Year Based on Sublimation Pit Distribution

    NASA Astrophysics Data System (ADS)

    Buhler, Peter Benjamin; Ingersoll, Andrew P.

    2017-10-01

    Sputnik Planitia, Pluto contains cellular landforms with areas on the order of a few 102-103 km2 that are likely the surface manifestation of convective overturn in a vast basin of nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map over 12,000 pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 and 5.9 ± 0.8 × 10-3 m per meter away from the cell center, depending on the cell. Due to finite data resolution, this is a lower bound on the size increase. Conservatively accounting for resolution effects yields upper bounds on the size vs. distance distribution of 4.2 ± 0.2 to 23.4 ± 1.5 × 10-3 m m-1. In order to convert the pit size vs. distance distribution into a pit age vs. distance distribution, we use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6 [+2.1,-0.6] × 10-4 m yr-1. Combined with the mapped distribution of pit radii, this yields surface velocities between 1.5 [+1.0,-0.2] and 6.2 [+3.4,-1.4] cm yr-1 for the slowest cell and surface velocities between 8.1 [+5.5,-1.0] and 17.9 [+8.9,-5.1] cm yr-1 for the fastest cell; the lower bound estimate for each cell accounts for resolution effects, while the upper bound estimate does not. These convection rates imply that the surface ages at the edge of cells reach approximately 4.2 to 8.9 × 105 yr, depending on the cell. The rates we find are comparable to rates of ~6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia [McKinnon, W.B. et al., 2016, Nature, 534(7605), 82-85]. Finally, we find that the minimum viscosity at the surface of the convection cells is of order 1016 to 1017 Pa s; we find that pits would relax away before sublimating to their observed radii of several hundred meters if the viscosity were lower than this value.

  3. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  4. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    PubMed

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  5. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.

    PubMed

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-05-15

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  6. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    PubMed Central

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-01-01

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116

  7. Constraints on early events in Martian history as derived from the cratering record

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1990-01-01

    Constrains on early events in Martian history are derived using the planet's cratering record. Variations in the shapes of the crater size-frequency distribution curves are interpreted as indicative of the size-frequency distribution of the production populations, thus providing information about the age of the unit relative to the end of the heavy bombardment period. Results from the analysis of craters superposed on heavily cratered units across the Martian surface provide constraints on the hemispheric dichotomy and the early erosional conditions on Mars.

  8. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 2. Model application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, James W.; Hoppel, William A.; Frick, Glendon M.

    1998-07-01

    The dynamics of aerosols in the marine boundary layer (MBL) are simulated with the marine boundary layer aerosol model (MARBLES), a one-dimensional, multicomponent sectional aerosol model [{ital Fitzgerald} {ital et al.}, this issue; {ital Gelbard} {ital et al.}, this issue]. First, to illustrate how the various aerosol processes influence the particle size distribution, the model was run with one or two processes operating on the same initial size distribution. Because of current interest in the effects of cloud processing of aerosols and exchange of aerosols with the free troposphere (FT) on marine aerosol size distributions, these two processes are examinedmore » in considerable detail. The simulations show that the effect of cloud processing (characteristic double-peaked size distribution) in the upper part of the MBL is manifested at the surface on a timescale that is much faster than changes due to exchange with the FT, assuming a typical exchange velocity of 0.6 cmthinsps{sup {minus}1}. The model predicts that the FT can be a significant source of particles for the MBL in the size range of the cloud-processing minimum, between the unactivated interstitial particles and the cloud condensation nuclei (CCN) which have grown as a result of conversion of dissolved SO{sub 2} to sulfate in cloud droplets. The model was also used to simulate the evolution of the aerosol size distribution in an air mass advecting from the east coast of the United States out over the ocean for up to 10 days. The modification of a continental aerosol size distribution to one that is remote marine in character occurs on a timescale of 6{endash}8 days. Nucleation was not observed in the base case 10-day advection simulation which assumed rather typical meteorological conditions. However, significant nucleation was predicted under a more favorable (albeit, atypical) combination of conditions which included significant precipitation scavenging (5 mmthinsph{sup {minus}1} of rain for 12 hours), colder temperatures by 10thinsp{degree}C (283 K at the surface decreasing to 278 K at 1000 m) and a high DMS flux (40 {mu}molthinspm{sup {minus}2}thinspd{sup {minus}1}). In a test of model self initialization, long-term (8{endash}10 days) predictions of marine aerosol size distributions were found to be essentially independent of initial conditions. {copyright} 1998 American Geophysical Union« less

  9. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  10. Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    NASA Astrophysics Data System (ADS)

    Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.

    2017-12-01

    Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionately negative effect on the mass balance of sediment.

  11. The Grain-size Patchiness of Braided Gravel-Bed Streams: Example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Malverti, L.; Meunier, P.; Ye, B.

    2012-04-01

    In gravel-beds rivers, sediments are sorted into patches of different grain-sizes. For single-thread streams, it has long been shown that this local granulometric sorting is closely linked to the channel morpho-sedimentary elements. For braided streams, this relation is still unclear. In such rivers, many observations of vertical sediment sorting has led to the definition of a surface and a subsurface layers. Because of this common stratification, methods for sampling gravel-bed rivers have been divided in two families. The surface layer is generally sampled by surface methods and the subsurface layer by volumetric methods. Yet, the equivalency between the two kind of techniques is still a key question. In this study, we characterized the grain-size distribution of the surface layer of the Urumqi River, a shallow braided gravel-bed river in China, by surface-count (Wolman grid-by-number) and volumetric (sieve-by-weight) sampling methods. An analysis of two large samples (212 grains and 3226 kg) show that these two methods are equivalent to characterize the river-bed surface layer. Then, we looked at the grain-size distributions of the river-bed morpho-sedimentary elements: (1) chutes at flow constrictions, which pass downstream to (2) anabranches and (3) bars at flow expansions. Using both sampling methods, we measured the diameter of more than 2300 grains and weight more than 6000 kg of grains larger than 4 mm. Our results show that the three morpho-sedimentary elements correspond only to two kinds of grain-size patches: (1) chutes composed of one coarse-grained top layer lying on finer deposits, and (2) anabranches and bars made up of finer-grained deposits more homogeneous in depth. On the basis of these quantitative observations, together with the concave or convex morphology of the different elements, we propose that chute patches form by erosion and transit with size-selective entrainment, whereas anabranch and bar patches rather develop and migrate by transit and deposition. These patch features may be typical of shallow braided gravel-bed rivers and should be considered in future works about on bedload transport processes and their geomorphologic and stratigraphic results.

  12. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  13. Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models.

    PubMed

    Schroeder, Natalia M; Matteucci, Silvia D; Moreno, Pablo G; Gregorio, Pablo; Ovejero, Ramiro; Taraborelli, Paula; Carmanchahi, Pablo D

    2014-01-01

    Monitoring species abundance and distribution is a prerequisite when assessing species status and population viability, a difficult task to achieve for large herbivores at ecologically meaningful scales. Co-occurrence patterns can be used to infer mechanisms of community organization (such as biotic interactions), although it has been traditionally applied to binary presence/absence data. Here, we combine density surface and null models of abundance data as a novel approach to analyze the spatial and seasonal dynamics of abundance and distribution of guanacos (Lama guanicoe) and domestic herbivores in northern Patagonia, in order to visually and analytically compare the dispersion and co-occurrence pattern of ungulates. We found a marked seasonal pattern in abundance and spatial distribution of L. guanicoe. The guanaco population reached its maximum annual size and spatial dispersion in spring-summer, decreasing up to 6.5 times in size and occupying few sites of the study area in fall-winter. These results are evidence of the seasonal migration process of guanaco populations, an increasingly rare event for terrestrial mammals worldwide. The maximum number of guanacos estimated for spring (25,951) is higher than the total population size (10,000) 20 years ago, probably due to both counting methodology and population growth. Livestock were mostly distributed near human settlements, as expected by the sedentary management practiced by local people. Herbivore distribution was non-random; i.e., guanaco and livestock abundances co-varied negatively in all seasons, more than expected by chance. Segregation degree of guanaco and small-livestock (goats and sheep) was comparatively stronger than that of guanaco and large-livestock, suggesting a competition mechanism between ecologically similar herbivores, although various environmental factors could also contribute to habitat segregation. The new and compelling combination of methods used here is highly useful for researchers who conduct counts of animals to simultaneously estimate population sizes, distributions, assess temporal trends and characterize multi-species spatial interactions.

  14. Secondary atomization in the combustion of electrostatic sprays

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1993-01-01

    The combustion of electrosprays in a laminar counterflow diffusion flame has been experimentally studied by measuring droplet size and velocity distributions and gas-phase temperature. Detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets 'interact' with the flame, the size distribution becomes bimodal. A secondary, sharp peak, in fact, develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than the parent ones. This fission is of electric nature and it occurs when the repulsion of electric charges overcomes the surface tension cohesive force ultimately leading to a disintegration into finer fragments at or about the so-called Rayleigh limit. We here report on the first observation in combustion environments of such 'explosions'. If, on the other hand, droplets enter the very high temperature region before exploding, there appears to be no evidence of bimodality in their size distribution. In this case, in fact, flame chemi-ions may neutralize the charge on the droplets and thus prevent disruption.

  15. Distribution of Different Sized Ocular Surface Vessels in Diabetics and Normal Individuals.

    PubMed

    Banaee, Touka; Pourreza, Hamidreza; Doosti, Hassan; Abrishami, Mojtaba; Ehsaei, Asieh; Basiry, Mohsen; Pourreza, Reza

    2017-01-01

    To compare the distribution of different sized vessels using digital photographs of the ocular surface of diabetic and normal individuals. In this cross-sectional study, red-free conjunctival photographs of diabetic and normal individuals, aged 30-60 years, were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The image areas occupied by vessels (AOV) of different diameters were calculated. The main outcome measure was the distribution curve of mean AOV of different sized vessels. Secondary outcome measures included total AOV and standard deviation (SD) of AOV of different sized vessels. Two hundred and sixty-eight diabetic patients and 297 normal (control) individuals were included, differing in age (45.50 ± 5.19 vs. 40.38 ± 6.19 years, P < 0.001), systolic (126.37 ± 20.25 vs. 119.21 ± 15.81 mmHg, P < 0.001) and diastolic (78.14 ± 14.21 vs. 67.54 ± 11.46 mmHg, P < 0.001) blood pressures. The distribution curves of mean AOV differed between patients and controls (smaller AOV for larger vessels in patients; P < 0.001) as well as between patients without retinopathy and those with non-proliferative diabetic retinopathy (NPDR); with larger AOV for smaller vessels in NPDR ( P < 0.001). Controlling for the effect of confounders, patients had a smaller total AOV, larger total SD of AOV, and a more skewed distribution curve of vessels compared to controls. Presence of diabetes mellitus is associated with contraction of larger vessels in the conjunctiva. Smaller vessels dilate with diabetic retinopathy. These findings may be useful in the photographic screening of diabetes mellitus and retinopathy.

  16. Electrochemical synthesis of a surface-porous Mg70.5Al29.5 eutectic alloy in a neutral aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng

    2018-03-01

    A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.

  17. Failure Analysis Handbook

    DTIC Science & Technology

    1989-08-18

    conditions, strain rate , geometry, manufacturing variables, microstructure, surface conditions, and alloy contamination. Exzvples of service failures are...depends on the ductility of the material, strain rate and stress concentration. The macrosocpic appearances of two ductile overstress fractures are shown...distribution of nucleation sites, stress orientation, temperature, ductility and strain rate . The size of the dimples is oontrolled by the size, number ard

  18. Size-Selective Modes of Aeolian Transport on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars conditions over the same surfaces was 309 µm, 695 µm and 1398 µm. For the mixed surfaces under Earth and Mars conditions, the size selection process resulted the formation of incipient ripples that migrated over a finer substrate. Determining the modes of transport under Martian conditions refines our understanding of the development of deflationary surfaces and bed forms.

  19. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    PubMed

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Boulders on asteroid Toutatis as observed by Chang’e-2

    PubMed Central

    Jiang, Yun; Ji, Jianghui; Huang, Jiangchuan; Marchi, Simone; Li, Yuan; Ip, Wing-Huen

    2015-01-01

    Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang’e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of −4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis’ boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr. PMID:26522880

  1. [Study on process and principle of lactose grinding modification to decrease hygroscopic of Rhodiolae Crenulatae Radix et Rhizoma extract].

    PubMed

    Zhang, Ding-Kun; Zhang, Fang; Lin, Jun-Zhi; Han, Li; Wu, Zhen-Feng; Yang, Ying-Guang; Yang, Ming

    2014-04-01

    In this paper, Rhodiolae Crenulatae Radix et Rhizoma extract,with high hygroscopic,was selected as research model, while lactose was selected as modifiers to study the effect of the grinding modification method on the hygroscopic. Subsequently, particle size distribution, scannin electron microscopy, infrared spectroscopy and surface properties were adopted for a phase analysis. The results showed that the modified extract, prepared by Rhodiolae Crenulatae Radix et Rhizoma extract grinding 5 min with the same amount of lactose UP2, which hygroscopic initial velocity, acceleration, and critical relative humidity moisture were less than that of Rhodiolae Crenulatae Radix et Rhizoma extract and the mixture dramatically. In addition, compared with the mixture, the size distribution of modified extract was much less, the microstructure was also difference, while the infrared spectroscopy and surface properties were similar with that of lactose. It is the main principle that lactose particle adhered to the surface of Rhodiolae Crenulatae Radix et Rhizoma extract after grinding mofication to decress the moisture obviously.

  2. Collagen fibril arrangement and size distribution in monkey oral mucosa

    PubMed Central

    OTTANI, V.; FRANCHI, M.; DE PASQUALE, V.; LEONARDI, L.; MOROCUTTI, M.; RUGGERI, A.

    1998-01-01

    Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed. PMID:9688498

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanping Guo; Abhishek Yadav; Tanju Karanfil

    Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less

  4. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  5. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  6. Categorized Crater Counts on Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Crown, D. A.; Joseph, E. C.

    2015-05-01

    We have developed a new approach for analyzing crater size-frequency distributions designed to interpret formation and modification ages from complex geologic surfaces, such as those of ice-rich debris aprons.

  7. Effect of particle size distribution on permeability in the randomly packed porous media

    NASA Astrophysics Data System (ADS)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  8. First Principles Study of Nanodiamond Optical and Electronic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raty, J; Galli, G

    2004-10-21

    Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibits very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films.« less

  9. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  10. Dependence on Solar Phase Angle and Grain Size of the Spectral Reflectance of the Railroad Valley Playa for GOSAT/GOSAT-2 Vicarious Calibration

    NASA Astrophysics Data System (ADS)

    Arai, T.; Matsunaga, T.

    2017-12-01

    GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.

  11. Effect of Feedstock Size and its Distribution on the Properties of Detonation Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Suresh Babu, P.; Rao, D. S.; Rao, G. V. N.; Sundararajan, G.

    2007-06-01

    The detonation spraying is one of the most promising thermal spray variants for depositing wear and corrosion resistant coatings. The ceramic (Al2O3), metallic (Ni-20 wt%Cr) , and cermets (WC-12 wt%Co) powders that are commercially available were separated into coarser and finer size ranges with relatively narrow size distribution by employing centrifugal air classifier. The coatings were deposited using detonation spray technique. The effect of particle size and its distribution on the coating properties were examined. The surface roughness and porosity increased with increasing powder particle size for all the coatings consistently. The feedstock size was also found to influence the phase composition of Al2O3 and WC-Co coatings; however does not influence the phase composition of Ni-Cr coatings. The associated phase change and %porosity of the coatings imparted considerable variation in the coating hardness, fracture toughness, and wear properties. The fine and narrow size range WC-Co coating exhibited superior wear resistance. The coarse and narrow size distribution Al2O3 coating exhibited better performance under abrasion and sliding wear modes however under erosion wear mode the as-received Al2O3 coating exhibited better performance. In the case of metallic (Ni-Cr) coatings, the coatings deposited using coarser powder exhibited marginally lower-wear rate under abrasion and sliding wear modes. However, under erosion wear mode, the coating deposited using finer particle size exhibited considerably lower-wear rate.

  12. Analyses of sweep-up, ejecta, and fallback material from the 4250 metric ton high explosive test ''MISTY PICTURE'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohletz, K.H.; Raymond, R. Jr.; Rawson, G.

    1988-01-01

    The MISTY PICTURE surface burst was detonated at the White Sands Missle range in May of 1987. The Los Alamos National Laboratory dust characterization program was expanded to help correlate and interrelate aspects of the overall MISTY PICTURE dust and ejecta characterization program. Pre-shot sampling of the test bed included composite samples from 15 to 75 m distance from Surface Ground Zero (SGZ) representing depths down to 2.5 m, interval samples from 15 to 25 m from SGZ representing depths down to 3m, and samples of surface material (top 0.5 cm) out to distances of 190 m from SGZ. Sweep-upmore » samples were collected in GREG/SNOB gages located within the DPR. All samples were dry-sieved between 8.0 mm and 0.045 mm (16 size fractures); selected samples were analyzed for fines by a contrifugal settling technique. The size distributions were analyzed using spectral decomposition based upon a sequential fragmentation model. Results suggest that the same particle size subpopulations are present in the ejecta, fallout, and sweep-up samples as are present in the pre-shot test bed. The particle size distribution in post-shot environments apparently can be modelled taking into account heterogeneities in the pre-shot test bed and dominant wind direction during and following the shot. 13 refs., 12 figs., 2 tabs.« less

  13. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-01

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06919j

  14. Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections

    NASA Technical Reports Server (NTRS)

    Mckay, David S.

    1989-01-01

    The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.

  15. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  16. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    NASA Astrophysics Data System (ADS)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 106 and detection limit of 1.0 × 10-7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  17. Impact and Cratering History of the Pluto System

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2014-11-01

    The observational opportunity of the New Horizons spacecraft fly-through of the Pluto system in July 2015 requires a current understanding of the Kuiper belt dynamical sub-populations to accurately interpret the cratering history of the surfaces of Pluto and its satellites. We use an Opik-style collision probability code to compute impact rates and impact velocity distributions onto Pluto and its binary companion Charon from the Canada-France Ecliptic Plane Survey (CFEPS) model of classical and resonant Kuiper belt populations (Petit et al., 2011; Gladman et al., 2012) and the scattering model of Kaib et al. (2011) calibrated to Shankman et al. (2013). Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with diameter d>100 km) connects to smaller objects, we compute cratering rates using three simple impactor size distribution extrapolations (a single power-law, a power-law with a knee, and a power-law with a divot) as well as the "curvy" impactor size distributions from Minton et al. (2012) and Schlichting et al. (2013). Current size distribution uncertainties cause absolute ages computed for Pluto surfaces to be entirely dependent on the extrapolation to small sizes and thus uncertain to a factor of approximately 6. We illustrate the relative importance of each Kuiper belt sub-population to Pluto's cratering rate, both now and integrated into the past, and provide crater retention ages for several cases. We find there is only a small chance a crater with diameter D>200 km has been created on Pluto in the past 4 Gyr. The 2015 New Horizons fly-through coupled with telescope surveys that cover objects with diameters d=10-100 km should eventually drop current crater retention age uncertainties on Pluto to <30%. In addition, we compute the "disruption timescale" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra.

  18. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer

    NASA Astrophysics Data System (ADS)

    Zhang, Kainan; Wang, Zhenyan; Li, Wenjian; Yan, Jun

    2018-01-01

    Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles (<32 μm), (2) medium particles (32-256 μm) and (3) large particles (>256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1-1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer. Abundant large biogenic particles were present in both surface and middle layers.

  19. Determining the influential depth for surface reflectance of sediment by BRDF measurements.

    PubMed

    Zhang, H; Voss, K; Reid, R

    2003-10-20

    We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.

  20. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Numerical evaluation of the laser-pulse modification modes of the metal surface layer in the presence of a surface-active component in the melt

    NASA Astrophysics Data System (ADS)

    Popov, V. N.; Cherepanov, A. N.

    2017-09-01

    Numerical evaluation of the laser-pulse modification of a metal layer with refractory nano-size particles was done. The modes of the laser-pulse action promoting creation of the flows for homogeneous distribution of modifying particles in the melt were determined for various amounts of the surface-active admixture in the metal.

  2. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO2 adsorption performance

    NASA Astrophysics Data System (ADS)

    Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef

    2017-06-01

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.

  3. Size, weight and position: ion mobility spectrometry and imaging MS combined.

    PubMed

    Kiss, András; Heeren, Ron M A

    2011-03-01

    Size, weight and position are three of the most important parameters that describe a molecule in a biological system. Ion mobility spectrometry is capable of separating molecules on the basis of their size or shape, whereas imaging mass spectrometry is an effective tool to measure the molecular weight and spatial distribution of molecules. Recent developments in both fields enabled the combination of the two technologies. As a result, ion-mobility-based imaging mass spectrometry is gaining more and more popularity as a (bio-)analytical tool enabling the determination of the size, weight and position of several molecules simultaneously on biological surfaces. This paper reviews the evolution of ion-mobility-based imaging mass spectrometry and provides examples of its application in analytical studies of biological surfaces.

  4. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  5. Pinhole induced efficiency variation in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Agarwal, Sumanshu; Nair, Pradeep R.

    2017-10-01

    Process induced efficiency variation is a major concern for all thin film solar cells, including the emerging perovskite based solar cells. In this article, we address the effect of pinholes or process induced surface coverage aspects on the efficiency of such solar cells through detailed numerical simulations. Interestingly, we find that the pinhole size distribution affects the short circuit current and open circuit voltage in contrasting manners. Specifically, while the JS C is heavily dependent on the pinhole size distribution, surprisingly, the VO C seems to be only nominally affected by it. Further, our simulations also indicate that, with appropriate interface engineering, it is indeed possible to design a nanostructured device with efficiencies comparable to those of ideal planar structures. Additionally, we propose a simple technique based on terminal I-V characteristics to estimate the surface coverage in perovskite solar cells.

  6. Can high resolution topographic surveys provide reliable grain size estimates?

    NASA Astrophysics Data System (ADS)

    Pearson, Eleanor; Smith, Mark; Klaar, Megan; Brown, Lee

    2017-04-01

    High resolution topographic surveys contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-grid scale topographic variability (or 'surface roughness') to particle grain size by deriving empirical relationships between the two. Such relationships would permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing data to drive distributed hydraulic models and revolutionising monitoring of river restoration projects. However, comparison of previous roughness-grain-size relationships shows substantial variability between field sites and do not take into account differences in patch-scale facies. This study explains this variability by identifying the factors that influence roughness-grain-size relationships. Using 275 laboratory and field-based Structure-from-Motion (SfM) surveys, we investigate the influence of: inherent survey error; irregularity of natural gravels; particle shape; grain packing structure; sorting; and form roughness on roughness-grain-size relationships. A suite of empirical relationships is presented in the form of a decision tree which improves estimations of grain size. Results indicate that the survey technique itself is capable of providing accurate grain size estimates. By accounting for differences in patch facies, R2 was seen to improve from 0.769 to R2 > 0.9 for certain facies. However, at present, the method is unsuitable for poorly sorted gravel patches. In future, a combination of a surface roughness proxy with photosieving techniques using SfM-derived orthophotos may offer improvements on using either technique individually.

  7. Formulation design space for stable, pH sensitive crystalline nifedipine nanoparticles.

    PubMed

    Jog, Rajan; Unachukwu, Kenechi; Burgess, Diane J

    2016-11-30

    Enteric coated formulations protect drugs from degrading in the harsh environment of the stomach (acidic pH and enzymes), and promotes drug delivery to and absorption into the duodenum and/or later parts of the intestine. Four DoE models were applied to optimize formulation parameters for the preparation of pH sensitive nifedipine nanoparticles. Stability studies were performed on the optimized formulations to monitor any possible variation in particle size distribution, homogeneity index, surface charge and drug release (pH 1.2 and pH 6.8). Stability studies were performed for 3 months at 4°C, 25°C and 40°C. A combination of Eudragit ® L 100-55 and polyvinyl alcohol was determined to be the most effective in stabilizing the nanoparticle suspension. The average particle size distribution, polydispersity index and surface charge of the optimized pH sensitive nifedipine nanoparticles were determined to be 131.86±8.21nm, 0.135±0.008 and -7.631±0.146mV, respectively. Following three months storage, it was observed that the formulations stored at 4°C were stable in terms of particle size distribution, polydispersity index, surface charge, drug loading and drug release, whereas those stored at 25°C and 40°C were relatively unstable. A predictive model to prepare stable pH sensitive nifedipine nanoparticles, was successfully developed using multiple linear regression analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.

    PubMed

    Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

    PubMed

    Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-05-13

    Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.

  10. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    PubMed

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  11. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto

    NASA Astrophysics Data System (ADS)

    Buhler, Peter B.; Ingersoll, Andrew P.

    2018-01-01

    The ∼106 km2 Sputnik Planitia, Pluto is the upper surface of a vast basin of nitrogen ice. Cellular landforms in Sputnik Planitia with areas in the range of a few × 102-103 km2 are likely the surface manifestation of convective overturn in the nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 × 10-3 and 5.9 ± 0.8 × 10-3 m m-1 away from the cell center, depending on the cell. This is a lower bound on the size increase because of the finite resolution of the data. Accounting for resolution yields upper bounds on the size vs. distance distribution of between 4.2 ± 0.2 × 10-3 and 23.4 ± 1.5 × 10-3 m m-1. We then use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6-0.6+2.1 ×10-4 m yr-1, which allows us to convert the pit size vs. distance distribution into a pit age vs. distance distribution. This yields surface velocities between 1.5-0.2+1.0 and 6.2-1.4+3.4 cm yr-1 for the slowest cell and surface velocities between 8.1-1.0+5.5 and 17.9-5.1+8.9 cm yr-1 for the fastest cell. These convection rates imply that the surface ages at the edge of cells reach ∼4.2-8.9 × 105 yr. The rates are comparable to rates of ∼6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia (McKinnon et al., 2016). Finally, we investigate the surface rheology of the convection cells and estimate that the minimum ice viscosity necessary to support the geometry of the observed pits is of order 1016-1017 Pa s, based on the argument that pits would relax away before growing to their observed radii of several hundred meters if the viscosity were lower than this value.

  12. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    DOE PAGES

    Donohue, Patrick H.; Simonetti, Antonio

    2016-09-22

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28"N, 106°28'31.44"W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. In this study, we report the first quantitative textural analysis of vesicles in Trinitite to constrain theirmore » physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Finally, defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.« less

  13. Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix

    DOE PAGES

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; ...

    2017-09-18

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less

  14. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction error is lower than 5% for the four propellants tested. Results of this study are expected to provide better insight and enrich in the theoretical frame of aluminum agglomeration.

  15. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    PubMed

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  16. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  17. Nature of distribution of mercury in the sediments of the river Yamuna (tributary of the Ganges), India.

    PubMed

    Subramanian, V; Madhavan, N; Saxena, Rajinder; Lundin, Lars-Christer

    2003-06-01

    Suspended Particulate Matter (SPM), surface (bed sediments) and short length cores of sediments collected from the largest tributary of the river Ganges, namely the river Yamuna, were analysed for total mercury as well as its fractionation in various size and chemical sites in the sediments following standard procedures. Also, attempts were made to determine the vertical distribution in sediments in relation to the recent timescale of a few decades. Our observations indicate that the SPM in general showed higher levels of total mercury compared to the surface sediments while at places the enhancement could be by a factor of 10, say around 25 microg g(-1) in the downstream region that integrates the industrial midstream and agricultural downstream terrain near its confluence with the Ganges. Surface sediments in the upstream direction near the Himalayan foothills and SPM in the lower reaches showed significant high Index of Geoaccumulation (Igeo) as defined by Müller. Size fractionation studies indicate that the finer fraction preferentially showed higher levels of mercury while in the lower reaches of the river, the total mercury is equitably distributed among all size fractions. The proportion of the residual fraction of mercury in relation to mobile fractions, in general decreases downstream towards its confluence with the Ganges river. In sediment cores, the vertical distribution show systematic peaks of mercury indicating that addition of this toxic metal to the aquatic system is in direct proportion to the increase in various types of human activities such as thermal power plants, land use changes (urbanisation) in the midstream region and intensive fertiliser application in lower reaches of this vast river basin.

  18. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  19. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies

    PubMed Central

    Ito, Akihiko; Wagai, Rota

    2017-01-01

    Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435

  20. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aushev, A A; Barinov, S P; Vasin, M G

    2015-06-30

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied bymore » alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)« less

  1. Floe-size distributions in laboratory ice broken by waves

    NASA Astrophysics Data System (ADS)

    Herman, Agnieszka; Evers, Karl-Ulrich; Reimer, Nils

    2018-02-01

    This paper presents the analysis of floe-size distribution (FSD) data obtained in laboratory experiments of ice breaking by waves. The experiments, performed at the Large Ice Model Basin (LIMB) of the Hamburg Ship Model Basin (Hamburgische Schiffbau-Versuchsanstalt, HSVA), consisted of a number of tests in which an initially continuous, uniform ice sheet was broken by regular waves with prescribed characteristics. The floes' characteristics (surface area; minor and major axis, and orientation of equivalent ellipse) were obtained from digital images of the ice sheets after five tests. The analysis shows that although the floe sizes cover a wide range of values (up to 5 orders of magnitude in the case of floe surface area), their probability density functions (PDFs) do not have heavy tails, but exhibit a clear cut-off at large floe sizes. Moreover, the PDFs have a maximum that can be attributed to wave-induced flexural strain, producing preferred floe sizes. It is demonstrated that the observed FSD data can be described by theoretical PDFs expressed as a weighted sum of two components, a tapered power law and a Gaussian, reflecting multiple fracture mechanisms contributing to the FSD as it evolves in time. The results are discussed in the context of theoretical and numerical research on fragmentation of sea ice and other brittle materials.

  2. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  3. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean.

    PubMed

    Doyle, Miriam J; Watson, William; Bowlin, Noelle M; Sheavly, Seba B

    2011-02-01

    The purpose of this study was to examine the distribution, abundance and characteristics of plastic particles in plankton samples collected routinely in Northeast Pacific ecosystems, and to contribute to the development of ideas for future research into the occurrence and impact of small plastic debris in marine pelagic ecosystems. Plastic debris particles were assessed from zooplankton samples collected as part of the National Oceanic and Atmospheric Administration's (NOAA) ongoing ecosystem surveys during two research cruises in the Southeast Bering Sea in the spring and fall of 2006 and four research cruises off the U.S. west coast (primarily off southern California) in spring, summer and fall of 2006, and in January of 2007. Nets with 0.505 mm mesh were used to collect surface samples during all cruises, and sub-surface samples during the four cruises off the west coast. The 595 plankton samples processed indicate that plastic particles are widely distributed in surface waters. The proportion of surface samples from each cruise that contained particles of plastic ranged from 8.75 to 84.0%, whereas particles were recorded in sub-surface samples from only one cruise (in 28.2% of the January 2007 samples). Spatial and temporal variability was apparent in the abundance and distribution of the plastic particles and mean standardized quantities varied among cruises with ranges of 0.004-0.19 particles/m³, and 0.014-0.209 mg dry mass/m³. Off southern California, quantities for the winter cruise were significantly higher, and for the spring cruise significantly lower than for the summer and fall surveys (surface data). Differences between surface particle concentrations and mass for the Bering Sea and California coast surveys were significant for pair-wise comparisons of the spring but not the fall cruises. The particles were assigned to three plastic product types: product fragments, fishing net and line fibers, and industrial pellets; and five size categories: <1 mm, 1-2.5 mm, >2.5-5 mm, >5-10 mm, and >10 mm. Product fragments accounted for the majority of the particles, and most were less than 2.5 mm in size. The ubiquity of such particles in the survey areas and predominance of sizes <2.5 mm implies persistence in these pelagic ecosystems as a result of continuous breakdown from larger plastic debris fragments, and widespread distribution by ocean currents. Detailed investigations of the trophic ecology of individual zooplankton species, and their encounter rates with various size ranges of plastic particles in the marine pelagic environment, are required in order to understand the potential for ingestion of such debris particles by these organisms. Ongoing plankton sampling programs by marine research institutes in large marine ecosystems are good potential sources of data for continued assessment of the abundance, distribution and potential impact of small plastic debris in productive coastal pelagic zones. © 2010 Elsevier Ltd. All rights reserved.

  4. Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy." Geophysical Research Letters 38.24 (2011). C. A. Charalambous and W. T. Pike (2013). 'Evolution of Particle Size Distributions in Fragmentation Over Time' Abstract Submitted to the AGU 46th Fall Meeting. Charalambous, C., Pike, W. T., Goetz, W., Hecht, M. H., & Staufer, U. (2011, December). 'A Digital Martian Soil based on In-Situ Data.' In AGU Fall Meeting Abstracts (Vol. 1, p. 1669). Golombek, M., & Rapp, D. (1997). 'Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions.' Journal of Geophysical Research, 102(E2), 4117-4129. Golombek, M., Huertas, A., Kipp, D., & Calef, F. (2012). 'Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites.' Mars, 7, 1-22.

  5. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  6. Sizing of single fluorescently stained DNA fragments by scanning microscopy

    PubMed Central

    Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan

    2003-01-01

    We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931

  7. Size control of Au NPs supported by pH operation

    NASA Astrophysics Data System (ADS)

    Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi

    2017-07-01

    Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.

  8. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration, indicating a local source.

  9. Distribution of normal superficial ocular vessels in digital images.

    PubMed

    Banaee, Touka; Ehsaei, Asieh; Pourreza, Hamidreza; Khajedaluee, Mohammad; Abrishami, Mojtaba; Basiri, Mohsen; Daneshvar Kakhki, Ramin; Pourreza, Reza

    2014-02-01

    To investigate the distribution of different-sized vessels in the digital images of the ocular surface, an endeavor which may provide useful information for future studies. This study included 295 healthy individuals. From each participant, four digital photographs of the superior and inferior conjunctivae of both eyes, with a fixed succession of photography (right upper, right lower, left upper, left lower), were taken with a slit lamp mounted camera. Photographs were then analyzed by a previously described algorithm for vessel detection in the digital images. The area (of the image) occupied by vessels (AOV) of different sizes was measured. Height, weight, fasting blood sugar (FBS) and hemoglobin levels were also measured and the relationship between these parameters and the AOV was investigated. These findings indicated a statistically significant difference in the distribution of the AOV among the four conjunctival areas. No significant correlations were noted between the AOV of each conjunctival area and the different demographic and biometric factors. Medium-sized vessels were the most abundant vessels in the photographs of the four investigated conjunctival areas. The AOV of the different sizes of vessels follows a normal distribution curve in the four areas of the conjunctiva. The distribution of the vessels in successive photographs changes in a specific manner, with the mean AOV becoming larger as the photos were taken from the right upper to the left lower area. The AOV of vessel sizes has a normal distribution curve and medium-sized vessels occupy the largest area of the photograph. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  10. Visible and Thermal Imaging of Sea Ice and Open Water from Coast Guard Arctic Domain Awareness Flights

    DTIC Science & Technology

    2014-09-30

    dropsondes, micro- aircraft), cloud top/base heights Arctic Ocean Surface Temperature project Steele Buoy drops for SLP , SST, SSS, & surface velocity...Colón & Vancas (NIC) Drop buoys for SLP , temperature and surface velocity Waves & Fetch in the MIZ Thompson SWIFTS buoys measuring wave energy...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, FSD= Floe Size Distribution, SIC=Sea Ice Concentration

  11. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of <1 μm the real part of the complex refractive index was retrieved to an accuracy of +/-0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  12. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

    PubMed

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N

    2004-02-10

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  13. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.

    PubMed

    Hammel, Ilan; Anaby, Debbie

    2007-09-01

    The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.

  14. Vesiculation of basaltic magma during eruption

    USGS Publications Warehouse

    Mangan, Margaret T.; Cashman, Katharine V.; Newman, Sally

    1993-01-01

    Vesicle size distributions in vent lavas from the Pu'u'O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (≤120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events ⋅ cm-3 ⋅ s-1 and growth rates of 3.2 x 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. This empirical approach is not subject to the limitations inherent in classical nucleation and growth theory and provides the first direct measurement of vesiculation kinetics in natural settings. In addition, perturbations in the measured size distributions are used to examine bubble escape, accumulation, and coalescence prior to the eruption of magma.

  15. Determination of a temperature sensor location for monitoring weld pool size in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boo, K.S.; Cho, H.S.

    1994-11-01

    This paper describes a method of determining the optimal sensor location to measure weldment surface temperature, which has a close correlation with weld pool size in the gas metal arc (GMA) welding process. Due to the inherent complexity and nonlinearity in the GMA welding process, the relationship between the weldment surface temperature and the weld pool size varies with the point of measurement. This necessitates an optimal selection of the measurement point to minimize the process nonlinearity effect in estimating the weld pool size from the measured temperature. To determine the optimal sensor location on the top surface of themore » weldment, the correlation between the measured temperature and the weld pool size is analyzed. The analysis is done by calculating the correlation function, which is based upon an analytical temperature distribution model. To validate the optimal sensor location, a series of GMA bead-on-plate welds are performed on a medium-carbon steel under various welding conditions. A comparison study is given in detail based upon the simulation and experimental results.« less

  16. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  17. Evaluation of char combustion models: measurement and analysis of variability in char particle size and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Daniel J; Monazam, Esmail R; Casleton, Kent H

    Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion.more » Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.« less

  18. Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; China Research Institute of Radio Wave Propagation; Wu, Jian

    The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.

  19. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    A scattering model for defoliated vegetation is developed by treating a layer of defoliated vegetation as a collection of randomly oriented dielectric cylinders of finite length over an irregular ground surface. Both polarized and depolarized backscattering are computed and their behavior versus the volume fraction, the incidence angle, the frequency, the angular distribution and the cylinder size are illustrated. It is found that both the angular distribution and the cylinder size have significant effects on the backscattered signal. The present theory is compared with measurements from defoliated vegetations.

  20. Analytical YORP torques model with an improved temperature distribution function

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Vokrouhlický, D.; Nesvorný, D.

    2010-01-01

    Previous models of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect relied either on the zero thermal conductivity assumption, or on the solutions of the heat conduction equations assuming an infinite body size. We present the first YORP solution accounting for a finite size and non-radial direction of the surface normal vectors in the temperature distribution. The new thermal model implies the dependence of the YORP effect in rotation rate on asteroids conductivity. It is shown that the effect on small objects does not scale as the inverse square of diameter, but rather as the first power of the inverse.

  1. The impact rate on Earth.

    PubMed

    Bland, Philip A

    2005-12-15

    Recent data, and modelling of the interaction between asteroids and the atmosphere, has defined a complete size-frequency distribution for terrestrial impactors, from meteorite-sized objects up to kilometre-sized asteroids, for both the upper atmosphere and the Earth's surface. Although there remain significant uncertainties in the incidence of specific size-fractions of impactors, these estimates allow us to constrain the threat posed by impacts to human populations. It is clear that impacts remain a significant natural hazard, but uniquely, they are a threat that we can accurately predict, and take steps to avoid.

  2. Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.

    USGS Publications Warehouse

    Rees, T.F.; Ranville, J.F.

    1990-01-01

    Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.

  3. Characterization of a conical null-screen corneal topographer

    NASA Astrophysics Data System (ADS)

    Osorio-Infante, Arturo I.; Campos-García, Manuel; Cossio-Guerrero, Cesar

    2017-06-01

    In this work, we perform the characterization of a conical null-screen corneal topographer. For this, we design a custom null-screens for testing a reference spherical surfaces with a radius of curvature of 7.8 mm. We also test a 1/2-inch (12.7 mm) diameter stainless steel sphere and an aspherical surface with a radius of curvature of 7.77 mm. We designed some different target distributions with the same target size to evaluate the shape of the reference surfaces. The shape of each surface was recovered by fitting the experimental data to a custom shape using the least square methods with an iterative algorithm. The target distributions were modified to improve the accuracy of the measurements. We selected a distribution and evaluate the accuracy of the algorithms to measure spherical surfaces with a radius of curvature from 6 mm to 8.2 mm by simulating the reflected pattern. We also simulate the reflected patter by changing the position of the surface along the optical axis and then we measure the resulting radius of curvature.

  4. Fluids and their Effect on Measurements on Lunar Soil Particle size Distribution

    NASA Technical Reports Server (NTRS)

    Cooper, B. L.; McKay, D. S.; Wallace, W. T.; Gonzalex, C. P.

    2011-01-01

    From the late 1960s until now, lunar soil particle size distributions have typically been determined by sieving sometimes dry, and at other times with fluids such as water or Freon. Laser diffraction instruments allow rapid assessment of particle size distribution, and eventually may replace sieve measurements. However, when measuring lunar soils with laser diffraction instruments, care must be taken in choosing a carrier fluid that is compatible with lunar material. Distilled water is the fluid of choice for laser diffraction measurements of substances when there is no concern about adverse effects of water on the material being measured. When we began our analyses of lunar soils using laser diffraction, our first measurements were made with distilled water. Although the medians that we measured were comparable to earlier sieve data, the means tended to be significantly larger than expected. The effect of water vapor on lunar soil has been studied extensively. The particles interact strongly with water vapor, and subsequent adsorptions of nitrogen showed that the specific surface area increased as much as threefold after exposure to moisture. It was observed that significant porosity had been generated by this exposure to water vapor. The possibility of other physical changes in the surfaces of the grains was not studied.

  5. Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.; hide

    2012-01-01

    The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.

  6. First images of asteroid 243 Ida

    USGS Publications Warehouse

    Belton, M.J.S.; Chapman, C.R.; Veverka, J.; Klaasen, K.P.; Harch, A.; Greeley, R.; Greenberg, R.; Head, J. W.; McEwen, A.; Morrison, D.; Thomas, P.C.; Davies, M.E.; Carr, M.H.; Neukum, G.; Fanale, F.P.; Davis, D.R.; Anger, C.; Gierasch, P.J.; Ingersoll, A.P.; Pilcher, C.B.

    1994-01-01

    The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56 kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations. Ida is interpreted to have a substantial regolith. The high crater density and size-frequency distribution (-3 differential power-law index) indicate a surface in equilibrium with saturated cratering. A minimum model crater age for Ida - and therefore for the Koronis family to which Ida belongs - is estimated at 1 billion years, older than expected.

  7. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The mix of either nitrofurantoine large crystals or fine crystals with cellulose microcrystalline showed a negative interaction in all proportions, whatever particle sizes. The lubricant addition induced a positive interaction with Vivapur of greater particle size distribution (200, 102 and 101) favouring higher particle adhesivity, while it maintained unaltered that of Vivapurs of lower particle size (105 and 99). Definitely, when cohesive forces are predominant (Vivapur 105 and 99), the establishment of adhesive bonds between nitrofurantoine and Vivapur remain unnoticed; on the contrary, when cohesion bonds between microcrystalline cellulose particles are weakened by the presence of magnesium stearate, the existence of adhesion bonds between particles of different nature is in evidence, leading to a positive interaction.

  8. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product of magma fragmentation at or close to the fragmentation level. Given the high abrasiveness of pumice, hemispherical clasts should be observed if clast break-up followed efficient clast abrasion. As a consequence, finer grained pyroclastic fall deposits do not necessarily proof efficient secondary fragmentation in the conduit but may rather reveal the influence of conduit length on 'What size of pyroclasts can be erupted'?

  9. Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes

    NASA Astrophysics Data System (ADS)

    Monsalve, A.; Yager, E. M.

    2017-11-01

    In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.

  10. Grain Growth and Precipitation Behavior of Iridium Alloy DOP-26 During Long Term Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Dean T.; Muralidharan, Govindarajan; Fox, Ethan E.

    The influence of long term aging on grain growth and precipitate sizes and spatial distribution in iridium alloy DOP-26 was studied. Samples of DOP-26 were fabricated using the new process, recrystallized for 1 hour (h) at 1375 C, then aged at either 1300, 1400, or 1500 C for times ranging from 50 to 10,000 h. Grain size measurements (vertical and horizontal mean linear intercept and horizontal and vertical projection) and analyses of iridium-thorium precipitates (size and spacing) were made on the longitudinal, transverse, and rolling surfaces of the as-recrystallized and aged specimens from which the two-dimensional spatial distribution and meanmore » sizes of the precipitates were obtained. The results obtained from this study are intended to provide input to grain growth models.« less

  11. Martian planetwide crater distributions - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Condit, C. D.; West, R. A.; Herman, B. M.; Kreidler, T. J.

    1974-01-01

    Three different diameter size ranges are considered in connection with the Martian crater distribution, taking into account small craters from 0.6 to 1.2 km, intermediate-sized craters from 4 to 10 km, and large craters with diameters exceeding 20 km. One of the objectives of the investigation reported is to establish the effects of eolian processes in the modification of craters in the different size ranges. Another objective is concerned with a description of the genetic relationships among the three size ranges of craters. Observables related to the relative age of geologic provinces are to be separated from observables related to geographic variations in eolian transport and deposition. Lunar and Martian cratering histories are compared as a basis for establishing relative and absolute time scales for the geological evolution of Mars.

  12. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  13. Distribution of organic matrix in calcium oxalate renal calculi.

    PubMed

    Warpehoski, M A; Buscemi, P J; Osborn, D C; Finlayson, B; Goldberg, E P

    1981-01-01

    The quantity of protein and carbohydrate comprising the matrix of calcium oxalate monohydrate (COM) renal stones was found to decrease with distance from the surface of the stone. The average organic concentration of stones 3 to 30 mm in diameter ranged from 5.7% at the surface to 2.7% at the core. This concentration gradient suggests matrix involvement in a "growth front" on stone surfaces with migration of organic material from the "older" interior. The matrix distribution was not readily correlated with density variations or with the presence of hydroxyapatite or calcium oxalate dihydrate. Surface matrix concentrations were greater than amounts predicted by physical adsorption. Electron microscopy confirmed the presence of the organic-rich surface layer and also suggested that increase in stone size occurs predominantly by crystal growth with microcrystal aggregates as growth centers.

  14. Particle size distribution control of Pt particles used for particle gun

    NASA Astrophysics Data System (ADS)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  15. MD-based computational design of new engineered Ni-based nanocatalysts: An in-depth study of the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Kardani, Arash; Mehrafrooz, Behzad; Montazeri, Abbas

    2018-03-01

    Porous nickel-based nanocatalysts have attracted great attention thanks to their high surface-to-volume ratio and desired mechanical properties. One of the major challenges associated with their applications is weakening their shear properties due to their contact with the high fluid flow values at elevated service temperatures. On the other hand, their shear behavior is dominantly influenced by the size and distribution of pores available in their structure. In this study, different nickel samples containing periodic distribution surface porosities with 2 nm diameter are examined via molecular dynamics simulation. Moreover, to explore the effects of porosities distribution, the obtained results are compared with those of the samples having concentrated pores at the bigger size of 10nm. Accordingly, shear loading conditions are imposed to capture the dependency of the shear characteristics of the samples on the location and on the geometrical factors of the aforementioned porosities. Surprisingly, it is revealed that the existence of randomly distributed pores can lead to an enhancement of their yield strain compared to that of non-porous counterparts. The underlying mechanism governing this special behavior is thoroughly studied employing several case studies.

  16. A scattering model for forested area

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.

  17. Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation

    PubMed Central

    Caetano, Liliana A.; Almeida, António J.; Gonçalves, Lídia M.D.

    2016-01-01

    The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route. PMID:27187418

  18. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells

    PubMed Central

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe

    2017-01-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. PMID:29046391

  19. A comparison of single-cycle versus multiple-cycle proof testing strategies

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.

    1990-01-01

    An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading.

  20. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  1. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  2. Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Isella, Andrea; Ricci, Luca

    2017-12-01

    We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at submillimeter wavelengths. We fit power-law models to the dust surface density and CO J = 3–2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an {R}-1 dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to the higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be approximately three times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.

  3. Scaling and biomechanics of surface attachment in climbing animals

    PubMed Central

    Labonte, David; Federle, Walter

    2015-01-01

    Attachment devices are essential adaptations for climbing animals and valuable models for synthetic adhesives. A major unresolved question for both natural and bioinspired attachment systems is how attachment performance depends on size. Here, we discuss how contact geometry and mode of detachment influence the scaling of attachment forces for claws and adhesive pads, and how allometric data on biological systems can yield insights into their mechanism of attachment. Larger animals are expected to attach less well to surfaces, due to their smaller surface-to-volume ratio, and because it becomes increasingly difficult to distribute load uniformly across large contact areas. In order to compensate for this decrease of weight-specific adhesion, large animals could evolve overproportionally large pads, or adaptations that increase attachment efficiency (adhesion or friction per unit contact area). Available data suggest that attachment pad area scales close to isometry within clades, but pad efficiency in some animals increases with size so that attachment performance is approximately size-independent. The mechanisms underlying this biologically important variation in pad efficiency are still unclear. We suggest that switching between stress concentration (easy detachment) and uniform load distribution (strong attachment) via shear forces is one of the key mechanisms enabling the dynamic control of adhesion during locomotion. PMID:25533088

  4. Are They Telltale Ripples?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from the Mars Exploration Rover Spirit's panoramic camera shows peak-like formations on the martian terrain at Gusev Crater. Scientists have been analyzing these formations, which have coarse particles accumulating on their tops, or crests. This characteristic classifies them as ripples instead of dunes, which have a more uniform distribution of particle sizes. Scientists are looking further into such formations, which can give insight to the wind direction and velocity on Mars, as well as the material that is being moved by the wind. This image was taken on the 40th martian day, or sol, of Spirit's mission.

    [figure removed for brevity, see original site] Click on image for larger view [Image credit: NASA/JPL/ASU]

    This diagram illustrates how windblown sediments travel. There are three basic types of particles that undergo different motions depending on their size. These particles are dust, sand and coarse sand, and their sizes approximate flour, sugar, and ball bearings, respectively. Sand particles move along the 'saltation' path, hitting the surface downwind. When the sand hits the surface, it sends dust into the atmosphere and gives coarse sand a little shove. Mars Exploration Rover scientists are studying the distribution of material on the surface of Mars to better understand how winds shaped the landscape.

  5. Superior electric storage on an amorphous perfluorinated polymer surface

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  6. Particle systems for adaptive, isotropic meshing of CAD models

    PubMed Central

    Levine, Joshua A.; Whitaker, Ross T.

    2012-01-01

    We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain. PMID:23162181

  7. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  8. Bivariate mass-size relation as a function of morphology as determined by Galaxy Zoo 2 crowdsourced visual classifications

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Scarlata, Claudia; Fortson, Lucy; Willett, Kyle; Galloway, Melanie

    2016-01-01

    It is well known that the mass-size distribution evolves as a function of cosmic time and that this evolution is different between passive and star-forming galaxy populations. However, the devil is in the details and the precise evolution is still a matter of debate since this requires careful comparison between similar galaxy populations over cosmic time while simultaneously taking into account changes in image resolution, rest-frame wavelength, and surface brightness dimming in addition to properly selecting representative morphological samples.Here we present the first step in an ambitious undertaking to calculate the bivariate mass-size distribution as a function of time and morphology. We begin with a large sample (~3 x 105) of SDSS galaxies at z ~ 0.1. Morphologies for this sample have been determined by Galaxy Zoo crowdsourced visual classifications and we split the sample not only by disk- and bulge-dominated galaxies but also in finer morphology bins such as bulge strength. Bivariate distribution functions are the only way to properly account for biases and selection effects. In particular, we quantify the mass-size distribution with a version of the parametric Maximum Likelihood estimator which has been modified to account for measurement errors as well as upper limits on galaxy sizes.

  9. Vertical and Tidal Variability of the Floc Size Distribution in a Partially Mixed, Low Turbidity, Anthropogenically Altered Geum River Estuary, Korea

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Figueroa, S. M.; Shin, H. J.

    2016-12-01

    After the construction of the Geum River Estuary dam in 1994, current velocities and water turbidity decreased while the rate of mud deposition doubled, causing the water to become increasingly shallower. To better understand the sediment transport processes in the estuary, profiles of current speed, salinity, and the in-situ floc size distribution were measured during the wet season over three spring tidal cycles in the inner estuary. Although the primary particle size distribution (PPSD) was bimodal clay and coarse silt, the in-situ floc size distribution was observed to be unimodal during conditions promoting flocculation, with a mode (400 um) almost an order of magnitude larger than the coarse silt mode of the PPSD. Sediment resuspension and deflocculation were observed throughout the water column during flood while rapid flocculation and settling were observed in the surface water during calmer slack tides. During ebb, a halocline developed due to tidal straining which trapped macroflocs and created a mid-depth maximum in median floc size. These observations imply periodic stratification is important for floc dynamics even during spring tides and suggests that asymmetry in flocculation during the short term (tidal cycle) could be an important factor in the long term sediment deposition in Geum River Estuary.

  10. Localized surface plasmon enhanced cellular imaging using random metallic structures

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  11. Insight on agglomerates of gold nanoparticles in glass based on surface plasmon resonance spectrum: study by multi-spheres T-matrix method

    NASA Astrophysics Data System (ADS)

    Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.

    2018-01-01

    The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various substances, and, in principle, can be extended for particles with non-spherical shapes, like ellipsoids, rod-like and other T-matrix-solvable shapes.

  12. Surface nucleation in complex rheological systems

    NASA Astrophysics Data System (ADS)

    Herfurth, J.; Ulrich, J.

    2017-07-01

    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  13. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.

    PubMed

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-12-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.

  14. Particle size distribution of mainstream tobacco and marijuana smoke. Analysis using the electrical aerosol analyzer.

    PubMed

    Anderson, P J; Wilson, J D; Hiller, F C

    1989-07-01

    Accurate measurement of cigarette smoke particle size distribution is important for estimation of lung deposition. Most prior investigators have reported a mass median diameter (MMD) in the size range of 0.3 to 0.5 micron, with a small geometric standard deviation (GSD), indicating few ultrafine (less than 0.1 micron) particles. A few studies, however, have suggested the presence of ultrafine particles by reporting a smaller count median diameter (CMD). Part of this disparity may be due tot he inefficiency to previous sizing methods in measuring ultrafine size range, to evaluate size distribution of smoke from standard research cigarettes, commercial filter cigarettes, and from marijuana cigarettes with different delta 9-tetrahydrocannabinol contents. Four 35-cm3, 2-s puffs were generated at 60-s intervals, rapidly diluted, and passed through a charge neutralizer and into a 240-L chamber. Size distribution for six cigarettes of each type was measured, CMD and GSD were determined from a computer-generated log probability plot, and MMD was calculated. The size distribution parameters obtained were similar for all cigarettes tested, with an average CMD of 0.1 micron, a MMD of 0.38 micron, and a GSD of 2.0. The MMD found using the EAA is similar to that previously reported, but the CMD is distinctly smaller and the GSD larger, indicating the presence of many more ultrafine particles. These results may explain the disparity of CMD values found in existing data. Ultrafine particles are of toxicologic importance because their respiratory tract deposition is significantly higher than for particles 0.3 to 0.5 micron and because their large surface area facilitates adsorption and delivery of potentially toxic gases to the lung.

  15. Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Hacker, P. T.

    1950-01-01

    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.

  16. Lithographically defined microporous carbon structures

    DOEpatents

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  17. Effect of freeze-thaw cycling on grain size of biochar.

    PubMed

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  18. Effect of freeze-thaw cycling on grain size of biochar

    PubMed Central

    Dugan, Brandon; Masiello, Caroline A.; Wahab, Leila M.; Gonnermann, Helge M.; Nittrouer, Jeffrey A.

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle. PMID:29329343

  19. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  20. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.

    PubMed

    Lu, Yehu; Song, Guowen; Li, Jun

    2014-11-01

    The garment fit played an important role in protective performance, comfort and mobility. The purpose of this study is to quantify the air gap to quantitatively characterize a three-dimensional (3-D) garment fit using a 3-D body scanning technique. A method for processing of scanned data was developed to investigate the air gap size and distribution between the clothing and human body. The mesh model formed from nude and clothed body was aligned, superimposed and sectioned using Rapidform software. The air gap size and distribution over the body surface were analyzed. The total air volume was also calculated. The effects of fabric properties and garment size on air gap distribution were explored. The results indicated that average air gap of the fit clothing was around 25-30 mm and the overall air gap distribution was similar. The air gap was unevenly distributed over the body and it was strongly associated with the body parts, fabric properties and garment size. The research will help understand the overall clothing fit and its association with protection, thermal and movement comfort, and provide guidelines for clothing engineers to improve thermal performance and reduce physiological burden. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Measurement and dynamics of the spatial distribution of an electron localized at a metal-dielectric interface

    NASA Astrophysics Data System (ADS)

    Bezel, Ilya; Gaffney, Kelly J.; Garrett-Roe, Sean; Liu, Simon H.; Miller, André D.; Szymanski, Paul; Harris, Charles B.

    2004-01-01

    The ability of time- and angle-resolved two-photon photoemission to estimate the size distribution of electron localization in the plane of a metal-adsorbate interface is discussed. It is shown that the width of angular distribution of the photoelectric current is inversely proportional to the electron localization size within the most common approximations in the description of image potential states. The localization of the n=1 image potential state for two monolayers of butyronitrile on Ag(111) is used as an example. For the delocalized n=1 state, the shape of the signal amplitude as a function of momentum parallel to the surface changes rapidly with time, indicating efficient intraband relaxation on a 100 fs time scale. For the localized state, little change was observed. The latter is related to the constant size distribution of electron localization, which is estimated to be a Gaussian with a 15±4 Å full width at half maximum in the plane of the interface. A simple model was used to study the effect of a weak localization potential on the overall width of the angular distribution of the photoemitted electrons, which exhibited little sensitivity to the details of the potential. This substantiates the validity of the localization size estimate.

  2. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Distinguishing molecular environments in supported Pt catalysts and their influences on activity and selectivity

    NASA Astrophysics Data System (ADS)

    Jones, Louis Chin

    This thesis entails the synthesis, automated catalytic testing, and in situ molecular characterization of supported Pt and Pt-alloy nanoparticle (NP) catalysts, with emphasis on how to assess the molecular distributions of Pt environments that are affecting overall catalytic activity and selectivity. We have taken the approach of (a) manipulating nucleation and growth of NPs using oxide supports, surfactants, and inorganic complexes to create Pt NPs with uniform size, shape, and composition, (b) automating batch and continuous flow catalytic reaction tests, and (c) characterizing the molecular environments of Pt surfaces using in situ infrared (IR) spectroscopy and solid-state 195Pt NMR. The following will highlight the synthesis and characterization of Ag-doped Pt NPs and their influence on C 2H2 hydrogenation selectivity, and the implementation of advanced solid-state 195Pt NMR techniques to distinguish how distributions of molecular Pt environments vary with nanoparticle size, support, and surface composition.

  4. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  5. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  6. Plastic debris in the open ocean

    PubMed Central

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  7. Surface sediment response to deepwater circulation on the Blake Outer Ridge, western North Atlantic: paleoceanographic implications

    NASA Astrophysics Data System (ADS)

    Haskell, Brian J.; Johnson, Thomas C.

    1993-01-01

    Two transects of box core, hydrographic and photographic stations were made along the Blake Outer Ridge on the southeastern U.S. continental rise to study how circulation patterns affect surface sediment properties. Circulation is strongest at 4200 m on the flanks of the ridge and is reflected in the suspended particulate distribution. A second turbidity maximum at 3600 m suggests that there may be a second axis of circulation at this depth. The intense circulation on the flanks of the ridge has resulted in winnowing of the sediment revealed by coarsening and flattening of the grain size distribution in the detrital silt fraction, and concentration of carbonate by the formation of a foraminiferal lag deposit. The mean grain size of the detrital silt fraction on the crest of the ridge decreases southeastwards with increasing distance from upstream sediment sources. Shifts in the position and strength of the Western Boundary Undercurrent affect the distance that relatively coarse silt is transported. Downcore changes in grain size can therefore be used as paleoceanographic proxy for changes in deepwater circulation.

  8. 3D brain tumor localization and parameter estimation using thermographic approach on GPU.

    PubMed

    Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi

    2018-01-01

    The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Plastic debris in the open ocean.

    PubMed

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  10. Recent progress on RE2O3-Mo/W emission materials.

    PubMed

    Wang, Jinshu; Zhang, Xizhu; Liu, Wei; Cui, Yuntao; Wang, Yiman; Zhou, Meiling

    2012-08-01

    RE2O3-Mo/W cathodes were prepared by powder metallurgy method. La2O3-Y2O3-Mo cermet cathodes prepared by traditional sintering method and spark plasma sintering (SPS) exhibit different secondary emission properties. The La2O3-Y2O3-Mo cermet cathode prepared by SPS method has smaller grain size and exhibits better secondary emission performance. Monte carlo calculation results indicate that the secondary electron emission way of the cathode correlates with the grain size. Decreasing the grain size can decrease the positive charging effect of RE2O3 and thus is favorable for the escaping of secondary electrons to vacuum. The Scandia doped tungsten matrix dispenser cathode with a sub-micrometer microstructure of matrix with uniformly distributed nanometer-particles of Scandia has good thermionic emission property. Over 100 A/cm2 full space charge limited current density can be obtained at 950Cb. The cathode surface is covered by a Ba-Sc-O active surface layer with nano-particles distributing mainly on growth steps of W grains, leads to the conspicuous emission property of the cathode.

  11. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  12. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  13. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  14. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  15. Electric field distribution on surface of the artificial magnetic conductor: miniaturization process

    NASA Astrophysics Data System (ADS)

    Ramos, Welyson T. S.; Mesquita, Renato C.; Silva, Elson J.

    2017-08-01

    This paper presents a study of the influence of the geometric shape on the resonance frequency of the artificial magnetic conductor (AMC) by analysis of the electric field distributions on top of the surface metallic patch inside the unit cell. It is known that various parameters such as geometry, dielectric substrate thickness, gap between patches, length and width of patch, size of unit cell, permittivity and permeability strongly affect the resonance frequency. In attempts to elucidate the miniaturization process, as reference, a metallic square patch with a unit cell of size 10 mm × 10 mm was simulated and a resonance frequency of 5.75 GHz was obtained. The device has illuminated by a plane wave with polarization in the y direction. Additionally, different geometries were performed such as triangle, hexagon, circle and cross of Jerusalem. We realized that the field distribution can be used as an physical insight to understand the AMC miniaturization process. In particular, bow-tie geometry provided considerable electrical miniaturization compared with square patch, about 1.5 GHz. The results are supported by finite element method. Our findings suggest that shift at resonant frequency may be interpreted as a variation in the net induced electric polarizability on the surface of the metallic patches.

  16. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  17. A novel polymer extrusion micropelletization process

    NASA Astrophysics Data System (ADS)

    Aquite, William

    Polymer micropellets provide a variety of potential applications for different processes in the polymer industry. Conventional pellets are in the size range of 2.5 mm to 5 mm, while micropellets are at least ten times smaller, in the size range of 50 μm to 1000 μm. The potential benefits to a processor using micropellets include: high surface to volume ratio, high bulk density, fast and even melting rates in extrusion, improved dry flow properties, faster injection molding cycles, and consequently lower energy consumption during processing. More specialized sintering processes that require polymer powders, such as selective sintering techniques, microporous plastics parts manufacturing, and other powder sintering methods would benefit from the production of polymer micropellets since these exhibit the advantages of pellets yet have a lower average size. This work focuses on the study of a technique developed at the Polymer Engineering Center. The technique uses a microcapillary die for the production of micropellets by causing instabilities in extruded polymer threads deformed using an air stream. Tuning of process conditions allow the development of surface disturbances that promote breakup of the threads into pellets, which are subsequently cooled and collected. Although micropellets with high sphericity and a narrow size distribution can be produced using this technique, minimal changes in process conditions also lead to the production of lenticular pellets as well as pellets, fibers and threads with a wide range of size and shape distributions. This work shows how changing processing conditions achieve a variety of shapes and sizes of micropellets, broadening its application for the production of powders from a variety of polymer resins. Different approaches were used, including dimensional analysis and numerical simulation of the micropelletization process. This research reveals the influence of non-linear viscoelastic effects on the dispersion of a polymer thread through surface disturbances. Furthermore, this research reveals how processing parameters can influence the quality of the produced micropellet. Through this work, an economically feasible technique was developed that can produce the raw material for processors that depend on polymer powders that will deliver ideally shaped and distributed micropellets.

  18. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island

    NASA Astrophysics Data System (ADS)

    Szymczak, Ewa

    2017-12-01

    In this study, the characterization of particle size distribution of suspended sediment that is transported by streams (Ornithologist Creek, Ecology Glacier Creeks, Petrified Forest Creek, Czech Creek, Vanishing Creek, Italian Creek) in the area of the Arctowski Polish Antarctic Station is presented. During the first period of the summer season, the aforementioned streams are supplied by the melting snow fields, while later on, by thawing permafrost. The water samples were collected from the streams at monthly intervals during the Antarctic summer season (January - March) of 2016. The particle size distribution was measured in the laboratory with a LISST-25X laser diffraction particle size analyser. According to Sequoia Scientific Inc., LISST-25X can measure particle sizes (Sauter Mean Diameter) between 2.50 and 500 μm. The results of particle size measurements were analysed in relation to flow velocity (0.18-0.89 m/s), the cross-sectional parameters of the streams, suspended sediment concentration (0.06-167.22 mg/dm3) and the content of particulate organic matter (9.8-84.85%). Overall, the mean particle size ranged from 28.8 to 136 μm. The grain size of well-sorted sediments ranged from 0.076 to 0.57, with the skewness and kurtosis values varying from -0.1 to 0.4, and from 0.67 to 1.3, respectively. Based on the particle size characteristics of suspended sediment, the streams were divided into two groups. For most of the streams, the sediment was very well sorted, while fine sand and very fine sand were dominant fractions displaying symmetric and platykurtic distributions, respectively. Only in two streams, the suspended sediment consisted of silt-size grains, well or moderately well sorted, with coarse-skewness and mostly mesokurtic distribution. The C-M chart suggested that the transportation processes of suspended sediment included the suspended mode only. The grain-size distribution of suspended sediment was mainly influenced by the stream runoff, surface sediment type and biological processes.

  19. Collective evolution of submicron hillocks during the early stages of anisotropic alkaline wet chemical etching of Si(1 0 0) surfaces

    NASA Astrophysics Data System (ADS)

    Sana, P.; Vázquez, Luis; Cuerno, Rodolfo; Sarkar, Subhendu

    2017-11-01

    We address experimentally the large-scale dynamics of Si(1 0 0) surfaces during the initial stages of anisotropic wet (KOH) chemical etching, which are characterized through atomic force microscopy. These systems are known to lead to the formation of characteristic pyramids, or hillocks, of typical sizes in the nanometric/micrometer scales, thus with the potential for a large number of applications that can benefit from the nanotexturing of Si surfaces. The present pattern formation process is very strongly disordered in space. We assess the space correlations in such a type of rough surface and elucidate the existence of a complex and rich morphological evolution, featuring at least three different regimes in just 10 min of etching. Such a complex time behavior cannot be consistently explained within a single formalism for dynamic scaling. The pyramidal structure reveals itself as the basic morphological motif of the surface throughout the dynamics. A detailed analysis of the surface slope distribution with etching time reveals that the texturing process induced by the KOH etching is rather gradual and progressive, which accounts for the dynamic complexity. The various stages of the morphological evolution can be accurately reproduced by computer-generated surfaces composed by uncorrelated pyramidal structures. To reach such an agreement, the key parameters are the average pyramid size, which increases with etching time, its distribution and the surface coverage by the pyramidal structures.

  20. Mg-Doped Hydroxyapatite/Chitosan Composite Coated 316L Stainless Steel Implants for Biomedical Applications.

    PubMed

    Sutha, S; Dhineshbabu, N R; Prabhu, M; Rajendran, V

    2015-06-01

    In this investigation, ultrasonication process was used for the synthesis of magnesium doped nano-hydroxyapatite (MH) (0, 1, 2, and 3 mol% of Mg concentration) particles with controlled size and surface morphology. The size of the prepared MH particles was in the range of 20-100 nm with narrow distribution. Increase in the concentration of Mg reduced the particle size distribution from 60 to 40 nm. On incorporation of Mg in HAp lattice, an increase of 20-66 nm in specific surface area was observed in microporous HAp particles. XRF and XRD patterns reveal that the particles possess stoichiometric composition with reduced crystallinity with respect to the Mg concentration. Surface morphology of MH/chitosan (CTS) coated implant was found to be uniform without any defects. The corrosion rate of the implant decreased with increase in Mg concentration. The in vitro formation of bonelike apatite layer on the surface of the MH/CTS coated implant was observed from simulated body fluid studies. The antimicrobial activity of the MH/CTS composites against gram-positive and gram-negative bacterial strains indicated that increasing Mg concentration enhanced antimicrobial properties. Nanoindentation analysis of apatite coated implant surface reveals that the mechanical property depends on the concentration of magnesium in HAp. From the cytotoxicity analysis against NIH 3T3 fibroblast, it was observed that the Mg incorporated HAp/CTS composite was less toxic than the MHO/CTS composite. From this result, it was concluded that the MH/CTS nanocomposites coated implant is the excellent material for implants.

  1. Highly surface-roughened quasi-spherical silver powders in back electrode paste for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Liu, Shouchao; Li, Qiuying; Chen, Xiaolei; Guo, Weihong; Wu, Chifei

    2017-08-01

    In our work, highly surface-roughened quasi-spherical silver powders with controllable size and superior dispersibility, which have narrow size distribution and relatively high tap density, were successfully prepared by reducing silver nitrate with ascorbic acid in aqueous solutions. Gum arabic (AG) was selected as dispersant to prevent the agglomeration of silver particles. Furthermore, the effects of preparation conditions on the characteristics of the powders were systematically investigated. By varying the concentration of the reactants, dosage of dispersant, the feeding modes, synthesis temperature and the pH value of the mixture solution of silver nitrate and AG, the resulted silver particles displayed controllable size, different morphologies and surface roughness. The spherical silver powder with mean particle size of 1.20 µm, tap density of 4.1 g cm-3 and specific area value of 0.46 m2 g-1 was prepared by adjusting preparation conditions. The AG absorbed on the surface preventing the silver particles from diffusion and aggregation was proved by the ultraviolet spectra. Observations of SEM images showed that the as-prepared silver powders were relatively monodisperse silver spheres with highly roughened surface and the particle size was controllable from 1 µm to 5 µm, specific surface area value from approximately 0.2 m2 g-1 to 0.8 m2 g-1. X-ray diffraction (XRD) patterns, energy dispersive spectroscopy (EDS), x-ray photoelectron spectra (XPS) and thermal gravity analysis (TGA) demonstrated high crystallinity and purity of the obtained silver powders.

  2. Random deposition of particles of different sizes.

    PubMed

    Forgerini, F L; Figueiredo, W

    2009-04-01

    We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.

  3. Runaway Growth During Planet Formation: Explaining the Size Distribution of Large Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke E.; Sari, Re'em

    2011-02-01

    Runaway growth is an important stage in planet formation during which large protoplanets form, while most of the initial mass remains in small planetesimals. The amount of mass converted into large protoplanets and their resulting size distribution are not well understood. Here, we use analytic work, that we confirm by coagulation simulations, to describe runaway growth and the corresponding evolution of the velocity dispersion. We find that runaway growth proceeds as follows. Initially, all the mass resides in small planetesimals, with mass surface density σ, and large protoplanets start to form by accreting small planetesimals. This growth continues until growth by merging large protoplanets becomes comparable to growth by planetesimal accretion. This condition sets in when Σ/σ ~ α3/4 ~ 10-3, where Σ is the mass surface density in protoplanets in a given logarithmic mass interval and α is the ratio of the size of a body to its Hill radius. From then on, protoplanetary growth and the evolution of the velocity dispersion become self-similar and Σ remains roughly constant, since an increase in Σ by accretion of small planetesimals is balanced by a decrease due to merging with large protoplanets. We show that this growth leads to a protoplanet size distribution given by N(>R) vprop R -3, where N(>R) is the number of objects with radii greater than R (i.e., a differential power-law index of 4). Since only the largest bodies grow significantly during runaway growth, Σ and thereby the size distribution are preserved. We apply our results to the Kuiper Belt, which is a relic of runaway growth where planet formation never proceeded to completion. Our results successfully match the observed Kuiper Belt size distribution, they illuminate the physical processes that shaped it and explain the total mass that is present in large Kuiper Belt objects (KBOs) today. This work suggests that the current mass in large KBOs is primordial and that it has not been significantly depleted. We also predict a maximum mass ratio for Kuiper Belt binaries that formed by dynamical processes of α-1/4 ~ 10, which explains the observed clustering in binary companion sizes that is seen in the cold classical belt. Finally, our results also apply to growth in debris disks, as long as frequent planetesimal-planetesimal collisions are not important during the growth.

  4. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions.

    PubMed

    Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A

    2013-11-01

    To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPam(1/2) reaching a plateau at different critical flaw sizes based on loading method. Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions

    PubMed Central

    Joshi, Gaurav V.; Duan, Yuanyuan; Bona, Alvaro Della; Hill, Thomas J.; John, Kenneth St.; Griggs, Jason A.

    2013-01-01

    Objectives To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Materials and Methods Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. Results There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPa·m1/2 reaching a plateau at different critical flaw sizes based on loading method. Significance Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. PMID:24034441

  6. Spatial distribution of soil water repellency in a grassland located in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Novara, Agata

    2014-05-01

    Soil water repellency (SWR) it is recognized to be very heterogeneous in time in space and depends on soil type, climate, land use, vegetation and season (Doerr et al., 2002). It prevents or reduces water infiltration, with important impacts on soil hydrology, influencing the mobilization and transport of substances into the soil profile. The reduced infiltration increases surface runoff and soil erosion. SWR reduce also the seed emergency and plant growth due the reduced amount of water in the root zone. Positive aspects of SWR are the increase of soil aggregate stability, organic carbon sequestration and reduction of water evaporation (Mataix-Solera and Doerr, 2004; Diehl, 2013). SWR depends on the soil aggregate size. In fire affected areas it was founded that SWR was more persistent in small size aggregates (Mataix-Solera and Doerr, 2004; Jordan et al., 2011). However, little information is available about SWR spatial distribution according to soil aggregate size. The aim of this work is study the spatial distribution of SWR in fine earth (<2 mm) and different aggregate sizes, 2-1 mm, 1-0.5 mm, 0.5-0.25 mm and <0.25 mm. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. A plot with 400 m2 (20 x 20 m with 5 m space between sampling points) and 25 soil samples were collected in the top soil (0-5 cm) and taken to the laboratory. Previously to SWR assessment, the samples were air dried. The persistence of SWR was analysed according to the Water Drop Penetration Method, which involves placing three drops of distilled water onto the soil surface and registering the time in seconds (s) required for the drop complete penetration (Wessel, 1988). Data did not respected Gaussian distribution, thus in order to meet normality requirements it was log-normal transformed. Spatial interpolations were carried out using Ordinary Kriging. The results shown that SWR was on average in fine earth 2.88 s (Coeficient of variation % (CV%)=44.62), 2-1mm 1.73 s (CV%=45.10), 1-0.5 mm 2.02 s (CV%=93.75), 0.5-0.25 mm 3.12 s (CV%=233.68) and in <0.25 mm 15.54 mm (CV%=240.74). This suggests that SWR persistence and CV% is higher in small size aggregates than in the coarser aggregate sizes. The interpolated maps showed that in fine earth SWR was higher in the western part of the studied plot and lower in the central area. In the 2-1 mm aggregate size it was higher in the southwest and lower at north and northwest area. In the 1-0.5 mm aggregate size it was lower in the central area and higher in the southwest. In the 0.5-0.25 mm aggregate size it was higher in the west part and lower in the north of the plot and. In the <0.25 mm no specific pattern was identified and the SWR was heterogeneously distributed. This suggests that the spatial distribution of SWR is very different according to the aggregate size. Future studies are needed in order to identify the causes and consequences of such dynamic. Acknowledgements The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council References Diehl, D. (2013) Soil water repellency: Dynamics of heterogeneous surfaces, Colloids and surfaces A: Physicochem. Eng. Aspects, 432, 8-18. Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D. (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance, Earth-Science Reviews, 51, 33-65. Jordan, A., Zavala, L., Mataix-Solera, J., Nava, A.L., Alanis, N. (2011) Effects of fire severity on water repellency and agregate stability on mexican volcanic soils, Catena, 84, 136-147. Mataix-Solera, J., Doerr, S. (2004) hydrophobicity and agregate stability in calcareous topsoils from fire-affected pine forests in south-easthern Spain, Geoderma, 118, 77-88. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils, Earth Surfaces Process. Landforms, 13, 555-562, 1988.

  7. Evaluation of Gas Phase Dispersion in Flotation under Predetermined Hydrodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Młynarczykowska, Anna; Oleksik, Konrad; Tupek-Murowany, Klaudia

    2018-03-01

    Results of various investigations shows the relationship between the flotation parameters and gas distribution in a flotation cell. The size of gas bubbles is a random variable with a specific distribution. The analysis of this distribution is useful to make mathematical description of the flotation process. The flotation process depends on many variable factors. These are mainly occurrences like collision of single particle with gas bubble, adhesion of particle to the surface of bubble and detachment process. These factors are characterized by randomness. Because of that it is only possible to talk about the probability of occurence of one of these events which directly affects the speed of the process, thus a constant speed of flotation process. Probability of the bubble-particle collision in the flotation chamber with mechanical pulp agitation depends on the surface tension of the solution, air consumption, degree of pul aeration, energy dissipation and average feed particle size. Appropriate identification and description of the parameters of the dispersion of gas bubbles helps to complete the analysis of the flotation process in a specific physicochemical conditions and hydrodynamic for any raw material. The article presents the results of measurements and analysis of the gas phase dispersion by the size distribution of air bubbles in a flotation chamber under fixed hydrodynamic conditions. The tests were carried out in the Laboratory of Instrumental Methods in Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineerin, AGH Univeristy of Science and Technology in Krakow.

  8. MUDMASTER: A Program for Calculating Crystalline Size Distributions and Strain from the Shapes of X-Ray Diffraction Peaks

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Środoń, Jan; Nüesch, R.

    1996-01-01

    Particle size may strongly influence the physical and chemical properties of a substance (e.g. its rheology, surface area, cation exchange capacity, solubility, etc.), and its measurement in rocks may yield geological information about ancient environments (sediment provenance, degree of metamorphism, degree of weathering, current directions, distance to shore, etc.). Therefore mineralogists, geologists, chemists, soil scientists, and others who deal with clay-size material would like to have a convenient method for measuring particle size distributions. Nano-size crystals generally are too fine to be measured by light microscopy. Laser scattering methods give only average particle sizes; therefore particle size can not be measured in a particular crystallographic direction. Also, the particles measured by laser techniques may be composed of several different minerals, and may be agglomerations of individual crystals. Measurement by electron and atomic force microscopy is tedious, expensive, and time consuming. It is difficult to measure more than a few hundred particles per sample by these methods. This many measurements, often taking several days of intensive effort, may yield an accurate mean size for a sample, but may be too few to determine an accurate distribution of sizes. Measurement of size distributions by X-ray diffraction (XRD) solves these shortcomings. An X-ray scan of a sample occurs automatically, taking a few minutes to a few hours. The resulting XRD peaks average diffraction effects from billions of individual nano-size crystals. The size that is measured by XRD may be related to the size of the individual crystals of the mineral in the sample, rather than to the size of particles formed from the agglomeration of these crystals. Therefore one can determine the size of a particular mineral in a mixture of minerals, and the sizes in a particular crystallographic direction of that mineral.

  9. Surface plasmon mediated Raman scattering in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bachelier, G.; Mlayah, A.

    2004-05-01

    The Raman scattering due to confined acoustic vibrations in metal particles is studied theoretically. Various coupling mechanisms between the surface plasmon polaritons and the confined vibrations are investigated. Their relative contribution to the light scattering is discussed. We found that two mechanisms play an important role: (i) modulation of the interband dielectric susceptibility via deformation potential due to pure radial vibrations and (ii) modulation of the surface polarization charges by quadripolar vibrations. The dependence of the Raman spectra on the nanoparticles size and size distribution and on the excitation energy is studied in connection with the nature of the excited plasmon-polariton states. We found a good agreement between calculated line shapes and relatives intensities of the Raman bands and the experimental spectra reported in the literature.

  10. Wrinkling and Folding on Patched Elastic Surfaces: Modulation of the Chemistry and Pattern Size of Microwrinkled Surfaces.

    PubMed

    Nogales, Aurora; Del Campo, Adolfo; Ezquerra, Tiberio A; Rodriguez-Hernández, Juan

    2017-06-14

    An unconventional strategy is proposed that takes advantage of localized high-deformation areas, referred to as folded wrinkles, to produce microstructured elastic surfaces with precisely controlled pattern dimensions and chemical distribution. For that purpose, elastic PDMS substrates were prestretched to a different extent and oxidized in particular areas using a mask. When the stretching was removed, the PDMS substrate exhibited out-of-plane deformations that largely depend on the applied prestretching. Prestretchings below 100% lead to affine deformations in which the treated areas are buckled. On the contrary, prestretchings above ε >100% prior to surface treatment induce the formation of folded wrinkles on those micrometer-size ultraviolet-ozone (UVO) treated areas upon relaxation. As a result, dual periodic wrinkles were formed due to the alternation of highly deformed (folded) and low deformed (buckled) areas. Our strategy is based on the surface treatment at precise positions upon prestretching of the elastic substrate (PDMS). Additionally, this approach can be used to template the formation of wrinkled surfaces by alternating lines of folded wrinkles (valleys) and low-deformed areas (hills). This effect allowed us to precisely tune the shape and distribution of the UVO exposed areas by varying the prestretching direction. Moreover, the wrinkle characteristics, including period and amplitude, exhibit a direct relation to the dimensions of the patterns present in the mask.

  11. Effects of Fat Polymorphic Transformation and Nonfat Particle Size Distribution on the Surface Changes of Untempered Model Chocolate, Based on Solid Cocoa Mass.

    PubMed

    Zhao, Huanhuan; Young, Ashley K; James, Bryony J

    2018-04-01

    This study aims to understand the bloom process in untempered chocolate by investigating the polymorphic transformation of cocoa butter and changes in chocolate surface. Cocoa mass with varying particle size distributions (PSD) were used to produce untempered model chocolate. Optical microscopy showed that during 25 d of storage, the chocolate surface gradually became honeycombed in appearance with dark spots surrounded by white sandy bloom areas. In conjunction with X-ray diffraction this indicates that the polymorphic transformation of form IV cocoa butter to more stable form V crystals caused the observed surface changes with the most significant changes occurring within 6 d. As bloom developed the surface whiteness increased, but the PSD of nonfat particles showed limited impact on the changes in whiteness. Moreover, scanning electron microscopy showed separated fat crystals on fat-rich dark spots and empty spaces between particles in bloom areas suggesting redistribution of fat in the chocolate matrix. The results reported in this work can facilitate the understanding of fat bloom formation in untempered chocolate with respect to the changes in microstructure and surface appearances. It also contributes to show the details of IV-to-V polymorphic transformation in the fat phase as time went by. © 2018 Institute of Food Technologists®.

  12. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    PubMed

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan

    2017-09-15

    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pt Catalyst Degradation in Aqueous and Fuel Cell Environments studied via In-Operando Anomalous Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, James A.; Kariuki, Nancy N.; Wang, Xiaoping

    2015-08-01

    The evolution of Pt nanoparticle cathode electrocatalyst size distribution in a polymer electrolyte membrane fuel cell (PEMFC) was followed during accelerated stress tests using in-operando anomalous small-angle X-ray scattering (ASAXS). This evolution was compared to that observed in an aqueous electrolyte environment using stagnant electrolyte, flowing electrolyte, and flowing electrolyte at elevated temperature to reveal the different degradation trends in the PEMFC and aqueous environments and to determine the relevance of aqueous measurements to the stability of Pt nanoparticle catalyst in the fuel cell environment. The observed changes in the particle size distributions (PSDs) were analyzed to elucidate the extentmore » and mechanisms of particle growth and corresponding mass and active surface area losses in the different environments. These losses indicate a Pt nanoparticle surface area loss mechanism controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. Based on the geometric surface area loss, mass loss, and mean particle size increase trends, the aqueous environment best reflecting the fuel cell environment was found to be one in which the electrolyte is flowing rather than stagnant. Pt nanoparticle surface area loss resulting from potential cycling can be inhibited by reducing the number of particles smaller than a critical particle diameter (CPD), which was found to be similar to 3.5 to similar to 4 nm, with the CPD dependent on both the cycling protocol (square wave vs triangle wave) and the catalyst environment (fuel cell, aqueous stagnant, aqueous flowing electrolyte, or elevated temperature flowing electrolyte)« less

  14. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  15. Metal parts hydrosized by explosive force

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Large metal parts are sized by a charge exploded above a sealed container filled with evacuated die and water. Explosive hydrosizing achieves close dimensional tolerances, eliminates damage to the surface, and allows longer force application and more even pressure distribution.

  16. Comparison between the loading capacities of columns packed with partially and totally porous fine particles. What is the effective surface area available for adsorption?

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2007-12-28

    The adsorption isotherms of phenol, caffeine, insulin, and lysozyme were measured on two C(18)-bonded silica columns. The first one was packed with classical totally porous particles (3 microm Luna(2)-C(18)from Phenomenex, Torrance, CA, USA), the second one with shell particles (2.7 microm Halo-C(18) from Advanced Materials Technology, Wilmington, DE, USA). The measurements were made at room temperature (T=295+/-1K), using mainly frontal analysis (FA) and also elution by characteristic points (FACP) when necessary. The adsorption energy distributions (AEDs) were estimated by the iterative numerical expectation-maximization (EM) procedure and served to justify the choice of the best adsorption isotherm model for each compound. The best isotherm parameters were derived from either the best fit of the experimental data to a multi-Langmuir isotherm model (MLRA) or from the AED results (equilibrium constants and saturation capacities), when the convergence of the EM program was achieved. The experiments show than the loading capacity of the Luna column is more than twice that of the Halo column for low-molecular-weight compounds. This result was expected; it is in good agreement with the values of the accessible surface area of these two materials, which were calculated from the pore size volume distributions. The pore size volume distributions are validated by the excellent agreement between the calculated and measured exclusion volumes of polystyrene standards by inverse size exclusion chromatography (ISEC). In contrast, the loading capacity ratio of the two columns is 1.5 or less with insulin and lysozyme. This is due to a significant exclusion of these two proteins from the internal pore volumes of the two packing materials. This result raises the problem of the determination of the effective surface area of the packing material, particularly in the case of proteins. This area is about 40 and 30% of the total surface area for insulin and for lysozyme, respectively, based on the pore size volume distribution validated by the ISEC method. The ISEC experiments showed that the largest and the smallest mesopores have rather a cylindrical and a spherical shape, respectively, for both packing materials.

  17. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    PubMed

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  18. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated that this may be a characteristic special to the test combustor used.

  19. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  20. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  1. Coverage dependent molecular assembly of anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.

    2017-11-01

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  2. Coverage dependent molecular assembly of anthraquinone on Au(111).

    PubMed

    DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B

    2017-11-14

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  3. Imaging natural materials with a quasi-microscope. [spectrophotometry of granular materials

    NASA Technical Reports Server (NTRS)

    Bragg, S.; Arvidson, R.

    1977-01-01

    A Viking lander camera with auxilliary optics mounted inside the dust post was evaluated to determine its capability for imaging the inorganic properties of granular materials. During mission operations, prepared samples would be delivered to a plate positioned within the camera's field of view and depth of focus. The auxiliary optics would then allow soil samples to be imaged with an 11 pm pixel size in the broad band (high resolution, black and white) mode, and a 33 pm pixel size in the multispectral mode. The equipment will be used to characterize: (1) the size distribution of grains produced by igneous (intrusive and extrusive) processes or by shock metamorphism, (2) the size distribution resulting from crushing, chemical alteration, or by hydraulic or aerodynamic sorting; (3) the shape and degree of grain roundness and surface texture induced by mechanical and chemical alteration; and (4) the mineralogy and chemistry of grains.

  4. Structural and Electronic Properties of Isolated Nanodiamonds: A Theoretical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raty, J; Galli, G

    2004-09-09

    Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibit very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films. Here we present a summary of our theoretical results and we briefly outline work in progress on doping of nanodiamond with nitrogen.« less

  5. Calculation of a solid/liquid surface tension: A methodological study

    NASA Astrophysics Data System (ADS)

    Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfreyt, P.; Pineau, N.

    2018-01-01

    The surface tension of a model solid/liquid interface constituted of a graphene sheet surrounded by liquid methane has been computed using molecular dynamics in the Kirkwood-Buff formalism. We show that contrary to the fluid/fluid case, the solid/liquid case can lead to different structurations of the first fluid layer, leading to significantly different values of surface tension. Therefore we present a statistical approach that consists in running a series of molecular simulations of similar systems with different initial conditions, leading to a distribution of surface tensions from which an average value and uncertainty can be extracted. Our results suggest that these distributions converge as the system size increases. Besides we show that surface tension is not particularly sensitive to the choice of the potential energy cutoff and that long-range corrections can be neglected contrary to what we observed in the liquid/vapour interfaces. We have not observed the previously reported commensurability effect.

  6. Impervious surface mapping with Quickbird imagery

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio

    2010-01-01

    This research selects two study areas with different urban developments, sizes, and spatial patterns to explore the suitable methods for mapping impervious surface distribution using Quickbird imagery. The selected methods include per-pixel based supervised classification, segmentation-based classification, and a hybrid method. A comparative analysis of the results indicates that per-pixel based supervised classification produces a large number of “salt-and-pepper” pixels, and segmentation based methods can significantly reduce this problem. However, neither method can effectively solve the spectral confusion of impervious surfaces with water/wetland and bare soils and the impacts of shadows. In order to accurately map impervious surface distribution from Quickbird images, manual editing is necessary and may be the only way to extract impervious surfaces from the confused land covers and the shadow problem. This research indicates that the hybrid method consisting of thresholding techniques, unsupervised classification and limited manual editing provides the best performance. PMID:21643434

  7. A close-space sublimation driven pathway for the manipulation of substrate-supported micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Sundar, Aarthi

    The ability to fabricate structures and engineer materials on the nanoscale leads to the development of new devices and the study of exciting phenomena. Nanostructures attached to the surface of a substrate, in a manner that renders them immobile, have numerous potential applications in a diverse number of areas. Substrate-supported nanostructures can be fabricated using numerous modalities; however the easiest and most inexpensive technique to create a large area of randomly distributed particles is by the technique of thermal dewetting. In this process a metastable thin film is deposited at room temperature and heated, causing the film to lower its surface energy by agglomerating into droplet-like nanostructures. The main drawbacks of nanostructure fabrication via this technique are the substantial size distributions realized and the lack of control over nanostructure placement. In this doctoral dissertation, a new pathway for imposing order onto the thermal dewetting process and for manipulating the size, placement, shape and composition of preformed templates is described. It sees the confinement of substrate-supported thin films or nanostructure templates by the free surface of a metal film or a second substrate surface. Confining the templates in this manner and heating them to elevated temperatures leads to changes in the characteristics of the nanostructures formed. Three different modalities are demonstrated which alters the preformed structures by: (i) subtracting atoms from the templates, (ii) adding atoms to the template or (iii) simultaneously adding and subtracting atoms. The ability to carry out such processes depends on the choice of the confining surface and the nanostructured templates used. A subtractive process occurs when an electroformed nickel mesh is placed in conformal contact with a continuous gold film while it dewets, resulting in the formation of a periodic array of gold microstructures on an oxide substrate surface. When heated the gold beneath the grid selectively attaches to it due to the surface energy gradient which drives gold from the low surface energy oxide surface to the higher surface energy nickel mesh. With this process being confined to areas adjacent to and in contact with the grid surface the film ruptures at well-defined locations to form isolated islands of gold and subsequently, a periodic array of microstructures. The process can be carried out on substrates of different crystallographic orientations leading to nanostructures which are formed epitaxially and have orientations based on underlying substrate orientations. The process can be extended by placing a metallic foil of Pt or Ni over preformed templates, in which case a reduction in the size of the initial structures is observed. Placing a foil on structures with random placement and a wide size distribution results, not only in a size reduction, but also a narrowed size distribution. Additive processes are carried out by using materials which possess high vapor pressures much below the sublimation temperature of the template materials. In this case a germanium substrate was used as a source of germanium adatoms while gold or silver nanostructures were used as heterogeneous nucleation sites. At elevated temperatures the adatoms collect in sufficient quantities to transform each site into a liquid alloy which, upon cooling, phase separates into elemental components sharing a common interface and, hence, resulting in the formation of heterodimers and hollowed metal nanocrescents upon etching away the Ge. A process which combined aspects of the additive and subtractive process was carried out by using a metallic foil with a high vapor pressure and higher surface energy than the substrate surface (in this case Pd foil). This process resulted in the initial preformed gold templates being annihilated and replaced by nanostructures of palladium, thereby altering their chemical composition. The assembly process relies on the concurrent sublimation of palladium and gold which results in the complete transfer of the templated gold from the substrate to the foil, but not before the templates act as heterogeneous nucleation sites for palladium adatoms arriving to the substrate surface. Thus, the process is not only subtractive, but also additive due to the addition of palladium and removal of gold.

  8. Membrane emulsification to produce perfume microcapsules

    NASA Astrophysics Data System (ADS)

    Pan, Xuemiao

    Microencapsulation is an efficient technology to deliver perfume oils from consumer products onto the surface of fabrics. Microcapsules having uniform size/mechanical strength, may provide better release performance. Membrane emulsification in a dispersion cell followed by in-situ polymerization was used to prepare narrow size distribution melamine-formaldehyde (MF) microcapsules containing several types of oil-based fragrances or ingredients. Investigated in this study are the parameters impacting to the size and size distribution of the droplets and final MF microcapsules. A pilot plant-scale cross-flow membrane system was also used to produce MF microcapsules, demonstrating that the membrane emulsification process has potential to be scaled up for industrial applications. In this study, health and environmental friendly poly (methyl methacrylate) (PMMA) microcapsules with narrow size distribution were also prepared for the first time using the dispersion cell membrane emulsification system. Characterization methods previously used for thin-shell microcapsules were expanded to analyse microcapsules with thick shells. The intrinsic mechanical properties of thick shells were determined using a micromanipulation technique and finite element analysis (FEM). The microcapsules structure was also considered in the determination of the permeability and diffusivity of the perfume oils in good solvents..

  9. Mid-late Holocene climate variability in the Indian monsoon: Evidence from continental shelf sediments adjacent to Rushikulya river, eastern India

    NASA Astrophysics Data System (ADS)

    Ankit, Yadav; Kumar, Prem; Anoop, Ambili; Mishra, Praveen K.; Varghese, Saju

    2017-04-01

    We present elemental and grain-size distributions obtained from the sediment core of the continental shelf adjacent to the Rushikulya river mouth, eastern India to quantify the paleoclimatic changes. The retrieved 1.60 m long well-dated core spans the past ca. 6800 cal BP. The modern spatial distribution of grain size and geochemistry of the inner-mid shelf sediments has been carried out to understand the seafloor morphology and sedimentary processes. Based on the mod- ern investigations, the proportion of particle size (clay vs sand) and variation in elemental values (TiO2 vs Al2O3) has been used to interpret the changes in terrigenous supply. The grain-size and elemental distribution data from the core sediments indicates a period of enhanced surface water runoff from 6800 to 3100 cal BP followed by a drier condition (3100 cal BP to present) suggesting weakening of monsoon. The weakening of the monsoonal strength is coeval with other records from the Indian sub-continent and suggests response of Indian monsoon to changing solar insolation during late Holocene.

  10. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  11. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  12. Adsorption properties for urokinase on local diatomite surface

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Zhang, Jianbo; Yang, Weimin; Wu, Jieda; Chen, Rongsan

    2003-02-01

    In this paper, adsorption isotherm of urokinase on two typical local diatomites were determined at 25 °C and their surface electrical potentials (ζ), isoelectrical point values (IEP) were determined. The properties of diatomites, the relationship among diatomite structure, pore-size distribution, surface ζ and adsorption isotherm were discussed. The adsorption equation of urokinase was calculated from the adsorption isotherm. The adsorption mode of urokinase on diatomite surface was judged by the configuration function α. The relationship between the amount of adsorbed urokinase and IEP value was also discussed.

  13. Silver electrodeposition on nanostructured gold: from nanodots to nanoripples.

    PubMed

    Dos Santos Claro, P C; Fonticelli, M; Benítez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C

    2006-07-28

    Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of approximately 50 nm average size and approximately 4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order.

  14. Sulfate passivation in the lead-acid system as a capacity limiting process

    NASA Astrophysics Data System (ADS)

    Kappus, W.; Winsel, A.

    1982-10-01

    Calculations of the discharge capacity of Pb and PbO 2 electrodes as a function of various parameters are presented. They are based on the solution-precipitation mechanism for the discharge reaction and its formulation by Winsel et al. A logarithmic pore size distribution is used to fit experimental porosigrams of Pb and PbO 2 electrodes. Based on this pore size distribution the capacity is calculated as a function of current, BET surface, and porosity of the PbSO 4 diaphragm. The PbSO 4 supersaturation as the driving force of the diffusive transport is chosen as a free parameter.

  15. The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Pajola, M.; Lucchetti, A.; Fulle, M.; Mottola, S.; Hamm, M.; Da Deppo, V.; Penasa, L.; Kovacs, G.; Massironi, M.; Shi, X.; Tubiana, C.; Güttler, C.; Oklay, N.; Vincent, J. B.; Toth, I.; Davidsson, B.; Naletto, G.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Debei, S.; De Cecco, M.; Deller, J.; El Maarry, M. R.; Fornasier, S.; Frattin, E.; Gicquel, A.; Groussin, O.; Gutierrez, P. J.; Höfner, S.; Hofmann, M.; Hviid, S. F.; Ip, W. H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Marzari, F.; Michalik, H.; Preusker, F.; Scholten, F.; Thomas, N.

    2017-07-01

    By using the imagery acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System Wide-Angle Camera (OSIRIS WAC), we prepare a high-resolution morphological map of the Rosetta Sais final landing site, characterized by an outcropping consolidated terrain unit, a coarse boulder deposit and a fine particle deposit. Thanks to the 0.014 m resolution images, we derive the pebbles/boulders size-frequency distribution (SFD) of the area in the size range of 0.07-0.70 m. Sais' SFD is best fitted with a two-segment differential power law: the first segment is in the range 0.07-0.26 m, with an index of -1.7 ± 0.1, while the second is in the range 0.26-0.50 m, with an index of -4.2 +0.4/-0.8. The `knee' of the SFD, located at 0.26 m, is evident both in the coarse and fine deposits. When compared to the Agilkia Rosetta Lander Imaging System images, Sais surface is almost entirely free of the ubiquitous, cm-sized debris blanket observed by Philae. None the less, a similar SFD behaviour of Agilkia, with a steeper distribution above ˜0.3 m, and a flatter trend below that, is observed. The activity evolution of 67P along its orbit provides a coherent scenario of how these deposits were formed. Indeed, different lift pressure values occurring on the two locations and at different heliocentric distances explain the presence of the cm-sized debris blanket on Agilkia observed at 3.0 au inbound. Contrarily, Sais activity after 2.1 au outbound has almost completely eroded the fine deposits fallen during perihelion, resulting in an almost dust-free surface observed at 3.8 au.

  16. Mathematical Modeling on the Growth and Removal of Non-metallic Inclusions in the Molten Steel in a Two-Strand Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Ling, Haitao; Zhang, Lifeng; Li, Hong

    2016-10-01

    In the current study, mathematical models were developed to predict the transient concentration and size distribution of inclusions in a two-strand continuous casting tundish. The collision and growth of inclusions were considered. The contribution of turbulent collision and Stokes collision was evaluated. The removal of inclusions from the top surface was modeled by considering the properties of inclusions and the molten steel, such as the wettability, density, size, and interfacial tension. The effect of composition of inclusions on the collision of inclusions was included through the Hamaker constant. Meanwhile, the effect of the turbulent fluctuation velocity on the removal of inclusions at the top surface was also studied. Inclusions in steel samples were detected using automatic SEM Scanning so that the amount, morphology, size, and composition of inclusions were achieved. In the simulation, the size distribution of inclusions at the end steel refining was used as the initial size distribution of inclusions at tundish inlet. The equilibrium time when the collision and coalescence of inclusions reached the steady state was equal to 3.9 times of the mean residence time. When Stokes collision, turbulent collision, and removal by floating were included, the removal fraction of inclusions was 16.4 pct. Finally, the removal of solid and liquid inclusions, such as Al2O3, SiO2, and 12CaO·7Al2O3, at the interface between the molten steel and slag was studied. Compared with 12CaO·7Al2O3 inclusions, the silica and alumina inclusions were much easier to be removed from the molten steel and their removal fractions were 36.5 and 39.2 pct, respectively.

  17. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    NASA Astrophysics Data System (ADS)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  18. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  19. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm; French McCay, Deborah; Crowley, Deborah; Payne, James R

    2017-01-15

    An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Plasma etched surface scanning inspection recipe creation based on bidirectional reflectance distribution function and polystyrene latex spheres

    NASA Astrophysics Data System (ADS)

    Saldana, Tiffany; McGarvey, Steve; Ayres, Steve

    2014-04-01

    The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.

  1. A Tracking Sun Photometer Without Moving Parts

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.

    2012-01-01

    This innovation is small, lightweight, and consumes very little electricity as it measures the solar energy attenuated by gases and aerosol particles in the atmosphere. A Sun photometer is commonly used on the Earth's surface, as well as on aircraft, to determine the solar energy attenuated by aerosol particles in the atmosphere and their distribution of sizes. This information is used to determine the spatial and temporal distribution of gases and aerosols in the atmosphere, as well as their distribution sizes. The design for this Sun photometer uses a combination of unique optics and a charge coupled device (CCD) array to eliminate moving parts and make the instrument more reliable. It could be selfcalibrating throughout the year. Data products would be down-welling flux, the direct-diffuse flux ratio, column abundance of gas phase constituents, aerosol optical depth at multiple-wavelengths, phase functions, cloud statistics, and an estimate of the representative size of atmospheric particles. These measurements can be used to obtain an estimate of aerosol size distribution, refractive index, and particle shape. Incident light is received at a light-reflecting (inner) surface, which is a truncated paraboloid. Light arriving from a hemispheric field of view (solid angle 2 steradians) enters the reflecting optic at an entrance aperture at, or adjacent to, the focus of the paraboloid, and is captured by the optic. Most of this light is reflected from an inner surface. The light proceeds substantially parallel to the paraboloid axis, and is detected by an array detector located near an exit aperture. Each of the entrance and exit apertures is formed by the intersection of the paraboloid with a plane substantially perpendicular to the paraboloid axis. Incident (non-reflected) light from a source of limited extent (the Sun) illuminates a limited area on the detector array. Both direct and diffuse illumination may be reflected, or not reflected, before being received on the detector array. As the Sun traverses a path in the sky over some time interval, the track of the Sun can be traced on the detector array. A suitably modified Sun photometer might be used to study the dynamics of an environment on another planet or satellite with an atmosphere.

  2. Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites

    NASA Astrophysics Data System (ADS)

    Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.

  3. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    NASA Astrophysics Data System (ADS)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  4. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG-Au conjugates.

    PubMed

    Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G

    2013-01-01

    The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  5. Research on the effect of coverage rate on the surface quality in laser direct writing process

    NASA Astrophysics Data System (ADS)

    Pan, Xuetao; Tu, Dawei

    2017-07-01

    Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.

  6. Homogeneous crystal nucleation in Ni droplets

    NASA Astrophysics Data System (ADS)

    Kožíšek, Zdeněk; Demo, Pavel

    2017-10-01

    Crystal nucleation kinetics is often represented by induction times or metastable zone widths (Kulkarni et al., 2013; Bokeloh et al., 2011). Repeating measurements of supercooling or time delay, at which phase transition is detected, are statistically processed to determine the so-called survivorship function, from which nucleation rate is computed. The size distribution of nuclei is difficult to measure near the critical size directly, and it is not clear which amount of nuclei is formed at the moment when the phase transition is detected. In the present paper, kinetic nucleation equations are solved for the crystal nucleation in Ni liquid droplet to determine the number of nuclei formed within a considered system. Analysis of supercooling experimental data, based on the classical nucleation theory CNT), computes appropriate values of the nucleation rate. However, CNT underestimates the number of nuclei F (F ≪ 1 for supercritical sizes). Taking into account the dependence of the surface energy on nucleus size to data analysis overcomes this discrepancy and leads to reasonable values of the size distribution of nuclei.

  7. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE PAGES

    Singh, Andy; Luening, Katharina; Brennan, Sean; ...

    2017-01-01

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  8. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Andy; Luening, Katharina; Brennan, Sean

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  9. Facile method for the synthesis of gold nanoparticles using an ion coater

    NASA Astrophysics Data System (ADS)

    Lee, Seung Han; Jung, Hyun Kyu; Kim, Tae Cheol; Kim, Chang Hee; Shin, Chang Hwan; Yoon, Tae-Sik; Hong, A.-Ra; Jang, Ho Seong; Kim, Dong Hun

    2018-03-01

    Herein we report a metal nanoparticle synthesis method based on a physical vapor deposition process instead of the conventional wet process of chemical reactions in liquids. A narrow size distribution of synthesized gold nanoparticles was obtained using an ion coater on glycerin at low vapor pressure. The nanoparticle size could be modulated by controlling the sputtering conditions especially the discharge current. Due to the formation of gold nanoparticles, a surface plasmon resonance peak appeared at ∼530 nm in the absorption spectrum. The surface plasmon resonance peak exhibited red-shift with increasing size of the gold nanoparticles. Our results provide a simple, environmental friendly method for the synthesis of metal nanoparticles by combine low-cost deposition apparatus and a liquid medium, which is free from toxic reagents.

  10. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  11. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  12. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    PubMed

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High surface area carbon and process for its production

    DOEpatents

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  14. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  15. Viscous Particle Breakup within a Cooling Nuclear Fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J. T.; Knight, K. B.; Dai, Z.

    2016-10-04

    Following the surface detonation of a nuclear weapon, the Earth’s crust and immediate surroundings are drawn into the fireball and form melts. Fallout is formed as these melts incorporate radioactive material from the bomb vapor and cool rapidly. The resultant fallout plume and dispersion of radioactive contamination is a function of several factors including weather patterns and fallout particle shapes and size distributions. Accurate modeling of the size distributions of fallout forms an important data point for dispersion codes that calculate the aerial distribution of fallout. While morphological evidence for aggregation of molten droplets is well documented in fallout glassmore » populations, the breakup of these molten droplets has not been similarly studied. This study documents evidence that quenched fallout populations preserve evidence of molten breakup mechanisms.« less

  16. Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream.

    PubMed

    Ziaeifar, Leila; Labbafi Mazrae Shahi, Mohsen; Salami, Maryam; Askari, Gholam R

    2018-05-21

    The effect of the addition of the camel casein fraction on some physico-chemical properties of low fat camel milk cream was studied. Oil-in-water emulsions, 25, 30, and 35 (w/w) fat, were prepared using inulin, camel skim milk, milk fat and variable percentages of casein (1, 2, and 3% w/w). The droplet size, ζ-potential, surface protein concentration, viscosity and surface tension of low fat dairy creams was measured. Cream containing 2% (w/w) casein had better stability. The modifications in physico-chemical properties appeared to be driven by changes in particle size distribution caused by droplet aggregation. The cream containing 2% casein leads to a gradual decrease in droplet size, as the particle size decreased, apparent viscosity increased. When casein concentration increased, ζ-potential decreased due to combination of c terminal (negative charge) with the surface of fat particles but steric repulsion improved textural properties. Cream with 30% fat and 2% casein had the best result. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Self-healing coatings containing microcapsule

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun

    2012-01-01

    Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.

  18. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    NASA Astrophysics Data System (ADS)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a sampling head, allows the sampling of Martian atmosphere with embedded dust. The captured dust grains are detected by an Optical System and then ejected into the atmosphere. MicroMED is a miniaturization of the instrument MEDUSA, developed for the Humboldt payload of the ExoMars mission. An Elegant Breadboard has been developed and tested and successfully demonstrates the instrument performances. The design and performance test results will be discussed.

  19. Collection, processing and error analysis of Terrestrial Laser Scanning data from fluvial gravel surfaces

    NASA Astrophysics Data System (ADS)

    Hodge, R.; Brasington, J.; Richards, K.

    2009-04-01

    The ability to collect 3D elevation data at mm-resolution from in-situ natural surfaces, such as fluvial and coastal sediments, rock surfaces, soils and dunes, is beneficial for a range of geomorphological and geological research. From these data the properties of the surface can be measured, and Digital Terrain Models (DTM) can be constructed. Terrestrial Laser Scanning (TLS) can collect quickly such 3D data with mm-precision and mm-spacing. This paper presents a methodology for the collection and processing of such TLS data, and considers how the errors in this TLS data can be quantified. TLS has been used to collect elevation data from fluvial gravel surfaces. Data were collected from areas of approximately 1 m2, with median grain sizes ranging from 18 to 63 mm. Errors are inherent in such data as a result of the precision of the TLS, and the interaction of factors including laser footprint, surface topography, surface reflectivity and scanning geometry. The methodology for the collection and processing of TLS data from complex surfaces like these fluvial sediments aims to minimise the occurrence of, and remove, such errors. The methodology incorporates taking scans from multiple scanner locations, averaging repeat scans, and applying a series of filters to remove erroneous points. Analysis of 2.5D DTMs interpolated from the processed data has identified geomorphic properties of the gravel surfaces, including the distribution of surface elevations, preferential grain orientation and grain imbrication. However, validation of the data and interpolated DTMs is limited by the availability of techniques capable of collecting independent elevation data of comparable quality. Instead, two alternative approaches to data validation are presented. The first consists of careful internal validation to optimise filter parameter values during data processing combined with a series of laboratory experiments. In the experiments, TLS data were collected from a sphere and planes with different reflectivities to measure the accuracy and precision of TLS data of these geometrically simple objects. Whilst this first approach allows the maximum precision of TLS data from complex surfaces to be estimated, it cannot quantify the distribution of errors within the TLS data and across the interpolated DTMs. The second approach enables this by simulating the collection of TLS data from complex surfaces of a known geometry. This simulated scanning has been verified through systematic comparison with laboratory TLS data. Two types of surface geometry have been investigated: simulated regular arrays of uniform spheres used to analyse the effect of sphere size; and irregular beds of spheres with the same grain size distribution as the fluvial gravels, which provide a comparable complex geometry to the field sediment surfaces. A series of simulated scans of these surfaces has enabled the magnitude and spatial distribution of errors in the interpolated DTMs to be quantified, as well as demonstrating the utility of the different processing stages in removing errors from TLS data. As well as demonstrating the application of simulated scanning as a technique to quantify errors, these results can be used to estimate errors in comparable TLS data.

  20. Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk, E-mail: somnuk.jar@kmutt.ac.th

    2012-05-15

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders frommore » the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.« less

  1. Size distributions and exposure concentrations of nanoparticles associated with the emissions of oil mists from fastener manufacturing processes.

    PubMed

    Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung

    2011-12-30

    The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles

    NASA Astrophysics Data System (ADS)

    Park, Ji Young; Raynor, Peter C.; Maynard, Andrew D.; Eberly, Lynn E.; Ramachandran, Gurumurthy

    Recent research has suggested that the adverse health effects caused by nanoparticles are associated with their surface area (SA) concentrations. In this study, SA was estimated in two ways using number and mass concentrations and compared with SA (SA meas) measured using a diffusion charger (DC). Aerosol measurements were made twice: once starting in October 2002 and again starting in December 2002 in Mysore, India in residences that used kerosene or liquefied petroleum gas (LPG) for cooking. Mass, number, and SA concentrations and size distributions by number were measured in each residence. The first estimation method (SA PSD) used the size distribution by number to estimate SA. The second method (SA INV) used a simple inversion scheme that incorporated number and mass concentrations while assuming a lognormal size distribution with a known geometrical standard deviation. SA PSD was, on average, 2.4 times greater (range = 1.6-3.4) than SA meas while SA INV was, on average, 6.0 times greater (range = 4.6-7.7) than SA meas. The logarithms of SA PSD and SA INV were found to be statistically significant predictors of the logarithm of SA meas. The study showed that particle number and mass concentration measurements can be used to estimate SA with a correction factor that ranges between 2 and 6.

  3. On Suspended matter grain size in Baltic sea

    NASA Astrophysics Data System (ADS)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  4. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fever droplets, larger size develop due to greater condencational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.

  6. Chemical and physical properties affecting strontium distribution coefficients of surficial-sediment samples at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Liszewski, M.J.; Rosentreter, J.J.; Miller, Karl E.; Bartholomay, R.C.

    2000-01-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (K(d)s) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine K(d)s, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The K(d)s for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium K(d)s of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium K(d)s were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and -0.6518, respectively. Sediment properties with the strongest correlations with strontium K(d)s were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and -0.6660, respectively. Effects of solution properties on strontium K(d)s were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium K(d)s were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0.8071 when all five properties were used and 0.8043 when three properties, equilibrium pH, MnO, and BET surface area, were used.

  7. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.

    PubMed

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe; Zurzolo, Chiara

    2017-12-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. © 2017 The Author(s).

  8. Pre-coalescence scaling of graphene island sizes

    NASA Astrophysics Data System (ADS)

    Das, Shantanu; Drucker, Jeff

    2018-05-01

    Graphene grown using cold-wall chemical vapor deposition on Cu surfaces follows a classical nucleation and growth mechanism. Following nucleation at the earliest growth stages, isolated crystallites grow, impinge, and coalesce to form a continuous layer. During the pre-coalescence growth regime, the size distributions of graphene crystallites exhibit scaling of the form N(s) = θ/⟨s⟩2 g(s/⟨s⟩), where s is the island area, θ is the graphene coverage, ⟨s⟩ is the average island area, N is the areal density, and g(x) is a scaling function. For graphene grown on Cu surfaces that have been annealed in a reducing Ar + H2 ambient, excellent data collapse onto a universal Avrami scaling function is observed irrespective of graphene coverage, surface roughness, or Cu grain size. This result is interpreted to indicate attachment-limited growth and desorption of diffusing C-containing species. Graphene grown on Cu surfaces that were annealed in a non-reducing environment exhibits a qualitatively different scaling function, indicating diffusion-limited growth with a lower attachment barrier combined with C detachment from the graphene edges.

  9. Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.

    2018-05-01

    This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption

  10. Engineering plasmonic nanostructured surfaces by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea

    2018-03-01

    The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.

  11. Dropwise condensation

    PubMed Central

    Leach, R. N.; Stevens, F.; Langford, S. C.; Dickinson, J. T.

    2008-01-01

    Dropwise condensation of water vapor from a naturally cooling, hot water reservoir onto a hydrophobic polymer film and a silanized glass slide was studied by direct observation and simulations. The observed drop growth kinetics suggest that smallest drops grow principally by the diffusion of water adsorbed on the substrate to the drop perimeter, while drops larger than 50 μm in diameter grow principally by direct deposition from the vapor onto the drop surface. Drop coalescence plays a critical role in determining the drop size distribution, and stimulates the nucleation of new, small drops on the substrates. Simulations of drop growth incorporating these growth mechanisms provide a good description of the observed drop size distribution. Because of the large role played by coalescence, details of individual drop growth make little difference to the final drop size distribution. The rate of condensation per unit substrate area is especially high for the smallest drops, and may help account for the high heat transfer rates associated with dropwise condensation relative to filmwise condensation in heat exchange applications. PMID:17014129

  12. Characterization of fish assemblages and population structure of freshwater fish in two Tunisian reservoirs: implications for fishery management.

    PubMed

    Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi

    2016-06-01

    To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.

  13. Particle Size, Composition, and Ocean Temperature Govern the Global Distribution of Particle Transfer Efficiency to the Mesopelagic

    NASA Astrophysics Data System (ADS)

    Cram, J. A.; Weber, T. S.; Leung, S.; Deutsch, C. A.

    2016-02-01

    New analyses of geochemical tracer data detect significant differences between ocean basins in the depth scale of particle remineralization, with deepest in high latitudes, shallowest in the subtropical gyres, and intermediate in the tropics. We evaluate the possible causes of this pattern using a mechanistic model of particle dynamics that includes microbial colonization, detachment, and degradation of sinking particles. The model represents the size structure of particles, the effects of mineral ballast (diagnosed from alkalinity and silicate distributions) and seawater temperature (which influences particle velocity and microbial metabolic rates). We find that diagnosed spatial patterns in particle flux profiles can be best reproduced through a combination of surface particle size distribution and temperature, which both favor low transfer efficiency in subtropical gyres, and high transfer efficiency in higher latitudes and intermediate tropical values. Particle mineral content is shown to significantly modulate these patterns, albeit with a high remaining uncertainty. Implications of these mechanisms for changes in biological carbon storage in a warmer ocean are examined.

  14. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China.

    PubMed

    Zhao, Hongtao; Li, Xuyong; Wang, Xiaomei; Tian, Di

    2010-11-15

    Pollutant washoff from road-deposited sediment (RDS) is an increasing problem associated with the rapid urbanization of China that results in urban non-point source pollution. Here, we analyzed the RDS grain size distribution and its potential impact on heavy metal pollution in urban runoff from impervious surfaces of urban villages, colleges and residences, and main traffic roads in the Haidian District, Beijing, China. RDS with smaller grain size had a higher metal concentration. Specifically, particles with the smallest grain size (<44 μm) had the highest metal concentration in most areas (unit: mg/kg): Cd 0.28-1.31, Cr 57.9-154, Cu 68.1-142, Ni 25.8-78.0, Pb 73.1-222 and Zn 264-664. Particles with smaller grain size (<250 μm) contributed more than 80% of the total metal loads in RDS washoff, while suspended solids with a grain size <44 μm in runoff water accounted for greater than 70% of the metal mass in the total suspended solids (TSS). The heavy metal content in the TSS was 2.21-6.52% of that in the RDS. These findings will facilitate our understanding of the importance of RDS grain size distribution in heavy metal pollution caused by urban storm runoff. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. A new powder production route for transparent spinel windows: powder synthesis and window properties

    NASA Astrophysics Data System (ADS)

    Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim

    2005-05-01

    Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.

  16. Design for the fabrication of high efficiency solar cells

    DOEpatents

    Simmons, Joseph H.

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  17. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  18. Laser-driven hydrothermal process studied with excimer laser pulses

    NASA Astrophysics Data System (ADS)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  19. Laser pulse heating of steel mixing with WC particles in a irradiated region

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  20. MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlichting, Hilke E.; Ofek, Eran O.; Gal-Yam, Avishay

    2012-12-20

    We present here the analysis of about 19,500 new star hours of low ecliptic latitude observations (|b| {<=} 20 Degree-Sign ) obtained by the Hubble Space Telescope's Fine Guidance Sensors over a time span of more than nine years, which is in addition to the {approx}12, 000 star hours previously analyzed by Schlichting et al. Our search for stellar occultations by small Kuiper Belt Objects (KBOs) yielded one new candidate event corresponding to a body with a 530 {+-} 70 m radius at a distance of about 40 AU. Using bootstrap simulations, we estimate a probability of Almost-Equal-To 5% thatmore » this event is due to random statistical fluctuations within the new data set. Combining this new event with the single KBO occultation reported by Schlichting et al. we arrive at the following results: (1) the ecliptic latitudes of 6. Degree-Sign 6 and 14. Degree-Sign 4 of the two events are consistent with the observed inclination distribution of larger, 100-km-sized KBOs. (2) Assuming that small, sub-kilometer-sized KBOs have the same ecliptic latitude distribution as their larger counterparts, we find an ecliptic surface density of KBOs with radii larger than 250 m of N(r > 250 m) = 1.1{sup +1.5}{sub -0.7} Multiplication-Sign 10{sup 7} deg{sup -2}; if sub-kilometer-sized KBOs have instead a uniform ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign then N(r > 250 m) = 4.4{sup +5.8}{sub -2.8} Multiplication-Sign 10{sup 6} deg{sup -2}. This is the best measurement of the surface density of sub-kilometer-sized KBOs to date. (3) Assuming the KBO size distribution can be well described by a single power law given by N(> r){proportional_to}r{sup 1-q}, where N(> r) is the number of KBOs with radii greater than r, and q is the power-law index, we find q = 3.8 {+-} 0.2 and q = 3.6 {+-} 0.2 for a KBO ecliptic latitude distribution that follows the observed distribution for larger, 100-km-sized KBOs and a uniform KBO ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign , respectively. (4) Regardless of the exact power law, our results suggest that small KBOs are numerous enough to satisfy the required supply rate for the Jupiter family comets. (5) We can rule out a single power law below the break with q > 4.0 at 2{sigma}, confirming a strong deficit of sub-kilometer-sized KBOs compared to a population extrapolated from objects with r > 45 km. This suggests that small KBOs are undergoing collisional erosion and that the Kuiper Belt is a true analog to the dust producing debris disks observed around other stars.« less

  1. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  2. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  3. Combined synthesis and in situ coating of nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Raula, Janne; Kauppinen, Esko I.

    2008-12-01

    Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.

  4. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From spheroids to stereo-particles, ηd increases by about 30%. We believe these results may be useful for our understanding of the spatial distribution of mineral dust contained in an aerosol external mixture and to better quantify dust mass concentrations from polarization lidar experiments.

  5. Surface chemistry and density distribution influence on visible luminescence of silicon quantum dots: an experimental and theoretical approach.

    PubMed

    Dutt, Ateet; Matsumoto, Yasuhiro; Santana-Rodríguez, G; Ramos, Estrella; Monroy, B Marel; Santoyo Salazar, J

    2017-01-04

    The impact of the surface reconstruction of the density distribution and photoluminescence of silicon quantum dots (QDs) embedded in a silicon oxide matrix (SiO x ) has been studied. Annealing treatments carried out on the as-deposited samples provoked the effusion of hydrogen species. Moreover, depending on the surrounding density and coalescence of QDs, they resulted in a change in the average size of the particles depending on the initial local environment. The shift in the luminescence spectra all over the visible region (blue, green and red) shows a strong dependence on the resultant change in the size and/or the passivation environment of QDs. Density functional theoretical (DFT) calculations support this fact and explain the possible electronic transitions (HOMO-LUMO gap) involved. Passivation in the presence of oxygen species lowers the band gap of Si 29 and Si 35 nanoclusters up to 1.7 eV, whereas, surface passivation in the environment of hydrogen species increases the band gap up to 4.4 eV. These results show a good agreement with the quantum confinement model described in this work and explain the shift in the luminescence all over the visible region. The results reported here offer vital insight into the mechanism of emission from silicon quantum dots which has been one of the most debated topics in the last two decades. QDs with multiple size distribution in different local environments (band gap) observed in this work could be used for the fabrication of light emission diodes (LEDs) or shift-conversion thin films in third generation efficient tandem solar cells for the maximum absorption of the solar spectrum in different wavelength regions.

  6. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less

  8. Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting

    DOE PAGES

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; ...

    2016-01-11

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less

  9. Characterization of an Aluminum Alloy Hemispherical Shell Fabricated via Direct Metal Laser Melting

    NASA Astrophysics Data System (ADS)

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.

    2016-03-01

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependent microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.

  10. Experimental Plan for the Development of Equivalent Crack Size Distributions and a Monte Carlo Model of Fatigue in Low and High-kt Specimens of Corroded AA7050-T7451

    DTIC Science & Technology

    2012-03-01

    18 3.3.7 Fractography ... Fractography : The fracture surfaces of the fractured fatigue specimens will be examined optically and in the scanning electron microscope to measure the size...scanned and added to the report containing the results from these fatigue tests. 3.3.7 Fractography Once a specimen has been tested, and assuming

  11. Three-dimensional simulation of gas and dust in Io's Pele plume

    NASA Astrophysics Data System (ADS)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  12. Surface Evolution of Nano-Textured 4H-SiC Homoepitaxial Layers after High Temperature Treatments: Morphology Characterization and Graphene Growth.

    PubMed

    Liu, Xingfang; Chen, Yu; Sun, Changzheng; Guan, Min; Zhang, Yang; Zhang, Feng; Sun, Guosheng; Zeng, Yiping

    2015-09-18

    Nano-textured 4H-SiC homoepitaxial layers (NSiCLs) were grown on 4H-SiC(0001) substrates using a low pressure chemical vapor deposition technique (LPCVD), and subsequently were subjected to high temperature treatments (HTTs) for investigation of their surface morphology evolution and graphene growth. It was found that continuously distributed nano-scale patterns formed on NSiCLs which were about submicrons in-plane and about 100 nanometers out-of-plane in size. After HTTs under vacuum, pattern sizes reduced, and the sizes of the remains were inversely proportional to the treatment time. Referring to Raman spectra, the establishment of multi-layer graphene (MLG) on NSiCL surfaces was observed. MLG with sp ² disorders was obtained from NSiCLs after a high temperature treatment under vacuum at 1700 K for two hours, while MLG without sp ² disorders was obtained under Ar atmosphere at 1900 K.

  13. The determination of total burn surface area: How much difference?

    PubMed

    Giretzlehner, M; Dirnberger, J; Owen, R; Haller, H L; Lumenta, D B; Kamolz, L-P

    2013-09-01

    Burn depth and burn size are crucial determinants for assessing patients suffering from burns. Therefore, a correct evaluation of these factors is optimal for adapting the appropriate treatment in modern burn care. Burn surface assessment is subject to considerable differences among clinicians. This work investigated the accuracy among experts based on conventional surface estimation methods (e.g. "Rule of Palm", "Rule of Nines" or "Lund-Browder Chart"). The estimation results were compared to a computer-based evaluation method. Survey data was collected during one national and one international burn conference. The poll confirmed deviations of burn depth/size estimates of up to 62% in relation to the mean value of all participants. In comparison to the computer-based method, overestimation of up to 161% was found. We suggest introducing improved methods for burn depth/size assessment in clinical routine in order to efficiently allocate and distribute the available resources for practicing burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  14. Estimation of reactive surface area using a combined method of laboratory analyses and digital image processing

    NASA Astrophysics Data System (ADS)

    Ma, Jin; Kong, Xiang-Zhao; Saar, Martin O.

    2017-04-01

    Fluid-rock interactions play an important role in the engineering processes such as chemical stimulation of enhanced geothermal systems and carbon capture, utilization, and storage. However, these interactions highly depend on the accessible reactive surface area of the minerals that are generally poorly constrained for natural geologic samples. In particular, quantifying surface area of each reacting mineral within whole rock samples is challenging due to the heterogeneous distribution of minerals and pore space. In this study, detailed laboratory analyses were performed on sandstone samples from deep geothermal sites in Lithuania. We measure specific surface area of whole rock samples using a gas adsorption method (so-called B.E.T.) with N2 at a temperature of 77.3K. We also quantify their porosity and pore size distribution by a Helium gas pycnometer and a Hg porosimetry, respectively. Rock compositions are determined by a combination of X-ray fluorescence (XRF) and quantitative scanning electron microscopy (SEM) - Energy-dispersive X-ray spectroscopy (EDS), which are later geometrically mapped on images of two-dimensional SEM- Backscattered electrons (BSE) with a resolution of 1.2 μm and three-dimensional micro-CT with a resolution of 10.3 μm to produce a digital mineral map for further constraining the accessibility of reactive minerals. Moreover, we attempt to link the whole rock porosity, pore size distribution, and B.E.T. specific surface area with the digital mineral maps. We anticipate these necessary analyses to provide in-depth understanding of fluid sample chemistry from later hydrothermal reactive flow-through experiments on whole rock samples at elevated pressure and temperature.

  15. tRNA acceptor stem and anticodon bases form independent codes related to protein folding

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2015-01-01

    Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3′ acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water. PMID:26034281

  16. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Single-step fabrication of homoepitaxial silicon nanocones by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Colniţă, Alia; Marconi, Daniel; Brătfălean, Radu Tiberiu; Turcu, Ioan

    2018-04-01

    The purpose of this work was to optimize a single-step fabrication process of silicon (Si) cones-like nanostructures on Si(111) reconstructed substrates. The substrate temperature is the most important parameter in the Si/Si growth, due to its high influence over the surface nanostructuring and the occurrence of well defined nanocones. We investigate the effect of different substrate temperatures on the density and size distributions of Si nanocones formed during the molecular beam epitaxy (MBE) deposition of Si/Si(111) 7 × 7 reconstructed surfaces. The nanocones were characterized using scanning tunnelling microscopy (STM) and the height and the bottom area distributions of the Si nanocones were assessed. It was found that the obtained distributions are interrelated suggesting the self-similarity of the nanostructures grown during the deposition protocol.

  18. Influence of haze pollution on water-soluble chemical species in PM2.5 and size-resolved particles at an urban site during fall.

    PubMed

    Yu, Geun-Hye; Zhang, Yan; Cho, Sung-Yong; Park, Seungshik

    2017-07-01

    To investigate the influence of haze on the chemical composition and formation processes of ambient aerosol particles, PM 2.5 and size-segregated aerosol particles were collected daily during fall at an urban site of Gwangju, Korea. During the study period, the total concentration of secondary ionic species (SIS) contributed an average of 43.9% to the PM 2.5 , whereas the contribution of SIS to the PM 2.5 during the haze period was 62.3%. The NO 3 - and SO 4 2- concentrations in PM 2.5 during the haze period were highly elevated, being 13.4 and 5.0 times higher than those during non-haze period, respectively. The PM, NO 3 - , SO 4 2- , oxalate, water-soluble organic carbon (WSOC), and humic-like substances (HULIS) had tri-modal size distributions peaks at 0.32, 1.0, and 5.2μm during the non-haze and haze periods. However, during the non-haze period they exhibited dominant size distributions at the condensation mode peaking at 0.32μm, while on October 21 when the heaviest haze event occurred, they had predominant droplet mode size distributions peaking at 1.00μm. Moreover, strong correlations of WSOC and HULIS with SO 4 2- , oxalate, and K + at particle sizes of <1.8μm indicate that secondary processes and emissions from biomass burning could be responsible for WSOC and HULIS formations. It was found that the factors affecting haze formation could be the local stable synoptic conditions, including the weak surface winds and high surface pressures, the long-range transportation of haze from eastern China and upwind regions of the Korean peninsula, as well as the locally emitted and produced aerosol particles. Copyright © 2016. Published by Elsevier B.V.

  19. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  20. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

Top