Sample records for size effect ise

  1. Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2008-08-01

    For a Cu single crystal, we find that indentation hardness increases with decreasing indentation depth, a phenomenon widely observed before and called the indentation size effect (ISE). To understand the underlying mechanism, we measure the lattice rotations in indentations of different sizes using white beam x-ray microdiffraction (μXRD); the indentation-induced lattice rotations are directly measured by the streaking of x-ray Laue spots associated with the indentations. The magnitude of the lattice rotations is found to be independent of indentation size, which is consistent with the basic tenets of the ISE model. Using the μXRD data together with an ISE model, we can estimate the effective radius of the indentation plastic zone, and the estimate is consistent with the value predicted by a finite element analysis. Using these results, an estimate of the average dislocation densities within the plastic zones has been made; the findings are consistent with the ISE arising from a dependence of the dislocation density on the depth of indentation.

  2. Indentation Size Effect on Ag Nanoparticle-Modified Graphene/Sn-Ag-Cu Solders

    NASA Astrophysics Data System (ADS)

    Xu, L. Y.; Zhang, S. T.; Jing, H. Y.; Wang, L. X.; Wei, J.; Kong, X. C.; Han, Y. D.

    2018-01-01

    This paper presents the results for the indentation size effect (ISE) on the creep stress exponent and hardness of 0.03 wt.% Ag-modified graphene nanosheet Sn-Ag-Cu solder alloys, using constant loading/holding and multi-cycle (CMC) loading methods, respectively. At each maximum load, with increasing indentation depth, the creep exponent first decreased and then increased. At the same strain rate, the stress exponent also showed the same tendency, increasing as the indentation depth (peak load) increased and then decreased. The hardness was measured continuously with increasing indentation depth by the CMC loading method. The hardness did not exhibit a decrease as the indentation depth increased, which differs from the classical description of the ISE. After an initial decrease, the hardness then increased and finally decreased as the indentation depth increased. This study reviews the existing theories and formulations describing ISE with hardening effects. The experimental results fit well with the empirical formulation. The phenomenon of ISE accompanied by hardening effects has been explained physically via the interaction between geometrically necessary dislocations and grain boundaries.

  3. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  4. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    NASA Astrophysics Data System (ADS)

    Hou, X. D.; Jennett, N. M.

    2017-11-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.

  5. Localization in a random XY model with long-range interactions: Intermediate case between single-particle and many-body problems

    NASA Astrophysics Data System (ADS)

    Burin, Alexander L.

    2015-09-01

    Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.

  6. Hyperscaling breakdown and Ising spin glasses: The Binder cumulant

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Campbell, I. A.

    2018-02-01

    Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.

  7. The Finite-Size Scaling Relation for the Order-Parameter Probability Distribution of the Six-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Merdan, Ziya; Karakuş, Özlem

    2016-11-01

    The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.

  8. Dynamics of the Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Xu, Jian

    The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.

  9. Two-dimensional Ising model on random lattices with constant coordination number

    NASA Astrophysics Data System (ADS)

    Schrauth, Manuel; Richter, Julian A. J.; Portela, Jefferson S. E.

    2018-02-01

    We study the two-dimensional Ising model on networks with quenched topological (connectivity) disorder. In particular, we construct random lattices of constant coordination number and perform large-scale Monte Carlo simulations in order to obtain critical exponents using finite-size scaling relations. We find disorder-dependent effective critical exponents, similar to diluted models, showing thus no clear universal behavior. Considering the very recent results for the two-dimensional Ising model on proximity graphs and the coordination number correlation analysis suggested by Barghathi and Vojta [Phys. Rev. Lett. 113, 120602 (2014), 10.1103/PhysRevLett.113.120602], our results indicate that the planarity and connectedness of the lattice play an important role on deciding whether the phase transition is stable against quenched topological disorder.

  10. Effective field renormalization group approach for Ising lattice spin systems

    NASA Astrophysics Data System (ADS)

    Fittipaldi, Ivon P.

    1994-03-01

    A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.

  11. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.

    2004-05-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.

  12. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  13. Plasma and magnetic field variations in the distant magnetotail associated with near-earth substorm effects

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.

    1987-01-01

    Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.

  14. Universal scaling for the quantum Ising chain with a classical impurity

    NASA Astrophysics Data System (ADS)

    Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco

    2017-10-01

    We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .

  15. Recurrence relations in one-dimensional Ising models.

    PubMed

    da Conceição, C M Silva; Maia, R N P

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  16. A unified effective-field renormalization-group framework approach for the quenched diluted Ising models

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Douglas F.; Fittipaldi, I. P.

    1994-05-01

    A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.

  17. Engaging Latino audiences in informal science education

    NASA Astrophysics Data System (ADS)

    Bonfield, Susan B.

    Environment for the Americas (EFTA), a non-profit organization, developed a four-year research project to establish a baseline for Latino participation and to identify practical tools that would enable educators to overcome barriers to Latino participation in informal science education (ISE). Its national scope and broad suite of governmental and non-governmental, Latino and non-Latino partners ensured that surveys and interviews conducted in Latino communities reflected the cosmopolitan nature of the factors that influence participation in ISE programs. Information about economic and education levels, country of origin, language, length of residence in the US, and perceptions of natural areas combined with existing demographic information at six study sites and one control site provided a broader understanding of Latino communities. The project team's ability to work effectively in these communities was strengthened by the involvement of native, Spanish-speaking Latino interns in the National Park Service's Park Flight Migratory Bird Program. The project also went beyond data gathering by identifying key measures to improve participation in ISE and implementing these measures at established informal science education programs, such as International Migratory Bird Day, to determine effectiveness. The goals of Engaging Latino Audiences in Informal Science Education (ISE) were to 1) identify and reduce the barriers to Latino participation in informal science education; 2) provide effective tools to assist educators in connecting Latino families with science education, and 3) broadly disseminate these tools to agencies and organizations challenged to engage this audience in informal science education (ISE). The results answer questions and provide solutions to a challenge experienced by parks, refuges, nature centers, and other informal science education sites across the US. Key findings from this research documented low participation rates in ISE by Latinos, and that the absence of Latinos from ISE was not related to distance from the nearest city with a Latino community or to the size of the Latino population within the nearest community. At five of the six study sites, however, over 50% of Latino participants had visited the site before, showing some preference for repeat visitation. Over 1,000 Latino adults participated in a community survey that identified barriers to their engagement in ISE. The survey used a Likert scale, where 1 was strongly disagree and 5 was strongly agree. Responses to statements about whether their families were interested in ISE whether nature programs are valuable to their families, and whether they would be interested in participating in an ISE program were strongly positive, and an examination using ANOVA of five factors, including age, generations in the US, university attendance, income, Spanish as the dominant language indicated that age, Spanish language, and university attendance showed some influence on responses to these statements. ANOVA also revealed that differences existed between the study sites, and Student-Newman-Keuls post hoc tests showed that respondents in Washington answered more positively to statements about ISE program characteristics across five statements than participants at the other five study sites. ANOVA also showed some site differences in responses to questions about family-related considerations that might influence their decisions to participate in ISE (e.g., opportunities for the family to attend, if the programs introduce youth to new opportunities, and if the program is presented by a Latino). Despite preconceptions about Latino absence from natural areas, neither transportation nor group size were identified as factors that would deter participation in ISE. Overall, survey participants showed strong program preferences based on day of week, formats that cater to the entire family, content that shows youth opportunities for the future, activities led by another Latino, and are close to home. They expressed intermediate concern about practical considerations, such as cost and transportation, and other program characteristics, such as ISE programs that are conducted by familiar organizations and programs that are led in Spanish. Respondents expressed the least concern about their familiarity with the host organization and the topic of the program. Using the results of the community survey, ISE programs were adapted and surveys were conducted to determine changes in participation by Latinos. Latino participation increased over a period of three years, doubling and even tripling engagement of this audience at each site, with an overall increase across all sites of 310%. This success was replicated at a different venue, a museum of natural history, where event treatment engaged significantly more Latinos than events that were not adapted for Latinos. Identifying barriers to Latino participation in ISE and testing approaches for overcoming them advances the practice of ISE by enabling educators to create meaningful experiences for Latino youth and adults. Positive engagement encourages long-term involvement in ISE, helps adults and youth make connections to the sciences, and contributes to diversification of STEM professions.(Abstract shortened by UMI.).

  18. Programmable superpositions of Ising configurations

    NASA Astrophysics Data System (ADS)

    Sieberer, Lukas M.; Lechner, Wolfgang

    2018-05-01

    We present a framework to prepare superpositions of bit strings, i.e., many-body spin configurations, with deterministic programmable probabilities. The spin configurations are encoded in the degenerate ground states of the lattice-gauge representation of an all-to-all connected Ising spin glass. The ground-state manifold is invariant under variations of the gauge degrees of freedom, which take the form of four-body parity constraints. Our framework makes use of these degrees of freedom by individually tuning them to dynamically prepare programmable superpositions. The dynamics combines an adiabatic protocol with controlled diabatic transitions. We derive an effective model that allows one to determine the control parameters efficiently even for large system sizes.

  19. Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring.

    PubMed

    Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo

    2014-11-24

    Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.

  20. Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring

    PubMed Central

    Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo

    2014-01-01

    Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring. PMID:25418153

  1. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    NASA Astrophysics Data System (ADS)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  2. Quantum transitions driven by one-bond defects in quantum Ising rings.

    PubMed

    Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore

    2015-04-01

    We investigate quantum scaling phenomena driven by lower-dimensional defects in quantum Ising-like models. We consider quantum Ising rings in the presence of a bond defect. In the ordered phase, the system undergoes a quantum transition driven by the bond defect between a magnet phase, in which the gap decreases exponentially with increasing size, and a kink phase, in which the gap decreases instead with a power of the size. Close to the transition, the system shows a universal scaling behavior, which we characterize by computing, either analytically or numerically, scaling functions for the low-level energy differences and the two-point correlation function. We discuss the implications of these results for the nonequilibrium dynamics in the presence of a slowly varying parallel magnetic field h, when going across the first-order quantum transition at h=0.

  3. Mapping of the Bak, Tang, and Wiesenfeld sandpile model on a two-dimensional Ising-correlated percolation lattice to the two-dimensional self-avoiding random walk

    NASA Astrophysics Data System (ADS)

    Cheraghalizadeh, J.; Najafi, M. N.; Dashti-Naserabadi, H.; Mohammadzadeh, H.

    2017-11-01

    The self-organized criticality on the random fractal networks has many motivations, like the movement pattern of fluid in the porous media. In addition to the randomness, introducing correlation between the neighboring portions of the porous media has some nontrivial effects. In this paper, we consider the Ising-like interactions between the active sites as the simplest method to bring correlations in the porous media, and we investigate the statistics of the BTW model in it. These correlations are controlled by the artificial "temperature" T and the sign of the Ising coupling. Based on our numerical results, we propose that at the Ising critical temperature Tc the model is compatible with the universality class of two-dimensional (2D) self-avoiding walk (SAW). Especially the fractal dimension of the loops, which are defined as the external frontier of the avalanches, is very close to DfSAW=4/3 . Also, the corresponding open curves has conformal invariance with the root-mean-square distance Rrms˜t3 /4 (t being the parametrization of the curve) in accordance with the 2D SAW. In the finite-size study, we observe that at T =Tc the model has some aspects compatible with the 2D BTW model (e.g., the 1 /log(L ) -dependence of the exponents of the distribution functions) and some in accordance with the Ising model (e.g., the 1 /L -dependence of the fractal dimensions). The finite-size scaling theory is tested and shown to be fulfilled for all statistical observables in T =Tc . In the off-critical temperatures in the close vicinity of Tc the exponents show some additional power-law behaviors in terms of T -Tc with some exponents that are reported in the text. The spanning cluster probability at the critical temperature also scales with L1/2, which is different from the regular 2D BTW model.

  4. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  5. 76 FR 38434 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... continuing effort to attract more activity in large-sized FX options. \\3\\ See Securities Exchange Act Release... SECURITIES AND EXCHANGE COMMISSION [Release No. 3464743; File No. SR-ISE-2011-35] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed...

  6. The ISEE-3 ULEWAT: Flux tape description and heavy ion fluxes 1978-1984. [plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Klecker, B.

    1985-01-01

    The ISEE ULEWAT FLUX tapes contain ULEWAT and ISEE pool tape data summarized over relatively long time intervals (1hr) in order to compact the data set into an easily usable size. (Roughly 3 years of data fit onto one 1600 BPI 9-track magnetic tape). In making the tapes, corrections were made to the ULEWAT basic data tapes in order to, remove rate spikes and account for changes in instrument response so that to a large extent instrument fluxes can be calculated easily from the FLUX tapes without further consideration of instrument performance.

  7. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  8. Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1982-01-01

    Correlation variability between ISEE 1 and 3 IMF measurements is investigated, and factors governing the variability are discussed. About 200 two-hour periods when correlation was good, and 200 when correlation was poor, are examined, and both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. The scale size of magnetic features is larger when variance is high, and abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance and vice versa. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and 3 perpendicular to the IMF is less than 20 earth radii.

  9. Chaotic Ising-like dynamics in traffic signals

    PubMed Central

    Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki

    2013-01-01

    The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034

  10. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  11. Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.

    PubMed

    Henley, Christopher L

    2006-02-03

    The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.

  12. One-dimensional Ising model with multispin interactions

    NASA Astrophysics Data System (ADS)

    Turban, Loïc

    2016-09-01

    We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.

  13. 78 FR 79721 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-71182; File No. SR-ISE-2013-71] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change To More Specifically Address the Number and Size of Contra- Parties to a Qualified Contingent Cross Order December 24, 2013....

  14. Mapping of the Bak, Tang, and Wiesenfeld sandpile model on a two-dimensional Ising-correlated percolation lattice to the two-dimensional self-avoiding random walk.

    PubMed

    Cheraghalizadeh, J; Najafi, M N; Dashti-Naserabadi, H; Mohammadzadeh, H

    2017-11-01

    The self-organized criticality on the random fractal networks has many motivations, like the movement pattern of fluid in the porous media. In addition to the randomness, introducing correlation between the neighboring portions of the porous media has some nontrivial effects. In this paper, we consider the Ising-like interactions between the active sites as the simplest method to bring correlations in the porous media, and we investigate the statistics of the BTW model in it. These correlations are controlled by the artificial "temperature" T and the sign of the Ising coupling. Based on our numerical results, we propose that at the Ising critical temperature T_{c} the model is compatible with the universality class of two-dimensional (2D) self-avoiding walk (SAW). Especially the fractal dimension of the loops, which are defined as the external frontier of the avalanches, is very close to D_{f}^{SAW}=4/3. Also, the corresponding open curves has conformal invariance with the root-mean-square distance R_{rms}∼t^{3/4} (t being the parametrization of the curve) in accordance with the 2D SAW. In the finite-size study, we observe that at T=T_{c} the model has some aspects compatible with the 2D BTW model (e.g., the 1/log(L)-dependence of the exponents of the distribution functions) and some in accordance with the Ising model (e.g., the 1/L-dependence of the fractal dimensions). The finite-size scaling theory is tested and shown to be fulfilled for all statistical observables in T=T_{c}. In the off-critical temperatures in the close vicinity of T_{c} the exponents show some additional power-law behaviors in terms of T-T_{c} with some exponents that are reported in the text. The spanning cluster probability at the critical temperature also scales with L^{1/2}, which is different from the regular 2D BTW model.

  15. Effect of antifreeze protein on heterogeneous ice nucleation based on a two-dimensional random-field Ising model

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Wang, Jianjun; Zhou, Xin

    2017-05-01

    Antifreeze proteins (AFPs) are the key biomolecules that protect many species from suffering the extreme conditions. Their unique properties of antifreezing provide the potential of a wide range of applications. Inspired by the present experimental approaches of creating an antifreeze surface by coating AFPs, here we present a two-dimensional random-field lattice Ising model to study the effect of AFPs on heterogeneous ice nucleation. The model shows that both the size and the free-energy effect of individual AFPs and their surface coverage dominate the antifreeze capacity of an AFP-coated surface. The simulation results are consistent with the recent experiments qualitatively, revealing the origin of the surprisingly low antifreeze capacity of an AFP-coated surface when the coverage is not particularly high as shown in experiment. These results will hopefully deepen our understanding of the antifreeze effects and thus be potentially useful for designing novel antifreeze coating materials based on biomolecules.

  16. 75 FR 48734 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ...) ISE FIX Session Fees The Exchange proposes to charge for legacy ISE \\4\\ Financial Information Exchange...-79). \\5\\ As stated in SR-ISE-2007-79, the ISE used the Financial Information Exchange (FIX) protocol... will provide Members a $0.0031 rebate per share for liquidity added on EDGX if the Member on a daily...

  17. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  18. Implicit and Explicit Self-Esteem in Current, Remitted, Recovered, and Comorbid Depression and Anxiety Disorders: The NESDA Study.

    PubMed

    van Tuijl, Lonneke A; Glashouwer, Klaske A; Bockting, Claudi L H; Tendeiro, Jorge N; Penninx, Brenda W J H; de Jong, Peter J

    2016-01-01

    Dual processing models of psychopathology emphasize the relevance of differentiating between deliberative self-evaluative processes (explicit self-esteem; ESE) and automatically-elicited affective self-associations (implicit self-esteem; ISE). It has been proposed that both low ESE and ISE would be involved in major depressive disorder (MDD) and anxiety disorders (AD). Further, it has been hypothesized that MDD and AD may result in a low ISE "scar" that may contribute to recurrence after remission. However, the available evidence provides no straightforward support for the relevance of low ISE in MDD/AD, and studies testing the relevance of discrepant SE even showed that especially high ISE combined with low ESE is predictive of the development of internalizing symptoms. However, these earlier findings have been limited by small sample sizes, poorly defined groups in terms of comorbidity and phase of the disorders, and by using inadequate indices of discrepant SE. Therefore, this study tested further the proposed role of ISE and discrepant SE in a large-scale study allowing for stricter differentiation between groups and phase of disorder. In the context of the Netherlands Study of Depression and Anxiety (NESDA), we selected participants with current MDD (n = 60), AD (n = 111), and comorbid MDD/AD (n = 71), remitted MDD (n = 41), AD (n = 29), and comorbid MDD/AD (n = 14), recovered MDD (n = 136) and AD (n = 98), and never MDD or AD controls (n = 382). The Implicit Association Test was used to index ISE and the Rosenberg Self-Esteem Scale indexed ESE. Controls reported higher ESE than all other groups, and current comorbid MDD/AD had lower ESE than all other clinical groups. ISE was only lower than controls in current comorbid AD/MDD. Discrepant self-esteem (difference between ISE and ESE) was not associated with disorder status once controlling for ESE. Cross-sectional design limits causal inferences. Findings suggest a prominent role for ESE in MDD and AD, while in comorbid MDD/AD negative self-evaluations are also present at the implicit level. There was no evidence to support the view that AD and MDD would result in a low ISE "scar".

  19. Statistical Mechanics of Coherent Ising Machine — The Case of Ferromagnetic and Finite-Loading Hopfield Models —

    NASA Astrophysics Data System (ADS)

    Aonishi, Toru; Mimura, Kazushi; Utsunomiya, Shoko; Okada, Masato; Yamamoto, Yoshihisa

    2017-10-01

    The coherent Ising machine (CIM) has attracted attention as one of the most effective Ising computing architectures for solving large scale optimization problems because of its scalability and high-speed computational ability. However, it is difficult to implement the Ising computation in the CIM because the theories and techniques of classical thermodynamic equilibrium Ising spin systems cannot be directly applied to the CIM. This means we have to adapt these theories and techniques to the CIM. Here we focus on a ferromagnetic model and a finite loading Hopfield model, which are canonical models sharing a common mathematical structure with almost all other Ising models. We derive macroscopic equations to capture nonequilibrium phase transitions in these models. The statistical mechanical methods developed here constitute a basis for constructing evaluation methods for other Ising computation models.

  20. I. Excluded volume effects in Ising cluster distributions and nuclear multifragmentation. II. Multiple-chance effects in alpha-particle evaporation

    NASA Astrophysics Data System (ADS)

    Breus, Dimitry Eugene

    In Part I, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In Part II, an explanation is offered for the recently observed oscillations in the energy spectra of alpha-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of alpha-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental alpha-spectra as having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto's single-chance evaporation theory is augmented to include multiple-chance emission and tested on experimental data to yield positive results.

  1. Application of ion-sensitive sensors in water quality monitoring.

    PubMed

    Winkler, S; Rieger, L; Saracevic, E; Pressl, A; Gruber, G

    2004-01-01

    Within the last years a trend towards in-situ monitoring can be observed, i.e. most new sensors for water quality monitoring are designed for direct installation in the medium, compact in size and use measurement principles which minimise maintenance demand. Ion-sensitive sensors (Ion-Sensitive-Electrode--ISE) are based on a well known measurement principle and recently some manufacturers have released probe types which are specially adapted for application in water quality monitoring. The function principle of ISE-sensors, their advantages, limitations and the different methods for sensor calibration are described. Experiences with ISE-sensors from applications in sewer networks, at different sampling points within wastewater treatment plants and for surface water monitoring are reported. An estimation of investment and operation costs in comparison to other sensor types is given.

  2. The quantum Ising chain with a generalized defect

    NASA Astrophysics Data System (ADS)

    Grimm, Uwe

    1990-08-01

    The finite-size scaling properties of the quantum Ising chain with different types of generalized defects are studied. This not only means an alteration of the coupling constant as previously examined, but also an additional arbitrary transformation in the algebra of observables at one site of the chain. One can distinguish between two classes of generalized defects: on the one hand those which do not affect the finite-size integrability of the Ising chain, and on the other hand those that destroy this property. In this context, finite-size integrability is always understood as a synonym for the possibility to write the hamiltonian of the finite chain as a bilinear expression in fermionic operators by means of a Jordan-Wigner transformation. Concerning the first type of defect, an exact solution for the scaling spectrum is obtained for the most universal defect that preserves the global Z2 symmetry of the chain. It is shown that in the continuum limit this yields the same result as for one properly chosen ordinary defect, that is changing the coupling constant only, and thus the finite-size scaling spectra can be described by irreps of a shifted u(1) Kac-Moody algebra. The other type of defect is examined by means of numerical finite-size calculations. In contrast to the first case, these calculations suggest a non-continuous dependence of the scaling dimensions on the defect parameters. A conjecture for the operator content involving only one primary field of a Virasoro algebra with central charge c= {1}/{2} is given.

  3. Preparing Greenberger-Horne-Zeilinger and W states on a long-range Ising spin model by global controls

    NASA Astrophysics Data System (ADS)

    Chen, Jiahui; Zhou, Hui; Duan, Changkui; Peng, Xinhua

    2017-03-01

    Entanglement, a unique quantum resource with no classical counterpart, remains at the heart of quantum information. The Greenberger-Horne-Zeilinger (GHZ) and W states are two inequivalent classes of multipartite entangled states which cannot be transformed into each other by means of local operations and classic communication. In this paper, we present the methods to prepare the GHZ and W states via global controls on a long-range Ising spin model. For the GHZ state, general solutions are analytically obtained for an arbitrary-size spin system, while for the W state, we find a standard way to prepare the W state that is analytically illustrated in three- and four-spin systems and numerically demonstrated for larger-size systems. The number of parameters required in the numerical search increases only linearly with the size of the system.

  4. Implicit and Explicit Self-Esteem in Current, Remitted, Recovered, and Comorbid Depression and Anxiety Disorders: The NESDA Study

    PubMed Central

    van Tuijl, Lonneke A.; Glashouwer, Klaske A.; Bockting, Claudi L. H.; Tendeiro, Jorge N.; Penninx, Brenda W. J. H.; de Jong, Peter J.

    2016-01-01

    Background Dual processing models of psychopathology emphasize the relevance of differentiating between deliberative self-evaluative processes (explicit self-esteem; ESE) and automatically-elicited affective self-associations (implicit self-esteem; ISE). It has been proposed that both low ESE and ISE would be involved in major depressive disorder (MDD) and anxiety disorders (AD). Further, it has been hypothesized that MDD and AD may result in a low ISE “scar” that may contribute to recurrence after remission. However, the available evidence provides no straightforward support for the relevance of low ISE in MDD/AD, and studies testing the relevance of discrepant SE even showed that especially high ISE combined with low ESE is predictive of the development of internalizing symptoms. However, these earlier findings have been limited by small sample sizes, poorly defined groups in terms of comorbidity and phase of the disorders, and by using inadequate indices of discrepant SE. Therefore, this study tested further the proposed role of ISE and discrepant SE in a large-scale study allowing for stricter differentiation between groups and phase of disorder. Method In the context of the Netherlands Study of Depression and Anxiety (NESDA), we selected participants with current MDD (n = 60), AD (n = 111), and comorbid MDD/AD (n = 71), remitted MDD (n = 41), AD (n = 29), and comorbid MDD/AD (n = 14), recovered MDD (n = 136) and AD (n = 98), and never MDD or AD controls (n = 382). The Implicit Association Test was used to index ISE and the Rosenberg Self-Esteem Scale indexed ESE. Results Controls reported higher ESE than all other groups, and current comorbid MDD/AD had lower ESE than all other clinical groups. ISE was only lower than controls in current comorbid AD/MDD. Discrepant self-esteem (difference between ISE and ESE) was not associated with disorder status once controlling for ESE. Limitations Cross-sectional design limits causal inferences. Conclusion Findings suggest a prominent role for ESE in MDD and AD, while in comorbid MDD/AD negative self-evaluations are also present at the implicit level. There was no evidence to support the view that AD and MDD would result in a low ISE “scar”. PMID:27846292

  5. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE PAGES

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin; ...

    2017-11-08

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  6. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  7. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway.

    PubMed

    Zapata-Bustos, Rocio; Alonso-Castro, Angel Josabad; Gómez-Sánchez, Maricela; Salazar-Olivo, Luis A

    2014-03-28

    Ibervillea sonorae (S. Watson) Greene (Cucurbitaceae), a plant used for the empirical treatment of type 2 diabetes in México, exerts antidiabetic effects on animal models but its mechanism of action remains unknown. The aim of this study is to investigate the antidiabetic mechanism of an Ibervillea sonorae aqueous extract (ISE). Non-toxic ISE concentrations were assayed on the glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes, both in the absence or the presence of insulin signaling pathway inhibitors, and on murine and human adipogenesis. Chemical composition of ISE was examined by spectrophotometric and HPLC techniques. ISE stimulated the 2-NBDGlucose uptake by mature adipocytes in a concentration-dependent manner. ISE 50 µg/ml induced the 2-NBDG uptake in insulin-sensitive 3T3-F442A, 3T3-L1 and human adipocytes by 100%, 63% and 33%, compared to insulin control. Inhibitors for the insulin receptor, PI3K, AKT and GLUT4 blocked the 2-NBDG uptake in murine cells, but human adipocytes were insensitive to the PI3K inhibitor Wortmannin. ISE 50 µg/ml also stimulated the 2-NBDG uptake in insulin-resistant adipocytes by 117% (3T3-F442A), 83% (3T3-L1) and 48% (human). ISE induced 3T3-F442A adipogenesis but lacked proadipogenic effects on 3T3-L1 and human preadipocytes. Chemical analyses showed the presence of phenolics in ISE, mainly an appreciable concentration of gallic acid. Ibervillea sonorae exerts its antidiabetic properties by means of hydrosoluble compounds stimulating the glucose uptake in human preadipocytes by a PI3K-independent pathway and without proadipogenic effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Nature versus nurture: Predictability in low-temperature Ising dynamics

    NASA Astrophysics Data System (ADS)

    Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.

    2013-10-01

    Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.

  9. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice.

    PubMed

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-10-10

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic-to-paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models.

  10. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    PubMed Central

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  11. Nonequilibrium dynamic critical scaling of the quantum Ising chain.

    PubMed

    Kolodrubetz, Michael; Clark, Bryan K; Huse, David A

    2012-07-06

    We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.

  12. Monte Carlo technique for very large ising models

    NASA Astrophysics Data System (ADS)

    Kalle, C.; Winkelmann, V.

    1982-08-01

    Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.

  13. CAISE: A NSF Resource Center for Informal Science Education

    NASA Astrophysics Data System (ADS)

    Dickow, Benjamin

    2012-01-01

    Informal science education (ISE) is playing an increasingly important role in how and where the public engages with science. A growing body of research is showing that people learn the majority of their science knowledge outside of school (Falk & Dierking, 2010). The ISE field includes a wide variety of sources, including the internet, TV programs, magazines, hobby clubs and museums. These experiences touch large numbers of people throughout their lifetimes. If you would like to share your research with the public, ISE can be an effective conduit for meaningful science communication. However, because the ISE field is so diverse, it can be overwhelming with its multiple entry points. If you already are part of an ISE initiative, knowing how to access the most useful resources easily can also be daunting. CAISE, the Center for Advancement of Informal Science Education, is a resource center for the ISE field funded by the National Science Foundation (NSF). CAISE can help connect you to the knowledge and people of ISE, through its website, products and in-person convenings. The proposed CAISE presentation will outline the diversity of the field and concisely present data that will make the case for the impact of ISE. We will focus on examples of successful programs that connect science with the public and that bring together AAS's science research community with practitioners and researchers within ISE. Pathways to various ISE resources in the form of current CAISE initiatives will be described as well. The presentation will include an interview section in which a CAISE staff member will ask questions of a scientist involved in an ISE initiative in order to detail one example of how ISE can be a valuable tool for engaging the public in science. Time for audience Q&A also will be included in the session.

  14. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.

    2018-04-01

    While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.

  15. Plasticizer Effects in the PVC Membrane of the Dibasic Phosphate Selective Electrode

    PubMed Central

    Carey, Clifton

    2016-01-01

    The PVC membrane of an ion-selective electrode (ISE) sensitive to dibasic phosphate ions (HPO4-ISE) has not been optimized for maximum selectivity, sensitivity, and useable ISE lifetime and further work was necessary to improve its performance. Two areas of investigation are reported here: include the parameters for the lipophilicity of the plasticizer compound used and the amount of cyclic polyamine ionophore incorporated in the PVC membrane. Six candidate plasticizers with a range of lipophilicity were evaluated for their effect on the useable lifetime, sensitivity, and selectivity of the ISE against 13 different anions. Selectivity was determined by a modified fixed interferent method, sensitivity was determined without interferents, and the usable lifetime evaluated at the elapsed time where 50% of the HPO4-ISE failed (L50). The results show that choosing a plasticizer that has a lipophilicity similar to the ionophore's results in the best selectivity and sensitivity and the longest L50. PMID:27347487

  16. Aptamer cell sensor based on porous graphene oxide decorated ion-selective-electrode: Double sensing platform for cell and ion.

    PubMed

    Zhang, Rong; Gu, Yajun; Wang, Zhongrong; Li, Yueguo; Fan, Qingjie; Jia, Yunfang

    2018-06-15

    Enlightened by the emerging cell-ion detection based on ion-selective-electrode (ISE), an aptamer capturing and ISE transducing (AC&IT) strategy is proposed on the porous graphene oxide (PGO) decorated ISE (PGO-ISE), its performances in both cell and ion detections are examined by use of AS1411 targeted A549 cell detection and iodide-ISE as proof-of-concept. Firstly, GO flakes, exfoliated from graphite by modified Hummers method, are cross-linked by thiourea mediated hydrothermal process, to 3-dimension networked PGO which is identified by scanning-electron-microscope, UV-visible absorbance and X-ray photoelectron spectroscopy; its enhancing effect for cell capturing is evaluated by microscopy. Then, PGO-ISE is constructed by drop-coating PGO film on the surface of ISE and followed by covalently anchoring AS1411. Electrochemistry measurements for different state ISE (blank, PGO coated, AS1411 anchored and A549 captured) are performed by our home-made ISE-measuring system. It is demonstrated that the best cell-sensitivity in buffer is - 25.21 mV/log 10 C A549 (R 2 = 0.91), resolution in blood is 10 cells/ml. Interestingly, due to PGO's scaffold protection to the ionophore, I - -sensitivity is preserved as - 42.98 mV/pI (R 2 = 0.95, pI = -log 10 (C I )). Theoretical explanations are provided for the double-sensing phenomenon according to basic ISE principle. It is believed the PGO-ISE based aptamer cell sensor will be a promising experimental means for biomedical researches. Copyright © 2018. Published by Elsevier B.V.

  17. Frequency-Swept Integrated and Stretched Solid Effect Dynamic Nuclear Polarization.

    PubMed

    Can, T V; McKay, J E; Weber, R T; Yang, C; Dubroca, T; van Tol, J; Hill, S; Griffin, R G

    2018-06-21

    We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S 2 E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 μs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S 2 E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S 2 E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.

  18. A Resource Center for Informal Science Education

    NASA Astrophysics Data System (ADS)

    Dickow, B.

    2011-12-01

    Informal science education (ISE) is playing an increasingly important role in how and where the public engages with science. A growing body of research is showing that people learn the majority of their science knowledge outside of school (Falk & Dierking, 2010). The ISE field includes a wide variety of sources, including the internet, TV programs, magazines, hobby clubs and museums, all sectors of the informal science education field. These experiences touch large numbers of people throughout their lifetimes. If you would like to share your research with the public, ISE can be an effective conduit for meaningful science communication. However, because the ISE field is so diverse, it can be overwhelming with its multiple entry points. If you already are part of an ISE initiative, knowing how to access the most useful resources easily can also be daunting. CAISE, the Center for Advancement of Informal Science Education, is a resource center for the ISE field funded by the National Science Foundation (NSF). CAISE can help connect you to the knowledge and people of ISE, through its website, products and in-person convenings. The proposed CAISE presentation will outline the diversity of the field and concisely present data that will make the case for the impact of ISE. We will focus on examples of successful programs that connect science with the public and that bring together AGU's science research community with practitioners and researchers within ISE. Pathways to various ISE resources in the form of current CAISE initiatives will be described as well. The presentation will include an interview section in which a CAISE staff member will ask questions of a scientist involved in an ISE initiative in order to detail one example of how ISE can be a valuable tool for engaging the public in science. Time for audience Q&A also will be included in the session.

  19. 92 Years of the Ising Model: A High Resolution Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Xu, Jiahao; Ferrenberg, Alan M.; Landau, David P.

    2018-04-01

    Using extensive Monte Carlo simulations that employ the Wolff cluster flipping and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising model with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, we obtained the critical inverse temperature K c = 0.221 654 626(5) and the critical exponent of the correlation length ν = 0.629 912(86) with precision that improves upon previous Monte Carlo estimates.

  20. Aging in the three-dimensional random-field Ising model

    NASA Astrophysics Data System (ADS)

    von Ohr, Sebastian; Manssen, Markus; Hartmann, Alexander K.

    2017-07-01

    We studied the nonequilibrium aging behavior of the random-field Ising model in three dimensions for various values of the disorder strength. This allowed us to investigate how the aging behavior changes across the ferromagnetic-paramagnetic phase transition. We investigated a large system size of N =2563 spins and up to 108 Monte Carlo sweeps. To reach these necessary long simulation times, we employed an implementation running on Intel Xeon Phi coprocessors, reaching single-spin-flip times as short as 6 ps. We measured typical correlation functions in space and time to extract a growing length scale and corresponding exponents.

  1. Critical temperature of the Ising ferromagnet on the fcc, hcp, and dhcp lattices

    NASA Astrophysics Data System (ADS)

    Yu, Unjong

    2015-02-01

    By an extensive Monte-Carlo calculation together with the finite-size-scaling and the multiple histogram method, the critical coupling constant (Kc = J /kBTc) of the Ising ferromagnet on the fcc, hcp, and double hcp (dhcp) lattices were obtained with unprecedented precision: Kcfcc= 0.1020707(2) , Kchcp= 0.1020702(1) , and Kcdhcp= 0.1020706(2) . The critical temperature Tc of the hcp lattice is found to be higher than those of the fcc and the dhcp lattice. The dhcp lattice seems to have higher Tc than the fcc lattice, but the difference is within error bars.

  2. The square lattice Ising model on the rectangle II: finite-size scaling limit

    NASA Astrophysics Data System (ADS)

    Hucht, Alfred

    2017-06-01

    Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.

  3. Effective-field renormalization-group method for Ising systems

    NASA Astrophysics Data System (ADS)

    Fittipaldi, I. P.; De Albuquerque, D. F.

    1992-02-01

    A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.

  4. Quantum quench in an atomic one-dimensional Ising chain.

    PubMed

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  5. Glaubers Ising chain between two thermostats

    NASA Astrophysics Data System (ADS)

    Cornu, F.; Hilhorst, H. J.

    2017-04-01

    We consider a one-dimensional Ising model with N spins, each in contact with two thermostats of distinct temperatures, T 1 and T 2. Under Glauber dynamics the stationary state happens to coincide with the equilibrium state at an effective intermediate temperature T≤ft({{T}1},{{T}2}\\right) . The system nevertheless carries a nontrivial energy current between the thermostats. By means of the fermionization technique, for a chain initially in equilibrium at an arbitrary temperature T 0 we calculate the Fourier transform of the probability P≤ft(Q;τ \\right) for the time-integrated energy current Q during a finite time interval τ. In the long time limit we determine the corresponding generating function for the cumulants per site and unit of time, {< {{Q}n}>\\text{c}}/(Nτ ) , and explicitly give those with n  =  1, 2, 3, 4. We exhibit various phenomena in specific regimes: kinetic mean-field effects when one thermostat flips any spin less often than the other one, as well as dissipation towards a thermostat at zero temperature. Moreover, when the system size N goes to infinity while the effective temperature T vanishes, the cumulants of Q per unit of time grow linearly with N and are equal to those of a random walk process. In two adequate scaling regimes involving T and N we exhibit the dependence of the first correction upon the ratio of the spin-spin correlation length ξ (T) and the size N.

  6. A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements

    PubMed Central

    Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David

    2017-01-01

    We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274

  7. Unconventional quantum antiferromagnetism with a fourfold symmetry breaking in a spin-1/2 Ising-Heisenberg pentagonal chain

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.

    2018-03-01

    The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.

  8. Heat flux dropouts in the solar wind and Coulomb scattering effects

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Ogilvie, K. W.

    1992-01-01

    Data on solar wind electrons at the ISEE 3 spacecraft located 0.01 AU upstream from the earth (McComas et al., 1989) showed periods of time when the flux of antisunward suprathermal electrons would decrease suddenly, leading to heat flux dropouts (HFDs). This paper examines data from ISEE 1 at the 1.5 x 10 exp 6 km downstream location to determine whether HFDs identified at ISEE 3 by McComas et al. can be detected at this location and whether the ISEE 1 observations can provide information to one or the other possible interpretations of HFDs: that HFDs are due to enhanced Coulomb scattering, or to disconnection from the sun of the magnetic flux tube. The results of the examination identified the presence of HFD events in the ISEE 1 data, and the findings indicate that Coulomb scattering plays a substantial role in at least some HFD events.

  9. Entanglement of two blocks of spins in the critical Ising model

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.

    2008-11-01

    We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.

  10. Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model

    NASA Astrophysics Data System (ADS)

    Kassebaum, Paul G.; Iannacchione, Germano S.

    The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.

  11. Phase transitions and critical properties in the antiferromagnetic Ising model on a layered triangular lattice with allowance for intralayer next-nearest-neighbor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badiev, M. K., E-mail: m-zagir@mail.ru; Murtazaev, A. K.; Ramazanov, M. K.

    2016-10-15

    The phase transitions (PTs) and critical properties of the antiferromagnetic Ising model on a layered (stacked) triangular lattice have been studied by the Monte Carlo method using a replica algorithm with allowance for the next-nearest-neighbor interactions. The character of PTs is analyzed using the histogram technique and the method of Binder cumulants. It is established that the transition from the disordered to paramagnetic phase in the adopted model is a second-order PT. Static critical exponents of the heat capacity (α), susceptibility (γ), order parameter (β), and correlation radius (ν) and the Fischer exponent η are calculated using the finite-size scalingmore » theory. It is shown that (i) the antiferromagnetic Ising model on a layered triangular lattice belongs to the XY universality class of critical behavior and (ii) allowance for the intralayer interactions of next-nearest neighbors in the adopted model leads to a change in the universality class of critical behavior.« less

  12. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  13. Improving Health Care Providers' Capacity for Self-Regulated Learning in Online Continuing Pharmacy Education: The Role of Internet Self-Efficacy.

    PubMed

    Chiu, Yen-Lin; Liang, Jyh-Chong; Mao, Pili Chih-Min; Tsai, Chin-Chung

    2016-01-01

    Although Internet-based learning is widely used to improve health professionals' knowledge and skills, the self-regulated learning (SRL) activities of online continuing education in pharmacy are seldom discussed. The main purpose of this study was to explore the relationships between pharmacists' Internet self-efficacy (ISE) and their SRL in online continuing education. A total of 164 in-service pharmacists in Taiwan were surveyed with the Internet Self-Efficacy Survey, including basic ISE (B-ISE), advanced ISE (A-ISE) and professional ISE (P-ISE), as well as the Self-Regulated Learning Questionnaire consisting of preparatory SRL (P-SRL) and enactment SRL (E-SRL). Results of a 1-by-3 (educational levels: junior college versus bachelor versus master) analysis of variance and a 1-by-4 (institutions: community-based versus hospital versus clinic versus company) analysis of variance revealed that there were differences in ISE and SRL among different education levels and working institutions. The hierarchical regression analyses indicated that B-ISE and P-ISE were significant predictors of P-SRL, whereas P-ISE was a critical predictor of E-SRL. Moreover, the interaction of P-ISE × age was linked to E-SRL, implying that P-ISE has a stronger influence on E-SRL for older pharmacists than for younger pharmacists. However, the interactions between age and ISE (A-ISE, B-ISE, and P-ISE) were not related to P-SRL. This study highlighted the importance of ISE and age for increasing pharmacists' SRL in online continuing education.

  14. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    PubMed

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  15. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    NASA Astrophysics Data System (ADS)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  16. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE PAGES

    Zhang, Guanghua; Flint, Rebecca

    2017-12-27

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  17. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanghua; Flint, Rebecca

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  18. Effect of External Economic-Field Cycle and Market Temperature on Stock-Price Hysteresis: Monte Carlo Simulation on the Ising Spin Model

    NASA Astrophysics Data System (ADS)

    Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut

    2017-09-01

    In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.

  19. Applying Massively Parallel Kinetic Monte Carlo Methods to Simulate Grain Growth and Sintering in Powdered Metals

    DTIC Science & Technology

    2011-09-01

    Structure Evolution During Sintering From [19]. ...................................20 Figure 10. Ising Model Configuration With Eight Nearest Neighbors...INTRODUCTION A. MOTIVATION The ability to fabricate structural components from metals with a fine (micron- sized), controlled grain size is one of the...hallmarks of modern, structural metallurgy. Powder metallurgy, in particular, consists of powder manufacture, powder blending, compacting, and sintering

  20. Ising game: Nonequilibrium steady states of resource-allocation systems

    NASA Astrophysics Data System (ADS)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  1. Assessing change of environmental dynamics by legislation in Japan, using red tide occurrence in Ise Bay as an indicator.

    PubMed

    Suzuki, Chika

    2016-01-30

    Tokyo Bay, Ise Bay, and the Seto Inland Sea are the total pollutant load control target areas in Japan. A significant correlation between the incidence of red tides and water quality has been observed in the Seto Inland Sea (Honjo, 1991). However, while red tides also occur in Ise Bay and Tokyo Bay, similar correlations have not been observed. Hence, it is necessary to understand what factors cause red tides to effectively manage these semi-closed systems. This study aims to investigate the relationship between the dynamics of the Red Tide Index and nitrogen regulation as well as phosphorus regulation, even in Ise Bay where, unlike Tokyo Bay, there are few observation items, by selecting a suitable objective variable. The introduction of a new technique that uses the Red Tide Index has revealed a possibility that the total pollution load control has influenced the dynamics of red tide blooms in Ise Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ising lattices with +/-J second-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Ramírez-Pastor, A. J.; Nieto, F.; Vogel, E. E.

    1997-06-01

    Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interactions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:energy per bond ɛg, site correlation parameter pg, maximal magnetization μg, and fraction of unfrustrated bonds hg. A set of 500 samples is considered for each size N (number of spins) and array (way of distributing the N spins). The properties of the original lattices with only nearest-neighbor interactions are already known, which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the distinction between coordination number and dimensionality. Comparison with results for triangular and honeycomb lattices is done at specific points.

  3. Different as night and day: Patterns of isolated seizures, clusters, and status epilepticus.

    PubMed

    Goldenholz, Daniel M; Rakesh, Kshitiz; Kapur, Kush; Gaínza-Lein, Marina; Hodgeman, Ryan; Moss, Robert; Theodore, William H; Loddenkemper, Tobias

    2018-05-01

    Using approximations based on presumed U.S. time zones, we characterized day and nighttime seizure patterns in a patient-reported database, Seizure Tracker. A total of 632 995 seizures (9698 patients) were classified into 4 categories: isolated seizure event (ISE), cluster without status epilepticus (CWOS), cluster including status epilepticus (CIS), and status epilepticus (SE). We used a multinomial mixed-effects logistic regression model to calculate odds ratios (ORs) to determine night/day ratios for the difference between seizure patterns: ISE versus SE, ISE versus CWOS, ISE versus CIS, and CWOS versus CIS. Ranges of OR values were reported across cluster definitions. In adults, ISE was more likely at night compared to CWOS (OR = 1.49, 95% adjusted confidence interval [CI] = 1.36-1.63) and to CIS (OR = 1.61, 95% adjusted CI = 1.34-1.88). The ORs for ISE versus SE and CWOS versus SE were not significantly different regardless of cluster definition. In children, ISE was less likely at night compared to SE (OR = 0.85, 95% adjusted CI = 0.79-0.91). ISE was more likely at night compared to CWOS (OR = 1.35, 95% adjusted CI = 1.26-1.44) and CIS (OR = 1.65, 95% adjusted CI = 1.44-1.86). CWOS was more likely during the night compared to CIS (OR = 1.22, 95% adjusted CI = 1.05-1.39). With the exception of SE in children, our data suggest that more severe patterns favor daytime. This suggests distinct day/night preferences for different seizure patterns in children and adults. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  4. Critical frontier of the triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.

    2004-03-01

    We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.

  5. Heat conduction in one-dimensional aperiodic quantum Ising chains.

    PubMed

    Li, Wenjuan; Tong, Peiqing

    2011-03-01

    The heat conductivity of nonperiodic quantum Ising chains whose ends are connected with heat baths at different temperatures are studied numerically by solving the Lindblad master equation. The chains are subjected to a uniform transverse field h, while the exchange coupling J{m} between the nearest-neighbor spins takes the two values J{A} and J{B} arranged in Fibonacci, generalized Fibonacci, Thue-Morse, and period-doubling sequences. We calculate the energy-density profile and energy current of the resulting nonequilibrium steady states to study the heat-conducting behavior of finite but large systems. Although these nonperiodic quantum Ising chains are integrable, it is clearly found that energy gradients exist in all chains and the energy currents appear to scale as the system size ~N{α}. By increasing the ratio of couplings, the exponent α can be modulated from α > -1 to α < -1 corresponding to the nontrivial transition from the abnormal heat transport to the heat insulator. The influences of the temperature gradient and the magnetic field to heat conduction have also been discussed.

  6. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  7. Intraoperative 3D Navigation for Single or Multiple 125I-Seed Localization in Breast-Preserving Cancer Surgery.

    PubMed

    Pouw, Bas; de Wit-van der Veen, Linda J; van Duijnhoven, Frederieke; Rutgers, Emiel J Th; Stokkel, Marcel P M; Valdés Olmos, Renato A; Vrancken Peeters, Marie-Jeanne T F D

    2016-05-01

    Mammographic screening has led to the identification of more women with nonpalpable breast cancer, many of them to be treated with breast-preserving surgery. To accomplish radical tumor excision, adequate localization techniques such as radioactive seed localization (RSL) are required. For RSL, a radioactive I-seed is implanted central in the tumor to enable intraoperative localization using a γ-probe. In case of extensive tumor or multifocal carcinoma, multiple I-seeds can be used to delineate the involved area. Preoperative imaging is performed different from surgical positioning; therefore, exact I-seed depth remains unknown during surgery. Twenty patients (mean age, 56.8 years) with 25 implanted I-seeds scheduled for RSL were included. Sixteen patients had 1 I-seed implanted in the primary lesion, 3 patients had 2 I-seeds, and 1 patient had 3 I-seeds. Freehand SPECT localized I-seeds by measuring γ-counts from different directions, all registered by an optical tracking system. A reconstruction and visualization algorithm enabled 3-dimensional (3D) navigation toward the I-seeds. Freehand SPECT visualized all I-seeds in primary tumors and provided preincision depth information. The deviation, mean (SD), between the freehand SPECT depth and the surgical depth estimation was 1.9 (2.1) mm (range, 0-7 mm). Three-dimensional freehand SPECT was especially useful identifying multiple implanted I-seeds because the conventional γ-probe has more difficulty discriminating I-seeds transcutaneous. Freehand SPECT with 3D navigation is a valuable tool in RSL for both single and multiple implanted I-seeds in breast-preserving cancer surgery. Freehand SPECT provides continuous updating 3D imaging with information about depth and location of the I-seeds contributing to adequate excision of nonpalpable breast cancer.

  8. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  9. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  10. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    NASA Astrophysics Data System (ADS)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  11. Effect of Co doping on structural and mechanical properties of CeO2

    NASA Astrophysics Data System (ADS)

    Tiwari, Saurabh; Balasubramanian, Nivedha; Biring, Sajal; Sen, Somaditya

    2018-05-01

    Sol-gel synthesized nanocrystalline Co doped CeO2 powders [(Ce1-xCoxO2; x=0, 0.03)] were made into cylindrical discs by uniaxial pressing and sintered at 1500°C for 24h to measure mechanical properties. The pure phase formation of undoped and Co doped samples were confirmed by X-ray diffraction and Raman analysis. The scanning electron microscopy (SEM) was used for observing the microstructure of sintered samples to investigate density, porosity, and grain size. The grains size observed for 1500°C sintered samples 5-8 µm. Vickers indentation method used for investigating the micro-hardness. For undoped CeO2 micro-hardness was found 6.2 GPa which decreased with Co doping. It was found that samples follow indentation size effect (ISE) and follow elastic than plastic deformation. Enhanced ductile nature with Co doping in CeO2 made it more promising material for optoelectronic device applications.

  12. 77 FR 46131 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Options Rule 975NY(a)(2)(A); CBOE Rule 6.25(a)(1)(i); NASDAQ OMX PHLX Rule 1092(b)(i); ISE Rule 720(a)(3... OMX PHLX Rule 1092(e)(ii); ISE Rule 720(b)(2)(ii). 2. Statutory Basis The Exchange believes that its...

  13. Enforcing Ising-like magnetic anisotropy via trigonal distortion in the design of a W( v )–Co( ii ) cyanide single-chain magnet

    DOE PAGES

    Zhang, Yuan-Zhu; Dolinar, Brian S.; Liu, Shihao; ...

    2018-01-01

    A new octacyanotungstate( v ) singe chain magnet with an effective energy barrier of 39.7(3) cm −1 is achieved by enforcing Ising-like magnetic anisotropy via introduction of trigonal distortion with a fac -tridentate capping ligand.

  14. Enforcing Ising-like magnetic anisotropy via trigonal distortion in the design of a W( v )–Co( ii ) cyanide single-chain magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuan-Zhu; Dolinar, Brian S.; Liu, Shihao

    A new octacyanotungstate( v ) singe chain magnet with an effective energy barrier of 39.7(3) cm −1 is achieved by enforcing Ising-like magnetic anisotropy via introduction of trigonal distortion with a fac -tridentate capping ligand.

  15. Pretreatments, conditioned medium and co-culture increase the incidence of somatic embryogenesis of different Cichorium species

    PubMed Central

    Couillerot, Jean-Paul; Windels, David; Vazquez, Franck; Michalski, Jean-Claude; Hilbert, Jean-Louis; Blervacq, Anne-Sophie

    2012-01-01

    Somatic embryogenesis (SE) in Cichorium involves dedifferentiation and redifferentiation of single cells and can be induced by specific in vitro culture conditions. We have tested the effect of various treatments on the incidence of SE (ISE) of an interspecific embryogenic hybrid (C. endivia x C. intybus) and of different commercial chicories (C. endivia and C. intybus) that are typically recalcitrant to SE in standard culture conditions. We found that the ISE of the hybrid is significantly increased by pretreatment of tissues by submersion in solutions of glycerol, abscisic acid, spermine, putrescine or of combinations of these compounds. Interestingly, the most efficient of these pretreatments also had an unexpectedly high effect on the ISE of the C. intybus cultivars. The ISE of the hybrid and of the commercial chicories were increased when explants were co-cultured with highly embryogenic chicory explants or when they were cultured in conditioned medium. These observations established that unidentified SE-promoting factors are released in the culture medium. HPLC analyses of secreted Arabino-Galactan Proteins (AGPs), which are known to stimulate SE, did not allow identifying a fraction containing differentially abundant AGP candidates. However, pointing to their role in promoting SE, we found that the hybrid had a drastically higher ISE when amino sugars and L-Proline, the putative precursors of secreted AGPs, were both added to the medium. PMID:22301978

  16. 76 FR 5412 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ...); ISE Semiconductors (BYT); ISE Electronic Trading (DMA); ISE-Revere Natural Gas (FUM); ISE Water (HHO... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-63761; File No. SR-ISE-2011-04] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of Proposed Rule Change To Establish a...

  17. Sampling algorithms for validation of supervised learning models for Ising-like systems

    NASA Astrophysics Data System (ADS)

    Portman, Nataliya; Tamblyn, Isaac

    2017-12-01

    In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ;ID-MH; that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new ;block-ID; sampling strategy: it decomposes the given structure into square blocks with lattice dimension N ≤ 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).

  18. Exact sampling hardness of Ising spin models

    NASA Astrophysics Data System (ADS)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  19. Self-avoiding walk on a square lattice with correlated vacancies

    NASA Astrophysics Data System (ADS)

    Cheraghalizadeh, J.; Najafi, M. N.; Mohammadzadeh, H.; Saber, A.

    2018-04-01

    The self-avoiding walk on the square site-diluted correlated percolation lattice is considered. The Ising model is employed to realize the spatial correlations of the metric space. As a well-accepted result, the (generalized) Flory's mean-field relation is tested to measure the effect of correlation. After exploring a perturbative Fokker-Planck-like equation, we apply an enriched Rosenbluth Monte Carlo method to study the problem. To be more precise, the winding angle analysis is also performed from which the diffusivity parameter of Schramm-Loewner evolution theory (κ ) is extracted. We find that at the critical Ising (host) system, the exponents are in agreement with Flory's approximation. For the off-critical Ising system, we find also a behavior for the fractal dimension of the walker trace in terms of the correlation length of the Ising system ξ (T ) , i.e., DFSAW(T ) -DFSAW(Tc) ˜1/√{ξ (T ) } .

  20. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.

    PubMed

    Bandodkar, Amay J; Hung, Vinci W S; Jia, Wenzhao; Valdés-Ramírez, Gabriela; Windmiller, Joshua R; Martinez, Alexandra G; Ramírez, Julian; Chan, Garrett; Kerman, Kagan; Wang, Joseph

    2013-01-07

    This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.

  1. ISE structural dynamic experiments

    NASA Technical Reports Server (NTRS)

    Lock, Malcolm H.; Clark, S. Y.

    1988-01-01

    The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.

  2. Ecological risk assessment of TBT in Ise Bay.

    PubMed

    Yamamoto, Joji; Yonezawa, Yoshitaka; Nakata, Kisaburo; Horiguchi, Fumio

    2009-02-01

    An ecological risk assessment of tributyltin (TBT) in Ise Bay was conducted using the margin of exposure (MOE) method. The assessment endpoint was defined to protect the survival, growth and reproduction of marine organisms. Sources of TBT in this study were assumed to be commercial vessels in harbors and navigation routes. Concentrations of TBT in Ise Bay were estimated using a three-dimensional hydrodynamic model, an ecosystem model and a chemical fate model. Estimated MOEs for marine organisms for 1990 and 2008 were approximately 0.1-2.0 and over 100 respectively, indicating a declining temporal trend in the probability of adverse effects. The chemical fate model predicts a much longer persistence of TBT in sediments than in the water column. Therefore, it is necessary to monitor the harmful effects of TBT on benthic organisms.

  3. Two-dimensional Magnetism in Arrays of Superconducting Rings

    NASA Astrophysics Data System (ADS)

    Reich, Daniel H.

    1996-03-01

    An array of superconducting rings in an applied field corresponding to a flux of Φ0 /2 per ring behaves like a 2D Ising antiferromagnet. Each ring has two energetically equivalent states with equal and opposite magnetic moments due to fluxoid quantization, and the dipolar coupling between rings favors antiparallel alignment of the moments. Using SQUID magnetometry and scanning Hall probe microscopy, we have studied the dynamics and magnetic configurations of micron-size aluminum rings on square, triangular, honeycomb, and kagomé lattices. We have found that there are significant antiferromagnetic correlations between rings, and that effects of geometrical frustration can be observed on the triangular and kagomé lattices. Long range correlations on the other lattices are suppressed by the analog of spin freezing that locks the rings in metastable states at low temperatures, and by quenched disorder due to imperfections in the fabrication. This disorder produces a roughly 1% variation in the rings' areas, which translates into an effective random field on the spins. The ring arrays are thus an extremely good realization of the 2D random-field Ising model. (Performed in collaboration with D. Davidović, S. Kumar, J. Siegel, S. B. Field, R. C. Tiberio, R. Hey, and K. Ploog.) (Supported by NSF grants DMR-9222541, and DMR-9357518, and by the David and Lucile Packard Foundation.)

  4. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less

  5. 77 FR 21615 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... by ISE. The first note relates to Non-ISE Market Maker fees, which apply to regular and complex orders, and how those fees are applied to execution of complex orders on the Exchange.\\3\\ Non-ISE Market Maker fees were adopted by ISE in 2006.\\4\\ Prior to this fee change, Non-ISE Market Makers were subject...

  6. In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies

    NASA Technical Reports Server (NTRS)

    Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim

    2007-01-01

    From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.

  7. Anomalously high potentials observed on ISEE

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Krinsky, I. S.; Torbert, R. B.; Olsen, R. C.

    1985-01-01

    Data from two electric field experiments and from the plasma composition experiment on ISEE-1 are used to show that the spacecraft charged to close to -70 V in sunlight at 0700 UT on March 17, 1978. Data from the electron spectrometer experiment show that there was a potential barrier of -10 to -20 V about the spacecraft during this event. The potential barrier was effective in turning back emitted photoelectrons to the spacecraft. The stringent electrostatic cleanliness specifications imposed on ISEE make the presence of differential charging unlikely. Modeling of this event is required to determine if the barrier was produced by the presence of space charge.

  8. Green Tea, Intermittent Sprinting Exercise, and Fat Oxidation

    PubMed Central

    Gahreman, Daniel; Wang, Rose; Boutcher, Yati; Boutcher, Stephen

    2015-01-01

    Fat oxidation has been shown to increase after short term green tea extract (GTE) ingestion and after one bout of intermittent sprinting exercise (ISE). Whether combining the two will result in greater fat oxidation after ISE is undetermined. The aim of the current study was to investigate the combined effect of short term GTE and a single session of ISE upon post-exercise fat oxidation. Fourteen women consumed three GTE or placebo capsules the day before and one capsule 90 min before a 20-min ISE cycling protocol followed by 1 h of resting recovery. Fat oxidation was calculated using indirect calorimetry. There was a significant increase in fat oxidation post-exercise compared to at rest in the placebo condition (p < 0.01). After GTE ingestion, however, at rest and post-exercise, fat oxidation was significantly greater (p < 0.05) than that after placebo. Plasma glycerol levels at rest and 15 min during post-exercise were significantly higher (p < 0.05) after GTE consumption compared to placebo. Compared to placebo, plasma catecholamines increased significantly after GTE consumption and 20 min after ISE (p < 0.05). Acute GTE ingestion significantly increased fat oxidation under resting and post-exercise conditions when compared to placebo. PMID:26184298

  9. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field.

    PubMed

    Sang, Mee Kyung; Kim, Jeong Do; Kim, Beom Seok; Kim, Ki Deok

    2011-06-01

    We previously selected rhizobacterial strains CCR04, CCR80, GSE09, ISE13, and ISE14, which were antagonistic to Phytophthora blight of pepper. In this study, we investigated the effects of root treatment of rhizobacteria on anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field in 2008 and 2009. We also examined the effects of volatiles produced by the strains on fruit ripening and on mycelial growth and spore development of Colletotrichum acutatum and Phytophthora capsici in the laboratory, identifying the volatile compounds by gas chromatography-mass spectrometry (GC-MS). In the house tests, all strains significantly (P < 0.05) reduced anthracnose incidence on pepper fruit; strains GSE09 and ISE14 consistently produced higher numbers of pepper fruit or increased the fresh weight of red fruit more than the controls in both years. In the field tests, all strains significantly (P < 0.05) reduced anthracnose occurrence on either green or red pepper fruit; strain ISE14 consistently produced higher numbers or increased fresh weights of red fruit more than the controls in both years. In the laboratory tests, volatiles produced by strains GSE09 and ISE13 only stimulated maturation of pepper fruit from green (unripe) to red (ripe) fruit; the volatiles of certain strains inhibited the growth and development of C. acutatum and P. capsici. On the other hand, GC-MS analysis of volatiles of strains GSE09 and ISE13 revealed 17 distinct compounds in both strains, including decane, dodecane, 1,3-di-tert-butylbenzene, tetradecane, 2,4-di-tert-butylphenol, and hexadecane. Among these compounds, 2,4-di-tert-butylphenol only stimulated fruit ripening and inhibited growth and development of the pathogens. Taken together, strains GSE09 and ISE14 effectively reduced anthracnose occurrence and stimulated pepper fruit ripening and yield, possibly via bacterial volatiles. Therefore, these two strains could be potential agents for controlling Phytophthora blight and anthracnose, and for increasing fruit ripening and yield. To our knowledge, this is the first report of volatiles such as 2,4-di-tert-butylphenol produced by rhizobacteria being related to both fruit ripening and pathogen inhibition.

  10. Anomalous metastability in a temperature-driven transition

    NASA Astrophysics Data System (ADS)

    Ibáñez Berganza, M.; Coletti, P.; Petri, A.

    2014-06-01

    The Langer theory of metastability provides a description of the lifetime and properties of the metastable phase of the Ising model field-driven transition, describing the magnetic-field-driven transition in ferromagnets and the chemical-potential-driven transition of fluids. An immediate further step is to apply it to the study of a transition driven by the temperature, as the one exhibited by the two-dimensional Potts model. For this model, a study based on the analytical continuation of the free energy (Meunier J. L. and Morel A., Eur. Phys. J. B, 13 (2000) 341) predicts the anomalous vanishing of the metastable temperature range in the large-system-size limit, an issue that has been controversial since the eighties. By a GPU algorithm we compare the Monte Carlo dynamics with the theory. For temperatures close to the transition we obtain agreement and characterize the dependence on the system size, which is essentially different with respect to the Ising case. For smaller temperatures, we observe the onset of stationary states with non-Boltzmann statistics, not predicted by the theory.

  11. Critical scaling of the mutual information in two-dimensional disordered Ising models

    NASA Astrophysics Data System (ADS)

    Sriluckshmy, P. V.; Mandal, Ipsita

    2018-04-01

    Rényi mutual information, computed from second Rényi entropies, can identify classical phase transitions from their finite-size scaling at critical points. We apply this technique to examine the presence or absence of finite temperature phase transitions in various two-dimensional models on a square lattice, which are extensions of the conventional Ising model by adding a quenched disorder. When the quenched disorder causes the nearest neighbor bonds to be both ferromagnetic and antiferromagnetic, (a) a spin glass phase exists only at zero temperature, and (b) a ferromagnetic phase exists at a finite temperature when the antiferromagnetic bond distributions are sufficiently dilute. Furthermore, finite temperature paramagnetic-ferromagnetic transitions can also occur when the disordered bonds involve only ferromagnetic couplings of random strengths. In our numerical simulations, the ‘zero temperature only’ phase transitions are identified when there is no consistent finite-size scaling of the Rényi mutual information curves, while for finite temperature critical points, the curves can identify the critical temperature T c by their crossings at T c and 2 Tc .

  12. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    NASA Astrophysics Data System (ADS)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  13. Computing Critical Properties with Yang-Yang Anomalies

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael

    2017-01-01

    Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.

  14. An extended approach for computing the critical properties in the two-and three-dimensional lattices within the effective-field renormalization group method

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Douglas F.; Santos-Silva, Edimilson; Moreno, N. O.

    2009-10-01

    In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents ν for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.

  15. Finite-size effects for anisotropic 2D Ising model with various boundary conditions

    NASA Astrophysics Data System (ADS)

    Izmailian, N. Sh

    2012-12-01

    We analyze the exact partition function of the anisotropic Ising model on finite M × N rectangular lattices under four different boundary conditions (periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap) and antiperiodic-antiperiodic (aa)) obtained by Kaufman (1949 Phys. Rev. 76 1232), Wu and Hu (2002 J. Phys. A: Math. Gen. 35 5189) and Kastening (2002 Phys. Rev. E 66 057103)). We express the partition functions in terms of the partition functions Zα, β(J, k) with (α, β) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2), J is an interaction coupling and k is an anisotropy parameter. Based on such expressions, we then extend the algorithm of Ivashkevich et al (2002 J. Phys. A: Math. Gen. 35 5543) to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. Our result is f = fbulk + ∑∞p = 0fp(ρ, k)S-p - 1, where f is the free energy of the system, fbulk is the free energy of the bulk, S = MN is the area of the lattice and ρ = M/N is the aspect ratio. All coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ρeff = ρ/sinh 2Jc and show that for pp and aa boundary conditions all finite size correction terms are invariant under the transformation ρeff → 1/ρeff. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  16. ISE: An Integrated Search Environment. The manual

    NASA Technical Reports Server (NTRS)

    Chu, Lon-Chan

    1992-01-01

    Integrated Search Environment (ISE), a software package that implements hierarchical searches with meta-control, is described in this manual. ISE is a collection of problem-independent routines to support solving searches. Mainly, these routines are core routines for solving a search problem and they handle the control of searches and maintain the statistics related to searches. By separating the problem-dependent and problem-independent components in ISE, new search methods based on a combination of existing methods can be developed by coding a single master control program. Further, new applications solved by searches can be developed by coding the problem-dependent parts and reusing the problem-independent parts already developed. Potential users of ISE are designers of new application solvers and new search algorithms, and users of experimental application solvers and search algorithms. The ISE is designed to be user-friendly and information rich. In this manual, the organization of ISE is described and several experiments carried out on ISE are also described.

  17. Chiral Tricritical Point: A New Universality Class in Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Jian, Shao-Kai; Yao, Hong

    2018-05-01

    Tricriticality, as a sister of criticality, is a fundamental and absorbing issue in condensed-matter physics. It has been verified that the bosonic Wilson-Fisher universality class can be changed by gapless fermionic modes at criticality. However, the counterpart phenomena at tricriticality have rarely been explored. In this Letter, we study a model in which a tricritical Ising model is coupled to massless Dirac fermions. We find that the massless Dirac fermions result in the emergence of a new tricritical point, which we refer to as the chiral tricritical point (CTP), at the phase boundary between the Dirac semimetal and the charge-density wave insulator. From functional renormalization group analysis of the effective action, we obtain the critical behaviors of the CTP, which are qualitatively distinct from both the tricritical Ising universality and the chiral Ising universality. We further extend the calculations of the chiral tricritical behaviors of Ising spins to the case of Heisenberg spins. The experimental relevance of the CTP in two-dimensional Dirac semimetals is also discussed.

  18. Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2018-06-01

    In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.

  19. Interactive spaced-education to teach the physical examination: a randomized controlled trial.

    PubMed

    Kerfoot, B Price; Armstrong, Elizabeth G; O'Sullivan, Patricia N

    2008-07-01

    Several studies have documented that physical examination knowledge and skills are limited among medical trainees. The objective of the study is to investigate the efficacy and acceptability of a novel online educational methodology termed 'interactive spaced-education' (ISE) as a method to teach the physical examination. The design of the study is randomized controlled trial. All 170 second-year students in the physical examination course at Harvard Medical School were eligible to enroll. Spaced-education items (questions and explanations) were developed on core physical examination topics and were content-validated by two experts. Based on pilot-test data, 36 items were selected for inclusion. Students were randomized to start the 18-week program in November 2006 or 12 weeks later. Students were sent 6 spaced-education e-mails each week for 6 weeks (cycle 1) which were then repeated in two subsequent 6-week cycles (cycles 2 and 3). Students submitted answers to the questions online and received immediate feedback. An online end-of-program survey was administered. One-hundred twenty students enrolled in the trial. Cycles 1, 2, and 3 were completed by 88%, 76%, and 71% of students, respectively. Under an intent-to-treat analysis, cycle 3 scores for cohort A students [mean 74.0 (SD 13.5)] were significantly higher than cycle 1 scores for cohort B students [controls; mean 59.0 (SD 10.5); P < .001], corresponding to a Cohen's effect size of 1.43. Eighty-five percent of participants (102 of 120) recommended the ISE program for students the following year. ISE can generate significant improvements in knowledge of the physical examination and is very well-accepted by students.

  20. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  1. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE PAGES

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...

    2017-12-05

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  2. Institute for Science and Engineering Simulation (ISES)

    DTIC Science & Technology

    2015-12-18

    performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ

  3. Fortuin-Kasteleyn and damage-spreading transitions in random-bond Ising lattices

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Campbell, I. A.

    2012-10-01

    The Fortuin-Kasteleyn and heat-bath damage-spreading temperatures TFK(p) and TDS(p) are studied on random-bond Ising models of dimensions 2-5 and as functions of the ferromagnetic interaction probability p; the conjecture that TDS(p)˜TFK(p) is tested. It follows from a statement by Nishimori that in any such system, exact coordinates can be given for the intersection point between the Fortuin-Kasteleyn TFK(p) transition line and the Nishimori line [pNL,FK,TNL,FK]. There are no finite-size corrections for this intersection point. In dimension 3, at the intersection concentration [pNL,FK], the damage spreading TDS(p) is found to be equal to TFK(p) to within 0.1%. For the other dimensions, however, TDS(p) is observed to be systematically a few percent lower than TFK(p).

  4. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    NASA Astrophysics Data System (ADS)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  5. Rise of pairwise thermal entanglement for an alternating Ising and Heisenberg spin chain in an arbitrarily oriented magnetic field

    NASA Astrophysics Data System (ADS)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2014-03-01

    Typically two particles (spins) could be maximally entangled at zero temperature, and for a certain temperature the phenomenon of entanglement vanishes at the threshold temperature. For the Heisenberg coupled model or even the Ising model with a transverse magnetic field, one can observe some rise of entanglement even for a disentangled region at zero temperature. So we can understand this emergence of entanglement at finite temperature as being due to the mixing of some maximally entangled states with some other untangled states. Here, we present a simple one-dimensional Ising model with alternating Ising and Heisenberg spins in an arbitrarily oriented magnetic field, which can be mapped onto the classical Ising model with a magnetic field. This model does not show any evidence of entanglement at zero temperature, but surprisingly at finite temperature rise a pairwise thermal entanglement between two untangled spins at zero temperature when an arbitrarily oriented magnetic field is applied. This effect is a purely magnetic field, and the temperature dependence, as soon as the temperature increases, causes a small increase in concurrence, achieving its maximum at around 0.1. Even for long-range entanglement, a weak concurrence still survives. There are also some real materials that could serve as candidates that would exhibit this effect, such as Dy(NO3)(DMSO)2Cu(opba)(DMSO)2 [DMSO = dimethyl sulfoxide; opba = o-phenylenebis(oxamoto)] [J. Strečka, M. Hagiwara, Y. Han, T. Kida, Z. Honda, and M. Ikeda, Condens. Matter Phys. 15, 43002 (2012), 10.5488/CMP.15.43002].

  6. Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation

    NASA Astrophysics Data System (ADS)

    Xu, Ru; Zhang, Hongsheng; Wang, Ting; Lin, Hui

    2017-05-01

    Impervious surface is an important environmental and socio-economic indicator for numerous urban studies. While a large number of researches have been conducted to estimate the area and distribution of impervious surface from satellite data, the accuracy for impervious surface estimation (ISE) is insufficient due to high diversity of urban land cover types. This study evaluated the use of panchromatic (PAN) data in very high resolution satellite image for improving the accuracy of ISE by various pan-sharpening approaches, with a further comprehensive analysis of its scale effects. Three benchmark pan-sharpening approaches, Gram-Schmidt (GS), PANSHARP and principal component analysis (PCA) were applied to WorldView-2 in three spots of Hong Kong. The on-screen digitization were carried out based on Google Map and the results were viewed as referenced impervious surfaces. The referenced impervious surfaces and the ISE results were then re-scaled to various spatial resolutions to obtain the percentage of impervious surfaces. The correlation coefficient (CC) and root mean square error (RMSE) were adopted as the quantitative indicator to assess the accuracy. The accuracy differences between three research areas were further illustrated by the average local variance (ALV) which was used for landscape pattern analysis. The experimental results suggested that 1) three research regions have various landscape patterns; 2) ISE accuracy extracted from pan-sharpened data was better than ISE from original multispectral (MS) data; and 3) this improvement has a noticeable scale effects with various resolutions. The improvement was reduced slightly as the resolution became coarser.

  7. Finite-size effects on the static properties of a single-chain magnet

    NASA Astrophysics Data System (ADS)

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  8. Ising formulation of associative memory models and quantum annealing recall

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Shehab, Omar; Balu, Radhakrishnan

    2017-12-01

    Associative memory models, in theoretical neuro- and computer sciences, can generally store at most a linear number of memories. Recalling memories in these models can be understood as retrieval of the energy minimizing configuration of classical Ising spins, closest in Hamming distance to an imperfect input memory, where the energy landscape is determined by the set of stored memories. We present an Ising formulation for associative memory models and consider the problem of memory recall using quantum annealing. We show that allowing for input-dependent energy landscapes allows storage of up to an exponential number of memories (in terms of the number of neurons). Further, we show how quantum annealing may naturally be used for recall tasks in such input-dependent energy landscapes, although the recall time may increase with the number of stored memories. Theoretically, we obtain the radius of attractor basins R (N ) and the capacity C (N ) of such a scheme and their tradeoffs. Our calculations establish that for randomly chosen memories the capacity of our model using the Hebbian learning rule as a function of problem size can be expressed as C (N ) =O (eC1N) , C1≥0 , and succeeds on randomly chosen memory sets with a probability of (1 -e-C2N) , C2≥0 with C1+C2=(0.5-f ) 2/(1 -f ) , where f =R (N )/N , 0 ≤f ≤0.5 , is the radius of attraction in terms of the Hamming distance of an input probe from a stored memory as a fraction of the problem size. We demonstrate the application of this scheme on a programmable quantum annealing device, the D-wave processor.

  9. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    NASA Astrophysics Data System (ADS)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  10. 77 FR 61037 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Rule Change To Adopt Reduced Fees for Historical ISE Open/Close Trade Profile Intraday Market Data... historical ISE Open/Close Trade Profile Intraday market data offering. The text of the proposed rule change... Change 1. Purpose ISE currently sells the ISE Open/Close Trade Profile Intraday, a market data offering...

  11. Substorms, Plasmoids, Flux Robes, and Magnetotail Flux Loss on March 25, 1983: CDAW-8

    DTIC Science & Technology

    1988-10-03

    1400 UT. The magnitude and orientation of the 11 GOES 5 OR 1982-01 9A SE14 14 ZSM -l1ORe ISEE 3 -10 -5 5 OReYSM YS m ISEE 1 5 14r- -* IMP 8 0 Fig. lb...and references therein]. ISEE 1 saw a 31% field decrease from 55 nT to 38 nT between 1020 and 1058 UT, and a 35 % decrease from 62 nT to 41 nT between...strength is determined by the component 29 2.5 POLAR CAP AREA 2.0 E ISEE 1 . 5 -i 60 x - 50 IMP 8 - 40 35 ISEE-3 (B = 22nt) 30 25 ISE IMP8 cc" Z u

  12. A Meloidogyne incognita effector MiISE5 suppresses programmed cell death to promote parasitism in host plant.

    PubMed

    Shi, Qianqian; Mao, Zhenchuan; Zhang, Xi; Zhang, Xiaoping; Wang, Yunsheng; Ling, Jian; Lin, Runmao; Li, Denghui; Kang, Xincong; Sun, Wenxian; Xie, Bingyan

    2018-05-08

    Root-knot nematodes (RKNs) are highly specialized parasites that interact with their host plants using a range of strategies. The esophageal glands are the main places where nematodes synthesize effector proteins, which play central roles in successful invasion. The Meloidogyne incognita effector MiISE5 is exclusively expressed within the subventral esophageal cells and is upregulated during early parasitic stages. In this study, we show that MiISE5 can be secreted to barley cells through infectious hyphae of Magnaporthe oryzae. Transgenic Arabidopsis plants expressing MiISE5 became significantly more susceptible to M. incognita. Inversely, the tobacco rattle virus (TRV)-mediated silence of MiISE5 decreased nematode parasitism. Moreover, transient expression of MiISE5 suppressed cell death caused by Burkholderia glumae in Nicotiana benthamiana. Based on transcriptome analysis of MiISE5 transgenic sample and the wild-type (WT) sample, we obtained 261 DEGs, and the results of GO and KEGG enrichment analysis indicate that MiISE5 can interfere with various metabolic and signaling pathways, especially the JA signaling pathway, to facilitate nematode parasitism. Results from the present study suggest that MiISE5 plays an important role during the early stages of parasitism and provides evidence to decipher the molecular mechanisms underlying the manipulation of host immune defense responses by M. incognita.

  13. The ISEE-1 and ISEE-2 plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.

    1978-01-01

    The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.

  14. Domain-wall excitations in the two-dimensional Ising spin glass

    NASA Astrophysics Data System (ADS)

    Khoshbakht, Hamid; Weigel, Martin

    2018-02-01

    The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to 10 000 ×10 000 spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic case. Based on these techniques, a large number of disorder samples are used together with a careful finite-size scaling analysis to determine the stiffness exponents and domain-wall fractal dimensions with unprecedented accuracy, our best estimates being θ =-0.2793 (3 ) and df=1.273 19 (9 ) for Gaussian couplings. For bimodal disorder, a new uniform sampling algorithm allows us to study the domain-wall fractal dimension, finding df=1.279 (2 ) . Additionally, we also investigate the distributions of ground-state energies, of domain-wall energies, and domain-wall lengths.

  15. Estimation of critical behavior from the density of states in classical statistical models

    NASA Astrophysics Data System (ADS)

    Malakis, A.; Peratzakis, A.; Fytas, N. G.

    2004-12-01

    We present a simple and efficient approximation scheme which greatly facilitates the extension of Wang-Landau sampling (or similar techniques) in large systems for the estimation of critical behavior. The method, presented in an algorithmic approach, is based on a very simple idea, familiar in statistical mechanics from the notion of thermodynamic equivalence of ensembles and the central limit theorem. It is illustrated that we can predict with high accuracy the critical part of the energy space and by using this restricted part we can extend our simulations to larger systems and improve the accuracy of critical parameters. It is proposed that the extensions of the finite-size critical part of the energy space, determining the specific heat, satisfy a scaling law involving the thermal critical exponent. The method is applied successfully for the estimation of the scaling behavior of specific heat of both square and simple cubic Ising lattices. The proposed scaling law is verified by estimating the thermal critical exponent from the finite-size behavior of the critical part of the energy space. The density of states of the zero-field Ising model on these lattices is obtained via a multirange Wang-Landau sampling.

  16. Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions.

    PubMed

    Fytas, Nikolaos G; Martín-Mayor, Víctor

    2016-06-01

    It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.227201] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

  17. Improved belief propagation algorithm finds many Bethe states in the random-field Ising model on random graphs

    NASA Astrophysics Data System (ADS)

    Perugini, G.; Ricci-Tersenghi, F.

    2018-01-01

    We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.

  18. Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels.

    PubMed

    Hwang, Sung-Woo; Kim, Tae-Youn; Hyun, Sang-Hoon

    2008-06-01

    The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).

  19. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate "Water Layer" Test.

    PubMed

    Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő

    2017-08-15

    The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.

  20. Criticality of the random field Ising model in and out of equilibrium: A nonperturbative functional renormalization group description

    NASA Astrophysics Data System (ADS)

    Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu

    2018-03-01

    We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.

  1. High-Precision Monte Carlo Simulation of the Ising Models on the Penrose Lattice and the Dual Penrose Lattice

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro; Okabe, Yutaka

    2016-04-01

    We study the Ising models on the Penrose lattice and the dual Penrose lattice by means of the high-precision Monte Carlo simulation. Simulating systems up to the total system size N = 20633239, we estimate the critical temperatures on those lattices with high accuracy. For high-speed calculation, we use the generalized method of the single-GPU-based computation for the Swendsen-Wang multi-cluster algorithm of Monte Carlo simulation. As a result, we estimate the critical temperature on the Penrose lattice as Tc/J = 2.39781 ± 0.00005 and that of the dual Penrose lattice as Tc*/J = 2.14987 ± 0.00005. Moreover, we definitely confirm the duality relation between the critical temperatures on the dual pair of quasilattices with a high degree of accuracy, sinh (2J/Tc)sinh (2J/Tc*) = 1.00000 ± 0.00004.

  2. Identifying differentially expressed genes in cancer patients using a non-parameter Ising model.

    PubMed

    Li, Xumeng; Feltus, Frank A; Sun, Xiaoqian; Wang, James Z; Luo, Feng

    2011-10-01

    Identification of genes and pathways involved in diseases and physiological conditions is a major task in systems biology. In this study, we developed a novel non-parameter Ising model to integrate protein-protein interaction network and microarray data for identifying differentially expressed (DE) genes. We also proposed a simulated annealing algorithm to find the optimal configuration of the Ising model. The Ising model was applied to two breast cancer microarray data sets. The results showed that more cancer-related DE sub-networks and genes were identified by the Ising model than those by the Markov random field model. Furthermore, cross-validation experiments showed that DE genes identified by Ising model can improve classification performance compared with DE genes identified by Markov random field model. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Understanding quantum tunneling using diffusion Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  4. The inhibitory spillover effect: Controlling the bladder makes better liars *

    PubMed Central

    Fenn, Elise; Blandón-Gitlin, Iris; Coons, Jennifer; Pineda, Catherine; Echon, Reinalyn

    2015-01-01

    The Inhibitory-Spillover-Effect (ISE) on a deception task was investigated. The ISE occurs when performance in one self-control task facilitates performance in another (simultaneously conducted) self-control task. Deceiving requires increased access to inhibitory control. We hypothesized that inducing liars to control urination urgency (physical inhibition) would facilitate control during deceptive interviews (cognitive inhibition). Participants drank small (low-control) or large (high-control) amounts of water. Next, they lied or told the truth to an interviewer. Third-party observers assessed the presence of behavioral cues and made true/lie judgments. In the high-control, but not the low-control condition, liars displayed significantly fewer behavioral cues to deception, more behavioral cues signaling truth, and provided longer and more complex accounts than truth-tellers. Accuracy detecting liars in the high-control condition was significantly impaired; observers revealed bias toward perceiving liars as truth-tellers. The ISE can operate in complex behaviors. Acts of deception can be facilitated by covert manipulations of self-control. PMID:26366466

  5. A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2016-09-01

    Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.

  6. CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro; Okabe, Yutaka

    2014-03-01

    We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the q-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions. Catalogue identifier: AERM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5632 No. of bytes in distributed program, including test data, etc.: 14688 Distribution format: tar.gz Programming language: C, CUDA. Computer: System with an NVIDIA CUDA enabled GPU. Operating system: System with an NVIDIA CUDA enabled GPU. Classification: 23. External routines: NVIDIA CUDA Toolkit 3.0 or newer Nature of problem: Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices. Solution method: GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. [2]. Restrictions: The system size is limited depending on the memory of a GPU. Running time: For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc. References: [1] K.A. Hawick, A. Leist, and D. P. Playne, Parallel Computing 36 (2010) 655-678 [2] O. Kalentev, A. Rai, S. Kemnitzb, and R. Schneider, J. Parallel Distrib. Comput. 71 (2011) 615-620

  7. The magnetisation distribution of the Ising model - a new approach

    NASA Astrophysics Data System (ADS)

    Hakan Lundow, Per; Rosengren, Anders

    2010-03-01

    A completely new approach to the Ising model in 1 to 5 dimensions is developed. We employ a generalisation of the binomial coefficients to describe the magnetisation distributions of the Ising model. For the complete graph this distribution is exact. For simple lattices of dimensions d=1 and d=5 the magnetisation distributions are remarkably well-fitted by the generalized binomial distributions. For d=4 we are only slightly less successful, while for d=2,3 we see some deviations (with exceptions!) between the generalized binomial and the Ising distribution. The results speak in favour of the generalized binomial distribution's correctness regarding their general behaviour in comparison to the Ising model. A theoretical analysis of the distribution's moments also lends support their being correct asymptotically, including the logarithmic corrections in d=4. The full extent to which they correctly model the Ising distribution, and for which graph families, is not settled though.

  8. Ion sensing method

    DOEpatents

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  9. FAST TRACK COMMUNICATION: Exact and simple results for the XYZ and strongly interacting fermion chains

    NASA Astrophysics Data System (ADS)

    Fendley, Paul; Hagendorf, Christian

    2010-10-01

    We conjecture exact and simple formulas for some physical quantities in two quantum chains. A classic result of this type is Onsager, Kaufman and Yang's formula for the spontaneous magnetization in the Ising model, subsequently generalized to the chiral Potts models. We conjecture that analogous results occur in the XYZ chain when the couplings obey JxJy + JyJz + JxJz = 0, and in a related fermion chain with strong interactions and supersymmetry. We find exact formulas for the magnetization and gap in the former, and the staggered density in the latter, by exploiting the fact that certain quantities are independent of finite-size effects.

  10. Influence of sad mood induction on implicit self-esteem and its relationship with symptoms of depression and anxiety.

    PubMed

    van Tuijl, Lonneke A; Verwoerd, Johan R L; de Jong, Peter J

    2018-02-13

    Implicit self-esteem (ISE) refers to the valence of triggered associations when the self is activated. Despite theories, previous studies often fail to observe low ISE in depression and anxiety. It is feasible that sad mood is required to activate dysfunctional self-associations. The present study tested the following hypotheses: i) ISE is lower following a sad mood induction (SMI); ii) the relationship between ISE and level of depression/anxiety symptoms is relatively strong when ISE is measured during sad mood; iii) individuals with higher levels of depression/anxiety symptoms will show a relatively large decrease in ISE following a SMI. In this mixed-designed study, university students completed the self-esteem implicit association test (IAT) either at baseline (control condition; n = 46) or following a SMI (experimental condition; n = 49). To test the third hypothesis, a SMI and IAT were also given in the control condition. Both conditions completed self-report measures of explicit self-esteem (ESE), and symptoms of depression and anxiety. There was no support for the first two hypotheses, but some support that symptoms of anxiety correlated with larger decreases in ISE following a SMI which partly supported the third hypothesis. This disappeared when controlling for multiple testing. Results are limited to non-clinical participants. While ISE was robust against increases in sad mood, there was some tentative support that symptoms of anxiety were related to larger decreases in ISE following a SMI. Copyright © 2018. Published by Elsevier Ltd.

  11. Similarities between the irrelevant sound effect and the suffix effect.

    PubMed

    Hanley, J Richard; Bourgaize, Jake

    2018-03-29

    Although articulatory suppression abolishes the effect of irrelevant sound (ISE) on serial recall when sequences are presented visually, the effect persists with auditory presentation of list items. Two experiments were designed to test the claim that, when articulation is suppressed, the effect of irrelevant sound on the retention of auditory lists resembles a suffix effect. A suffix is a spoken word that immediately follows the final item in a list. Even though participants are told to ignore it, the suffix impairs serial recall of auditory lists. In Experiment 1, the irrelevant sound consisted of instrumental music. The music generated a significant ISE that was abolished by articulatory suppression. It therefore appears that, when articulation is suppressed, irrelevant sound must contain speech for it to have any effect on recall. This is consistent with what is known about the suffix effect. In Experiment 2, the effect of irrelevant sound under articulatory suppression was greater when the irrelevant sound was spoken by the same voice that presented the list items. This outcome is again consistent with the known characteristics of the suffix effect. It therefore appears that, when rehearsal is suppressed, irrelevant sound disrupts the acoustic-perceptual encoding of auditorily presented list items. There is no evidence that the persistence of the ISE under suppression is a result of interference to the representation of list items in a postcategorical phonological store.

  12. Experimental linear-optics simulation of ground-state of an Ising spin chain.

    PubMed

    Xue, Peng; Zhan, Xian; Bian, Zhihao

    2017-05-19

    We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.

  13. Sweat Sodium, Potassium, and Chloride Concentrations Analyzed Same Day as Collection Versus After 7 Days Storage in a Range of Temperatures.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Sopeña, Bridget C; Nuccio, Ryan P; Reimel, Adam J; Ungaro, Corey T

    2018-05-22

    The purpose of this study was to determine the effect of storage temperature on sodium ([Na + ]), potassium ([K + ]), and chloride ([Cl - ]) concentrations of sweat samples analyzed 7 days after collection. Using the absorbent patch technique, 845 sweat samples were collected from 39 subjects (32 ± 7 years, 72.9 ± 10.5 kg) during exercise. On the same day as collection (PRESTORAGE), 609 samples were analyzed for [Na + ], [Cl - ], and [K + ] by ion chromatography (IC) and 236 samples were analyzed for [Na + ] using a compact ion-selective electrode (ISE). Samples were stored at one of the four conditions: -20 °C (IC, n = 138; ISE, n = 60), 8 °C (IC, n = 144; ISE, n = 59), 23 °C (IC, n = 159; ISE, n = 59), or alternating between 8 °C and 23 °C (IC, n = 168; ISE, n = 58). After 7 days in storage (POSTSTORAGE), samples were reanalyzed using the same technique as PRESTORAGE. PRESTORAGE sweat electrolyte concentrations were highly related to that of POSTSTORAGE (intraclass correlation coefficient: .945-.989, p < .001). Mean differences (95% confidence intervals) between PRESTORAGE and POSTSTORAGE were statistically, but not practically, significant for most comparisons: IC [Na + ]: -0.5(0.9) to -2.1(0.9) mmol/L; IC [K + ]: -0.1(0.1) to -0.2(0.1) mmol/L; IC [Cl - ]: -0.4(1.4) to -1.3(1.3) mmol/L; ISE [Na + ]: -2.0(1.1) to 1.3(1.1) mmol/L. Based on typical error of measurement results, 95% of the time PRESTORAGE and POSTSTORAGE sweat [Na + ], [K + ], and [Cl - ] by IC analysis fell within ±7-9, ±0.6-0.7, and ±9-13 mmol/L, respectively, while sweat [Na + ] by ISE was ±6 mmol/L. All conditions produced high reliability and acceptable levels of agreement in electrolyte concentrations of sweat samples analyzed on the day of collection versus after 7 days in storage.

  14. Critical Behavior of Spatial Evolutionary Game with Altruistic to Spiteful Preferences on Two-Dimensional Lattices

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Li, Xiao-Teng; Chen, Wei; Liu, Jian; Chen, Xiao-Song

    2016-10-01

    Self-questioning mechanism which is similar to single spin-flip of Ising model in statistical physics is introduced into spatial evolutionary game model. We propose a game model with altruistic to spiteful preferences via weighted sums of own and opponent's payoffs. This game model can be transformed into Ising model with an external field. Both interaction between spins and the external field are determined by the elements of payoff matrix and the preference parameter. In the case of perfect rationality at zero social temperature, this game model has three different phases which are entirely cooperative phase, entirely non-cooperative phase and mixed phase. In the investigations of the game model with Monte Carlo simulation, two paths of payoff and preference parameters are taken. In one path, the system undergoes a discontinuous transition from cooperative phase to non-cooperative phase with the change of preference parameter. In another path, two continuous transitions appear one after another when system changes from cooperative phase to non-cooperative phase with the prefenrence parameter. The critical exponents v, β, and γ of two continuous phase transitions are estimated by the finite-size scaling analysis. Both continuous phase transitions have the same critical exponents and they belong to the same universality class as the two-dimensional Ising model. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384

  15. The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.; Zheng, L.; Conwell, P.

    Laboratory experiments on heterogeneous porous media (otherwise known as intermediate scale experiments, or ISEs) have been increasingly relied upon by hydrogeologists for the study of saturated and unsaturated groundwater systems. Among the many ongoing applications of ISEs is the study of fluid flow and the transport of conservative solutes in correlated permeability fields. Recent advances in ISE design have provided the capability of creating correlated permeability fields in the laboratory. This capability is important in the application of ISEs for the assessment of recent stochastic theories. In addition, pressure-transducer technology and visualization methods have provided the potential for ISEs to be used in characterizing the spatial distributions of both hydraulic head and local water velocity within correlated permeability fields. Finally, various methods are available for characterizing temporal variations in the spatial distribution (and, thereby, the spatial moments) of solute concentrations within ISEs. It is concluded, therefore, that recent developments in experimental techniques have provided an opportunity to use ISEs as important tools in the continuing study of fluid flow and the transport of conservative solutes in heterogeneous, saturated porous media. Résumé Les hydrogéologues se sont progressivement appuyés sur des expériences de laboratoire sur des milieux poreux hétérogènes (connus aussi par l'expression "Expériences àéchelle intermédiaire", ISE) pour étudier les zones saturées et non saturées des aquifères. Parmi les nombreuses applications en cours des ISE, il faut noter l'étude de l'écoulement de fluide et le transport de solutés conservatifs dans des champs aux perméabilités corrélées. Les récents progrès du protocole des ISE ont donné la possibilité de créer des champs de perméabilités corrélées au laboratoire. Cette possibilité est importante dans l'application des ISE pour l'évaluation des théories stochastiques récentes. En outre, la technologie des capteurs de pression et les méthodes de visualisation donnent la possibilité d'utiliser les ISE pour caractériser les distributions spatiales à la fois de la piézométrie et de la vitesse locale de l'eau dans un champs de perméabilités corrélées. Finalement, des méthodes variées peuvent être utilisées pour caractériser les variations temporelles de la distribution spatiale (et, par conséquent, les moments spatiaux) des concentrations de soluté dans les ISE. En conclusion, donc, des développements récents des techniques expérimentales ont fourni l'occasion d'utiliser les ISE comme d'importants outils d'étude en continu des écoulement de fluides et de transport de solutés conservatifs dans des milieux poreux saturés hétérogènes. Resumen Los experimentos de laboratorio en medio poroso heterogéneo (conocidos como Experimentos a Escala Intermedia o ISE) están cada vez mejor considerados para el estudio de los sistemas saturados y no saturados. Entre las muchas aplicaciones de los ISE se encuentra el estudio del flujo y el transporte de solutos conservativos en medios con permeabilidad que presentan una cierta estructura de correlación. Avances recientes en el diseño de los ISE han proporcionado la capacidad de crear medios de este tipo en el laboratorio. Esta capacidad es importante para la aplicación de los ISE a la evaluación de las teorías estocásticas recientes. Además, la tecnología de los transductores de presión y los métodos de visualización han permitido que los ISE se usen para caracterizar la distribución espacial de niveles hidráulicos y de las velocidades locales del agua en campos de permeabilidad con determinada correlación espacial. Finalmente, existen varios métodos para caracterizar las variaciones temporales en la distribución espacial (y por tanto los momentos estadísticos espaciales) de la concentración de solutos en los ISE. Se concluye que los desarrollos recientes en las técnicas experimentales han proporcionado una oportunidad para usar los ISE como herramientas fundamentales en el estudio del flujo y transporte de solutos conservativos en medio poroso heterogéneo y saturado.

  16. Transverse fields to tune an Ising-nematic quantum phase transition

    NASA Astrophysics Data System (ADS)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.

    2017-12-01

    The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

  17. Hidden order and flux attachment in symmetry-protected topological phases: A Laughlin-like approach

    NASA Astrophysics Data System (ADS)

    Ringel, Zohar; Simon, Steven H.

    2015-05-01

    Topological phases of matter are distinct from conventional ones by their lack of a local order parameter. Still in the quantum Hall effect, hidden order parameters exist and constitute the basis for the celebrated composite-particle approach. Whether similar hidden orders exist in 2D and 3D symmetry protected topological phases (SPTs) is a largely open question. Here, we introduce a new approach for generating SPT ground states, based on a generalization of the Laughlin wave function. This approach gives a simple and unifying picture of some classes of SPTs in 1D and 2D, and reveals their hidden order and flux attachment structures. For the 1D case, we derive exact relations between the wave functions obtained in this manner and group cohomology wave functions, as well as matrix product state classification. For the 2D Ising SPT, strong analytical and numerical evidence is given to show that the wave function obtained indeed describes the desired SPT. The Ising SPT then appears as a state with quasi-long-range order in composite degrees of freedom consisting of Ising-symmetry charges attached to Ising-symmetry fluxes.

  18. The ISEE-C plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.

    1978-01-01

    The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.

  19. Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.

    PubMed

    Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne

    2014-08-22

    High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems.

  20. Quantum transverse-field Ising model on an infinite tree from matrix product states

    NASA Astrophysics Data System (ADS)

    Nagaj, Daniel; Farhi, Edward; Goldstone, Jeffrey; Shor, Peter; Sylvester, Igor

    2008-06-01

    We give a generalization to an infinite tree geometry of Vidal’s infinite time-evolving block decimation (iTEBD) algorithm [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)] for simulating an infinite line of quantum spins. We numerically investigate the quantum Ising model in a transverse field on the Bethe lattice using the matrix product state ansatz. We observe a second order phase transition, with certain key differences from the transverse field Ising model on an infinite spin chain. We also investigate a transverse field Ising model with a specific longitudinal field. When the transverse field is turned off, this model has a highly degenerate ground state as opposed to the pure Ising model whose ground state is only doubly degenerate.

  1. Scattering by inhomogeneous systems with rough internal surfaces: Porous solids and random-field Ising systems

    NASA Astrophysics Data System (ADS)

    Wong, Po-Zen

    1985-12-01

    For a two-component inhomogeneous system consisting of compact domains of characteristic size R, I show that if the domain walls are ``rough'' and their root-mean-square fluctuation w over a distance r obeys a power law w=b(r/a)x (a is the lattice constant and x>0), then the geometrical correlation function γ(r) has leading terms proportional to rx and r for r<>R-1, where d is the dimension of the system. Two possible applications of this result are discussed. (i) In granular porous solids which have a minimum grain size Rmin, the above result implies that surface roughness can cause I(q) to fall off like 1/qα for q>>Rmin-1, where α=3+x>3 for d=3. In particular, when x>1, the surface becomes a fractal with dimension D=1+x=α-2, which can be extracted from the scattering data. On the other hand, if the grains are smooth and their size distribution obeys a power law dN(R)/dR~R-β over a range Rmin

  2. Localization and Symmetry Breaking in the Quantum Quasiperiodic Ising Glass

    NASA Astrophysics Data System (ADS)

    Chandran, A.; Laumann, C. R.

    2017-07-01

    Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a quasiperiodic Ising glass stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero-temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic, and quasiperiodically alternating ground-state phases with extended, localized, and critically delocalized low-energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-André duality that we develop. The quasiperiodic Ising glass may be realized in near-term quantum optical experiments.

  3. Nuclear and ionic charge distribution experiment on ISEE-1 and ISEE-3

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1987-01-01

    The experimental work carried out under this contract is a continuation of that originally performed under Contracts NAS5-20062 and NAS5-26739. The data analyzed are from the Max-Planck Institut/Univ. of Maryland experiment on ISEE-1 and ISEE-3. Each spacecraft experiment consists of a nearly identical set of three sensors (designated the ULECA, ULEWAT, and ULEZEQ sensors) designed to measure the energy spectra and composition of suprathermal and energetic ions over a broad energy range (less than 3 keV/e to more than 20 MeV/nucleon). Since the launch of ISEE's 2 and 3, the MPI/Univ. of Maryland experiments have generally performed as expected except for a partial failure of the ULEWAT sensor on ISEE-1 in August 1978. A number of scientific studies have either been completed, initiated or are at various stages of completion. A brief summary of Primary Results is given, followed by a more detailed summary of the major accomplishments at the Univ. of Maryland.

  4. On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1984-01-01

    Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same.

  5. Restoration of dimensional reduction in the random-field Ising model at five dimensions

    NASA Astrophysics Data System (ADS)

    Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D <6 to their values in the pure Ising model at D -2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.

  6. Restoration of dimensional reduction in the random-field Ising model at five dimensions.

    PubMed

    Fytas, Nikolaos G; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D-2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D=5. We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3≤D<6 to their values in the pure Ising model at D-2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.

  7. Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian

    2013-05-01

    Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.

  8. Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2018-05-01

    The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.

  9. Emergent long-range synchronization of oscillating ecological populations without external forcing described by Ising universality

    PubMed Central

    Noble, Andrew E.; Machta, Jonathan; Hastings, Alan

    2015-01-01

    Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation (the Moran effect). In contrast, we show how long-range synchronization can emerge over distances much longer than the length scales of either dispersal or environmental correlation. In particular, we demonstrate that the transition from incoherence to long-range synchronization of two-cycle oscillations in noisy spatial population models is described by the Ising universality class of statistical physics. This result shows, in contrast to all previous work, how the Ising critical transition can emerge directly from the dynamics of ecological populations. PMID:25851364

  10. 76 FR 79114 - Privacy Act of 1974: Implementation of Exemptions; DOT/ALL 23-Information Sharing Environment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...] Privacy Act of 1974: Implementation of Exemptions; DOT/ALL 23-- Information Sharing Environment (ISE... titled, ``DOT/ALL 23--Information Sharing Environment (ISE) Suspicious Activity Reporting (SAR... exempts portions of the ``DOT/ALL 23--Information Sharing Environment (ISE) Suspicious Activity Reporting...

  11. Statistical mechanics of the cluster Ising model

    NASA Astrophysics Data System (ADS)

    Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko

    2011-08-01

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  12. Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems

    NASA Astrophysics Data System (ADS)

    Kargarian, M.; Jafari, R.; Langari, A.

    2007-12-01

    We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.

  13. Quantum Monte Carlo study of the transverse-field quantum Ising model on infinite-dimensional structures

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Um, Jaegon; Yi, Su Do; Kim, Beom Jun

    2011-11-01

    In a number of classical statistical-physical models, there exists a characteristic dimensionality called the upper critical dimension above which one observes the mean-field critical behavior. Instead of constructing high-dimensional lattices, however, one can also consider infinite-dimensional structures, and the question is whether this mean-field character extends to quantum-mechanical cases as well. We therefore investigate the transverse-field quantum Ising model on the globally coupled network and on the Watts-Strogatz small-world network by means of quantum Monte Carlo simulations and the finite-size scaling analysis. We confirm that both of the structures exhibit critical behavior consistent with the mean-field description. In particular, we show that the existing cumulant method has difficulty in estimating the correct dynamic critical exponent and suggest that an order parameter based on the quantum-mechanical expectation value can be a practically useful numerical observable to determine critical behavior when there is no well-defined dimensionality.

  14. Long-range Ising model for credit portfolios with heterogeneous credit exposures

    NASA Astrophysics Data System (ADS)

    Kato, Kensuke

    2016-11-01

    We propose the finite-size long-range Ising model as a model for heterogeneous credit portfolios held by a financial institution in the view of econophysics. The model expresses the heterogeneity of the default probability and the default correlation by dividing a credit portfolio into multiple sectors characterized by credit rating and industry. The model also expresses the heterogeneity of the credit exposure, which is difficult to evaluate analytically, by applying the replica exchange Monte Carlo method to numerically calculate the loss distribution. To analyze the characteristics of the loss distribution for credit portfolios with heterogeneous credit exposures, we apply this model to various credit portfolios and evaluate credit risk. As a result, we show that the tail of the loss distribution calculated by this model has characteristics that are different from the tail of the loss distribution of the standard models used in credit risk modeling. We also show that there is a possibility of different evaluations of credit risk according to the pattern of heterogeneity.

  15. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM).

    PubMed

    Wang, Dongbin; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2015-04-01

    This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Networked Ising-Sznajd AR-β Model

    NASA Astrophysics Data System (ADS)

    Nagao, Tomonori; Ohmiya, Mayumi

    2009-09-01

    The modified Ising-Sznajd model is studied to clarify the machanism of price formation in the stock market. The conventional Ising-Sznajd model is improved as a small world network with the rewireing probability β(t) which depends on the time. Numerical experiments show that phase transition, regarded as a economical crisis, is inevitable in this model.

  17. Real-time monitoring of ischemia inside stomach.

    PubMed

    Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep

    2013-02-15

    The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Ricardo de Sousa, J.; Araújo, Ijanílio G.

    1999-07-01

    We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.

  19. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    PubMed Central

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  20. Research on Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Lobeck, William E.

    2002-01-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  1. Interface motion in a two-dimensional Ising model with a field

    NASA Astrophysics Data System (ADS)

    Devillard, Pierre

    1991-01-01

    We determine by Monte Carlo simulations the width of an interface between the stable phase and the metastable phase in a two-dimensional Ising model with a magnetic field, in the case of nonconversed order parameter (Glauber dynamics). At zero temperature, the width increases as t β with β-1/3, as predicted by earlier theories. As temperature increases, the value of the effective exponent β that we measure decreases toward the value 1/4, which is the value in the absence of magnetic field.

  2. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  3. Research on Intelligent Synthesis Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Loftin, R. Bowen

    2002-12-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  4. Freezing in stripe states for kinetic Ising models: a comparative study of three dynamics

    NASA Astrophysics Data System (ADS)

    Godrèche, Claude; Pleimling, Michel

    2018-04-01

    We present a comparative study of the fate of an Ising ferromagnet on the square lattice with periodic boundary conditions evolving under three different zero-temperature dynamics. The first one is Glauber dynamics, the two other dynamics correspond to two limits of the directed Ising model, defined by rules that break the full symmetry of the former, yet sharing the same Boltzmann-Gibbs distribution at stationarity. In one of these limits the directed Ising model is reversible, in the other one it is irreversible. For the kinetic Ising-Glauber model, several recent studies have demonstrated the role of critical percolation to predict the probabilities for the system to reach the ground state or to fall in a metastable state. We investigate to what extent the predictions coming from critical percolation still apply to the two other dynamics.

  5. Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang

    2017-05-01

    The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.

  6. Eliminating the influence of source spectrum of white light scanning interferometry through time-delay estimation algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu

    2017-05-01

    In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.

  7. Partially disordered antiferromagnetism and multiferroic behavior in a frustrated Ising system CoCl 2 – 2 SC ( NH 2 ) 2

    DOE PAGES

    Mun, Eundeok; Weickert, Dagmar Franziska; Kim, Jaewook; ...

    2016-03-01

    We investigate partially disordered antiferromagnetism in CoCl 2-2SC(NH 2) 2, in which ab-plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T = 50mK and up to μ0H =more » 60T. The Co 2+ S = 3/2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Lastly, we find that magnetic exchange striction induces changes in the electric polarization up to 3μC/m 2, and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300μC/m 2.« less

  8. Probing strong correlations with light scattering: Example of the quantum Ising model

    DOE PAGES

    Babujian, H. M.; Karowski, M.; Tsvelik, A. M.

    2016-10-01

    In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.

  9. Probing strong correlations with light scattering: Example of the quantum Ising model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babujian, H. M.; Karowski, M.; Tsvelik, A. M.

    In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.

  10. AUV Commercialization - Who’s Leading the Pack?

    DTIC Science & Technology

    2000-09-01

    the Theseus and ARCS, is designing a deep water commercial site survey AUV for Fugro GeoServices Inc. Called the Explorer, the vehicle will conduct...ISE has the ARCS and the Theseus vehicles and Perry Technologies has the MUST. These vehicles have each performed some dramatic operations including the...deployment of fiber optic cables. In the case of Theseus , the fiber optic cable was deployed under the ice pack. Mid-size vehicles include those from

  11. Testing ground for fluctuation theorems: The one-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2018-04-01

    In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.

  12. 78 FR 79051 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... the move of this datacenter to an ISE facility, and to adopt a corresponding disaster recovery network... rent cabinet space in the ISE facility, and to adopt a corresponding disaster recovery network fee... datacenter is not operational. As the Exchange is moving its hardware to an ISE-run facility, the Exchange...

  13. Equity in Informal Science Education: Developing an Access and Equity Framework for Science Museums and Science Centres

    ERIC Educational Resources Information Center

    Dawson, Emily

    2014-01-01

    Informal science education (ISE) is a popular pursuit, with millions of people visiting science museums, science centres, zoos, botanic gardens, aquaria, science festivals and more around the world. Questions remain, however, about how accessible and inclusive ISE practices are. This article reviews research on participation in ISE through the…

  14. 77 FR 31680 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... Plus; (iii) Non-ISE Market Maker; \\5\\ (iv) Firm Proprietary; (v) Customer (Professional);\\6\\ (vi) Priority Customer,\\7\\ 100 or more contracts; and (vii) Priority Customer, less than 100 contracts. \\3... Market Makers'' collectively. See ISE Rule 100(a)(25). \\5\\ A Non-ISE Market Maker, or Far Away Market...

  15. The Ising model coupled to 2d orders

    NASA Astrophysics Data System (ADS)

    Glaser, Lisa

    2018-04-01

    In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.

  16. Electric fields in the plasma sheet and plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Pedersen, A.; Knott, K.; Cattell, C. A.; Mozer, F. S.; Falthammar, C.-G.; Lindqvist, P.-A.; Manka, R. H.

    1985-01-01

    Results obtained by Forbes et al. (1981) on the basis of time delay measurements between ISEE 1 and ISEE 2 imply that the plasma flow and the boundary contracting velocity were nearly the same, whereas the expanding boundary velocity was not accompanied by any significant plasma sheet plasma motion. In the present study, this observation is discussed in conjunction with electric field data. The study is based on electric field data from the spherical double probe experiment on ISEE 1. Electric field data from GEOS 2 are used to some extent to monitor the electric fields near the geostationary orbit during the considered eve nts. Electric field data during CDAW 6 events are discussed, taking into account positions of ISEE 1/ISEE 2 and GEOS 2; March 22, 0600-1300 UT; and March 22, UT; and March 31, 1400-2400 UT.

  17. Ising Criticality of the Clock Model from Density of States Obtained by the Replica Exchange-Wang-Landau Method

    NASA Astrophysics Data System (ADS)

    Cadilhe, Antonio

    2018-04-01

    We performed extensive simulations, using the Replica Exchange-Wang-Landau method, of the clock model for orders 3 and 4 on a square lattice, where critical behaviors are expected to belong to the Ising universality class. Though order 2 represents the Ising model, thus, being exactly solvable in two-dimensions, we still provide such results for comparison to the other two orders. Results for various energy related quantities such as the mean energy per spin, specific heat, as well as logarithm scaling of the peak of the specific heat are presented and shown to follow Ising behavior. Additionally, we also present results related to magnetic quantities, such as the magnetization, magnetic susceptibility, and corresponding scaling behavior of the peak of the magnetic susceptibility. Again, our results show scaling in conformity to Ising critical behavior.

  18. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics.

    PubMed

    Vokřál, Ivan; Jirásko, Robert; Stuchlíková, Lucie; Bártíková, Hana; Szotáková, Barbora; Lamka, Jiří; Várady, Marián; Skálová, Lenka

    2013-09-23

    The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Finite size induces crossover temperature in growing spin chains

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A.

    2014-01-01

    We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.

  20. Finite size induces crossover temperature in growing spin chains.

    PubMed

    Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A

    2014-01-01

    We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.

  1. Irreversible opinion spreading on scale-free networks

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    2007-02-01

    We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barabási-Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics, which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for the case of uncorrelated scale-free networks.

  2. Global entanglement and quantum phase transitions in the transverse XY Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Radgohar, Roya; Montakhab, Afshin

    2018-01-01

    We provide a study of various quantum phase transitions occurring in the XY Heisenberg chain in a transverse magnetic field using the Meyer-Wallach (MW) measure of (global) entanglement. Such a measure, while being readily evaluated, is a multipartite measure of entanglement as opposed to more commonly used bipartite measures. Consequently, we obtain analytic expression of the measure for finite-size systems and show that it can be used to obtain critical exponents via finite-size scaling with great accuracy for the Ising universality class. We also calculate an analytic expression for the isotropic (XX) model and show that global entanglement can precisely identify the level-crossing points. The critical exponent for the isotropic transition is obtained exactly from an analytic expression for global entanglement in the thermodynamic limit. Next, the general behavior of the measure is calculated in the thermodynamic limit considering the important role of symmetries for this limit. The so-called oscillatory transition in the ferromagnetic regime can only be characterized by the thermodynamic limit where global entanglement is shown to be zero on the transition curve. Finally, the anisotropic transition is explored where it is shown that global entanglement exhibits an interesting behavior in the finite-size limit. In the thermodynamic limit, we show that global entanglement shows a cusp singularity across the Ising and anisotropic transition, while showing non-analytic behavior at the XX multicritical point. It is concluded that global entanglement, despite its relative simplicity, can be used to identify all the rich structure of the ground-state Heisenberg chain.

  3. Internet Self-Efficacy Does Not Predict Student Use of Internet-Mediated Educational Technology

    ERIC Educational Resources Information Center

    Buchanan, Tom; Joban, Sanjay; Porter, Alan

    2014-01-01

    Two studies tested the hypothesis that use of learning technologies among undergraduate psychology students was associated with higher Internet self-efficacy (ISE). In Study 1, the ISE scores of 86 students were found not to be associated with either attitudes towards, or measured use of, blogs and wikis as part of an IT skills course. ISE was…

  4. 77 FR 49049 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... for Non-ISE Market Maker \\6\\ orders, (iii) $0.30 per contract for Firm Proprietary/Broker-Dealer and... in the Select Symbols from $0.29 per contract to $0.32 per contract, (ii) Non-ISE Market Maker orders... not they are meeting the Exchange's stated criteria. \\6\\ A Non-ISE Market Maker, or Far Away Market...

  5. Cavity master equation for the continuous time dynamics of discrete-spin models.

    PubMed

    Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  6. Cavity master equation for the continuous time dynamics of discrete-spin models

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  7. Quantum simulation of transverse Ising models with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  8. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    PubMed Central

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  9. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  10. Change in Pulmonary Function after Incentive Spirometer Exercise in Children with Spastic Cerebral Palsy: A Randomized Controlled Study.

    PubMed

    Choi, Ja Young; Rha, Dong-wook; Park, Eun Sook

    2016-05-01

    The aim of this study was to investigate the effect of incentive spirometer exercise (ISE) on pulmonary function and maximal phonation time (MPT) in children with spastic cerebral palsy (CP). Fifty children with CP were randomly assigned to two groups: the experimental group and the control group. Both groups underwent comprehensive rehabilitation therapy. The experimental group underwent additional ISE. The forced vital capacity (FVC), forced expiratory volume at one second (FEV₁), FEV₁/FVC ratio, peak expiratory flow (PEF), and MPT were assessed as outcome measures before and after 4 weeks of training. There were significant improvements in FVC, FEV₁, PEF, and MPT in the experimental group, but not in the control group. In addition, the improvements in FVC, FEV₁, and MPT were significantly greater in the experimental group than in the control group. The results of this randomized controlled study support the use of ISE for enhancing pulmonary function and breath control for speech production in children with CP.

  11. Ground-state and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain (exact study at the half filling)

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Jakubczyk, Dorota

    2017-01-01

    Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.

  12. Shock probes in a one-dimensional Katz-Lebowitz-Spohn model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sakuntala; Barma, Mustansir

    2008-06-01

    We consider shock probes in a one-dimensional driven diffusive medium with nearest-neighbor Ising interaction (KLS model). Earlier studies based on an approximate mapping of the present system to an effective zero-range process concluded that the exponents characterizing the decays of several static and dynamical correlation functions of the probes depend continuously on the strength of the Ising interaction. On the contrary, our numerical simulations indicate that over a substantial range of the interaction strength, these exponents remain constant and their values are the same as in the case of no interaction (when the medium executes an ASEP). We demonstrate this by numerical studies of several dynamical correlation functions for two probes and also for a macroscopic number of probes. Our results are consistent with the expectation that the short-ranged correlations induced by the Ising interaction should not affect the large time and large distance properties of the system, implying that scaling forms remain the same as in the medium with no interactions present.

  13. The Pioneer 11 1976 solar conjunction: A unique opportunity to explore the heliographic latitudinal variations of the solar corona

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.; Rockwell, S. T.; Yee, J. G.

    1976-01-01

    The 1976 Pioneer II Solar Conjunction provided the opportunity to accumulate a substantial quantity of doppler noise data over a dynamic range of signal closest approach point heliographic latitudes. The observed doppler noise data were fit to the doppler noise model ISED, and the deviations of the observed doppler noise data from the model were used to construct a (multiplicative) function to describe the effect of heliographic latitude. This expression was then incorporated into the ISED model to produce a new doppler noise model-ISEDB.

  14. Revisiting 2D Lattice Based Spin Flip-Flop Ising Model: Magnetic Properties of a Thin Film and Its Temperature Dependence

    ERIC Educational Resources Information Center

    Singh, Satya Pal

    2014-01-01

    This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…

  15. Privacy Protection Standards for the Information Sharing Environment

    DTIC Science & Technology

    2009-09-01

    enable ISE participants to share information and data (see ISE Implementation Plan, p. 51, ISE Enterprise Architecture Framework, pp. 67, 73–74 and...of frontiers. This article shall not prevent States from requiring the licensing of broadcasting, television or cinema enterprises. 2. The exercise...5 U.S.C. § 552a, as amended. Program Manager-Information Sharing Environment. (2008). Information Sharing Enterprise Architecture Framework

  16. Enhancing FBI Terrorism and Homeland Security Information Sharing With State, Local and Tribal Agencies

    DTIC Science & Technology

    2010-09-01

    the proposed NSI implementation (PM-ISE, 2008). The ISE reported, in October 2009, that the Los Angeles Police Department ( LAPD ) ISE...position of the Department of Defense or the U.S. Government. IRB Protocol number ________________. 12a. DISTRIBUTION / AVAILABILITY STATEMENT...critical, priority issue for all levels of government. The consensus of all three categories of literature was that government information sharing

  17. The influence of professional development on informal science educators' engagement of preschool-age audiences in science practices

    NASA Astrophysics Data System (ADS)

    Crowl, Michele

    There is little research on professional development for informal science educators (ISEs). One particular area that ISEs need support in is how to engage preschool-age audiences in science practices. This study is part of a NSF-funded project, My Sky Tonight (MST), which looked at how to support ISEs in facilitating astronomy-themed activities with preschool-age audiences. This dissertation focuses on the influence of a six-week, online professional development workshop designed for ISEs working with preschool-age audiences. I used three primary sources of data: pre/post interviews and a video analysis task from data of 16 participants, as well as observations of implementation from a subset of seven participants who agreed to participate further. I developed and used the Phenomena-driven Practices of Science (PEPS) Framework as an analysis tool for identifying engagement in science practices. Findings from this study show that ISEs identified affective goals and rarely goals that reflect science practice engagement for their preschool-age audiences. They maintained these initial goals after the professional development workshop. ISEs describe the ways in which they engage children in science using primarily science practice-related words, but these descriptions did not show full use of science practices according to the PEPS framework. When observed implementing science activities with their preschool audiences, the ISEs demonstrated a variety of forms of science engagement, but only a few used science practices in ways consistent with the PEPS framework. Engagement in the professional development workshop did not result in a transition in the ways ISEs talk about and implement science with young children. While the write-ups for MST activities were not written in a way that supported engagement in science practices, a subset of MST activities were designed with it in mind. The professional development workshop included little time focusing on how ISEs could engage children in science practices, specific to each activity. These two factors may have played a major role in why participants showed limited improvement in their use of science practices in their goals and implementation.

  18. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guang; Sun, Xin; Wang, Yuxin

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validatedmore » with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.« less

  19. Anomalous bulk behavior in the free parafermion Z (N ) spin chain

    NASA Astrophysics Data System (ADS)

    Alcaraz, Francisco C.; Batchelor, Murray T.

    2018-06-01

    We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple Z (N ) model for N ≥3 for which the model Hamiltonian is non-Hermitian. For N =2 the model reduces to the well-known quantum Ising model in a transverse field. For open boundary conditions, the Z (N ) model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing N . Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent, and the specific-heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behavior is a topological effect.

  20. An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses

    NASA Astrophysics Data System (ADS)

    Lvova, Larisa; Mielle, Patrick; Salles, Christian; Denis, Sylvain; Vergoignan, Catherine; Barra, Aurélien; Di Natale, Corrado; Paolesse, Roberto; Temple-Boyer, Pierre; Feron, Gilles

    2011-09-01

    The commercial sensors and prototype ISEs array (Ion Selective Electrodes array) were utilized for NaCl concentration measurements in soft cheeses, in particular in vitro gut process and in commercial Italian mozzarella cheeses. The values obtained from the sensors were compared with HPLC analysis. The results showed the feasibility of the ISE array application to monitor NaCl in soft cheese during the breakdown in the digester. The best results were obtained with the use of ISEs array combining, in particular, Cl- and Na+ detections. The salinity of commercial mozzarella cheese samples and the originally utilized milk type (cow or buffalo) were also satisfactory determined with the developed ISE array.

  1. Cosmic ray composition investigations using ICE/ISEE-3

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1992-01-01

    The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.

  2. The In Situ Enzymatic Screening (ISES) Approach to Reaction Discovery and Catalyst Identification.

    PubMed

    Swyka, Robert A; Berkowitz, David B

    2017-12-14

    The importance of discovering new chemical transformations and/or optimizing catalytic combinations has led to a flurry of activity in reaction screening. The in situ enzymatic screening (ISES) approach described here utilizes biological tools (enzymes/cofactors) to advance chemistry. The protocol interfaces an organic reaction layer with an adjacent aqueous layer containing reporting enzymes that act upon the organic reaction product, giving rise to a spectroscopic signal. ISES allows the experimentalist to rapidly glean information on the relative rates of a set of parallel organic/organometallic reactions under investigation, without the need to quench the reactions or draw aliquots. In certain cases, the real-time enzymatic readout also provides information on sense and magnitude of enantioselectivity and substrate specificity. This article contains protocols for single-well (relative rate) and double-well (relative rate/enantiomeric excess) ISES, in addition to a colorimetric ISES protocol and a miniaturized double-well procedure. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Ising antiferromagnet on a finite triangular lattice with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2015-11-01

    The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.

  4. Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14

    PubMed Central

    Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.

    2016-01-01

    The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration. PMID:27996012

  5. Integral formulae of the canonical correlation functions for the one dimensional transverse Ising model

    NASA Astrophysics Data System (ADS)

    Inoue, Makoto

    2017-12-01

    Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.

  6. Block voter model: Phase diagram and critical behavior

    NASA Astrophysics Data System (ADS)

    Sampaio-Filho, C. I. N.; Moreira, F. G. B.

    2011-11-01

    We introduce and study the block voter model with noise on two-dimensional square lattices using Monte Carlo simulations and finite-size scaling techniques. The model is defined by an outflow dynamics where a central set of NPCS spins, here denoted by persuasive cluster spins (PCS), tries to influence the opinion of their neighboring counterparts. We consider the collective behavior of the entire system with varying PCS size. When NPCS>2, the system exhibits an order-disorder phase transition at a critical noise parameter qc which is a monotonically increasing function of the size of the persuasive cluster. We conclude that a larger PCS has more power of persuasion, when compared to a smaller one. It also seems that the resulting critical behavior is Ising-like independent of the range of interaction.

  7. Finite-size scaling analysis on the phase transition of a ferromagnetic polymer chain model

    NASA Astrophysics Data System (ADS)

    Luo, Meng-Bo

    2006-01-01

    The finite-size scaling analysis method is applied to study the phase transition of a self-avoiding walking polymer chain with spatial nearest-neighbor ferromagnetic Ising interaction on the simple cubic lattice. Assuming the scaling M2(T,n)=n-2β/ν[Φ0+Φ1n1/ν(T-Tc)+O(n2/ν(T-Tc)2)] with the square magnetization M2 as the order parameter and the chain length n as the size, we estimate the second-order phase-transition temperature Tc=1.784J/kB and critical exponents 2β/ν≈0.668 and ν ≈1.0. The self-diffusion constant and the chain dimensions ⟨R2⟩ and ⟨S2⟩ do not obey such a scaling law.

  8. Discrepancies between implicit and explicit self-esteem among adolescents with social anxiety disorder.

    PubMed

    Schreiber, Franziska; Bohn, Christiane; Aderka, Idan M; Stangier, Ulrich; Steil, Regina

    2012-12-01

    Previous studies have found high implicit self-esteem (ISE) to prevail concurrently with low explicit self-esteem (ESE) in socially anxious adults. This suggests that self-esteem discrepancies are associated with social anxiety disorder (SAD). Given that the onset of SAD often occurs in adolescence, we investigated self-esteem discrepancies between ISE and ESE in adolescents suffering from SAD. Two implicit measures (Affect Misattribution Procedure, Implicit Association Test) were used both before and after a social threat activation in 20 adolescents with SAD (14-20 years), and compared to 20 healthy adolescents who were matched for age and gender. The Rosenberg Self-Esteem Scale, the Social Cognitions Questionnaire and Beck Depression Inventory were administered as explicit measures. We expected discrepant self-esteem (high ISE, low ESE) in adolescents with SAD, in comparison to congruent self-esteem (positive ISE, positive ESE) in healthy controls, after social threat activation. Both the patient and control groups exhibited high positive ISE on both implicit measures, before as well as after social threat induction. Explicitly, patients suffering from SAD revealed lower levels of ESE, compared to the healthy adolescents. This study is the first to examine ISE and ESE in a clinical sample of adolescent patients with SAD. Our results suggest that SAD is associated with a discrepancy between high ISE and low ESE, after a social-threat manipulation. The findings are discussed in relation to other studies using implicit measures in SAD and may provide a more comprehensive understanding of the role of self-esteem in adolescent SAD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Tax Evasion and Nonequilibrium Model on Apollonian Networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2012-11-01

    The Zaklan model had been proposed and studied recently using the equilibrium Ising model on square lattices (SLs) by [G. Zaklan, F. Westerhoff and D. Stauffer, J. Econ. Interact. Coord.4, 1 (2008), arXiv:0801.2980; G. Zaklan, F. W. S. Lima and F. Westerhoff, Physica A387, 5857 (2008)], near the critical temperature of the Ising model presenting a well-defined phase transition; but on normal and modified Apollonian networks (ANs), [J. S. Andrade, Jr., H. J. Herrmann, R. F. S. Andrade, and L. R. da Silva, Phys. Rev. Lett.94, 018702 (2005); R. F. S. Andrade, J. S. Andrade Jr. and H. J. Herrmann, Phys. Rev. E79, 036105 (2009)] studied the equilibrium Ising model. They showed the equilibrium Ising model not to present on ANs a phase transition of the type for the 2D Ising model. Here, using agent-based Monte Carlo simulations, we study the Zaklan model with the well-known majority-vote model (MVM) with noise and apply it to tax evasion on ANs, to show that differently from the Ising model the MVM on ANs presents a well-defined phase transition. To control the tax evasion in the economics model proposed by Zaklan et al., MVM is applied in the neighborhood of the critical noise qc to the Zaklan model. Here we show that the Zaklan model is robust because this can also be studied, besides using equilibrium dynamics of Ising model, through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.

  10. Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations and liver gene expression profiles of growing beef heifers.

    PubMed

    Liao, Shengfa F; Brown, Kelly R; Stromberg, Arnold J; Burris, Walter R; Boling, James A; Matthews, James C

    2011-05-01

    In geographic regions where selenium (Se) soil concentrations are naturally low, the addition of Se to animal feed is necessary. Even though it is known that Se in grass and forage crops is primarily present in organic forms (especially as L-selenomethionine, L-selenocystine, and L-selenocystathionine), the feeding of Se in the naturally occurring organic selenium (OSe) compounds produces higher blood and tissue Se levels than the inorganic Se (ISe) salts, and that animal metabolism of OSe and ISe is fundamentally different. Se is commonly added in inorganic form as sodium selenite to cattle feeds because it is a less expensive source of supplemental Se then are OSe forms. A trial was conducted with growing cattle to determine if the addition of OSe versus ISe forms of Se in beef cattle feed produces differences in hepatic gene expression, thereby gaining insight into the metabolic consequence of feeding OSe versus ISe. Thirty maturing Angus heifers (261 ± 6 days) were fed a corn silage-based diet with no Se supplementation for 75 days. Heifers (body weight = 393 ± 9 kg) then were randomly assigned (n = 10) and fed Se supplements that contained none (control) or 3 mg Se/day in ISe (sodium selenite) or OSe (Sel-Plex®) form and enough of a common cracked corn/cottonseed hull-based diet (0.48 mg Se/day) to support 0.5 kg/day growth for 105 or 106 days. More Se was found in jugular whole blood and red blood cells and biopsied liver tissue of ISe and OSe treatment animals than control animals, and OSe animals contained more Se in these tissues than did ISe. Microarray and bioinformatic analyses of liver tissue gene expression revealed that the content of at least 80 mRNA were affected by ISe or OSe treatments, including mRNA associated with nutrient metabolism; cellular growth, proliferation, and immune response; cell communication or signaling; and tissue/organ development and function. Overall, three Se supplement-dependent gene groups were identified: ISe-dependent, OSe-dependent, and Se form-independent. More specifically, both forms of supplementation appeared to upregulate mitochondrial gene expression capacity, whereas gene expression of a protein involved in antiviral capacity was downregulated in ISe-supplemented animals, and OSe-supplemented animals had reduced levels of mRNA encoding proteins known to be upregulated during oxidative stress and cancerous states.

  11. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  12. Intermediate load-center photovoltaic application experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, E. L.

    1980-01-01

    A total of nine intermediate load-center photovoltaic systems were carried into the construction phase this year. These nine systems range in size from 20 to 225 kW/sub p/ electrical output and total almost 1 MW/sub p/. They are being installed in a diverse set of applications and locations and represent the bulk of the photovoltaic initial system evaluation experiments (ISEE) for the intermediate load-center sector. Each of these experiments are briefly described and the status of the construction phase is given for each project.

  13. Revisiting Kawasaki dynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Grynberg, M. D.

    2010-11-01

    Critical exponents of the Kawasaki dynamics in the Ising chain are re-examined numerically through the spectrum gap of evolution operators constructed both in spin and domain-wall representations. At low-temperature regimes the latter provides a rapid finite-size convergence to these exponents, which tend to z≃3.11 for instant quenches under ferromagnetic couplings, while approaching to z≃2 in the antiferro case. The spin representation complements the evaluation of dynamic exponents at higher temperature scales, where the kinetics still remains slow.

  14. Phase ordering in disordered and inhomogeneous systems

    NASA Astrophysics Data System (ADS)

    Corberi, Federico; Zannetti, Marco; Lippiello, Eugenio; Burioni, Raffaella; Vezzani, Alessandro

    2015-06-01

    We study numerically the coarsening dynamics of the Ising model on a regular lattice with random bonds and on deterministic fractal substrates. We propose a unifying interpretation of the phase-ordering processes based on two classes of dynamical behaviors characterized by different growth laws of the ordered domain size, namely logarithmic or power law, respectively. It is conjectured that the interplay between these dynamical classes is regulated by the same topological feature that governs the presence or the absence of a finite-temperature phase transition.

  15. On the mixing time in the Wang-Landau algorithm

    NASA Astrophysics Data System (ADS)

    Fadeeva, Marina; Shchur, Lev

    2018-01-01

    We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.

  16. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering

    NASA Astrophysics Data System (ADS)

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  17. Probing critical behavior of 2D Ising ferromagnet with diluted bonds using Wang-Landau algorithm

    NASA Astrophysics Data System (ADS)

    Ridha, N. A.; Mustamin, M. F.; Surungan, T.

    2018-03-01

    Randomness is an important subject in the study of phase transition as defect and impurity may present in any real material. The pre-existing ordered phase of a pure system can be affected or even ruined by the presence of randomness. Here we study ferromagnetic Ising model on a square lattice with a presence of randomness in the form of bond dilution. The pure system of this model is known to experience second order phase transition, separating between the high temperature paramagnetic and low-temperature ferromagnetic phase. We used Wang-Landau algorithm of Monte Carlo method to obtain the density of states from which we extract the ensemble average of energy and the specific heat. We observed the signature of phase transition indicated by the diverging peak of the specific heat as system sizes increase. These peaks shift to the lower temperature side as the dilution increases. The lower temperature ordered phase preserves up to certain concentration of dilution and is totally ruined when the bonds no longer percolates.

  18. Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago J.; Stilck, Jürgen F.

    2015-09-01

    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.

  19. Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun

    2016-10-01

    The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.

  20. Selenium content in blood fractions and liver of beef heifers is greater with a mix of inorganic/organic or organic versus inorganic supplemental selenium but the time required for maximal assimilation is tissue-specific.

    PubMed

    Brennan, Kristen M; Burris, Walter R; Boling, James A; Matthews, James C

    2011-12-01

    Selenium (Se) content of feedstuffs is dependent on the Se level of the soil. Even though Se in grass and forage crops is primarily present in organic forms, Se is commonly supplemented in cattle diets in an inorganic (sodium selenite) form in geographic regions where Se soil concentrations are low. The purpose of this study was to answer two important questions about inorganic (ISe) vs organic (OSe) forms of dietary supplementation of Se (3 mg/day) to growing beef heifers (0.5 kg/day): (1) what would the effect of supplementing Se with an equal blend of ISe:OSe (Mix) have on Se tissue concentrations and (2) how long does it take for the greater assimilation with OSE to occur and stabilize? A long-term (224 day) Se dietary supplementation trial was conducted with serial sampling performed (days 28, 56, 112, and 224) to determine the length of time required to achieve Se supplement (OSE, Mix, and ISe)-dependent changes in Se assimilation in blood fractions and liver tissue. Forty maturing Angus heifers were fed a corn silage-based diet for 98 days with no Se supplementation, and then a cracked corn/cottonseed hull-based diet (basal diet) without Se supplementation for 74 days. Liver biopsies were taken for Se analysis, and heifers were fed the same diet for another 14 days. Heifers were assigned (n = 10) to one of four Se treatment groups such that basal liver Se contents were stratified among groups, and then fed enough of the basal diet (0.08 mg Se per day) and a mineral-vitamin mix that provided 0.16 (control) or 3.0 mg Se per day in ISe (sodium selenite), OSe (Sel-Plex(®)), or Mix (1:1 ISe:OSe) form to support 0.5 kg/day growth for 224 days. More Se was found in whole blood, red blood cells, serum, and liver of Mix and OSe heifers than ISe heifers, and all were greater than control. Se content either increased until day 56 then was stable (liver and plasma), or was stable until day 56 (whole blood) or day 112 (red blood cells) and then increased steadily through day 224, for all supplemental Se treatments. These data indicate that a 1:1 mix (1.5 mg Se:1.5 mg Se) of supplemental ISe and OSe is equal to 3 mg/day OSe supplementation and greater than 3 mg/day ISe supplementation. The data also indicate that Se levels stabilized in liver and plasma by 56 to 112 days whereas whole blood and red blood cell concentrations were still increasing through 224 days of supplementation, regardless of the form of supplemental Se.

  1. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no reportmore » previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.« less

  2. Ising antiferromagnet on the Archimedean lattices.

    PubMed

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  3. Ising antiferromagnet on the Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  4. The Critical Z-Invariant Ising Model via Dimers: Locality Property

    NASA Astrophysics Data System (ADS)

    Boutillier, Cédric; de Tilière, Béatrice

    2011-01-01

    We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).

  5. Effect of increasing disorder on domains of the 2d Coulomb glass.

    PubMed

    Bhandari, Preeti; Malik, Vikas

    2017-12-06

    We have studied a two dimensional lattice model of Coulomb glass for a wide range of disorders at [Formula: see text]. The system was first annealed using Monte Carlo simulation. Further minimization of the total energy of the system was done using an algorithm developed by Baranovskii et al, followed by cluster flipping to obtain the pseudo-ground states. We have shown that the energy required to create a domain of linear size L in d dimensions is proportional to [Formula: see text]. Using Imry-Ma arguments given for random field Ising model, one gets critical dimension [Formula: see text] for Coulomb glass. The investigation of domains in the transition region shows a discontinuity in staggered magnetization which is an indication of a first-order type transition from charge-ordered phase to disordered phase. The structure and nature of random field fluctuations of the second largest domain in Coulomb glass are inconsistent with the assumptions of Imry and Ma, as was also reported for random field Ising model. The study of domains showed that in the transition region there were mostly two large domains, and that as disorder was increased the two large domains remained, but a large number of small domains also opened up. We have also studied the properties of the second largest domain as a function of disorder. We furthermore analysed the effect of disorder on the density of states, and showed a transition from hard gap at low disorders to a soft gap at higher disorders. At [Formula: see text], we have analysed the soft gap in detail, and found that the density of states deviates slightly ([Formula: see text]) from the linear behaviour in two dimensions. Analysis of local minima show that the pseudo-ground states have similar structure.

  6. Potassium sodium chloride integrated microconduits in a potentiometric analytical system.

    PubMed

    Hongbo, C; Junyan, S

    1991-09-01

    The preparation and application of a K(+), Na(+) and Cl(-) integrated microconduit potentiometric analytical system with tubular ion-selective electrodes (ISEs), microvalve, chemfold, electrostatic and pulse inhibitors is described. Electrochemical characteristics of the tubular ISEs and integrated microconduit FIA-ISEs were studied. The contents of K(+), Na(+) and Cl(-) in soil, water and serum were determined with the device. The analytical results agreed well with those obtained by flame photometric and silver nitrate volumetric methods.

  7. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocakaplan, Yusuf; Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We alsomore » compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.« less

  8. Dynamic nuclear polarisation via the integrated solid effect II: experiments on naphthalene-h8 doped with pentacene-d14

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.

    2014-07-01

    In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.

  9. New frontiers in design synthesis

    NASA Technical Reports Server (NTRS)

    Goldin, D. S.; Venneri, S. L.; Noor, A. K.

    1999-01-01

    The Intelligent Synthesis Environment (ISE), which is one of the major strategic technologies under development at NASA centers and the University of Virginia, is described. One of the major objectives of ISE is to significantly enhance the rapid creation of innovative affordable products and missions. ISE uses a synergistic combination of leading-edge technologies, including high performance computing, high capacity communications and networking, human-centered computing, knowledge-based engineering, computational intelligence, virtual product development, and product information management. The environment will link scientists, design teams, manufacturers, suppliers, and consultants who participate in the mission synthesis as well as in the creation and operation of the aerospace system. It will radically advance the process by which complex science missions are synthesized, and high-tech engineering Systems are designed, manufactured and operated. The five major components critical to ISE are human-centered computing, infrastructure for distributed collaboration, rapid synthesis and simulation tools, life cycle integration and validation, and cultural change in both the engineering and science creative process. The five components and their subelements are described. Related U.S. government programs are outlined and the future impact of ISE on engineering research and education is discussed.

  10. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  11. Spreadsheet analysis of stability and meta-stability of low-dimensional magnetic particles using the Ising approach

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz; Zghidi, Hafed

    2015-05-01

    Modelling hysteresis behaviour, as it can be found in a broad variety of dynamical systems, can be performed in different ways. An elementary approach, applied for a set of elementary cells, which uses only two possible states per cell, is the Ising model. While such Ising models allow for a simulation of many systems with sufficient accuracy, they nevertheless depict some typical features which must be taken into account with proper care, such as meta-stability or the externally applied field sweeping speed. This paper gives a general overview of recent results from Ising models from the perspective of a didactic model, based on a 2D spreadsheet analysis, which can be used also for solving general scientific problems where direct next-neighbour interactions take place.

  12. Contingency plans for the ISEE-3 libration-point mission

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.

  13. A coherent Ising machine for 2000-node optimization problems

    NASA Astrophysics Data System (ADS)

    Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki

    2016-11-01

    The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

  14. Magnetic field line draping in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  15. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  16. Change in Pulmonary Function after Incentive Spirometer Exercise in Children with Spastic Cerebral Palsy: A Randomized Controlled Study

    PubMed Central

    Choi, Ja Young; Rha, Dong-wook

    2016-01-01

    Purpose The aim of this study was to investigate the effect of incentive spirometer exercise (ISE) on pulmonary function and maximal phonation time (MPT) in children with spastic cerebral palsy (CP). Materials and Methods Fifty children with CP were randomly assigned to two groups: the experimental group and the control group. Both groups underwent comprehensive rehabilitation therapy. The experimental group underwent additional ISE. The forced vital capacity (FVC), forced expiratory volume at one second (FEV1), FEV1/FVC ratio, peak expiratory flow (PEF), and MPT were assessed as outcome measures before and after 4 weeks of training. Results There were significant improvements in FVC, FEV1, PEF, and MPT in the experimental group, but not in the control group. In addition, the improvements in FVC, FEV1, and MPT were significantly greater in the experimental group than in the control group. Conclusion The results of this randomized controlled study support the use of ISE for enhancing pulmonary function and breath control for speech production in children with CP. PMID:26996580

  17. Monte Carlo Studies of Phase Separation in Compressible 2-dim Ising Models

    NASA Astrophysics Data System (ADS)

    Mitchell, S. J.; Landau, D. P.

    2006-03-01

    Using high resolution Monte Carlo simulations, we study time-dependent domain growth in compressible 2-dim ferromagnetic (s=1/2) Ising models with continuous spin positions and spin-exchange moves [1]. Spins interact with slightly modified Lennard-Jones potentials, and we consider a model with no lattice mismatch and one with 4% mismatch. For comparison, we repeat calculations for the rigid Ising model [2]. For all models, large systems (512^2) and long times (10^ 6 MCS) are examined over multiple runs, and the growth exponent is measured in the asymptotic scaling regime. For the rigid model and the compressible model with no lattice mismatch, the growth exponent is consistent with the theoretically expected value of 1/3 [1] for Model B type growth. However, we find that non-zero lattice mismatch has a significant and unexpected effect on the growth behavior.Supported by the NSF.[1] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, second ed. (Cambridge University Press, New York, 2005).[2] J. Amar, F. Sullivan, and R.D. Mountain, Phys. Rev. B 37, 196 (1988).

  18. Configuration memory in patchwork dynamics for low-dimensional spin glasses

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Middleton, A. Alan

    2017-12-01

    A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.

  19. Use of the thin sheath approximation for obtaining ion temperatures from the ISEE 1 limited aperture RPA. [for magnetosphere

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Baugher, C. R.; Chappell, C. R.

    1982-01-01

    A procedure for analyzing low-energy (less than approximately 100 eV) ion data from the plasma composition experiment on ISEE 1 is set forth. The method is based on a derived analytic expression for particle flux to a limited aperture retarding potential analyzer (RPA) in the thin sheath approximation, which makes allowance for some effects of a charged spacecraft on plasma particle trajectories. Calculations using simulated data are employed in testing the efficacy and accuracy of the technique. On the basis of an analysis of these calculation results and the mathematical model, the method is seen as being able to provide accurate ion temperatures from all good plasmaspheric RPA data. It is noted that corresponding densities and spacecraft potentials should be accurate when spacecraft potentials are negative but that they are subject to error for positive spacecraft potentials, particularly when ion Mach numbers are much less than 1. An analysis of data from a representative ISEE 1 pass produces a plasmasphere temperature profile that is consistent in overall structure with previous observations.

  20. Real-time potentiometric sensor; an innovative tool for monitoring hydrolysis of chemo/bio-degradable drugs in pharmaceutical sciences.

    PubMed

    Ma'mun, Ahmed; Abd El-Rahman, Mohamed K; Abd El-Kawy, Mohamed

    2018-05-30

    In recent years, the whole field of ion-selective electrodes(ISEs) in pharmaceutical sciences has expanded far beyond its original roots. The diverse range of opportunities offered by ISEs was broadly used in a number of pharmaceutical applications, with topics presented ranging from bioanalysis of drugs and metabolites, to protein binding studies, green analytical chemistry, impurity profiling, and drug dissolution in biorelevant media. Inspired from these advances and with the aim of extending the functional capabilities of ISEs, the primary focus of the present paper is the utilization of ISE as a tool in personalized medicine. Given the opportunity to explore biological events in real-time (such as drug metabolism) could be central to personalized medicine. (ATR) is a chemo-degradable and bio-degradable pharmaceutically active drug. Laudanosine (LDS) is the major degradation product and metabolite of ATR and is potentially toxic and reported to possess epileptogenic activity which increases the risk of convulsive effects. In this work, ATR have been subjected to both chemical and biological hydrolysis, and the course of the reactions is monitored by means of a ISE. In this study, we have designed an efficient real-time tracking strategy which substantially resolve the challenges of the ATR chemical and biological degradation kinetics. By utilizing a potentiometric sensor, tracking of ATR chemical and biological degradation kinetics can be performed in a very short time with excellent accuracy. The LOD was calculated to be 0.23 μmol L -1 , the potential drift was investigated over a period of 60 min and the value was 0.25 mV h -1 . Real serum samples for measurement the rate of in vitro metabolism of ATR was performed. Furthermore, a full description of the fabricated screen-printed sensor was presented. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic:50% organic) forms of dietary selenium.

    PubMed

    Matthews, James C; Zhang, Zhi; Patterson, Jennifer D; Bridges, Phillip J; Stromberg, Arnold J; Boling, J A

    2014-09-01

    Selenium (Se) is an important trace mineral that, due to deficiencies in the soil in many parts of the USA, must be supplemented directly to the diet of foraging cattle. Both organic and inorganic forms of dietary Se supplements are available and commonly used, and it is known that Se form affects tissue assimilation, bioavailability, and physiological responses. However, little is known about the effects of form of dietary Se supplements on gene expression profiles, which ostensibly account for Se form-dependent physiological processes. To determine if hepatic transcriptomes of growing beef (Angus-cross) heifers (0.5 kg gain/day) was altered by form of dietary supplemental Se, none (Control), or 3 mg Se/day as inorganic Se (ISe, sodium selenite), organic (OSe, Sel-Plex®), or a blend of ISe and OSe (1.5 mg:1.5 mg, Mix) Se was fed for 168 days, and the RNA expression profiles from biopsied liver tissues was compared by microarray analysis. The relative abundance of 139 RNA transcripts was affected by Se treatment, with 86 of these with complete gene annotations. Statistical and bioinformatic analysis of the annotated RNA transcripts revealed clear differences among the four Se treatment groups in their hepatic expression profiles, including (1) solely and commonly affected transcripts; (2) Control and OSe profiles being more similar than Mix and ISe treatments; (3) distinct OSe-, Mix-, and ISe-Se treatment-induced "phenotypes" that possessed both common and unique predicted physiological capacities; and (4) expression of three microRNAs were uniquely sensitive to OSe, ISe, or Mix treatments, including increased capacity for redox potential induced by OSe and Mix Se treatments resulting from decreased expression of MiR2300b messenger RNA. These findings indicate that the form of supplemental dietary Se consumed by cattle will affect the composition of liver transcriptomes resulting, presumably, in different physiological capacities.

  2. Applying Aspect-Oriented Programming to Intelligent Synthesis

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Norvig, Peter (Technical Monitor)

    2000-01-01

    I discuss a component-centered, aspect-oriented system, the Object Infrastructure Framework (OIF), NASA's initiative on Intelligent Synthesis Environments (ISE), and the application of OIF to the architecture of ISE.

  3. Ongoing data reduction, theoretical studies and supporting research in magnetospheric physics

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Greenstadt, E. W.

    1984-01-01

    Data from ISEE-3, Pioneer Venus Orbiter, and Voyager 1 and 2 were analyzed. The predictability of local shock macrostructure at ISEE-1, at the Earth's bow shock, from solar wind measurements made up-stream by ISEE-3, was conducted using computer graphic format. Morphology of quasi-parallel shock was reviewed. The review attempted to interrelate various measurements and computations involving the q-parallel structure and foreshock elements connected to it. A new classification for q-parallel morphology was suggested.

  4. European Science Notes Information Bulletin Report on Current European/ Middle Eastern Science

    DTIC Science & Technology

    1990-08-01

    evolved from pulse- power research activities generators charged by low-inductance, Marx-bank dating from the early 1960s at the Institute of Nuclear...Pulse Power at ISE tion rates up to 25 Hz. While I saw one of these gener- ators at ISE hooked to a microwave generator and The ISE has a very active ...program on repetitive pulse photographs for a commercial brochure, I have not seen power based upon oil-dielectric transformer technology, the output

  5. Temporal fluctuations after a quantum quench: Many-particle dephasing

    NASA Astrophysics Data System (ADS)

    Marquardt, Florian; Kiendl, Thomas

    After a quantum quench, the expectation values of observables continue to fluctuate in time. In the thermodynamic limit, one expects such fluctuations to decrease to zero, in order for standard statistical physics to hold. However, it is a challenge to determine analytically how the fluctuations decay as a function of system size. So far, there have been analytical predictions for integrable models (which are, naturally, somewhat special), analytical bounds for arbitrary systems, and numerical results for moderate-size systems. We have discovered a dynamical regime where the decrease of fluctuations is driven by many-particle dephasing, instead of a redistribution of occupation numbers. On the basis of this insight, we are able to provide exact analytical expressions for a model with weak integrability breaking (transverse Ising chain with additional terms). These predictions explicitly show how fluctuations are exponentially suppressed with system size.

  6. Structural, electrical and mechanical properties of selenium doped thallium based high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Cavdar, S.; Kol, N.; Koralay, H.; Ozturk, O.; Asikuzun, E.; Tasci, A. T.

    2016-01-01

    In this study, highly-refined chemical powders were synthesized by having them ready in appropriate stoichiometric proportions with conventional solid state reaction method so that they would produce the superconductor TlPb0.3Sr2Ca1-xSexCu2Oy (x = 0; 0.4; 0.6; 1.0). This study aims to understand effect of the selenium doping on the superconducting, structural and mechanical properties of the aforementioned superconducting material. The effect of the doping rates on the structural and electrical properties of the sample has been identified. Electrical characteristics of the TlPb0.3Sr2Ca1-xSexCu2Oy material were measured using standard four point probe method. Structural characteristics were examined with the powder X-ray diffractometer (XRD) and scanning electron microscope (SEM). Mechanical properties were analyzed with Vickers microhardness measurements on the sample surface. According to the results, it was observed that the reflection comes from the (00l) and parallel planes increased with Se doping. Particle size increases with increasing doping ratio. According to results of the mechanical measurements, all samples exhibit indentation size effect (ISE) behavior. Comparing the obtained results with theoretical studies, it was understood that Hays Kendall approach is the best method in determination of mechanical properties and analyzing microhardness of the materials.

  7. Numerical Investigations of the Thermal, Pressure and Size Effects on 2D Spin Crossover Nanoparticles

    NASA Astrophysics Data System (ADS)

    Harlé, C.; Allal, S. E.; Sohier, D.; Dufaud, T.; Caballero, R.; de Zela, F.; Dahoo, P. R.; Boukheddaden, K.; Linares, J.

    2017-12-01

    In the framework of the Ising-like model, the thermal and pressure effects on the spin crossover systems are evaluated through two-states fictitious spin operators σ with eigenvalues 𝜎 = -1 and 𝜎 = +1 respectively associated with the low-spin (LS) and highspin (HS) states of each spin-crossover (SCO) molecule. Based on each configurational state, the macroscopic SCO system, is described by the following variables: m=Σ σi, s=Σ σi σj and c=Σ σk standing respectively for the total magnetization, the short-range correlations and surface magnetization. To solve this problem, we first determine the density of macrostates d[m][s][c], giving the number of microscopic configurations with the same m, s and c values. In this contribution, two different ways have been performed to calculate this important quantity: (i) the entropic sampling method, based on Monte Carlo simulations and (ii) a new algorithm based on specific dynamic programming. These two methods were tested on the 2D SCO nanoparticles for which, we calculated the average magnetization < σ> taking into account for short-, long-range interactions as well as for the interaction between surface molecules with their surrounding matrix. We monitored the effect of the pressure, temperature and size on the properties of the SCO nanoparticles.

  8. Duality of two pairs of double-walled nanotubes consisting of S=1 and S=3/2 spins probed by means of a quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2017-01-01

    Using a quantum simulation approach, we investigate in the present work the spontaneous magnetic properties of two pairs of double-walled cylindrical nanotubes consisting of different spins. Our simulated magnetic and thermodynamic properties for each pair of them are precisely identical, exhibiting a fascinating property of the nature world and demonstrating the correctness of our simulation approach. The second pair of nanotubes are frustrated, two magnetic phases of distinct spin configurations appear in the low temperature region, but only the inner layer consisting of small spins is frustrated evidently, its magnetization is considerably suppressed in the high temperature phase. Moreover, the nanosystems exhibit typical Ising-like behavior due to the uniaxial anisotropy along the z-direction, and evident finite-size effects as well.

  9. On the Ising character of the quantum-phase transition in LiHoF4

    NASA Astrophysics Data System (ADS)

    Skomski, R.

    2016-05-01

    It is investigated how a transverse magnetic field affects the quantum-mechanical character of LiHoF4, a system generally considered as a textbook example for an Ising-like quantum-phase transition. In small magnetic fields, the low-temperature behavior of the ions is Ising-like, involving the nearly degenerate low-lying Jz = ± 8 doublet. However, as the transverse field increases, there is a substantial admixture of states having |Jz| < 8. Near the quantum-phase-transition field, the system is distinctively non-Ising like, and all Jz eigenstates yield ground-state contributions of comparable magnitude. A classical analog to this mechanism is the micromagnetic single point in magnets with uniaxial anisotropy. Since Ho3+ has J = 8, the ion's behavior is reminiscent of the classical limit (J = ∞), but quantum corrections remain clearly visible.

  10. Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR.

    PubMed

    Ruan, M Y; Ouyang, Z W; Guo, Y M; Cheng, J J; Sun, Y C; Xia, Z C; Rao, G H; Okubo, S; Ohta, H

    2014-06-11

    High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky-Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co(4+) ion, as well as the Co-Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6.

  11. Volatility behavior of visibility graph EMD financial time series from Ising interacting system

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Wang, Jun; Fang, Wen

    2015-08-01

    A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.

  12. On the p, q-binomial distribution and the Ising model

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Rosengren, A.

    2010-08-01

    We employ p, q-binomial coefficients, a generalisation of the binomial coefficients, to describe the magnetisation distributions of the Ising model. For the complete graph this distribution corresponds exactly to the limit case p = q. We apply our investigation to the simple d-dimensional lattices for d = 1, 2, 3, 4, 5 and fit p, q-binomial distributions to our data, some of which are exact but most are sampled. For d = 1 and d = 5, the magnetisation distributions are remarkably well-fitted by p,q-binomial distributions. For d = 4 we are only slightly less successful, while for d = 2, 3 we see some deviations (with exceptions!) between the p, q-binomial and the Ising distribution. However, at certain temperatures near T c the statistical moments of the fitted distribution agree with the moments of the sampled data within the precision of sampling. We begin the paper by giving results of the behaviour of the p, q-distribution and its moment growth exponents given a certain parameterisation of p, q. Since the moment exponents are known for the Ising model (or at least approximately for d = 3) we can predict how p, q should behave and compare this to our measured p, q. The results speak in favour of the p, q-binomial distribution's correctness regarding its general behaviour in comparison to the Ising model. The full extent to which they correctly model the Ising distribution, however, is not settled.

  13. Analysis of the phase transition in the two-dimensional Ising ferromagnet using a Lempel-Ziv string-parsing scheme and black-box data-compression utilities

    NASA Astrophysics Data System (ADS)

    Melchert, O.; Hartmann, A. K.

    2015-02-01

    In this work we consider information-theoretic observables to analyze short symbolic sequences, comprising time series that represent the orientation of a single spin in a two-dimensional (2D) Ising ferromagnet on a square lattice of size L2=1282 for different system temperatures T . The latter were chosen from an interval enclosing the critical point Tc of the model. At small temperatures the sequences are thus very regular; at high temperatures they are maximally random. In the vicinity of the critical point, nontrivial, long-range correlations appear. Here we implement estimators for the entropy rate, excess entropy (i.e., "complexity"), and multi-information. First, we implement a Lempel-Ziv string-parsing scheme, providing seemingly elaborate entropy rate and multi-information estimates and an approximate estimator for the excess entropy. Furthermore, we apply easy-to-use black-box data-compression utilities, providing approximate estimators only. For comparison and to yield results for benchmarking purposes, we implement the information-theoretic observables also based on the well-established M -block Shannon entropy, which is more tedious to apply compared to the first two "algorithmic" entropy estimation procedures. To test how well one can exploit the potential of such data-compression techniques, we aim at detecting the critical point of the 2D Ising ferromagnet. Among the above observables, the multi-information, which is known to exhibit an isolated peak at the critical point, is very easy to replicate by means of both efficient algorithmic entropy estimation procedures. Finally, we assess how good the various algorithmic entropy estimates compare to the more conventional block entropy estimates and illustrate a simple modification that yields enhanced results.

  14. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : <σz(R ⃗) σz(0 ) > ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  15. Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Wang, Wei; Lv, Dan; Zhao, Xue-ru; Huang, Te; Wang, Ze-yuan

    2018-07-01

    Monte Carlo simulation has been employed to study the hysteresis behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising nanotube with hexagonal core-shell structure. The effects of different single-ion anisotropies, exchange couplings and temperature on the hysteresis loops of the system and sublattices are discussed in detail. Multiple hysteresis loops such as triple loops have been observed in the system under certain physical parameters. It is found that the anisotropy, the exchange coupling and the temperature strongly affect the coercivities and the remanences of the system and the sublattices. Comparing our results with other theoretical and experimental studies, a satisfactory agreement can be achieved qualitatively.

  16. Characteristic power spectrum of diffusive interface dynamics in the two-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Masumoto, Yusuke; Takesue, Shinji

    2018-05-01

    We investigate properties of the diffusive motion of an interface in the two-dimensional Ising model in equilibrium or nonequilibrium situations. We focused on the relation between the power spectrum of a time sequence of spins and diffusive motion of an interface which was already clarified in one-dimensional systems with a nonequilibrium phase transition like the asymmetric simple exclusion process. It is clarified that the interface motion is a diffusion process with a drift force toward the higher-temperature side when the system is in contact with heat reservoirs at different temperatures and heat transfers through the system. Effects of the width of the interface are also discussed.

  17. Correction of defective pixels for medical and space imagers based on Ising Theory

    NASA Astrophysics Data System (ADS)

    Cohen, Eliahu; Shnitser, Moriel; Avraham, Tsvika; Hadar, Ofer

    2014-09-01

    We propose novel models for image restoration based on statistical physics. We investigate the affinity between these fields and describe a framework from which interesting denoising algorithms can be derived: Ising-like models and simulated annealing techniques. When combined with known predictors such as Median and LOCO-I, these models become even more effective. In order to further examine the proposed models we apply them to two important problems: (i) Digital Cameras in space damaged from cosmic radiation. (ii) Ultrasonic medical devices damaged from speckle noise. The results, as well as benchmark and comparisons, suggest in most of the cases a significant gain in PSNR and SSIM in comparison to other filters.

  18. Flux transfer events - Scale size and interior structure

    NASA Technical Reports Server (NTRS)

    Saunders, M. A.; Russell, C. T.; Sckopke, N.

    1984-01-01

    The first direct investigation of the spatial properties of flux transfer events (FTEs) at the earth's dayside magnetopause are reported. Simultaneous magnetometer and plasma data from the ISEE 1 and 2 satellites are combined to show that magnetosheath FTEs can have a scale size of the order of an earth radius in the magnetopause normal direction. It is confirmed that the magnetic field within the events appears to be twisted, this twisting corresponding to a core field-aligned current of a magnitude of a few tens of thousands of A. Also shown is evidence for plasma vorticity in FTEs. The transverse flow and field perturbations accompanying the three events studied obey approximately the Walen relation for a propagating Alfven wave.

  19. Special course for Masters and PhD students: phase transitions, Landau theory, 1D Ising model, the dimension of the space and Cosmology

    NASA Astrophysics Data System (ADS)

    Udodov, Vladimir; Katanov Khakas State Univ Team

    2014-03-01

    Symmetry breaking transitions. The phenomenological (L.D.Landau, USSR, 1937) way to describe phase transitions (PT's). Order parameter and loss of the symmetry. The second derivative of the free energy changes jump wise at the transition, i.e. we have a mathematical singularity and second order PT (TC>0). Extremes of free energy. A point of loss of stability of the symmetrical phase. The eigenfrequency of PT and soft mode behavior. The conditions of applicability of the Landau theory (A.Levanyuk, 1959, V.Ginzburg, 1960). 1D Ising model and exact solution by a transfer matrix method. Critical exponents in the L.Landau PT's theory and for 1D Ising model. Scaling hypothesis (1965) for 1D Ising model with zero critical temperature. The order of PT in 1D Ising model in the framework of the R.Baxter approach. The anthropic principle and the dimension of the space. Why do we have a three-dimensional space? Big bang, the cosmic vacuum, inflation and PT's. Higgs boson and symmetry breaking transitions. Author acknowledges the support of Katanov Khakas State University.

  20. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Pratap, Yogesh; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-12-01

    In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The I ON/I OFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

  1. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  2. Inverse Ising problem in continuous time: A latent variable approach

    NASA Astrophysics Data System (ADS)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  3. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Strečka, Jozef

    2018-05-01

    The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.

  4. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    PubMed

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  5. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1982-01-01

    Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.

  6. A Burst Fire Algorithm

    DTIC Science & Technology

    1990-01-01

    COPYRIGHT C*****1982, CHAPTER 6, PAGE 227. C XHI = ISEED/ B16 XALO = (ISEED-XHI* Bl6 )*ABARN LEFTLO = XALO/ B16 FHI = XHI*ABARN + LEFTLO K = FHI/B15...RNDM1 PKH(2 = PKH END(2) PKH(3) = PKHERND(3) ENDIF END FUNCTION BARN (ISEED) INTEGER ABARN I B15 2 B16 3 FHI 35 4 LEFTLO, 5 PBARN 6 XALO 7 XHI DATA ABARN...16807/, 1 B15 / 32768/, 2 B16 / 65536/, 3 PBARN / 2147483647/ C C*****THIS RANDOM NUMBER GENERATOR WAS DEVELOPED BY THE C*****ASSOCIATION OF

  7. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  8. Simulation of magnetoelastic response of iron nanowire loop

    NASA Astrophysics Data System (ADS)

    Huang, Junping; Peng, Xianghe; Wang, Zhongchang; Hu, Xianzhi

    2018-03-01

    We analyzed the magnetoelastic responses of one-dimensional iron nanowire loop systems with quantum statistical mechanics, treating the particles in the systems as identical bosons with an arbitrary integer spin. Under the assumptions adopted, we demonstrated that the Hamiltonian of the system can be separated into two parts, corresponding to two Ising subsystems, describing the particle spin and the particle displacement, respectively. Because the energy of the particle motion at atomic scale is quantized, there should be more the strict constraint on the particle displacement Ising subsystem. Making use of the existing results for Ising system, the partition function of the system was derived into two parts, corresponding respectively to the two Ising subsystems. Then the Gibbs distribution was obtained by statistical mechanics, and the description for the magnetoelastic response was derived. The magnetoelastic responses were predicted with the developed approach, and the comparison with the results calculated with VASP demonstrates the validity of the developed approach.

  9. Critical behavior of the extended Hubbard model with bond dimerization

    NASA Astrophysics Data System (ADS)

    Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.; Fehske, Holger

    2018-05-01

    Exploiting the matrix-product-state based density-matrix renormalization group (DMRG) technique we study the one-dimensional extended (U-V) Hubbard model with explicit bond dimerization in the half-filled band sector. In particular we investigate the nature of the quantum phase transition, taking place with growing ratio V / U between the symmetry-protected-topological and charge-density-wave insulating states. The (weak-coupling) critical line of continuous Ising transitions with central charge c = 1 / 2 terminates at a tricritical point belonging to the universality class of the dilute Ising model with c = 7 / 10 . We demonstrate that our DMRG data perfectly match with (tricritical) Ising exponents, e.g., for the order parameter β = 1 / 8 (1/24) and correlation length ν = 1 (5/9). Beyond the tricritical Ising point, in the strong-coupling regime, the quantum phase transition becomes first order.

  10. Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.; Lefeuvre, F.; Parrot, M.; Cairo, L.; Anderson, R. R.

    1991-01-01

    The generation mechanism of hiss observed by ISEE 1 satellite in the earth magnetosphere is investigated by analyzing the ELF/VLF wave data obtained from four passes of ISEE 1, all of which occurring during magnetically quiet periods. The results of these measurements, together with those published earlier, indicate that the generation mechanisms proposed by Kennel alnd Petschek (1966), by Thorne et al. (1979), and by Solomon et al. (1988, 1989) are all physically possible and can come into action whenever the necessary conditions exist. However, plasmaspheric hiss was observed by ISEE even when the conditions for any of these mechanisms existed; under these conditions, hiss appears to be generated near the equatorial plane over a wide range of L values, with the wave normals at large angles to the field. The generation mechanism that applies in such cases is still unknown.

  11. On the use of a sunward libration-point-orbiting spacecraft as an interplanetary magnetic field monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1986-01-01

    In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point to determine the orientation of the interplanetary magnetic field (IMF), the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting the earth, has been calculated for a data set of 1-hour periods covering four months. For each period, a 10-minute average of ISEE 1 data is compared with 10-minute averages of ISEE 3 data at successively lagged intervals. It is concluded that the IMF orientation at a libration-point-orbiting spacecraft, lagged by the time required for the solar wind to convect to the earth, is a convenient predictor of IMF orientation near the earth, to within about 20-degree accuracy.

  12. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    NASA Astrophysics Data System (ADS)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  13. Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium

    NASA Astrophysics Data System (ADS)

    Dahmen, David; Bos, Hannah; Helias, Moritz

    2016-07-01

    Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.

  14. Exchange-driven growth.

    PubMed

    Ben-Naim, E; Krapivsky, P L

    2003-09-01

    We study a class of growth processes in which clusters evolve via exchange of particles. We show that depending on the rate of exchange there are three possibilities: (I) Growth-clusters grow indefinitely, (II) gelation-all mass is transformed into an infinite gel in a finite time, and (III) instant gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is Phi(x) approximately exp(-x(2-nu)), where nu is a homogeneity degree of the rate of exchange. At the borderline case nu=2, the distribution exhibits a generic algebraic tail, Phi(x) approximately x(-5). In regime III, the gel nucleates immediately and consumes the entire system. For finite systems, the gelation time vanishes logarithmically, T approximately [lnN](-(nu-2)), in the large system size limit N--> infinity. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and in electrostatically driven granular layers.

  15. Environment overwhelms both nature and nurture in a model spin glass

    NASA Astrophysics Data System (ADS)

    Middleton, A. Alan; Yang, Jie

    We are interested in exploring what information determines the particular history of the glassy long term dynamics in a disordered material. We study the effect of initial configurations and the realization of stochastic dynamics on the long time evolution of configurations in a two-dimensional Ising spin glass model. The evolution of nearest neighbor correlations is computed using patchwork dynamics, a coarse-grained numerical heuristic for temporal evolution. The dependence of the nearest neighbor spin correlations at long time on both initial spin configurations and noise histories are studied through cross-correlations of long-time configurations and the spin correlations are found to be independent of both. We investigate how effectively rigid bond clusters coarsen. Scaling laws are used to study the convergence of configurations and the distribution of sizes of nearly rigid clusters. The implications of the computational results on simulations and phenomenological models of spin glasses are discussed. We acknowledge NSF support under DMR-1410937 (CMMT program).

  16. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  17. Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Zhou, Wei-Xing

    2006-10-01

    Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.

  18. Electronic tongue

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kimberly (Inventor); Buehler, Martin G. (Inventor)

    2004-01-01

    An ion selective electrode (ISE) array is described, as well as methods for producing the same. The array can contain multiple ISE which are individually electronically addressed. The addressing allows simplified preparation of the array. The array can be used for water quality monitoring, for example.

  19. Phase transitions and thermodynamic properties of antiferromagnetic Ising model with next-nearest-neighbor interactions on the Kagomé lattice

    NASA Astrophysics Data System (ADS)

    Ramazanov, M. K.; Murtazaev, A. K.; Magomedov, M. A.; Badiev, M. K.

    2018-06-01

    We study phase transitions and thermodynamic properties in the two-dimensional antiferromagnetic Ising model with next-nearest-neighbor interaction on a Kagomé lattice by Monte Carlo simulations. A histogram data analysis shows that a second-order transition occurs in the model. From the analysis of obtained data, we can assume that next-nearest-neighbor ferromagnetic interactions in two-dimensional antiferromagnetic Ising model on a Kagomé lattice excite the occurrence of a second-order transition and unusual behavior of thermodynamic properties on the temperature dependence.

  20. Ising order in a magnetized Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya interaction

    DOE PAGES

    Chan, Yang-Hao; Jin, Wen; Jiang, Hong-Chen; ...

    2017-12-29

    We report a combined analytical and density matrix renormalized group study of the antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic eld. The numerically determined phase diagram of this model, which features two ordered Ising phases and a critical Luttinger liquid one with fully broken spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [Phys. Rev. B 81, 144419 (2010)]. We also con rm the prevalence of the Nz Neel Ising order in the regime of comparable DM and magnetic field magnitudes.

  1. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  2. Ising order in a magnetized Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Yang-Hao; Jin, Wen; Jiang, Hong-Chen

    We report a combined analytical and density matrix renormalized group study of the antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic eld. The numerically determined phase diagram of this model, which features two ordered Ising phases and a critical Luttinger liquid one with fully broken spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [Phys. Rev. B 81, 144419 (2010)]. We also con rm the prevalence of the Nz Neel Ising order in the regime of comparable DM and magnetic field magnitudes.

  3. Phase transitions in Ising models on directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  4. The ISES: A non-intrusive medium for in-space experiments in on-board information extraction

    NASA Technical Reports Server (NTRS)

    Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike

    1990-01-01

    The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.

  5. Building a Science Software Institute: Synthesizing the Lessons Learned from the ISEES and WSSI Software Institute Conceptualization Efforts

    NASA Astrophysics Data System (ADS)

    Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.

    2014-12-01

    The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.

  6. Instrument for Analysis of Organic Compounds on Other Planets

    NASA Technical Reports Server (NTRS)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  7. [Direct and indirect ion selective electrodes methods: the differences specified through a case of Waldenström's macroglobulinemia].

    PubMed

    Zelmat, Mohamed Sofiane

    2015-01-01

    Direct and indirect ion selective electrodes (ISEs) are two methods commonly used in biochemistry laboratories in order to measure the electrolytes such as sodium. In the clinical practice, it's the sodium concentration in plasma water -measured by direct ISE- which is important to consider as it is responsible of water movements between the liquid compartments. Knowing the difference between the two methods is important because there are situations leading to conflicting results between direct and indirect ISE, especially with sodium and inappropriate therapeutic decisions could be taken if the clinician is not aware of this difference. The increase and the decrease in plasma water volume are the situations that distort the results of the indirect ISE because this method, after a dilution step, does not take into account the real percentage of plasma water of the patient in the determination of the concentrations (leading for sodium to pseudohyponatremia, pseudonormonatremia or pseudohypernatremia). In the direct ISE, the sample is not diluted and the results are correct even if the volume of plasma water is modified. This article specifies the differences between the two techniques through a case of Waldenström's macroglobulinemia and proposes a course of action to follow for both of the biologist and the clinician.

  8. The 2014 Earth return of the ISEE-3/ICE spacecraft

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Farquhar, Robert W.; Loucks, Michel; Roberts, Craig E.; Wingo, Dennis; Cowing, Keith L.; Garcia, Leonard N.; Craychee, Tim; Nickel, Craig; Ford, Anthony; Colleluori, Marco; Folta, David C.; Giorgini, Jon D.; Nace, Edward; Spohr, John E.; Dove, William; Mogk, Nathan; Furfaro, Roberto; Martin, Warren L.

    2015-05-01

    In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit. In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment. After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second ΔV (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was performed on July 2nd, the first since 1987. A 7 m/s ΔV maneuver was attempted on July 8th, to target the August lunar swingby. But the maneuver failed; telemetry showed that only about 0.15 m/s of ΔV was accomplished, then the thrust quickly decayed. The telemetry indicated that the nitrogen pressurant was gone so hydrazine could not be forced to the thrusters. The experience showed how a spacecraft can survive 30 years of space weather. The spacecraft flew 18 thousand km from the Moon, resulting in a heliocentric orbit that will return near the Earth in 2029.

  9. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  10. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    PubMed

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guang; Barker, Erin I.; Stephens, Elizabeth V.

    2016-01-01

    ABSTRACT Microindentation is performed on hot isostatic pressed (HIP) Mg-Al (AM40) alloy samples produced by high-pressure die cast (HPDC) process for the purpose of quantifying the mechanical properties of the α-Mg grains. The process of obtaining elastic modulus and hardness from indentation load-depth curves is well established in the literature. A new inverse method is developed to extract plastic properties in this study. The method utilizes empirical yield strength-hardness relationship reported in the literature together with finite element modeling of the individual indentation. Due to the shallow depth of the indentation, indentation size effect (ISE) is taken into account whenmore » determining plastic properties. The stress versus strain behavior is determined for a series of indents. The resulting average values and standard deviations are obtained for future use as input distributions for microstructure-based property prediction of AM40.« less

  12. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1983-01-01

    An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.

  13. Pitfalls in Prediction Modeling for Normal Tissue Toxicity in Radiation Therapy: An Illustration With the Individual Radiation Sensitivity and Mammary Carcinoma Risk Factor Investigation Cohorts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbah, Chamberlain, E-mail: chamberlain.mbah@ugent.be; Department of Mathematical Modeling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent; Thierens, Hubert

    Purpose: To identify the main causes underlying the failure of prediction models for radiation therapy toxicity to replicate. Methods and Materials: Data were used from two German cohorts, Individual Radiation Sensitivity (ISE) (n=418) and Mammary Carcinoma Risk Factor Investigation (MARIE) (n=409), of breast cancer patients with similar characteristics and radiation therapy treatments. The toxicity endpoint chosen was telangiectasia. The LASSO (least absolute shrinkage and selection operator) logistic regression method was used to build a predictive model for a dichotomized endpoint (Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer score 0, 1, or ≥2). Internal areas undermore » the receiver operating characteristic curve (inAUCs) were calculated by a naïve approach whereby the training data (ISE) were also used for calculating the AUC. Cross-validation was also applied to calculate the AUC within the same cohort, a second type of inAUC. Internal AUCs from cross-validation were calculated within ISE and MARIE separately. Models trained on one dataset (ISE) were applied to a test dataset (MARIE) and AUCs calculated (exAUCs). Results: Internal AUCs from the naïve approach were generally larger than inAUCs from cross-validation owing to overfitting the training data. Internal AUCs from cross-validation were also generally larger than the exAUCs, reflecting heterogeneity in the predictors between cohorts. The best models with largest inAUCs from cross-validation within both cohorts had a number of common predictors: hypertension, normalized total boost, and presence of estrogen receptors. Surprisingly, the effect (coefficient in the prediction model) of hypertension on telangiectasia incidence was positive in ISE and negative in MARIE. Other predictors were also not common between the 2 cohorts, illustrating that overcoming overfitting does not solve the problem of replication failure of prediction models completely. Conclusions: Overfitting and cohort heterogeneity are the 2 main causes of replication failure of prediction models across cohorts. Cross-validation and similar techniques (eg, bootstrapping) cope with overfitting, but the development of validated predictive models for radiation therapy toxicity requires strategies that deal with cohort heterogeneity.« less

  14. A 2D Array of 100's of Ions for Quantum Simulation and Many-Body Physics in a Penning Trap

    NASA Astrophysics Data System (ADS)

    Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Bollinger, John

    2015-05-01

    Quantum simulations promise to reveal new materials and phenomena for experimental study, but few systems have demonstrated the capability to control ensembles in which quantum effects cannot be directly computed. One possible platform for intractable quantum simulations may be a system of 100's of 9Be+ ions in a Penning trap, where the valence electron spins are coupled with an effective Ising interaction in a 2D geometry. Here we report on results from a new Penning trap designed for 2D quantum simulations. We characterize the ion crystal stability and describe progress towards bench-marking quantum effects of the spin-spin coupling using a spin-squeezing witness. We also report on the successful photodissociation of BeH+ contaminant molecular ions that impede the use of such crystals for quantum simulation. This work lays the foundation for future experiments such as the observation of spin dynamics under the quantum Ising Hamiltonian with a transverse field. Supported by a NIST-NRC Research Associateship.

  15. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  16. Mini-ISES identifies promising carbafructopyranose-based salens for asymmetric catalysis: Tuning ligand shape via the anomeric effect

    PubMed Central

    Karukurichi, Kannan R.; Fei, Xiang; Swyka, Robert A.; Broussy, Sylvain; Shen, Weijun; Dey, Sangeeta; Roy, Sandip K.; Berkowitz, David B.

    2015-01-01

    This study introduces new methods of screening for and tuning chiral space and in so doing identifies a promising set of chiral ligands for asymmetric synthesis. The carbafructopyranosyl-1,2-diamine(s) and salens constructed therefrom are particularly compelling. It is shown that by removing the native anomeric effect in this ligand family, one can tune chiral ligand shape and improve chiral bias. This concept is demonstrated by a combination of (i) x-ray crystallographic structure determination, (ii) assessment of catalytic performance, and (iii) consideration of the anomeric effect and its underlying dipolar basis. The title ligands were identified by a new mini version of the in situ enzymatic screening (ISES) procedure through which catalyst-ligand combinations are screened in parallel, and information on relative rate and enantioselectivity is obtained in real time, without the need to quench reactions or draw aliquots. Mini-ISES brings the technique into the nanomole regime (200 to 350 nmol catalyst/20 μl organic volume) commensurate with emerging trends in reaction development/process chemistry. The best-performing β-d-carbafructopyranosyl-1,2-diamine–derived salen ligand discovered here outperforms the best known organometallic and enzymatic catalysts for the hydrolytic kinetic resolution of 3-phenylpropylene oxide, one of several substrates examined for which the ligand is “matched.” This ligand scaffold defines a new swath of chiral space, and anomeric effect tunability defines a new concept in shaping that chiral space. Both this ligand set and the anomeric shape-tuning concept are expected to find broad application, given the value of chiral 1,2-diamines and salens constructed from these in asymmetric catalysis. PMID:26501130

  17. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  18. Optimal structure and parameter learning of Ising models

    DOE PAGES

    Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant; ...

    2018-03-16

    Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less

  19. Optimal structure and parameter learning of Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant

    Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less

  20. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6

    PubMed Central

    Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.

    2015-01-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018

  1. Learning planar Ising models

    DOE PAGES

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...

    2016-12-01

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  2. Learning planar Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  3. Hastatic order in URu2Si2 : Hybridization with a twist

    NASA Astrophysics Data System (ADS)

    Chandra, Premala; Coleman, Piers; Flint, Rebecca

    2015-05-01

    The broken symmetry that develops below 17.5 K in the heavy fermion compound URu2Si2 has long eluded identification. Here we argue that the recent observation of Ising quasiparticles in URu2Si2 results from a spinor hybridization order parameter that breaks double time-reversal symmetry by mixing states of integer and half-integer spin. Such "hastatic order" (hasta: [Latin] spear) hybridizes Kramers conduction electrons with Ising, non-Kramers 5 f2 states of the uranium atoms to produce Ising quasiparticles. The development of a spinorial hybridization at 17.5 K accounts for both the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. This paper develops the theory of hastatic order in detail, providing the mathematical development of its key concepts. Hastatic order predicts a tiny transverse moment in the conduction sea, a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant energy-dependent nematicity in the tunneling density of states.

  4. An online spaced-education game to teach and assess residents: a multi-institutional prospective trial.

    PubMed

    Kerfoot, B Price; Baker, Harley

    2012-03-01

    While games are frequently used in resident education, there is little evidence supporting their efficacy. We investigated whether a spaced-education (SE) game can be both a reliable and valid method of assessing residents' knowledge and an effective means of teaching core content. The SE game consisted of 100 validated multiple-choice questions and explanations on core urology content. Residents were sent 2 questions each day via email. Adaptive game mechanics re-sent the questions in 2 or 6 weeks if answered incorrectly and correctly, respectively. Questions expired if not answered on time (appointment dynamic). Residents retired questions by answering each correctly twice in a row (progression dynamic). Competition was fostered by posting relative performance among residents. Main outcomes measures were baseline scores (percentage of questions answered correctly on initial presentation) and completion scores (percentage of questions retired). Nine hundred thirty-one US and Canadian residents enrolled in the 45-week trial. Cronbach alpha reliability for the SE baseline scores was 0.87. Baseline scores (median 62%, interquartile range [IQR] 17%) correlated with scores on the 2008 American Urological Association in-service examination (ISE08), 2009 American Board of Urology qualifying examination (QE09), and ISE09 (r = 0.76, 0.46, and 0.64, respectively; all p < 0.001). Baseline scores varied by sex, country, medical degree, and year of training (all p ≤ 0.001). Completion scores (median 100%, IQR 2%) correlated with ISE08 and ISE09 scores (r = 0.35, p < 0.001 for both). Seventy-two percent of enrollees (667 of 931) requested to participate in future SE games. An SE game is a reliable and valid means to assess residents' knowledge and is a well-accepted method by which residents can master core content. Published by Elsevier Inc.

  5. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE PAGES

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4  M + , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5  M + , a conventional lower detection limit of 8.1 × 10 − 6  M + , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  6. Anomalous finite-size effect due to quasidegenerate phases in triangular antiferromagnets with long-range interactions and mapping to the generalized six-state clock model

    NASA Astrophysics Data System (ADS)

    Nishino, Masamichi; Miyashita, Seiji

    2016-11-01

    The effect of long-range (LR) interactions on frustrated-spin models is an interesting problem, which provides rich ordering processes. We study the effect of LR interactions on triangular Ising antiferromagnets with the next-nearest-neighbor ferromagnetic interaction (TIAFF). In the thermodynamic limit, the LRTIAFF model should reproduce the corresponding mean-field results, in which successive phase transitions occur among various phases, i.e., the disordered paramagnetic phase, so-called partially disordered phase, three-sublattice ferrimagnetic phase, and two-sublattice ferrimagnetic phase. In the present paper we focus on the magnetic susceptibility at the transition point between the two-sublattice ferrimagnetic and the disordered paramagnetic phases at relatively large ferromagnetic interactions. In the mean-field analysis, the magnetic susceptibility shows no divergence at the transition point. In contrast, a divergencelike enhancement of the susceptibility is observed in Monte Carlo simulations in finite-size systems. We investigate the origin of this difference and find that it is attributed to a virtual degeneracy of the free energies of the partially disordered and 2-FR phases. We also exploit a generalized six-state clock model with an LR interaction, which is a more general system with Z6 symmetry. We discuss the phase diagram of this model and find that it exhibits richer transition patterns and contains the physics of the LRTIAFF model.

  7. Monte Carlo simulation of Ising models by multispin coding on a vector computer

    NASA Astrophysics Data System (ADS)

    Wansleben, Stephan; Zabolitzky, John G.; Kalle, Claus

    1984-11-01

    Rebbi's efficient multispin coding algorithm for Ising models is combined with the use of the vector computer CDC Cyber 205. A speed of 21.2 million updates per second is reached. This is comparable to that obtained by special- purpose computers.

  8. Scaling of the local quantum uncertainty at quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Coulamy, I. B.; Warnes, J. H.; Sarandy, M. S.; Saguia, A.

    2016-04-01

    We investigate the local quantum uncertainty (LQU) between a block of L qubits and one single qubit in a composite system of n qubits driven through a quantum phase transition (QPT). A first-order QPT is analytically considered through a Hamiltonian implementation of the quantum search. In the case of second-order QPTs, we consider the transverse-field Ising chain via a numerical analysis through density matrix renormalization group. For both cases, we compute the LQU for finite-sizes as a function of L and of the coupling parameter, analyzing its pronounced behavior at the QPT.

  9. Tests of conformal field theory at the Yang-Lee singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wydro, Tomasz; McCabe, John F.

    2009-12-14

    This paper studies the Yang-Lee edge singularity of 2-dimensional (2D) Ising model based on a quantum spin chain and transfer matrix measurements on the cylinder. Based on finite-size scaling, the low-lying excitation spectrum is found at the Yang-Lee edge singularity. Based on transfer matrix techniques, the single structure constant is evaluated at the Yang-Lee edge singularity. The results of both types of measurements are found to be fully consistent with the predictions for the (A{sub 4}, A{sub 1}) minimal conformal field theory, which was previously identified with this critical point.

  10. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  11. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    PubMed

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  12. Exact determination of asymptotic CMB temperature-redshift relation

    NASA Astrophysics Data System (ADS)

    Hahn, Steffen; Hofmann, Ralf

    2018-02-01

    Based on energy conservation in a Friedmann-Lemaître-Robertson-Walker (FLRW) Universe, on the Legendre transformation between energy density and pressure, and on nonperturbative asymptotic freedom at high temperatures, we derive the coefficient νCMB in the high-temperature (T) — redshift (z) relation, T/T0 = νCMB(z + 1), of the Cosmic Microwave Background (CMB). Theoretically, our calculation relies on a deconfining SU(2) rather than a U(1) photon gas. We prove that νCMB = (1/4)1/3 = 0.629960(5), representing a topological invariant. Interestingly, the relative deviation of νCMB from the critical exponent associated with the correlation length l of the 3D Ising model, νIsing = 0.629971(4), is less than 2 × 10-5. We are not in a position to establish a direct theoretical link between νCMB and νIsing as suggested by the topological nature of νCMB and the fact that both theories are members of the same universality class. We do, however, spell out a somewhat speculative, strictly monotonic map from the physical Ising temperature 𝜃 to a fictitious SU(2) Yang-Mills temperature T, the latter continuing the asymptotic dependence of the scale factor a on T/T0 for T/T0 ≫ 1 down to T = 0, and we identify an exponential map from a to l to reproduce critical Ising behavior.

  13. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  14. Comparative analysis for strength serum sodium and potassium in three different methods: Flame photometry, ion-selective electrode (ISE) and colorimetric enzymatic.

    PubMed

    Garcia, Rafaela Alvim; Vanelli, Chislene Pereira; Pereira Junior, Olavo Dos Santos; Corrêa, José Otávio do Amaral

    2018-06-19

    Hydroelectrolytic disorders are common in clinical situations and may be harmful to the patient, especially those involving plasma sodium and potassium dosages. Among the possible methods for the dosages are flame photometry, ion-selective electrode (ISE) and colorimetric enzymatic method. We analyzed 175 samples in the three different methods cited from patients attending the laboratory of the University Hospital of the Federal University of Juiz de Fora. The values obtained were statistically treated using SPSS 19.0 software. The present study aims to evaluate the impact of the use of these different methods in the determination of plasma sodium and potassium. The averages obtained for sodium and potassium measurements by flame photometry were similar (P > .05) to the means obtained for the two electrolytes by ISE. The averages obtained by the colorimetric enzymatic method presented statistical difference in relation to ISE, both for sodium and potassium. In the correlation analysis, both flame photometry and colorimetric enzymatic showed a strong correlation with the ISE method for both dosages. At the first time in the same work sodium and potassium were analyzed by three different methods and the results allowed us to conclude that the methods showed a positive and strong correlation, and can be applied in the clinical routine. © 2018 Wiley Periodicals, Inc.

  15. 75 FR 1674 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Effectiveness of Proposed Rule Change Relating To Amending the Direct Edge ECN Fee Schedule January 5, 2010... proposes to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to simplify its fee...

  16. 77 FR 34436 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Organizations; International Securities Exchange, LLC; Notice of Filing of Proposed Rule Change To Temporarily... International Securities Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange... Clearing and Outsourcing Solutions, Inc. (``Apex Clearing'') as an ISE member organization, subject to Apex...

  17. Information Sharing Environment Interim Implementation Plan

    DTIC Science & Technology

    2006-01-01

    10 3.2.3 Integrating Results into the Broader ISE Implementation ........................ 11 3.3 ISE Governance ...and State, Local, and Tribal Governments , Law Enforcement Agencies, and the Private Sector...parallel with these efforts, Congress enacted three laws providing the U.S. Government with greater authority for collecting, analyzing, and disseminating

  18. ISEE/ICE plasma wave data analysis

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1989-01-01

    The work performed for the period 1 Jan. 1985 to 30 Oct. 1989 is presented. The objective was to provide reduction and analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the International Sun Earth Explorer 3 (ISEE-3)/International Cometary Explorer (ICE) missions.

  19. Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto

    2018-05-01

    In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.

  20. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.

    PubMed

    Vahedi, J; Ashouri, A; Mahdavifar, S

    2016-10-01

    Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.

  1. Electronic transport on the Shastry-Sutherland lattice in Ising-type rare-earth tetraborides

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph G.

    2017-05-01

    In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order by disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare-earth tetraborides R B4 (R =Er , Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and the dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy on a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.

  2. Nonlinear spin susceptibility in topological insulators

    NASA Astrophysics Data System (ADS)

    Shiranzaei, Mahroo; Fransson, Jonas; Cheraghchi, Hosein; Parhizgar, Fariborz

    2018-05-01

    We revise the theory of the indirect exchange interaction between magnetic impurities beyond the linear response theory to establish the effect of impurity resonances in the surface states of a three-dimensional topological insulator. The interaction is composed of isotropic Heisenberg, anisotropic Ising, and Dzyaloshinskii-Moriya types of couplings. We find that all three contributions are finite at the Dirac point, which is in stark contrast to the linear response theory which predicts a vanishing Dzyaloshinskii-Moriya-type contribution. We show that the spin-independent component of the impurity scattering can generate large values of the Dzyaloshinskii-Moriya-type coupling in comparison with the Heisenberg and Ising types of couplings, while these latter contributions drastically reduce in magnitude and undergo sign changes. As a result, both collinear and noncollinear configurations are allowed magnetic configurations of the impurities.

  3. The Ising Decision Maker: a binary stochastic network for choice response time.

    PubMed

    Verdonck, Stijn; Tuerlinckx, Francis

    2014-07-01

    The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2 pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other, whereas between pools, neurons inhibit each other. The perceptual input is represented by an external excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons (microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically tractable multiple attractor network model of information accumulation. In this article, the properties of the IDM are studied, the relations to existing models are discussed, and it is shown that the most important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is shown to predict a variety of observed psychophysical relations such as Piéron's law, the van der Molen-Keuss effect, and Weber's law. Using Bayesian methods, the model is fitted to both simulated and real data, and its performance is compared to the Ratcliff diffusion model. (c) 2014 APA, all rights reserved.

  4. Reexamining the role of choline transporter-like (Ctlp) proteins in choline transport.

    PubMed

    Zufferey, Rachel; Santiago, Teresa C; Brachet, Valerie; Ben Mamoun, Choukri

    2004-02-01

    In Saccharomyces cerevisiae, choline enters the cell via a single high-affinity transporter, Hnmlp. hnm1delta cells lacking HNM1 gene are viable. However, they are unable to transport choline suggesting that no additional active choline transporters are present in this organism. A complementation study of a choline auxotrophic mutant, ctrl-ise (hnm1-ise), using a cDNA library from Torpedo marmorata electric lobe identified a membrane protein named Torpedo marmorata choline transporter-like, tCtl1p. tCtllp was proposed to mediate a high-affinity choline transport (O'Regan et al., 1999, Proc. Natl. Acad. Sci.). Homologs of tCtl1p have been identified in other organisms, including yeast (Pns1p, YOR161c) and are postulated to function as choline transporters. Here we provide several lines of evidence indicating that Ctlp proteins are not involved in choline transport. Loss of PNS1 has no effect on choline transport and overexpression of either PNS1 or tCTL1 does not restore choline uptake activity of choline transport-defective mutants. The data presented here call into question the role of proteins of the CTL family in choline transport and suggest that the mechanism by which tCTL1 complements hnm1-ise mutant is independent of its ability to transport choline.

  5. Look and SEES

    ERIC Educational Resources Information Center

    Hillier, Dan

    2006-01-01

    Primary science in Scotland has got the wind in its sails. The Scottish science education initiative, "Improving Science Education" (ISE) 5-14, has invested millions in professional development (CPD) materials and experiences for science teachers, harnessing and developing their enthusiasm for effective learning and teaching in science.…

  6. Applications of ISES for vegetation and land use

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1990-01-01

    Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management.

  7. Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins

    NASA Astrophysics Data System (ADS)

    Keskin, Mustafa; Ertaş, Mehmet

    2018-04-01

    Dynamic magnetic properties of the Ising bilayer system consisting of the mixed (3/2, 5/2) Ising spins with a crystal-field interaction in an oscillating field on a two-layer square lattice is studied by the use of dynamic mean-field theory based on the Glauber-type stochastic. Dynamic phase transition temperatures are obtained and dynamic phase diagrams are presented in three different planes. The frequency dependence of dynamic hysteresis loops is also investigated in detail. We compare the results with some available theoretical and experimental works and observe a quantitatively good agreement with some theoretical and experimental results.

  8. Ising order in a magnetized Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Chan, Yang-Hao; Jin, Wen; Jiang, Hong-Chen; Starykh, Oleg A.

    2017-12-01

    We report a combined analytical and density matrix renormalized group study of the antiferromagnetic X X Z spin-1 /2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic field. The numerically determined phase diagram of this model, which features two ordered Ising phases and a critical Luttinger liquid, one with fully broken spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [I. Garate and I. Affleck, Phys. Rev. B 81, 144419 (2010), 10.1103/PhysRevB.81.144419]. We also confirm the prevalence of the Nz Néel Ising order in the regime of comparable DM and magnetic field magnitudes.

  9. Rényi information flow in the Ising model with single-spin dynamics.

    PubMed

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  10. Precision islands in the Ising and O(N ) models

    DOE PAGES

    Kos, Filip; Poland, David; Simmons-Duffin, David; ...

    2016-08-04

    We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, O(2), and O(3) models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, (Δ σ , Δ ϵ , λ σσϵ , λ ϵϵϵ ) = (0.5181489(10), 1.412625(10), 1.0518537(41), 1.532435(19) , give the most precise determinations of thesemore » quantities to date.« less

  11. Ising Processing Units: Potential and Challenges for Discrete Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffrin, Carleton James; Nagarajan, Harsha; Bent, Russell Whitford

    The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one examplemore » of a commercially available Ising processing unit.« less

  12. Gaps between avalanches in one-dimensional random-field Ising models

    NASA Astrophysics Data System (ADS)

    Nampoothiri, Jishnu N.; Ramola, Kabir; Sabhapandit, Sanjib; Chakraborty, Bulbul

    2017-09-01

    We analyze the statistics of gaps (Δ H ) between successive avalanches in one-dimensional random-field Ising models (RFIMs) in an external field H at zero temperature. In the first part of the paper we study the nearest-neighbor ferromagnetic RFIM. We map the sequence of avalanches in this system to a nonhomogeneous Poisson process with an H -dependent rate ρ (H ) . We use this to analytically compute the distribution of gaps P (Δ H ) between avalanches as the field is increased monotonically from -∞ to +∞ . We show that P (Δ H ) tends to a constant C (R ) as Δ H →0+ , which displays a nontrivial behavior with the strength of disorder R . We verify our predictions with numerical simulations. In the second part of the paper, motivated by avalanche gap distributions in driven disordered amorphous solids, we study a long-range antiferromagnetic RFIM. This model displays a gapped behavior P (Δ H )=0 up to a system size dependent offset value Δ Hoff , and P (Δ H ) ˜(ΔH -Δ Hoff) θ as Δ H →Hoff+ . We perform numerical simulations on this model and determine θ ≈0.95 (5 ) . We also discuss mechanisms which would lead to a nonzero exponent θ for general spin models with quenched random fields.

  13. Two coupled, driven Ising spin systems working as an engine.

    PubMed

    Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul

    2017-05-01

    Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.

  14. Two coupled, driven Ising spin systems working as an engine

    NASA Astrophysics Data System (ADS)

    Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul

    2017-05-01

    Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.

  15. Many-body localization in Ising models with random long-range interactions

    NASA Astrophysics Data System (ADS)

    Li, Haoyuan; Wang, Jia; Liu, Xia-Ji; Hu, Hui

    2016-12-01

    We theoretically investigate the many-body localization phase transition in a one-dimensional Ising spin chain with random long-range spin-spin interactions, Vi j∝|i-j |-α , where the exponent of the interaction range α can be tuned from zero to infinitely large. By using exact diagonalization, we calculate the half-chain entanglement entropy and the energy spectral statistics and use them to characterize the phase transition towards the many-body localization phase at infinite temperature and at sufficiently large disorder strength. We perform finite-size scaling to extract the critical disorder strength and the critical exponent of the divergent localization length. With increasing α , the critical exponent experiences a sharp increase at about αc≃1.2 and then gradually decreases to a value found earlier in a disordered short-ranged interacting spin chain. For α <αc , we find that the system is mostly localized and the increase in the disorder strength may drive a transition between two many-body localized phases. In contrast, for α >αc , the transition is from a thermalized phase to the many-body localization phase. Our predictions could be experimentally tested with an ion-trap quantum emulator with programmable random long-range interactions, or with randomly distributed Rydberg atoms or polar molecules in lattices.

  16. 75 FR 29381 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... compelling need to attract order flow, imposed significant competitive pressure on that exchange's need to... competitive pressures on the ISE Order Feed and ISE's compelling need to attract order flow impose significant competitive pressure on the Exchange to act equitably, fairly, and reasonably in setting its fees. B. Self...

  17. Introduction

    Treesearch

    Mac A. Callaham

    2016-01-01

    This special issue of Applied Soil Ecology contains the Proceedings of the 10th International Symposium on EarthwormEcology (ISEE-10), held in Athens, Georgia, USA in June of 2014. ISEE-10 was attended by 120+ delegates representing 24 nationalities (Fig. 1). The papers collected here represent only a small fraction of the more than 150 oral and poster...

  18. On discrete field theory properties of the dimer and Ising models and their conformal field theory limits

    NASA Astrophysics Data System (ADS)

    Kriz, Igor; Loebl, Martin; Somberg, Petr

    2013-05-01

    We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.

  19. Student Perceptions of Interest, Learning, and Engagement from an Informal Traveling Science Museum

    ERIC Educational Resources Information Center

    Sample McMeeking, Laura B.; Weinberg, Andrea E.; Boyd, Kathryn J.; Balgopal, Meena M.

    2016-01-01

    Informal Science Education (ISE) programs have been increasing in popularity in recent years. The National Research Council has laid out six strands that ISE programs should try to address, including increasing interest, knowledge, and allowing participants to engage in scientific activities. Past research suggests that informal settings can…

  20. An accurate and stable nitrate-selective electrode for the in situ determination of nitrate in agricultural drainage waters.

    PubMed

    Le Goff, Thierry; Braven, Jim; Ebdon, Les; Chilcottt, Neil P; Scholefield, David; Wood, John W

    2002-04-01

    A field evaluation of a novel nitrate-ion selective electrode (ISE) was undertaken by continuous immersion over a period of 5 months in agricultural drainage weirs. The nitrate sensor N,N,N-triallyl leucine betaine was covalently attached to polystyrene-block-polybutadiene-block-polystyrene (SBS) using a free radical initiated co-polymerisation, to produce a rubbery membrane which was incorporated into a commercially available electrode body. A measurement unit was constructed comprising the nitrate-ISEs, a reference electrode and a temperature probe connected through a pre-amplifier to a data-logger and battery supply. A temperature correction algorithm was developed to accomodate the temperature changes encountered in the drainage weirs. The nitrate results obtained with the ISEs at hourly intervals compared very favourably (R2 = 0.99) with those obtained with laboratory automated chemical determinations made on contemporaneous samples of drainage in a concentration range 0.47-16 ppm nitrate-N. The ISEs did not require re-calibration and no deterioration in performance or fouling of the membrane surface was observed over four months of deployment.

  1. Application of neural networks with novel independent component analysis methodologies to a Prussian blue modified glassy carbon electrode array.

    PubMed

    Wang, Liang; Yang, Die; Fang, Cheng; Chen, Zuliang; Lesniewski, Peter J; Mallavarapu, Megharaj; Naidu, Ravendra

    2015-01-01

    Sodium potassium absorption ratio (SPAR) is an important measure of agricultural water quality, wherein four exchangeable cations (K(+), Na(+), Ca(2+) and Mg(2+)) should be simultaneously determined. An ISE-array is suitable for this application because its simplicity, rapid response characteristics and lower cost. However, cross-interferences caused by the poor selectivity of ISEs need to be overcome using multivariate chemometric methods. In this paper, a solid contact ISE array, based on a Prussian blue modified glassy carbon electrode (PB-GCE), was applied with a novel chemometric strategy. One of the most popular independent component analysis (ICA) methods, the fast fixed-point algorithm for ICA (fastICA), was implemented by the genetic algorithm (geneticICA) to avoid the local maxima problem commonly observed with fastICA. This geneticICA can be implemented as a data preprocessing method to improve the prediction accuracy of the Back-propagation neural network (BPNN). The ISE array system was validated using 20 real irrigation water samples from South Australia, and acceptable prediction accuracies were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ising-like patterns of spatial synchrony in population biology

    NASA Astrophysics Data System (ADS)

    Noble, Andrew; Hastings, Alan; Machta, Jon

    2014-03-01

    Systems of coupled dynamical oscillators can undergo a phase transition between synchronous and asynchronous phases. In the case of coupled map lattices, the spontaneous symmetry breaking of a temporal-phase order parameter is known to exhibit Ising-like critical behavior. Here, we investigate a noisy coupled map motivated by the study of spatial synchrony in ecological populations far from the extinction threshold. Ising-like patterns of criticality, as well as spinodal decomposition and homogeneous nucleation, emerge from the nonlinear interactions of environmental fluctuations in habitat quality, local density-dependence in reproduction, and dispersal. In the mean-field limit, the correspondence to the Ising model is exact: the fixed points of our dynamical system are given by the equation of state for Weiss mean-field theory under an appropriate mapping of parameters. We have strong evidence that a quantitative correspondence persists, both near and far from the critical point, in the presence of fluctuations. Our results provide a formal connection between equilibrium statistical physics and population biology. This work is supported by the National Science Foundation under Grant No. 1344187.

  3. The influence of further-neighbor spin-spin interaction on a ground state of 2D coupled spin-electron model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália

    2018-05-01

    An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.

  4. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  5. Characterization of home-made silver sulphide based iodide selective electrode.

    PubMed

    Rajbhandari Nyachhyon, A; Yadav, A P; Manandhar, K; Pradhananga, R R

    2010-09-15

    Polycrystalline silver sulphide/silver iodide ion selective electrodes (ISEs) with four different compositions, 9:1, 2:1, 1:1, 1:9 Ag(2)S-AgI mole ratios, have been fabricated in the laboratory and characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). X-ray diffraction studies show the presence of Ag(3)SI, Ag(2)S and AgI crystalline phases in the electrode material. The electrode surfaces have been found to become smoother and lustrous with increasing percentage of silver sulphide in silver iodide. ISE 1:1, ISE 2:1 and ISE 9:1 all responded in Nernstian manner with slopes of about 60 mV/decade change in iodide ion concentration in the linear range of 1 x 10(-1) to 1 x 10(-6)M while ISE 1:9 showed sub-Nernstian behavior with slope of about 45 mV up to the concentration 1 x 10(-5)M. Two capacitive loops, one corresponding to the charge transfer process at metal electrode and the back contact and a second loop corresponding to the charge transfer process at membrane-electrolyte interface have been observed at high and low frequency ranges, respectively. Mott-Schottky analysis shows that the materials are n-type semiconductors with donor defect concentrations in the range of 5.1 x 10(14) to 2.4 x 10(19)/cm(3). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    PubMed

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  7. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy

    PubMed Central

    Francis, Andrew W.; Wanek, Justin; Lim, Jennifer I.; Shahidi, Mahnaz

    2015-01-01

    Purpose To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. Methods High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. Results In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Conclusions Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR. PMID:26699878

  8. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films

    PubMed Central

    Fortunati, Elena; Iannoni, Antonio; Terenzi, Andrea; Torre, Luigi

    2017-01-01

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS–30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA–PBS blends (PLA85–ISE15)–PBS20 and (PLA80–PBS20)–ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80–PBS20 reference film, suggesting that the promising use of these stretchable PLA–PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications. PMID:28773168

  9. Determination of iodine in bread and fish using the iodide ion-selective electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.B.

    The purpose of this study was to assess the potential for use of the ion-selective electrode (ISE) as a method for measuring the iodine content in bread and fish. Ashing methods, sample preparation and electrode responses were evaluated. The iodine values obtained using the iodide electrode were compared to iodine values obtained by the arsenic-cerium method (As-Ce). Ashing methods were used in preparing bread and haddock for iodine analysis by the ISE. The values were compared to unashed samples measured by the ISE. Electrode response to iodide was examined by varying the sample pH, measuring electrode equilibrium times, and comparingmore » direct measurement in ppm to iodide values obtained by the method of known addition. Oyster reference tissue with a known iodine concentration was used to determine rates of recovery. For the As-Ce procedure, an alkaline dry ash for two hour followed by colorimetric analysis at 320 nm was recommended. The study showed that the pre-treatment of bread and fish was necessary for ISE measurement. The iodine values obtained by the ISE in the analysis of oyster reference tissue, haddock and bread were not in agreement with their corresponding As-Ce values. Further work needs to be done to determine an ashing procedure that has minimal iodide loss an/or develop sample treatments that will improve the reliability and precision of iodine values obtained using the ion-selective electrode.« less

  10. Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method.

    PubMed

    Martins, S; Karmali, A; Serralheiro, M L

    2006-08-15

    A novel assay method was investigated for wild-type and recombinant mutant amidases (EC 3.5.1.4) from Pseudomonas aeruginosa by ammonium ion-selective electrode (ISE). The initial velocity is proportional to the enzyme concentration by using the wild-type enzyme. The specific activities of the purified amidase were found to be 88.2 and 104.2 U mg protein(-1) for the linked assay and ISE methods, respectively. The kinetic constants--Vmax, Km, and Kcat--determined by Michaelis-Menten plot were 101.13 U mg protein(-1), 1.12x10(-2) M, and 64.04 s(-1), respectively, for acrylamide as the substrate. On the other hand, the lower limit of detection and range of linearity of enzyme concentration were found to be 10.8 and 10.8 to 500 ng, respectively, for the linked assay method and 15.0 and 15.0 to 15,000 ng, respectively, for the ISE method. Hydroxylamine was found to act as an uncompetitive activator of hydrolysis reaction catalyzed by amidase given that there is an increase in Vmax and Km when acetamide was used as the substrate. However, the effect of hydroxylamine on the hydrolysis reaction was dependent on the type of amidase and substrate involved in the reaction mixture. The degrees of activation (epsilon(a)) of the wild-type and mutant (T103I and C91A) enzymes were found to be 2.54, 12.63, and 4.33, respectively, for acetamide as the substrate. However, hydroxylamine did not activate the reaction catalyzed by wild-type and altered (C91A and W138G) amidases by using acrylamide and acetamide, respectively, as the substrate. The activating effect of hydroxylamine on the hydrolysis of acetamide, acrylamide, and p-nitrophenylacetamide can be explained by the fact that additional formation of ammonium ions occurred due to the transferase activity of amidases. However, the activating effect of hydroxylamine on the hydrolysis of p-nitroacetanilide may be due to a change in conformation of enzyme molecule. Therefore, the use of ISE permitted the study of the kinetic properties of wild-type and mutant amidases because it was possible to measure initial velocity of the enzyme-catalyzed reaction in real time.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogunovic, Hrvoje; Pozo, Jose Maria; Villa-Uriol, Maria Cruz

    Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA andmore » TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.« less

  12. ICE/ISEE plasma wave data analysis

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1992-01-01

    The interval reported on, from Jan. 1990 to Dec. 1991, has been one of continued processing and archiving of ICE plasma wave (pw) data and transition from analysis of ISEE 3 and ICE cometary data to ICE data taken along its cruise trajectory, where coronal mass ejections are the focus of attention. We have continued to examine with great interest the last year of ISEE 3's precomet phase, when it spent considerable time far downwind from Earth, recording conditions upstream, downstream, and across the very weak, distant flank bow shock. Among other motivations was the apparent similarity of some shock and post shock structures to the signatures of the bow wave surrounding comet Giacobini-Zinner, whose ICE-phase data was revisited. While pursuing detailed, second-order scientific inquiries still pending from the late ISEE 3 recordings, we have also sought to position ourselves for study of CME's by instituting a data processing format new to the ISEE 3/ICE pw detector. Processed detector output has always been summarized and archived in 24-hour segments, with all pw channels individually plotted and stacked one above the next down in frequency, with each channel calibrated separately to keep all data patterns equally visible in the plots, regardless of gross differences in energy content at the various frequencies. Since CME's, with their preceding and following solar wind plasmas, can take more than one day to pass by the spacecraft, a more condensed synoptic view of the pw data is required to identify, let alone assess, CME characteristics than has been afforded by the traditional routines. This requirement is addressed in a major new processing initiative in the past two years. Besides our own ongoing and fresh investigations, we have cooperated, within our resources, with studies conducted extramurally by distant colleagues irrespective of the phase of the ISEE 3/ICE mission under scrutiny. The remainder of this report summarizes our processing activities, our investigations, both internal and cooperative, our scientific results, and our publication activity.

  13. 78 FR 76349 - Self-Regulatory Organizations; Topaz Exchange LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... change is available on the Exchange's Internet Web site at http://www.ise.com , at the principal office... immediately effective rule filing that, among other things, amended its Schedule of Fees to permit the... following methods: Electronic Comments Use the Commission's Internet comment form ( http://www.sec.gov/rules...

  14. 78 FR 65734 - Self-Regulatory Organizations; Topaz Exchange LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Proposed Rule Change Topaz is proposing to amend its Schedule of Fees to adopt a continuing education fee... Internet Web site at http://www.ise.com , at the principal office of the Exchange, and at the Commission's...

  15. Stochastic bifurcations in the nonlinear parallel Ising model.

    PubMed

    Bagnoli, Franco; Rechtman, Raúl

    2016-11-01

    We investigate the phase transitions of a nonlinear, parallel version of the Ising model, characterized by an antiferromagnetic linear coupling and ferromagnetic nonlinear one. This model arises in problems of opinion formation. The mean-field approximation shows chaotic oscillations, by changing the couplings or the connectivity. The spatial model shows bifurcations in the average magnetization, similar to that seen in the mean-field approximation, induced by the change of the topology, after rewiring short-range to long-range connection, as predicted by the small-world effect. These coherent periodic and chaotic oscillations of the magnetization reflect a certain degree of synchronization of the spins, induced by long-range couplings. Similar bifurcations may be induced in the randomly connected model by changing the couplings or the connectivity and also the dilution (degree of asynchronism) of the updating. We also examined the effects of inhomogeneity, mixing ferromagnetic and antiferromagnetic coupling, which induces an unexpected bifurcation diagram with a "bubbling" behavior, as also happens for dilution.

  16. Reentrant behavior in the nearest-neighbor Ising antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Neto, Minos A.; de Sousa, J. Ricardo

    2004-12-01

    Motived by the H-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions obtained by Monte Carlo simulation [Landau, Phys. Rev. B 16, 4164 (1977)] that shows a reentrant behavior at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value Hc=8J , we apply the effective field renormalization group (EFRG) approach in this model on three-dimensional lattices (simple cubic-sc and body centered cubic-bcc). We find that the critical curve TN(H) exhibits a maximum point around of H≃Hc only in the bcc lattice case. We also discuss the critical behavior by the effective field theory in clusters with one (EFT-1) and two (EFT-2) spins, and a reentrant behavior is observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo and series expansion, and we observe a good accordance between the methods.

  17. Surface effect on compensation and critical behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising system with two alternating layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lv, Dan; Liu, Ying; Yang, Yi; Gao, Zhong-yue; Zhao, Xue-ru

    2017-12-01

    A Monte Carlo simulation has been used to study the magnetic properties and the critical behaviors of a ferrimagnetic mixed spin-1 and spin-3/2 Ising system with two alternating layers on a honeycomb lattice. Particular emphasis is given to the effects of the surface exchange coupling R1 = J1S/J1, R2 = J2S/J1, R3 = J3S/J1, the surface single-ion anisotropy DS/J1 and the layer thickness L on the magnetizations, phase diagrams and hysteresis loops of the system. Some characteristic phenomena have been found, depending on the competition among the surface parameters R1, R2, R3 and DS. In particular, we have also found that, for appropriate values of surface parameters, there exist three critical surface parameters R1C, R3C and DSC/J1, where the phase transition temperature Tc is independent of the layer thickness L.

  18. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse

    PubMed Central

    Raz, Oren

    2017-01-01

    Under certain conditions, it takes a shorter time to cool a hot system than to cool the same system initiated at a lower temperature. This phenomenon—the “Mpemba effect”—was first observed in water and has recently been reported in other systems. Whereas several detail-dependent explanations were suggested for some of these observations, no common underlying mechanism is known. Using the theoretical framework of nonequilibrium thermodynamics, we present a widely applicable mechanism for a similar effect, the Markovian Mpemba effect, derive a sufficient condition for its appearance, and demonstrate it explicitly in three paradigmatic systems: the Ising model, diffusion dynamics, and a three-state system. In addition, we predict an inverse Markovian Mpemba effect in heating: Under proper conditions, a cold system can heat up faster than the same system initiated at a higher temperature. We numerically demonstrate that this inverse effect is expected in a 1D antiferromagnet nearest-neighbors interacting Ising chain in the presence of an external magnetic field. Our results shed light on the mechanism behind anomalous heating and cooling and suggest that it should be possible to observe these in a variety of systems. PMID:28461467

  19. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    PubMed

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  20. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

    DOE PAGES

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; ...

    2017-06-07

    Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less

  1. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén

    Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less

  2. Venous tree separation in the liver: graph partitioning using a non-ising model.

    PubMed

    O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til

    2011-01-01

    Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.

  3. Spacecraft potential control on ISEE-1

    NASA Technical Reports Server (NTRS)

    Gonfalone, A.; Pedersen, A.; Fahleson, U. V.; Faelthammar, C. G.; Mozer, F. S.; Torbert, R. B.

    1979-01-01

    Active control of the potential of the ISEE-1 satellite by the use of electron guns is reviewed. The electron guns contain a special cathode capable of emitting an electron current selectable between 10 to the -8th power and 10 to the -3rd power at energies from approximately .6 to 41 eV. Results obtained during flight show that the satellite potential can be stabilized at a value more positive than the normally positive floating potential. The electron guns also reduce the spin modulation of the spacecraft potential which is due to the aspect dependent photoemission of the long booms. Plasma parameters like electron temperature and density can be deduced from the variation of the spacecraft potential as a function of the gun current. The effects of electron beam emission on other experiments are briefly mentioned.

  4. 77 FR 35727 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... categories: ISE Market Maker,\\6\\ Market Maker Plus,\\7\\ Firm Proprietary, Customer (Professional),\\8\\ Non-ISE Market Maker,\\9\\ and Priority Customer.\\10\\ The Exchange is proposing to increase certain rebate amounts... Customer (Professional) is a person who is not a broker/ dealer and is not a Priority Customer. \\9\\ A Non...

  5. 75 FR 28836 - Self-Regulatory Organizations; Notice of Filing of Proposed Rule Change by International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62125; File No. SR-ISE-2010-48] Self-Regulatory Organizations; Notice of Filing of Proposed Rule Change by International Securities Exchange LLC To Amend ISE Rule 2102 To Provide for a Trading Pause for Individual Securities When the Price Moves Ten Percent or...

  6. NREL and Fraunhofer ISE to Collaborate on Hydrogen and Fuel Cell Research |

    Science.gov Websites

    (R&D) activities to accelerate progress in these fields. NREL's long-term research and accelerate progress toward shared R&D goals and to ensure sustainable use of hydrogen and fuel cell Fraunhofer ISE in the following areas: Electrolysis, including cell, stack, and system R&D and

  7. 76 FR 25392 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ..., CBOE is submitting the instant rule change proposal as a competitive response to SR-ISE-2010-73... (``TPHs'') and their customers through the Exchange. \\9\\ See ISE Proposal at 43212. \\10\\ See note 3, supra... customer orders resting in the Exchange's electronic book at the same price. \\11\\ The Commission, by order...

  8. Kinetic Studies with Ion Selective Electrodes: Determination of Creatinine in Urine with a Picrate Ion Selective Electrode: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Diamandis, E. P.; And Others

    1983-01-01

    The kinetic of the Jaffe reaction with picrate ion selective electrode (ISE) and a kinetic method for determining creatinine in urine is presented. The experiment could be used to familarize students with the application of ISE in kinetic studies and chemical analysis. (Author/JN)

  9. 77 FR 62300 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Rule Change To Adopt a Pilot Program To Eliminate Position and Exercise Limits in SPY Options October 5... eliminate position and exercise limits for physically-settled options on the SPDR S&P ETF Trust (``SPY... Material .01 to ISE Rule 412 and Supplementary Material .01 of ISE Rule 414 to eliminate position and...

  10. 75 FR 8158 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... traded only on ISE. As such, (1) FX Options are not fungible with foreign currency options listed by any... Rule Change To Modify Trading Hours for Foreign Currency Options February 16, 2010. Pursuant to Section... proposes to amend ISE Rule 2210 regarding the trading hours for foreign currency options (``FX Options...

  11. 77 FR 28914 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Market Maker,\\6\\ Market Maker Plus,\\7\\ Firm Proprietary and Customer (Professional) \\8\\ orders; and (ii... for ISE Market Maker, Market Maker Plus, Firm Proprietary and Customer (Professional) orders; and (ii... Plus is an ISE Market Maker who is on the National Best Bid or National Best Offer 80% of the time for...

  12. 76 FR 37863 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... of market making on the ISE and increase the supply of available CMM trading rights, which will... that have a market making structure which is less limited as the ISE's current structure. As to broker... Appointments to Competitive Market Makers June 22, 2011. Pursuant to Section 19(b)(1) of the Securities...

  13. The Conversational Framework and the ISE "Basketball Shot" Video Analysis Activity

    ERIC Educational Resources Information Center

    English, Vincent; Crotty, Yvonne; Farren, Margaret

    2015-01-01

    Inspiring Science Education (ISE) (http://www.inspiringscience.eu/) is an EU funded initiative that seeks to further the use of inquiry-based science learning (IBSL) through the medium of ICT in the classroom. The Basketball Shot is a scenario (lesson plan) that involves the use of video capture to help the student investigate the concepts of…

  14. "Not Designed for Us": How Science Museums and Science Centers Socially Exclude Low-income, Minority Ethnic Groups

    ERIC Educational Resources Information Center

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an…

  15. 77 FR 37082 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... Exchange for certain regular orders in 25 securities traded on the Exchange (``Special Non-Select Penny Pilot Symbols'').\\3\\ For trading in the Special Non-Select Penny Pilot Symbols, the Exchange currently... per contract for Non-ISE Market Maker \\5\\ orders. ISE Market Maker orders \\6\\ in these symbols are...

  16. The Value of Social Constructionism for the Counseling Profession: A Reply to Hansen

    ERIC Educational Resources Information Center

    Rudes, James; Guterman, Jeffrey T.

    2007-01-01

    The authors reply to J. T. Hansen's (2005) call for the profession to revalue the inner subjective experiences (ISE) of clients. Hansen argued that social constructionism has influenced the decline of the counseling profession by obscuring its unique focus on ISE. The authors maintain that social constructionism is a useful framework for…

  17. 78 FR 5525 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... with another complex order on the Exchange. \\3\\ See ISE Rule 722(a)(1). Rule 720 provides a framework... deemed to have occurred when the execution price of a transaction is higher or lower than the theoretical... criteria when determining the theoretical price of an options execution, which is enumerated in ISE Rule...

  18. Quantum critical environment assisted quantum magnetometer

    NASA Astrophysics Data System (ADS)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  19. OpenCL Implementation of NeuroIsing

    NASA Astrophysics Data System (ADS)

    Zapart, C. A.

    Recent advances in graphics card hardware combined with anintroduction of the OpenCL standard promise to accelerate numerical simulations across diverse scientific disciplines. One such field benefiting from new hardware/software paradigms is econophysics. The paper describes an OpenCL implementation of a selected econophysics model: NeuroIsing, which has been designed to execute in parallel on a vendor-independent graphics card. Originally introduced in the paper [C.~A.~Zapart, ``Econophysics in Financial Time Series Prediction'', PhD thesis, Graduate University for Advanced Studies, Japan (2009)], at first it was implemented on a CELL processor running inside a SONY PS3 games console. The NeuroIsing framework can be applied to predicting and trading foreign exchange as well as stock market index futures.

  20. ISEE 1 charged particle observations indicative of open magnetospheric field lines near the subsolar region

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Frank, L. A.

    1980-01-01

    On November 20, 1977, at 0230-0300 UT, ISEE 1 encountered unusual charged particle distributions within the magnetosphere. The three-dimensional distribution observations for energetic (greater than 24 keV) ions and plasma show the development of field-aligned asymmetries in the energetic ion distributions simultaneously with a marked change in plasma flow. It is concluded that the most likely explanation for these observations is that ISEE 1 encountered open magnetospheric field lines at its position within the magnetosphere (1030 LT and 1200 plus or minus 300 km from the magnetopause). Field lines were open near the geomagnetic equator, and the geometry was spatially or temporally variable. Other features of the field line topology are presented.

  1. Entropy production in a Glauber–Ising irreversible model with dynamical competition

    NASA Astrophysics Data System (ADS)

    Barbosa, Oscar A.; Tomé, Tânia

    2018-06-01

    An out of equilibrium Glauber–Ising model, evolving in accordance with an irreversible and stochastic Markovian dynamics, is analyzed in order to improve our comprehension concerning critical behavior and phase transitions in nonequilibrium systems. Therefore, a lattice model ruled by the competition between two Glauber dynamics acting on interlaced square lattices is proposed. Previous results have shown how the entropy production provides information about irreversibility and criticality. Mean-field approximations and Monte Carlo simulations were used in the analysis. The results obtained here show a continuous phase transition, reflected in the entropy production as a logarithmic divergence of its derivative, which suggests a shared universality class with the irreversible models invariant under the symmetry operations of the Ising model.

  2. Ising model versus normal form game

    NASA Astrophysics Data System (ADS)

    Galam, Serge; Walliser, Bernard

    2010-02-01

    The 2-spin Ising model in statistical mechanics and the 2×2 normal form game in game theory are compared. All configurations allowed by the second are recovered by the first when the only concern is about Nash equilibria. But it holds no longer when Pareto optimum considerations are introduced as in the prisoner’s dilemma. This gap can nevertheless be filled by adding a new coupling term to the Ising model, even if that term has up to now no physical meaning. An individual complete bilinear objective function is thus found to be sufficient to reproduce all possible configurations of a 2×2 game. Using this one-to-one mapping new perspectives for future research in both fields can be envisioned.

  3. 20171015 - Integrating Toxicity, Toxicokinetic, and Exposure Data for Risk-based Chemical Alternatives Assessment (ISES)

    EPA Science Inventory

    In order to predict the margin between the dose needed for adverse chemical effects and actual human exposure rates, data on hazard, exposure, and toxicokinetics are needed. In vitro methods, biomonitoring, and mathematical modeling have provided initial estimates for many extant...

  4. Measurement-noise maximum as a signature of a phase transition.

    PubMed

    Chen, Zhi; Yu, Clare C

    2007-02-02

    We propose that a maximum in measurement noise can be used as a signature of a phase transition. As an example, we study the energy and magnetization noise spectra associated with first- and second-order phase transitions by using Monte Carlo simulations of the Ising model and 5-state Potts model in two dimensions. For a finite size system, the total noise power and the low frequency white noise S(f0 and the total noise power vanishes. f(-1)(knee) is approximately the equilibration time.

  5. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  6. Tricriticality in the q-neighbor Ising model on a partially duplex clique.

    PubMed

    Chmiel, Anna; Sienkiewicz, Julian; Sznajd-Weron, Katarzyna

    2017-12-01

    We analyze a modified kinetic Ising model, a so-called q-neighbor Ising model, with Metropolis dynamics [Phys. Rev. E 92, 052105 (2015)PLEEE81539-375510.1103/PhysRevE.92.052105] on a duplex clique and a partially duplex clique. In the q-neighbor Ising model each spin interacts only with q spins randomly chosen from its whole neighborhood. In the case of a duplex clique the change of a spin is allowed only if both levels simultaneously induce this change. Due to the mean-field-like nature of the model we are able to derive the analytic form of transition probabilities and solve the corresponding master equation. The existence of the second level changes dramatically the character of the phase transition. In the case of the monoplex clique, the q-neighbor Ising model exhibits a continuous phase transition for q=3, discontinuous phase transition for q≥4, and for q=1 and q=2 the phase transition is not observed. On the other hand, in the case of the duplex clique continuous phase transitions are observed for all values of q, even for q=1 and q=2. Subsequently we introduce a partially duplex clique, parametrized by r∈[0,1], which allows us to tune the network from monoplex (r=0) to duplex (r=1). Such a generalized topology, in which a fraction r of all nodes appear on both levels, allows us to obtain the critical value of r=r^{*}(q) at which a tricriticality (switch from continuous to discontinuous phase transition) appears.

  7. A Statewide Partnership for Implementing Inquiry Science

    NASA Astrophysics Data System (ADS)

    Lytle, Charles

    The North Carolina Infrastructure for Science Education (NC-ISE) is a statewide partnership for implementing standards-based inquiry science using exemplary curriculum materials in the public schools of North Carolina. North Carolina is the 11th most populous state in the USA with 8,000,000 residents, 117 school districts and a geographic area of 48,718 miles. NC-ISE partners include the state education agency, local school systems, three branches of the University of North Carolina, the state mathematics and science education network, businesses, and business groups. The partnership, based upon the Science for All Children model developed by the National Science Resources Centre, was initiated in 1997 for improvement in teaching and learning of science and mathematics. This research-based model has been successfully implemented in several American states during the past decade. Where effectively implemented, the model has led to significant improvements in student interest and student learning. It has also helped reduce the achievement gap between minority and non-minority students and among students from different economic levels. A key program element of the program is an annual Leadership Institute that helps teams of administrators and teachers develop a five-year strategic plan for their local systems. Currently 33 of the117 local school systems have joined the NC-ISE Program and are in various stages of implementation of inquiry science in grades K-8.

  8. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    NASA Astrophysics Data System (ADS)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  9. Proximity-induced mixed odd- and even-frequency pairing in monolayer NbSe2

    NASA Astrophysics Data System (ADS)

    Aliabad, Mojtaba Rahimi; Zare, Mohammad-Hossein

    2018-06-01

    Monolayer superconducting transition-metal dichalcogenide NbSe2 is a candidate for a nodal topological superconductor by magnetic field. Because of the so-called Ising spin-orbit coupling that strongly pins the electron spins to the out-of-plane direction, Cooper pairs in monolayer superconductor NbSe2 are protected against an applied in-plane magnetic field much larger than the Pauli limit. In monolayer NbSe2, in addition to the Fermi pockets at the corners of Brillouin zone with opposite crystal momentum similar to other semiconducting transition-metal dichalcogenids, there is an extra Fermi pocket around the Γ point with much smaller spin splitting, which could lead to an alternative strategy for pairing possibilities that are manipulable by a smaller magnetic field. By considering a monolayer NbSe2-ferromagnet substrate junction, we explore the modified pairing correlations on the pocket at Γ point in hole-doped monolayer NbSe2. The underlying physics is fascinating as there is a delicate interplay of the induced exchange field and the Ising spin-orbit coupling. We realize a mixed singlet-triplet superconductivity, s +f , due to the Ising spin-orbit coupling. Moreover, our results reveal the admixture state including both odd- and even-frequency components, associated with the ferromagnetic proximity effect. Different frequency symmetries of the induced pairing correlations can be realized by manipulating the magnitude and direction of the induced magnetization.

  10. Creative Awareness in Humanities. Part I. Scope of Course. Part II. First Semester 1970-71 School Year. Teaching Forum.

    ERIC Educational Resources Information Center

    McSwain, Augusta; Hollis, Sara

    "Man and His Creative Awareness," developed by the Institute for Services to Education (ISE) in conjunction with the Thirteen-College Curriculum Program (TCCP) is a course that deals with the many aspects of human creativity: music, the visual arts, literature, poetry, drama, architecture, photography, and the film. The ISE-TCCP approach…

  11. 75 FR 3950 - Self-Regulatory Organizations; International Securities Exchange, LLC; Order Approving Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-61368; File No. SR-ISE-2009-87] Self-Regulatory... Exchange Act Release No. 61024 (November 18, 2009), 74 FR 61395 (November 24, 2009). II. Description of the...(b)(2) of the Act,\\7\\ that the proposed rule change (SR-ISE-2009-87) be, and hereby is, approved. \\7...

  12. 75 FR 32526 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Rule Change Relating to Amending the Direct Edge ECN Fee Schedule June 2, 2010. Pursuant to Section 19... Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to pass through rebates/fees from other... by ISE and not EDGA Exchange, Inc. and EDGX Exchange, Inc. Direct Edge ECN LLC (EDGA and EDGX) will...

  13. Increasing Student Performance on the Independent School Entrance Exam (ISEE) Using the Gap Analysis Approach

    ERIC Educational Resources Information Center

    Sarshar, Shanon Etty

    2013-01-01

    Using the Gap Analysis problem-solving framework (Clark & Estes, 2008), this study examined the performance gap experienced by 6th grade students on the math sections of the ISEE (Independent School Entrance Exam). The purpose of the study was to identify and validate the knowledge, motivation, and organization causes of the students' low…

  14. Ion-selective gold-thiol film on integrated screen-printed electrodes for analysis of Cu(II) ions.

    PubMed

    Li, Meng; Zhou, Hao; Shi, Lei; Li, Da-Wei; Long, Yi-Tao

    2014-02-07

    A novel type of ion-selective electrode (ISE) was manufactured for detecting trace amounts of Cu(II) ions. The basic substrates of ISE were fabricated using screen-printing technology, which could produce disposable electrodes on a large-scale with good repeatability. Moreover, the printed integrated three-electrode system of ISE could be directly used to read out the open-circuit potentials by a handheld device through a USB port. The ion-selective film was composed of gold nanorods (GNRs) and 6-(bis(pyridin-2-ylmethyl)amino)hexane-1-thiol (compound ), which were layer-by-layer modified on the electrode through an easily controlled self-assembly method. Compound contained the 2,2'-dipyridylamine (dpa) group that could coordinate with Cu(II) ions to form a 2 : 1 complex, therefore the screen-printed ISEs exhibited Nernstian potentiometric responses to Cu(II) ions with a detection limit of 6.3 × 10(-7) mol L(-1) over the range of 1.0 × 10(-6) to 1.0 × 10(-2) mol L(-1). The easily prepared screen-printed ion-selective electrode reported here was appropriate for in field analysis and pollutant detection in remote environments.

  15. An Experimental Study of the Ising Chain Statistics under the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyoshi; Wada, Masaru

    1981-11-01

    The first experimental study of the statistics of a quasi-one-dimensional Ising system under the magnetic field Hα, described by the Hamiltonian \\includegraphics{dummy.eps} has been performed, where J1 and J2 are the intra- and the inter-chain exchange constants, respectively. A single crystal of the compound (CH3)3NHCoCl3\\cdot2H2O has been used as a model sample of the ferromagnetic system with J1/kB{=}14.2 K and J2/kB{=}0.20 K. It has been revealed that the experimental values of the magnetic heat capacity under the field Hα>2J2/gzμB (≈0.8 kOe) applied along the spin preferential axis are excellently reproduced by the values calculated for the isolated Ising chain under the longitudinal field (α{=}z; gz{=}6.54). For the temperature higher than 7 K (≈J1/2kB), the experimental values of the magnetic heat capacity under the field along the spin hard axis have also agreed with the theoretical values for the isolated Ising chain under the transverse field (α{=}y; gy{=}3.90).

  16. Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics.

    PubMed

    Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin

    2017-01-01

    This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.

  17. Microscopic image processing systems for measuring nonuniform film thickness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.H.; Plawsky, J.L.; DasGupta, S.

    1994-01-01

    In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less

  18. Hybridization with a twist: Hidden (hastatic) order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over thirty years. A number of recent experiments have shed new light on the nature of this phase. In particular, de Haas-van Alphen measurements indicate nearly perfectly Ising quasiparticles deep in the hidden order phase, and recent nonlinear susceptibility measurements show that this strong Ising anisotropy persists up to and above the hidden order transition itself. Along with other features, this Ising anisotropy implies that the conduction electrons hybridize with a local Ising moment - a 5f2 state of the uranium atom with integer spin. As the hybridization mixes states of integer and half-integer spin, it is itself a spinor and this ``hastatic'' (hasta: [Latin] spear) order parameter therefore breaks both time-reversal and double time-reversal symmetries. A microscopic theory of hastatic order naturally unites a number of disparate experimental results from the large entropy of condensation to the spin rotational symmetry breaking seen in torque magnetometry, and provides a number of experimental predictions. Moreover, this new spinorial order parameter provides a window into a number of new heavy fermion phases.

  19. The role of explicit and implicit self-esteem in peer modeling of palatable food intake: a study on social media interaction among youngsters.

    PubMed

    Bevelander, Kirsten E; Anschütz, Doeschka J; Creemers, Daan H M; Kleinjan, Marloes; Engels, Rutger C M E

    2013-01-01

    This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and implicit self-esteem (ISE). Participants (N = 118; 38.1% boys; M age 11.14±.79) were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer) who ate either nothing, a small or large amount of candy. Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05) or considerable amount of candy (kcal) (β = .32, p = .001). In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal) (β = .21, p = .02); ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or "damaged" self-esteem (i.e., high ISE and low ESE) modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal) (β = -.24, p = .004; β = -.26, p<.0001, respectively). Youngsters conform to the amount of palatable food eaten by peers through social media interaction. Those with lower body esteem or damaged self-esteem may be more at risk to peer influences on food intake.

  20. The Role of Explicit and Implicit Self-Esteem in Peer Modeling of Palatable Food Intake: A Study on Social Media Interaction among Youngsters

    PubMed Central

    Bevelander, Kirsten E.; Anschütz, Doeschka J.; Creemers, Daan H. M.; Kleinjan, Marloes; Engels, Rutger C. M. E.

    2013-01-01

    Objective This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and implicit self-esteem (ISE). Methods Participants (N = 118; 38.1% boys; M age 11.14±.79) were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer) who ate either nothing, a small or large amount of candy. Results Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05) or considerable amount of candy (kcal) (β = .32, p = .001). In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal) (β = .21, p = .02); ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or “damaged” self-esteem (i.e., high ISE and low ESE) modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal) (β = −.24, p = .004; β = −.26, p<.0001, respectively). Conclusion Youngsters conform to the amount of palatable food eaten by peers through social media interaction. Those with lower body esteem or damaged self-esteem may be more at risk to peer influences on food intake. PMID:24015251

  1. Peroxiredoxins are important for the regulation of hydrogen peroxide concentrations in ticks and tick cell line.

    PubMed

    Kusakisako, Kodai; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Yoshii, Kentaro; Umemiya-Shirafuji, Rika; Fujisaki, Kozo; Tanaka, Tetsuya

    2018-03-17

    Ticks are obligate hematophagous ectoparasites, as they need to feed blood from vertebrate hosts for development. Host blood contains high levels of iron. Host-derived iron may lead to high levels of reactive oxygen species (ROS), including hydrogen peroxide (H 2 O 2 ). Since a high concentration of H 2 O 2 causes serious damage to organisms, this molecule is known to be a harmful chemical compound for aerobic organisms. On the other hand, the transparent method is compatible with chemical fluorescent probes. Therefore, we tried to establish the visualizing method for H 2 O 2 in unfed tick tissues. The combination method of a chemical fluorescent probe (BES-H 2 O 2 -Ac) with the transparent method, Scale, demonstrated in unfed tick tissues that H 2 O 2 and paraquat could induce oxidative stress in the tissues, such as the midgut and ovary. In addition, an H 2 O 2 detection method using BES-H 2 O 2 -Ac was established in Ixodes scapularis embryo-derived cell line (ISE6) in vitro to evaluate the antioxidant activity of peroxiredoxins (PRXs), H 2 O 2 scavenging enzymes, against H 2 O 2 in the cells. The effects of paraquat in ISE6 cells were also observed in the PRXs gene-silenced ISE6 cells. A high intensity of H 2 O 2 fluorescence induced by paraquat was observed in the PRX gene-knockdowned cells. These results suggest that H 2 O 2 and paraquat act as an H 2 O 2 inducer, and PRX genes are important for the regulation of the H 2 O 2 concentration in unfed ticks and ISE6 cells. Therefore, this study contributes to the search for H 2 O 2 visualization in ticks and tick cell line and furthers understanding of the tick's oxidative stress induced by H 2 O 2 . Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Interacting damage models mapped onto ising and percolation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toussaint, Renaud; Pride, Steven R.

    The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in themore » system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model to standard statistical mechanics.« less

  3. 75 FR 30095 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... on May 5, 2010, the International Securities Exchange, LLC (the ``Exchange'' or the ``ISE'') filed.... Specifically, the Exchange proposes to adopt a $0.18 per contract execution fee for ``professional customers...

  4. Inflexibility and independence: Phase transitions in the majority-rule model.

    PubMed

    Crokidakis, Nuno; de Oliveira, Paulo Murilo Castro

    2015-12-01

    In this work we study opinion formation in a population participating in a public debate with two distinct choices. We consider three distinct mechanisms of social interactions and individuals' behavior: conformity, nonconformity, and inflexibility. The conformity is ruled by the majority-rule dynamics, whereas the nonconformity is introduced in the population as an independent behavior, implying the failure of attempted group influence. Finally, the inflexible agents are introduced in the population with a given density. These individuals present a singular behavior, in a way that their stubbornness makes them reluctant to change their opinions. We consider these effects separately and all together, with the aim to analyze the critical behavior of the system. We perform numerical simulations in some lattice structures and for distinct population sizes. Our results suggest that the different formulations of the model undergo order-disorder phase transitions in the same universality class as the Ising model. Some of our results are complemented by analytical calculations.

  5. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    NASA Astrophysics Data System (ADS)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  6. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    NASA Astrophysics Data System (ADS)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  7. Ising universality describes emergent long-range synchronization of coupled ecological oscillators

    NASA Astrophysics Data System (ADS)

    Noble, Andrew

    Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation. By contrast, recent work shows how scale-invariant synchronization can emerge from locally coupled population dynamics. In particular, we have found that the transition from incoherence to long-range synchronization of coupled ecological two-cycles is described by the Ising universality class. I will discuss evidence that an Ising critical point describes long-range correlations found in data on the individual yields of female pistachio trees in a large orchard. NSF INSPIRE Grant No. 1344187.

  8. Perpendicular susceptibility and geometrical frustration in two-dimensional Ising antiferromagnets: Exact solutions

    NASA Astrophysics Data System (ADS)

    Muttalib, K. A.; Khatun, M.; Barry, J. H.

    2017-11-01

    Discovery of new materials and improved experimental as well as numerical techniques have led to a renewed interest in geometrically frustrated spin systems. However, there are very few exact results available that can provide a benchmark for comparison. In this work, we calculate exactly the perpendicular susceptibility χ⊥ for an Ising antiferromagnet with (i) nearest-neighbor pair interaction on a kagome lattice where strong frustration prevents long-range ordering and (ii) elementary triplet interactions on a kagome lattice which has no frustration but the system remains disordered down to zero temperature. By comparing with other known exact results with and without frustration, we propose that an appropriately temperature-scaled χ⊥ can be used as a quantitative measure of the degree of frustration in Ising spin systems.

  9. A flower-like Ising model. Thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Mejdani, R.; Ifti, M.

    1995-03-01

    We consider a flower-like Ising model, in which there are some additional bonds (in the “flower-core”) compared to a pure Ising chain. To understand the behaviour of this system and particularly the competition between ferromagnetic (usual) bonds along the chain and antiferromagnetic (additional) bonds across the chain, we study analytically and iteratively the main thermodynamic quantities. Very interesting is, in the zero-field and zero-temperature limit, the behaviour of the magnetization and the susceptibility, closely related to the ground state configurations and their degeneracies. This degeneracy explains the existence of non-zero entropy at zero temperature, in our results. Also, this model could be useful for the experimental investigations in studying the saturation curves for the enzyme kinetics or the melting curves for DNA-denaturation in some flower-like configurations.

  10. Selective Transient Cooling by Impulse Perturbations in a Simple Toy Model

    NASA Astrophysics Data System (ADS)

    Fabrizio, Michele

    2018-06-01

    We show in a simple exactly solvable toy model that a properly designed impulse perturbation can transiently cool down low-energy degrees of freedom at the expense of high-energy ones that heat up. The model consists of two infinite-range quantum Ising models: one, the high-energy sector, with a transverse field much bigger than the other, the low-energy sector. The finite-duration perturbation is a spin exchange that couples the two Ising models with an oscillating coupling strength. We find a cooling of the low-energy sector that is optimized by the oscillation frequency in resonance with the spin exchange excitation. After the perturbation is turned off, the Ising model with a low transverse field can even develop a spontaneous symmetry breaking despite being initially above the critical temperature.

  11. The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming

    2017-03-01

    This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.

  12. Rational group decision making: A random field Ising model at T = 0

    NASA Astrophysics Data System (ADS)

    Galam, Serge

    1997-02-01

    A modified version of a finite random field Ising ferromagnetic model in an external magnetic field at zero temperature is presented to describe group decision making. Fields may have a non-zero average. A postulate of minimum inter-individual conflicts is assumed. Interactions then produce a group polarization along one very choice which is however randomly selected. A small external social pressure is shown to have a drastic effect on the polarization. Individual bias related to personal backgrounds, cultural values and past experiences are introduced via quenched local competing fields. They are shown to be instrumental in generating a larger spectrum of collective new choices beyond initial ones. In particular, compromise is found to results from the existence of individual competing bias. Conflict is shown to weaken group polarization. The model yields new psychosociological insights about consensus and compromise in groups.

  13. Construction of phase diagrams for nanoscaled Ising thin films on the honeycomb lattice using cellular automata simulation approach

    NASA Astrophysics Data System (ADS)

    Ghaemi, Mehrdad; Javadi, Nabi

    2017-11-01

    The phase diagrams of the three-layer Ising model on the honeycomb lattice with a diluted surface have been constructed using the probabilistic cellular automata based on Glauber algorithm. The effects of the exchange interactions on the phase diagrams have been investigated. A general mathematical expression for the critical temperature is obtained in terms of relative coupling r = J1/J and Δs = (Js/J) - 1, where J and Js represent the nearest neighbor coupling within inner- and surface-layers, respectively, and each magnetic site in the surface-layer is coupled with the nearest neighbor site in the inner-layer via the exchange coupling J1. In the case of antiferromagnetic coupling between surface-layer and inner-layer, system reveals many interesting phenomena, such as the possibility of existence of compensation line before the critical temperature.

  14. 78 FR 13717 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... time such series are first opened for trading.\\12\\ \\12\\ See ISE Rule 2009(c)(3). The term ``reasonably... time such series of options is first opened for trading on the Exchange. The Exchange may also open for... Exchange Act Release No. 55575 (April 3, 2007), 72 FR 17963 (April 10, 2007) (SR-ISE-2006-59). Index Design...

  15. 76 FR 20754 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Rule Change To Adopt a Fee Cap and a Service Fee April 8, 2011. Pursuant to Section 19(b)(1) of the... of the Proposed Rule Change The ISE is proposing to establish a fee cap of $100,000 per month and a... change is to establish a monthly fee cap per ISE member organization, subject to certain exclusions...

  16. Performance evaluation of coherent Ising machines against classical neural networks

    NASA Astrophysics Data System (ADS)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  17. Coherent Ising machines—optical neural networks operating at the quantum limit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshihisa; Aihara, Kazuyuki; Leleu, Timothee; Kawarabayashi, Ken-ichi; Kako, Satoshi; Fejer, Martin; Inoue, Kyo; Takesue, Hiroki

    2017-12-01

    In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.

  18. 77 FR 16287 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... of the Proposed Rule Change The ISE is proposing to amend its API or login fees. The text of the... Exchange's API or login fees. ISE currently charges its Members a fee for each login that a Member uses for... sessions. The Exchange now proposes to lower the quote allowance for each login session from 1.8 million...

  19. Perturbative Normal Form Theory for the 2D Random-Field Ising Model

    NASA Astrophysics Data System (ADS)

    Hayden, Lorien; Raju, Archishman; Sethna, James

    Bifurcation theory is important to explain scaling in many systems. For the equilibrium random-field Ising model (RFIM) in 2D, the exponentially diverging correlation length can be derived directly from the RG flows which form a pitchfork bifurcation: dw/dl = -ɛ/2 w +w3 (Bray and Moore 1985). Our perturbative normal form theory (PNFT) predicts a term w5 to be critical in describing the behavior - it cannot be removed through an analytic change of coordinates. The new form of the correlation length produced has been observed to occur in leading order without explanation (Meinke and Middleton 2005). Performing simulations of the non-equilibrium RFIM on a Voronoi lattice uncovers a transcritical bifurcation of the form dw/dl = -ɛ/2 w +w2 + Bw3 . The RG flows determined by PNFT in this case lead directly to a form for the appropriate invariant scaling combination: s exp (- 1 / σνw) (1/w + B) C + B / σν . Using this scaling combination yields a collapse which was not possible to achieve using standard methods such as Widom scaling arguments. Further, the scaling extends over a decade in the magnitude of the disorder and explains behavior down to avalanche sizes of three, the edge of complexity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No . DGE-1144153 and a Cornell Fellowship.

  20. My Sky Tonight: Nurturing a Scientific Frame of Mind in Early Childhood

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Manning, J.; Schultz, G. R.; Gurton, S.; Plummer, J.; Callanan, M.; Jipson, J.; Palmquist, S.

    2013-06-01

    The Astronomical Society of the Pacific (ASP), in collaboration with a team of researchers, evaluators, and informal education institutions, has embarked on an NSF-funded project designed to build capacity in informal science education (ISE) practitioners by supporting development of their understanding of early childhood astronomy knowledge and the building of pedagogical skills and tools supportive of early childhood learning in informal settings. While preschool-aged children have long been considered too young and too cognitively immature to benefit from science learning, a growing body of recent research shows that children’s curiosity about science topics begins in the years prior to school, and that a child’s early years lay a powerful foundation for subsequent learning. Further, informal science educator and learning researchers argue that more effectively building on young children’s inherent curiosity about the natural world could lead to stronger science learning outcomes than waiting to introduce science in classroom settings. Consequently, using the domain of astronomy as a basis, the ASP and its partners are embarking on a project to: 1) advance the knowledge base concerning astronomy conceptions and curiosities of young children and how they can be built upon to position children for later learning, 2) develop interactive learning experiences to be used by ISE practitioners and families with small children to nurture children’s science curiosity and reasoning, 3) increase participation in astronomy by families in general and underserved families in particular, and 4) improve practice by engaging ISE practitioners in the research and development of effective practices, providing implementation tools and methods. The presenter will share project status as it gets underway.

  1. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  2. Lapse of time effects on tax evasion in an agent-based econophysics model

    NASA Astrophysics Data System (ADS)

    Seibold, Götz; Pickhardt, Michael

    2013-05-01

    We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.

  3. Validation of a Real-Time ISE Methodology to Quantify the Influence of Inhibitors of Demineralization Kinetics in vitro Using a Hydroxyapatite Model System.

    PubMed

    Huang, Wei-Te; Shahid, Saroash; Anderson, Paul

    2018-05-25

    The aim was to validate a novel protocol to measure the cariostatic efficacies of demineralization inhibitors by repeating previous SMR (scanning microradiography) studies investigating the dose response of Zn2+ and F- on demineralization kinetics in vitro using real-time Ca2+ ion selective electrodes (ISEs). In this study, Ca2+ release was used as a proxy for the extent of demineralization. Forty-eight hydroxyapatite (HAP) discs were allocated into 16 groups (n = 3) and adding either increasing [Zn2+], or [F-], similar to those used in the previous SMR studies. Each HAP disc was immersed in 50 mL, pH 4.0, buffered acetic acid for 1 h, and real-time ISE methodology was used to monitor the rate of increase in [Ca2+] in the demineralization solution. Next, either zinc acetate or sodium fluoride was added into each demineralization solution accordingly. Then after each [Zn2+] or [F-] addition, the HAP disc was further demineralized for 1 h, and ISE measurements were continued. The percentage reduction in the rate of calcium loss from hydroxyapatite (PRCLHAP) at each [Zn2+] or [F-] was calculated from the decrease in Ca2+ release rate, similar to that used in the previous SMR studies. A log-linear relationship between mean PRCLHAP and inhibitor concentration was found for both Zn2+ and F-, similar to that reported for each ion in the previous SMR studies. In conclusion, real-time Ca2+ ISE systems can be used to measure the cariostatic efficacies of demineralization inhibitors. © 2018 S. Karger AG, Basel.

  4. Immortalization-susceptible elements and their binding factors mediate rejuvenation of regulation of the type I collagenase gene in simian virus 40 large T antigen-transformed immortal human fibroblasts.

    PubMed Central

    Imai, S; Fujino, T; Nishibayashi, S; Manabe, T; Takano, T

    1994-01-01

    Dramatic changes occur in expression of the type I collagenase gene during the process of immortalization in simian virus 40 large T antigen-transformed human fibroblasts (S. Imai and T. Takano, Biochem. Biophys. Res. Commun. 189:148-153, 1992). From transient transfection assays, it was determined that these changes involved the functions of two immortalization-susceptible cis-acting elements, ISE1 and ISE2, located in a 100-bp region about 1.7 kb upstream. The profiles of binding of an activator, Proserpine, to the enhancer ISE1 were similar in the extracts of young, senescent preimmortalized and immortalized cells. ISE2 contained both negative and positive regulatory elements located adjacent to each other. The positive regulatory element consisted of a tandem array of putative Ets family- and AP-1-binding sites. An activator, Pluto, interacted with this positive regulatory element and had an AP-1-related component as a complex. The binding activity of Pluto was predominantly detected only in the extract from senescent preimmortalized cells. In contrast, a repressor, Orpheus, which bound to the ATG-rich negative regulatory element of ISE2, was prominently detected in extracts from both young preimmortalized and immortalized cells and appeared to suppress transcription in an orientation-dependent manner. Thus, the interplay of Pluto and Orpheus was suggested to be crucial for regulation of the collagenase gene accompanying in vitro aging and immortalization. Proserpine seemed to interact with Pluto to mediate strong expression of the collagenase gene in cellular senescence. On the basis of these results, we propose a model for regulation of the collagenase gene during in vitro aging and immortalization. Images PMID:7935433

  5. Overcoming Uncertainty with Help From Citizens: ISeeChange Case Studies on Urban Flooding, Indoor Heat waves, and Drought to Inform Resilience Efforts, Hazard Mitigation, and Long-term Planning

    NASA Astrophysics Data System (ADS)

    Drapkin, J. K.; Wagner, L.

    2017-12-01

    When it comes to the impacts of weather and climate, the granular local data and context needed to inform infrastructure decisions, hazard mitigation efforts, and long-term planning can't be scraped from satellites, remote sensing, or radar data. This is particularly the case with respect to the heat inside people's homes, local street flooding, and landscapes historically unaccustomed to drought conditions. ISeeChange is developing tools that empower citizens, scientists, city planners, journalists, and local community groups to collaborate and iteratively fill-in crucial data gaps as conditions change in real time. ISeeChange connects the public with national media, scientists, and data tools that support community dialogue and enable collaborative science and journalism investigations about our changing environment. ISeeChange's app and platform serve as the center of several on- the-ground community pilot initiatives in cities around the country addressing urban heat, flooding, and drought. Results from ISeeChange investigations suggest that indoor temperatures in Harlem are 7-8 degrees hotter than outdoor temperatures at night; some residents in New Orleans may be experiencing the impacts of 5-year-floods on a more regular basis, and droughts don't look or behave the same in different regions, such as New England. Our presentation will focus on pilots in New Orleans, Harlem, and New England, which demonstrate how diverse teams are producing actionable science to inform the design of resilience efforts like real-time indoor heat notification systems, green infrastructure projects to manage stormwater and flooding, and a photographic index of drought.

  6. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  7. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    NASA Technical Reports Server (NTRS)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  8. Quantum-information approach to the Ising model: Entanglement in chains of qubits

    NASA Astrophysics Data System (ADS)

    Štelmachovič, Peter; Bužek, Vladimír

    2004-09-01

    Simple physical interactions between spin- 1/2 particles may result in quantum states that exhibit exotic correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular, we present a detailed investigation of the well-known Ising model of a chain (ring) of spin- 1/2 particles (qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamiltonian for arbitrary number of spin- 1/2 particles in the chain in the standard (computer) basis, and we investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs of qubits of the Ising chain (measured in terms of a concurrence) as a function of the parameter λ has a maximum around the point λ=1 , and it monotonically decreases for large values of λ . We prove that in the limit λ→∞ this state is locally unitary equivalent to an N -partite Greenberger-Horn-Zeilinger state. We also analyze a very specific eigenstate of the Ising Hamiltonian with a zero eigenenergy (we denote this eigenstate as the X -state). This X -state exhibits the “extreme” entanglement in a sense that an arbitrary subset A of k⩽n qubits in the Ising chain composed of N=2n+1 qubits is maximally entangled with the remaining qubits (set B ) in the chain. In addition, we prove that by performing a local operation just on the subset B , one can transform the X -state into a direct product of k singlets shared by the parties A and B . This property of the X -state can be utilized for new secure multipartite communication protocols.

  9. An electromechanical Ising Hamiltonian

    PubMed Central

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-01-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling. PMID:28861469

  10. An electromechanical Ising Hamiltonian.

    PubMed

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-06-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.

  11. Bethe ansatz for two-magnon scattering states in 2D and 3D Heisenberg–Ising ferromagnets

    NASA Astrophysics Data System (ADS)

    Bibikov, P. N.

    2018-04-01

    Two different versions of Bethe ansatz are suggested for evaluation of scattering two-magnon states in 2D and 3D Heisenberg–Ising ferromagnets on square and simple cubic lattices. It is shown that the two-magnon sector is subdivided on two subsectors related to non-interacting and scattering magnons. The former subsector possess an integrable regular dynamics and may be described by a natural modification of the usual Bethe Ansatz. The latter one is characterized by a non-integrable chaotic dynamics and may be treated only within discrete degenerative version of Bethe Ansatz previously suggested by the author. Some of these results are generalized for multi-magnon states of the Heisenberg–Ising ferromagnet on a D dimensional hyper cubic lattice. Dedicated to the memory of L D Faddeev.

  12. Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.

    PubMed

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-12

    A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.

  13. Quasiperiodic Quantum Ising Transitions in 1D

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Chandran, A.; Laumann, C. R.

    2018-04-01

    Unlike random potentials, quasiperiodic modulation can induce localization-delocalization transitions in one dimension. In this Letter, we analyze the implications of this for symmetry breaking in the quasiperiodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localized and gapless. The quasiperiodic potential and localized excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of ν =1+ (exact) and z ≈1.9 , Δσ≈0.16 , and Δγ≈0.63 (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient w controls the universality class of the quasiperiodic transition and show its stability to smooth perturbations that preserve the quasiperiodic structure of the model.

  14. Dynamical quantum phase transitions in extended transverse Ising models

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  15. Accurate Mapping of Multilevel Rydberg Atoms on Interacting Spin-1 /2 Particles for the Quantum Simulation of Ising Models

    NASA Astrophysics Data System (ADS)

    de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine

    2018-03-01

    We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.

  16. Some Aspects of Mathematical Model of Collaborative Learning

    ERIC Educational Resources Information Center

    Nakamura, Yasuyuki; Yasutake, Koichi; Yamakawa, Osamu

    2012-01-01

    There are some mathematical learning models of collaborative learning, with which we can learn how students obtain knowledge and we expect to design effective education. We put together those models and classify into three categories; model by differential equations, so-called Ising spin and a stochastic process equation. Some of the models do not…

  17. 78 FR 69714 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70873; File No. SR-ISE-2013-56] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... Securities Exchange Act of 1934 (the ``Act''),\\1\\ and Rule 19b-4 thereunder,\\2\\ notice is hereby given that...

  18. 78 FR 69718 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70872; File No. SR-ISE-2013-57] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... Securities Exchange Act of 1934 (the ``Act''),\\1\\ and Rule 19b-4 thereunder,\\2\\ notice is hereby given that...

  19. 76 FR 32382 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-64562; File No. SR-ISE-2011-29] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change Relating to Second Market Fees May 27, 2011. Pursuant to Section 19(b)(1) of the Securities...

  20. 76 FR 63693 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65499; File No. SR-ISE-2011-64] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... Securities Exchange Act of 1934 (the ``Act''),\\1\\ and Rule 19b-4 thereunder,\\2\\ notice is hereby given that...

  1. 78 FR 69923 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70884; File No. SR-ISE-2013-59] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... November 15, 2013. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (the ``Act''),\\1...

  2. 78 FR 69921 - Self-Regulatory Organizations; Topaz Exchange, LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70885; File No. SR-TOPAZ-2013-11] Self..., 2013. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (the ``Act''),\\1\\ and Rule... ISE Gemini) (the ``Exchange'' or ``Topaz'') filed with the Securities and Exchange Commission...

  3. 76 FR 76463 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65861; File No. SR-ISE-2011-77] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change Relating to Network and Gateway Fees December 1, 2011. Pursuant to Section 19(b)(1) of the...

  4. 76 FR 21416 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-64292; File No. SR-ISE-2011-22] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change Relating to Network Fees April 11, 2011. Pursuant to Section 19(b)(1) of the Securities...

  5. 77 FR 14847 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66525; File No. SR-ISE-2012-09] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change Relating to Network Fees March 7, 2012. Pursuant to Section 19(b)(1) of the Securities...

  6. 76 FR 50783 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65087; File No. SR-ISE-2011-47] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... August 10, 2011. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (the ``Act''),\\1...

  7. 76 FR 65555 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65583; File No. SR-ISE-2011-68] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change to Amend the Volume Threshold for Tier-Based Rebates for Qualified Contingent Cross Orders and Solicitation Orders Executed...

  8. 76 FR 77279 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65898; File No. SR-ISE-2011-78] Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change to Amend the Threshold Levels for Tier-Based Rebates for Qualified Contingent Cross Orders and Solicitation Orders Executed...

  9. Lattice density functional theory for confined Ising fluids: comparison between different functional approximations in slit pore

    NASA Astrophysics Data System (ADS)

    Chen, Xueqian; Feng, Wei; Liu, Honglai; Hu, Ying

    2016-09-01

    In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.

  10. Modeling Dark Energy Through AN Ising Fluid with Network Interactions

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Tommasini, Damiano

    2014-12-01

    We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.

  11. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  12. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion.

    PubMed

    Colangeli, Matteo; Giardinà, Cristian; Giberti, Claudio; Vernia, Cecilia

    2018-03-01

    Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which, by tuning the reservoir magnetizations, the current in the system changes from "downhill" to "uphill". Moreover, we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a relation between equilibrium and nonequilibrium properties.

  13. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion

    NASA Astrophysics Data System (ADS)

    Colangeli, Matteo; Giardinà, Cristian; Giberti, Claudio; Vernia, Cecilia

    2018-03-01

    Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which, by tuning the reservoir magnetizations, the current in the system changes from "downhill" to "uphill". Moreover, we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a relation between equilibrium and nonequilibrium properties.

  14. An Ion-Selective Electrode for the Determination of Phencyclidine (PCP).

    DTIC Science & Technology

    1980-08-06

    as an indicator_ ectrode in potentiometric titration of PCPA at concentrations DD 1473 EDITION or I Nov soIS OSSOOL TC SEPURqITY CLAWSFICATION Of...and ISE detection limits determined as described previous (25). The PCP electrode was used as the indicator electrode in potentiometric titrations of...was standardized by potentiometric titration with a dodecyltrimethyl- ammonium bromide (DoTAB) solution using a DoTA+ ISE (25) as the indicator

  15. Data reduction and analysis of ISEE magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1982-01-01

    The ISEE-1 and -2 magnetometer data was reduced. The up and downstream turbulence associated with interplanetary shocks were studied, including methods of determining shock normals, and the similarities and differences in laminar and quasi-laminar shock structure. The associated up and downstream turbulence was emphasized. The distributions of flux transfer events, field aligned currents in the near tail, and substorm dynamics in the magnetotail were also investigated.

  16. Finitized conformal spectrum of the Ising model on the cylinder and torus

    NASA Astrophysics Data System (ADS)

    O'Brien, David L.; Pearce, Paul A.; Ole Warnaar, S.

    1996-02-01

    The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers-Ramanujan identities for the c = {1}/{2} Virasoro characters.

  17. Implicit and explicit self-esteem in remitted depressed patients.

    PubMed

    Smeijers, Danique; Vrijsen, Janna N; van Oostrom, Iris; Isaac, Linda; Speckens, Anne; Becker, Eni S; Rinck, Mike

    2017-03-01

    Low self-esteem is a symptom of depression and depression vulnerability. Prior research on self-esteem has largely focused on implicit (ISE) and explicit self-esteem (ESE) as two separate constructs, missing their interaction. Therefore, the current study investigated the interaction between ISE and ESE in a depression-vulnerable group (remitted depressed patients; RDs), compared to never-depressed controls (ND). Seventy-five RDs and 75 NDs participated in the study. To measure ESE, the Rosenberg Self-Esteem Scale (RSES) was used. The Implicit Association Test (IAT) and the Name Letter Preference Task (NLPT) were used to assess ISE. RDs reported lower ESE than NDs. However, the two groups did not differ on ISE. RDs exhibited a damaged self-esteem or a low-congruent self-esteem, similar to what has been found in currently depressed patients. Moreover, damaged self-esteem was associated with residual depressive symptoms. The results need to be interpreted with care because the IAT and NLPT did not reveal the same associations with the clinical measures. Implicit and explicit self-esteem may be different constructs in depression and studying the combination is important. The present study provides evidence indicating that damaged self-esteem may be more detrimental than low congruent self-esteem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inference of the sparse kinetic Ising model using the decimation method

    NASA Astrophysics Data System (ADS)

    Decelle, Aurélien; Zhang, Pan

    2015-05-01

    In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.

  19. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    NASA Astrophysics Data System (ADS)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  20. Experimental landfill caps for semi-arid and arid climates.

    PubMed

    Blight, Geoffrey E; Fourie, Andries B

    2005-04-01

    The United States EPA Subtitle D municipal solid waste landfill requirements specify that the permeability of a cap to a landfill be no greater than the permeability of the underliner. In recent years the concept of the evapotranspirative (ET) cap has been developed in which the cap is designed to store all rain infiltration and re-evapotranspire it during dry weather. Concern at the long period required for landfilled municipal solid waste to decompose and stabilize in arid and semi-arid climates has led to an extension of the concept of the ET cap. With the infiltrate-stabilize-evapotranspire (ISE) cap, rain infiltration during wet weather is permitted to enter the underlying waste, thus accelerating the decomposition and stabilization process. Excess infiltration is then removed from both waste and cap by evaporation during dry weather. The paper describes the construction and operation of two sets of experimental ISE caps, one in a winter rainfall semi-arid climate, and the other in a summer rainfall semi-arid climate. Observation of the rainfall, soil evaporation and amount of water stored in the caps has allowed water balances to be constructed for caps of various thicknesses. These observations show that the ISE concept is viable. In the limit, when there is insufficient rainfall to infiltrate the waste, an ISE cap operates as an ET cap.

  1. Development and Verification of a Physical Cloud-Moisture Model for Use in General Circulation Models

    DTIC Science & Technology

    1991-01-31

    referred as 3 the greenhouse effect . Since the grc 1’-ise and albedo effects are different in sign as well as magnitude, the existence of clouds may have...cloud amounts, is balanced by the greenhouse effect either globally or zonally. However, similar studies carried out by Ohring 3and Clapp (1980), Hartman...satellites, showed that the albedo effect is much greater than the greenhouse effect from changes in cloud amounts; i.e., the net radiation 3at TOA

  2. Subsystem eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Lashkari, Nima; Liu, Hong

    2018-01-01

    Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.

  3. Many-Particle Dephasing after a Quench

    NASA Astrophysics Data System (ADS)

    Kiendl, Thomas; Marquardt, Florian

    2017-03-01

    After a quench in a quantum many-body system, expectation values tend to relax towards long-time averages. However, temporal fluctuations remain in the long-time limit, and it is crucial to study the suppression of these fluctuations with increasing system size. The particularly important case of nonintegrable models has been addressed so far only by numerics and conjectures based on analytical bounds. In this work, we are able to derive analytical predictions for the temporal fluctuations in a nonintegrable model (the transverse Ising chain with extra terms). Our results are based on identifying a dynamical regime of "many-particle dephasing," where quasiparticles do not yet relax but fluctuations are nonetheless suppressed exponentially by weak integrability breaking.

  4. Many-Particle Dephasing after a Quench.

    PubMed

    Kiendl, Thomas; Marquardt, Florian

    2017-03-31

    After a quench in a quantum many-body system, expectation values tend to relax towards long-time averages. However, temporal fluctuations remain in the long-time limit, and it is crucial to study the suppression of these fluctuations with increasing system size. The particularly important case of nonintegrable models has been addressed so far only by numerics and conjectures based on analytical bounds. In this work, we are able to derive analytical predictions for the temporal fluctuations in a nonintegrable model (the transverse Ising chain with extra terms). Our results are based on identifying a dynamical regime of "many-particle dephasing," where quasiparticles do not yet relax but fluctuations are nonetheless suppressed exponentially by weak integrability breaking.

  5. Ferromagnetic transition in a simple variant of the Ising model on multiplex networks

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2018-02-01

    Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.

  6. Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.

    PubMed

    Pankratova, Nadezda; Cuartero, Maria; Jowett, Laura A; Howe, Ethan N W; Gale, Philip A; Bakker, Eric; Crespo, Gastón A

    2018-01-15

    Fluorinated tripodal compounds were recently reported to be efficient transmembrane transporters for a series of inorganic anions. In particular, this class of receptors has been shown to be suitable for the effective complexation of chloride, nitrate, bicarbonate and sulfate anions via hydrogen bonding. The potentiometric properties of urea and thiourea-based fluorinated tripodal receptors are explored here for the first time, in light of the need for reliable sensors for chloride monitoring in undiluted biological fluids. The ion selective electrode (ISE) membranes with tren-based tris-urea bis(CF 3 ) tripodal compound (ionophore I) were found to exhibit the best selectivity for chloride over major lipophilic anions such as salicylate ( [Formula: see text] ) and thiocyanate ( [Formula: see text] ). Ionophore I-based ISEs were successfully applied for chloride determination in undiluted human serum as well as artificial serum sample, the slope of the linear calibration at the relevant background of interfering ions being close to Nernstian (49.8±1.7mV). The results of potentiometric measurements were confirmed by argentometric titration. Moreover, the ionophore I-based ISE membrane was shown to exhibit a very good long-term stability of potentiometric performance over the period of 10 weeks. Nuclear magnetic resonance (NMR) titrations, potentiometric sandwich membrane experiments and density functional theory (DFT) computational studies were performed to determine the binding constants and suggest 1:1 complexation stoichiometry for the ionophore I with chloride as well as salicylate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nanothermodynamics Applied to Thermal Processes in Heterogeneous Materials

    DTIC Science & Technology

    2012-08-03

    models agree favorably with a wide range of measurements of local thermal and dynamic properties. Progress in understanding basic thermodynamic...Monte- Carlo (MC) simulations of the Ising model .7 The solid black lines in Fig. 4 show results using the uncorrected (Metropolis) algorithm on the...parameter g=0.5 (green, dash-dot), g=1 (black, solid ), and g=2 (blue, dash-dot-dot). Note the failure of the standard Ising model (g=0) to match

  8. On the dynamics of the Ising model of cooperative phenomena

    PubMed Central

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  9. A study of field-aligned currents observed at high and low altitudes in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Craven, J. D.; Frank, L. A.; Sugiura, M.

    1988-01-01

    Field-aligned current structures on auroral field lines observed at low and high altitudes using DE 1 and ISEE 2 magnetometer, and particle data observed when the spacecraft are in magnetic conjunction in the near-midnight magnetosphere, are investigated. To minimize latitudinal ambiguity, the plasma-sheet boundary layer observed with ISEE 2 and the discrete aurora at the poleward edge of the auroral oval with DE 1 are studied. The overall current observed at highest latitudes is flowing into the ionosphere, and is likely to be carried by ionospheric electrons flowing upward. There are, however, smaller-scale current structures within this region. The sense and magnitude of the field-aligned currents agree at the two sites. The ISEE 2 data suggests that the high-latitude downward current corresponds to the high-latitude boundary of the plasma-sheet boundary layer, and may be associated with the ion beams observed there.

  10. An analysis of intergroup rivalry using Ising model and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Zhao, Feng-Fei; Qin, Zheng; Shao, Zhuo

    2014-01-01

    Modeling of intergroup rivalry can help us better understand economic competitions, political elections and other similar activities. The result of intergroup rivalry depends on the co-evolution of individual behavior within one group and the impact from the rival group. In this paper, we model the rivalry behavior using Ising model. Different from other simulation studies using Ising model, the evolution rules of each individual in our model are not static, but have the ability to learn from historical experience using reinforcement learning technique, which makes the simulation more close to real human behavior. We studied the phase transition in intergroup rivalry and focused on the impact of the degree of social freedom, the personality of group members and the social experience of individuals. The results of computer simulation show that a society with a low degree of social freedom and highly educated, experienced individuals is more likely to be one-sided in intergroup rivalry.

  11. Quantum annealing with all-to-all connected nonlinear oscillators

    PubMed Central

    Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre

    2017-01-01

    Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952

  12. Bi-directional streaming of solar wind electrons greater than 80 eV - ISEE evidence for a closed-field structure within the driver gas of an interplanetary shock

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Zwickl, R. D.

    1981-01-01

    In near time coincidence with the arrival of helium enriched plasma driving the shock wave disturbance of November 12-13, 1978, strong bi-directional streaming of solar wind electrons greater than about 80 eV was observed with Los Alamos instrumentation on ISEE 3. The streaming persisted for many hours simultaneously parallel and anti-parallel to the interplanetary magnetic field which was directed roughly perpendicular to the sun-satellite line. This example of bidirectional streaming cannot be explained by field line connection to the earth's bow shock or the outward propagating interplanetary shock which passed ISEE 3 approximately 16 hours earlier. The event is explained if the local interplanetary field was a part of a magnetic bottle rooted at the sun or a disconnected loop propagating outward.

  13. Tightness of the Ising-Kac Model on the Two-Dimensional Torus

    NASA Astrophysics Data System (ADS)

    Hairer, Martin; Iberti, Massimo

    2018-05-01

    We consider the sequence of Gibbs measures of Ising models with Kac interaction defined on a periodic two-dimensional discrete torus near criticality. Using the convergence of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717-812, 2017) and a method by Tsatsoulis and Weber employed in (arXiv:1609.08447 2016), we show tightness for the sequence of Gibbs measures of the Ising-Kac model near criticality and characterise the law of the limit as the Φ ^4_2 measure on the torus. Our result is very similar to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131-1138, 1995) on Z^2, but our strategy takes advantage of the dynamic, instead of correlation inequalities. In particular, our result covers the whole critical regime and does not require the large temperature/large mass/small coupling assumption present in earlier results.

  14. Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez

    2017-11-01

    Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.

  15. Herding, minority game, market clearing and efficient markets in a simple spin model framework

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2018-01-01

    We present a novel approach towards the financial Ising model. Most studies utilize the model to find settings which generate returns closely mimicking the financial stylized facts such as fat tails, volatility clustering and persistence, and others. We tackle the model utility from the other side and look for the combination of parameters which yields return dynamics of the efficient market in the view of the efficient market hypothesis. Working with the Ising model, we are able to present nicely interpretable results as the model is based on only two parameters. Apart from showing the results of our simulation study, we offer a new interpretation of the Ising model parameters via inverse temperature and entropy. We show that in fact market frictions (to a certain level) and herding behavior of the market participants do not go against market efficiency but what is more, they are needed for the markets to be efficient.

  16. Engineered spin-spin interactions on a 2D array of trapped ions

    NASA Astrophysics Data System (ADS)

    Britton, Joe; Sawyer, Brian; Bollinger, John

    2013-05-01

    We work with laser cooled 9Be+ ions confined in a Penning trap to simulate quantum magnetic interactions. The valence electron of each ion behaves as an ideal spin- 1 / 2 particle. We recently demonstrated a uniform anti-ferromagnetic Ising interaction on a naturally occurring two-dimensional (2D) triangular crystal of 100 < N < 350 ions. The Ising interaction is generated by a spin-dependent optical dipole force (ODF). For spins separated by distance d, we show that the range can be tuned according to (d / d 0)-a, for 0 < a < 3 . For different operating parameters we can also generate an infinite range ferromagnetic Ising interaction. We also use the ODF for spectroscopy and thermometry of the normal modes of the trapped ion array. A detailed understanding of the modes is important because they mediate the spin-spin interactions. This work is supported by NIST and the DARPA OLE program.

  17. Ising Model on Tangled Chain, Some Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Mejdani, R.

    1996-09-01

    In this paper we consider an Ising model on tangled chain, where some additional bonds compared to a pure Ising chain are presented. To understand the behavior of this system and the competition between ferromagnetic bonds J along the chain and antiferromagnetic bonds J' across the chain, we have studied in detail analytically and iteratively some of the thermodynamic quantities. Particularly interesting is, in the zero-field and zero-temperature limit, the behavior of the magnetization and the susceptibility closely related to the ground-state configurations and their degeneracies. This degeneracy, presented at the condition J' ≤ -J between J and J', explains, also, the existence of nonzero entropy at zero temperature. This model applied as a lattice gas model defined on a tangled chain could be also useful for the experimental investigations in studying the saturation curves for the enzyme kinetics or the melting curves for DNA-denaturation.

  18. Quantum Hall ferromagnets and transport properties of buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Luo, Wenchen; Chakraborty, Tapash

    2015-10-01

    We study the ground states and low-energy excitations of a generic Dirac material with spin-orbit coupling and a buckling structure in the presence of a magnetic field. The ground states can be classified into three types under different conditions: SU(2), easy-plane, and Ising quantum Hall ferromagnets. For the SU(2) and the easy-plane quantum Hall ferromagnets there are goldstone modes in the collective excitations, while all the modes are gapped in an Ising-type ground state. We compare the Ising quantum Hall ferromagnet with that of bilayer graphene and present the domain-wall solution at finite temperatures. We then specify the phase transitions and transport gaps in silicene in Landau levels 0 and 1. The phase diagram depends strongly on the magnetic field and the dielectric constant. We note that there exist triple points in the phase diagrams in Landau level N =1 that could be observed in experiments.

  19. Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž

    2018-04-01

    A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior K (t )≃2 t is a consequence of translation and reflection symmetry of the Ising partition function.

  20. Background Information Relating to Southeast Asia and Vietnam (Revised Edition)

    DTIC Science & Technology

    1965-06-16

    60,000 to 80,000—mainly by coercion and " bandwagon " effect , but also by prom- ising material and political rewards. The loyalties of the hard core...exchange of letters between Bao Dai and French High Commissioner Leon Pignon puts into effect the Elysee Agree- ment. United States sends message...the "con- siderable progress" made in South Vietnam in the fight against Communist subversion and rebellion; emphasizes that effective measures to

Top