Sample records for size encapsulation efficiency

  1. [Influence of wall polymer and preparation process on the particle size and encapsulation of hemoglobin microcapsules].

    PubMed

    Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo

    2004-03-01

    Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.

  2. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    NASA Astrophysics Data System (ADS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  3. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    PubMed

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  4. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification.

    PubMed

    Wei, Qiang; Wei, Wei; Tian, Rui; Wang, Lian-Yan; Su, Zhi-Guo; Ma, Guang-Hui

    2008-07-15

    Relatively uniform-sized poly(lactide-co-ethylene glycol) (PELA) microspheres with high encapsulation efficiency were prepared rapidly by a novel method combining emulsion-solvent extraction and premix membrane emulsification. Briefly, preparation of coarse double emulsions was followed by additional premix membrane emulsification, and antigen-loaded microspheres were obtained by further solidification. Under the optimum condition, the particle size was about 1 mum and the coefficient of variation (CV) value was 18.9%. Confocal laser scanning microscope and flow cytometer analysis showed that the inner droplets were small and evenly dispersed and the antigen was loaded uniformly in each microsphere when sonication technique was occupied to prepare primary emulsion. Distribution pattern of PEG segment played important role on the properties of microspheres. Compared with triblock copolymer PLA-PEG-PLA, the diblock copolymer PLA-mPEG yielded a more stable interfacial layer at the interface of oil and water phase, and thus was more suitable to stabilize primary emulsion and protect coalescence of inner droplets and external water phase, resulting in high encapsulation efficiency (90.4%). On the other hand, solidification rate determined the time for coalescence during microspheres fabrication, and thus affected encapsulation efficiency. Taken together, improving the polymer properties and solidification rate are considered as two effective strategies to yield high encapsulation.

  5. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    PubMed

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous release rates.

  6. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2003-01-01

    In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the metHb level. The most optimum encapsulation efficiency and amount of Hb entrapped were achieved at the highest Hb concentration and the largest pore size for both extrusion buffers (62.38% and 187.14 mg Hb/mL of LEHb dispersion extruded in PBS, and 69.98% and 209.94 mg Hb/mL of LEHb dispersion extruded in PB). All LEHbs displayed good oxygen-carrying properties as indicated by their P(50) and cooperativity coefficients. LEHbs extruded in PB had an average P(50) of 23.04 mmHg and an average Hill number of 2.29, and those extruded in PBS had average values of 27.25 mmHg and 2.49. These oxygen-binding properties indicate that LEHbs possess strong potential as artificial blood substitutes. In addition, the metHb levels in PB-LEHb dispersions are significantly low even in the absence of antioxidants such as N-acetyl-L-cysteine.

  7. Characterization and Antilisterial Effect of Phosphatidylcholine Nanovesicles Containing the Antimicrobial Peptide Pediocin.

    PubMed

    de Mello, Michele Brauner; da Silva Malheiros, Patrícia; Brandelli, Adriano; Pesce da Silveira, Nádya; Jantzen, Márcia Monks; de Souza da Motta, Amanda

    2013-03-01

    Encapsulation may provide increased stability and antimicrobial efficiency to bacteriocins. In this work, the antilisterial peptide pediocin was encapsulated in nanovesicles prepared from partially purified soybean phosphatidylcholine. The maintenance of antimicrobial activity and properties of free and encapsulated pediocin was observed during 13 days at 4 °C, and after this period, the encapsulated pediocin retained 50 % its initial activity. The maintenance of the bioactive properties of free and encapsulated pediocin was observed against different species of Listeria, inhibiting Listeria monocytogenes, Listeria innocua and Listeria ivanovii. The size of vesicles containing pediocin was determined by dynamic light scattering as an average of 190 nm, with little change throughout the observation period. Polydispersity index values were around 0.201 and are considered satisfactory, indicating an adequate size distribution of liposomes. The efficiency of encapsulation was 80 %. Considering these results, the protocol used was appropriate for the encapsulation of this bacteriocin. Results demonstrate the production of stable nanoparticulate material. The maintenance of the properties of pediocin encapsulated in liposomes is fundamental to prospect the stability in different conditions of the food matrix.

  8. Development of native and modified banana starch nanoparticles as vehicles for curcumin.

    PubMed

    Acevedo-Guevara, Leonardo; Nieto-Suaza, Leonardo; Sanchez, Leidy T; Pinzon, Magda I; Villa, Cristian C

    2018-05-01

    In recent years, starch nanoparticles have been of great interest for drug delivery due to their relatively easy synthesis, biocompatibility, and vast amount of botanical sources. Native and acetylated starch obtained from green bananas were used for synthesis of curcumin-loaded starch nanoparticles. Mean particle size, encapsulation efficiency, and curcumin release in simulated gastric and intestinal fluids were studied. Both nanosystems showed sizes lower than 250 nm and encapsulation efficiency above 80%, with acetylated banana starch nanoparticles having the capacity to encapsulate more curcumin molecules. Both FTIR and XRD analyses showed that starch acetylation allows stronger hydrogen bond interaction between curcumin and the starch matrix, thus, higher encapsulation efficiency. Finally, curcumin release studies showed that acetylated banana starch nanoparticles allowed more controlled release, probably due to their stronger hydrogen bond interaction with curcumin. Copyright © 2018. Published by Elsevier B.V.

  9. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.

    PubMed

    Zhao, Jian; Liu, Chang-Sheng; Yuan, Yuan; Tao, Xin-Yi; Shan, Xiao-Qian; Sheng, Yan; Wu, Fan

    2007-03-01

    Hb (hemoglobin)-loaded particles (HbP) encapsulated by a biodegradable polymer used as oxygen carrier were prepared. A modified double emulsion and solvent diffusion/evaporation method was adopted. All experiments were performed based on two types of biodegradable polymers, poly(epsilon-caprolactone) (PCL) and poly(epsilon-caprolactone-ethylene glycol) (PCL-PEG). The biodistribution and the survival time in blood of the particles were investigated in a mouse model. Encapsulation efficiency and pore-connecting efficiency were evaluated by a novel sulfocyanate potassium method. The influence of process parameters on the particle size and pore-connecting efficiency (PCE%) of nanoparticles have been discussed. The prepared conditions: solvent, external aqueous phase, pressure were discussed. The system utilizing dichloromethane (DCM)/ethyl acetate (EA) as a solvent with an unsaturated external aqueous phase yielded the highest encapsulation efficiency (87.35%) with a small mean particle size (153 nm). The formation of porous channels was attributed to the diffusion of solvent. The PCE% was more sensitive to the rate of solvent diffusion that was obviously affected by the preparation temperature. The PCE% reached 87.47% when PCL-PEG was employed at 25 degrees C. P(50) of HbP was 27 mmHg, which does not seem to be greatly affected by the encapsulation procedure. In vivo, following intravenous injection of 6-coumarin labeled HbP, the major organ accumulating Hb-loaded particles was the liver. The half-life of nano-sized PCL HbP was 3.1 times as long as the micro-sized PCL HbP. Also, Nano-sized as well as a PEGylated surface on HbP is beneficial for prolonged blood residence (7.2 fold increase).

  10. Random breakup of microdroplets for single-cell encapsulation

    NASA Astrophysics Data System (ADS)

    Um, Eujin; Lee, Seung-Goo; Park, Je-Kyun

    2010-10-01

    Microfluidic droplet-based technology enables encapsulation of cells in the isolated aqueous chambers surrounded by immiscible fluid but single-cell encapsulation efficiency is usually less than 30%. In this letter, we introduce a simple microgroove structure to break droplets into random sizes which further allows collecting of single-cell [Escherichia coli (E. coli)] containing droplets by their size differences. Pinched-flow separation method is integrated to sort out droplets of certain sizes which have high probability of containing one cell. Consequently, we were able to obtain more than 50% of droplets having single E. coli inside, keeping the proportion of multiple-cell containing droplets less than 16%.

  11. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model

    PubMed Central

    Ali, Hazem; Kalashnikova, Irina; White, Mark Andrew; Sherman, Michael; Rytting, Erik

    2013-01-01

    The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140–298 nm, and encapsulation efficiency ranging from 52–89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently-labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia. PMID:23850397

  12. Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles.

    PubMed

    Pooja, Deep; Babu Bikkina, Dileep J; Kulhari, Hitesh; Nikhila, Nalla; Chinde, Srinivas; Raghavendra, Y M; Sreedhar, B; Tiwari, Ashok K

    2014-08-01

    Silibinin is reported to possess multiple biological activities. However, its hydrophobic nature limits its bioavailability compromising in vivo biological activities. Nanoparticles-based delivery of such molecules has emerged as new technique to resolve these issues. Bio-degradable, compatible and adhesive nature of chitosan has recently attracted its suitability as a carrier for biologically active molecules. This study presents fabrication and characterization of chitosan-tripolyphosphate based encapsulation of silibinin. Various preparations of silibinin encapsulated chitosan-tripolyphosphate nanoparticles were studied for particle size, morphology, zeta-potential, and encapsulation efficiencies. Preparations were also evaluated for cytotoxic activities in vitro. The optimized silibinin loaded chitosan nanoparticles were of 263.7±4.1nm in particle size with zeta potential 37.4±1.57mV. Nanoparticles showed high silibinin encapsulation efficiencies (82.94±1.82%). No chemical interactions between silibinin and chitosan were observed in FTIR analysis. Powder X-ray diffraction analysis revealed transformed physical state of silibinin after encapsulation. Surface morphology and thermal behaviour were determined using TEM and DSC analysis. Encapsulated silibinin displayed increased dissolution and better cytotoxicity against human prostate cancer cells (DU145) than silibinin alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Formulation and evaluation of lidocaine base ethosomes for transdermal delivery.

    PubMed

    Zhu, Xiaoliang; Li, Fuli; Peng, Xuebiao; Zeng, Kang

    2013-08-01

    Although transdermal preparations of local anesthetics have been used to reduce pain caused by skin surgery, these preparations cannot effectively penetrate through the epidermis because of the barrier formed by the stratum corneum and the thick epidermis. Ethosomes can effectively transport drugs across the skin because of their thermodynamic stability, small size, high encapsulation efficiency, and percutaneous penetration. We evaluated lidocaine base ethosomes by measuring their loading efficiency, encapsulation efficiency, thermodynamic stability, and percutaneous penetration capability in vitro, and their effectiveness and cutaneous irritation in vivo. Lidocaine base ethosomes were prepared using the injection-sonication-filter method. Size, loading efficiency, encapsulation efficiency, and stability were evaluated using a Zetasizer and high performance liquid chromatography. Formulation was determined by measuring the maximum encapsulation efficiency in the orthogonal test. Percutaneous penetration efficiency in vitro was analyzed using a Franz-type diffusion cell experiment. In vivo effectiveness was analyzed using the pinprick test. Cutaneous irritancy tests were performed on white guinea pigs, followed by histopathologic analysis. The results were compared with lidocaine liposomes as well as lidocaine delivered in a hydroethanolic solution. Lidocaine base ethosomes composed of 5% (w/w) egg phosphatidyl choline, 35% (w/w) ethanol, 0.2% (w/w) cholesterol, 5% (w/w) lidocaine base, and ultrapure water had a mean maximum encapsulation of 51% ± 4%, a mean particle size of 31 ± 3 nm, and a mean loading efficiency of 95.0% ± 0.1%. The encapsulation efficiency of lidocaine base ethosomes remained stable for 60 days at 25°C ± 1°C (95% confidence interval [CI], -1.12% to 1.34%; P = 0.833). The transdermal flux of lidocaine base differed significantly for the 3 preparations (F = 120, P < 0.001), being significantly greater from ethosomes than from liposomes (95% corrected CI, 1129-1818 µg/(cm(2)·h); P < 0.001), and from hydroethanolic solution (95% corrected CI, 1468-2157 µg/(cm(2)·h); P < 0.001). Lidocaine base ethosomes had a shorter onset time and longer duration in vivo than did lidocaine base liposomes or lidocaine delivered in a hydroethanolic solution. Lidocaine base ethosomes showed no evidence of dermal irritation in guinea pigs. Ethosomes are potential carriers of local anesthetics across the skin and may have applicability for other percutaneous drugs that require rapid onset.

  14. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    PubMed

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion - Improving the initial and long-term encapsulation efficiency of a model active ingredient.

    PubMed

    Hattrem, Magnus N; Kristiansen, Kåre A; Aachmann, Finn L; Dille, Morten J; Draget, Kurt I

    2015-06-20

    A challenge in formulating water-in-oil-in-water (W/O/W) emulsions is the uncontrolled release of the encapsulated compound prior to application. Pharmaceuticals and nutraceuticals usually have amphipathic nature, which may contribute to leakage of the active ingredient. In the present study, cyclodextrins (CyDs) were used to impart a change in the relative polarity and size of a model compound (ibuprofen) by the formation of inclusion complexes. Various inclusion complexes (2-hydroxypropyl (HP)-β-CyD-, α-CyD- and γ-CyD-ibuprofen) were prepared and presented within W/O/W emulsions, and the initial and long-term encapsulation efficiency was investigated. HP-β-CyD-ibuprofen provided the highest encapsulation of ibuprofen in comparison to a W/O/W emulsion with unassociated ibuprofen confined within the inner water phase, with a four-fold increase in the encapsulation efficiency. An improved, although lower, encapsulation efficiency was obtained for the inclusion complex γ-CyD-ibuprofen in comparison to HP-β-CyD-ibuprofen, whereas α-CyD-ibuprofen had a similar encapsulation efficiency to that of unassociated ibuprofen. The lower encapsulation efficiency of ibuprofen in combination with α-CyD and γ-CyD was attributed to a lower association constant for the γ-CyD-ibuprofen inclusion complex and the ability of α-CyD to form inclusion complexes with fatty acids. For the W/O/W emulsion prepared with HP-β-CyD-ibuprofen, the highest encapsulation of ibuprofen was obtained at hyper- and iso-osmotic conditions and by using an excess molar ratio of CyD to ibuprofen. In the last part of the study, it was suggested that the chemical modification of the HP-β-CyD molecule did not influence the encapsulation of ibuprofen, as a similar encapsulation efficiency was obtained for an inclusion complex prepared with mono-1-glucose-β-CyD. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Preparation of a novel composite nanofiber gel-encapsulated human placental extract through layer-by-layer self-assembly

    PubMed Central

    LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN

    2016-01-01

    Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463

  17. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.

    PubMed

    Santo, Islane Espirito; Campardelli, Roberta; Albuquerque, Elaine Cabral; Vieira De Melo, Silvio A B; Reverchon, Ernesto; Della Porta, Giovanna

    2015-11-01

    Supercritical fluid extraction using a high-pressure packed tower is proposed not only to remove the ethanol residue from liposome suspensions but also to affect their size and distribution leading the production of nanosomes. Different operating pressures, temperatures, and gas to liquid ratios were explored and ethanol was successfully extracted up to a value of 400 ppm; liposome size and distribution were also reduced by the supercritical processing preserving their integrity, as confirmed by Z-potential data and Trasmission Electron Microscopy observations. Operating at 120 bar and 38°C, nanosomes with a mean diameter of about 180 ± 40 nm and good storage stability were obtained. The supercritical processing did not interfere on drug encapsulation, and no loss of entrapped drug was observed when the water-soluble fluorescein was loaded as a model compound. Fluorescein encapsulation efficiency was 30% if pure water was used during the supercritical extraction as processing fluid; whereas an encapsulation efficiency of 90% was obtained if the liposome suspension was processed in water/fluorescein solution. The described technology is easy to scale up to an industrial production and merge in one step the solvent extraction, liposome size engineering, and an excellent drug encapsulation in a single operation unit. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Characterisation of the Poly-(Vinylpyrrolidone)-Poly-(Vinylacetate-Co-Crotonic Acid) (PVP:PVAc-CA) Interpolymer Complex Matrix Microparticles Encapsulating a Bifidobacterium lactis Bb12 Probiotic Strain.

    PubMed

    Mamvura, C I; Moolman, F S; Kalombo, L; Hall, A N; Thantsha, M S

    2011-06-01

    The method of producing poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex matrix microparticles in supercritical carbon dioxide (scCO2), encapsulating bacteria, has recently been developed. This study was aimed at probing the external and internal structure of these microparticles, which can be used in food. The encapsulation efficiency and distribution of encapsulated Bifidobacterium lactis Bb12 within these microparticles were also investigated. Scanning electron microscopy (SEM) revealed irregular, mostly small, smooth microparticles with no visible bacterial cells on the surface. However, some of the microparticles appeared to have porous surfaces. The results of a Microtrac S3500 particle size analyzer showed that the PVP:PVAc-CA interpolymer complex matrix microparticles encapsulating B. lactis Bb12 had an average particle size of 166.1 μm (<350 μm designated standard size for microparticles). The D 10, D 50 and D 90 values for these microparticles were 48.16, 166.06 and 382.55 μm, respectively. Both SEM and confocal laser scanning microscopy showed a high density of bacterial cells within the microparticles. An average encapsulation efficiency of 96% was achieved. Consequently, the microparticles have the potential to be evenly distributed in foods, deliver adequate amounts of probiotics and produce minimal adverse effects on the texture and mouth feel of the foods into which they are incorporated.

  19. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K

    2016-05-01

    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles

    PubMed Central

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-01-01

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560

  1. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.

    PubMed

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-09-26

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

  2. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier.

    PubMed

    Xu, Yongmei; Du, Yumin; Huang, Ronghua; Gao, Leping

    2003-12-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.

  3. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    PubMed

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microfluidic approach for encapsulation via double emulsions.

    PubMed

    Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin

    2014-10-01

    Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Microencapsulation of xylitol by double emulsion followed by complex coacervation.

    PubMed

    Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S

    2015-03-15

    The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    PubMed

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  8. Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation

    PubMed Central

    Caetano, Liliana A.; Almeida, António J.; Gonçalves, Lídia M.D.

    2016-01-01

    The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route. PMID:27187418

  9. Process optimization by use of design of experiments: Application for liposomalization of FK506.

    PubMed

    Toyota, Hiroyasu; Asai, Tomohiro; Oku, Naoto

    2017-05-01

    Design of experiments (DoE) can accelerate the optimization of drug formulations, especially complexed formulas such as those of drugs, using delivery systems. Administration of FK506 encapsulated in liposomes (FK506 liposomes) is an effective approach to treat acute stroke in animal studies. To provide FK506 liposomes as a brain protective agent, it is necessary to manufacture these liposomes with good reproducibility. The objective of this study was to confirm the usefulness of DoE for the process-optimization study of FK506 liposomes. The Box-Behnken design was used to evaluate the effect of the process parameters on the properties of FK506 liposomes. The results of multiple regression analysis showed that there was interaction between the hydration temperature and the freeze-thaw cycle on both the particle size and encapsulation efficiency. An increase in the PBS hydration volume resulted in an increase in encapsulation efficiency. Process parameters had no effect on the ζ-potential. The multiple regression equation showed good predictability of the particle size and the encapsulation efficiency. These results indicated that manufacturing conditions must be taken into consideration to prepare liposomes with desirable properties. DoE would thus be promising approach to optimize the conditions for the manufacturing of liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice.

    PubMed

    Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A

    2018-05-29

    Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.

  11. Novel method of niosome generation using supercritical carbon dioxide part I: process mechanics.

    PubMed

    Wagner, Michael E; Rizvi, Syed S H

    2015-01-01

    A novel method for the production of non-ionic surfactant vesicles (niosomes) using an rapid expansion of supercritical solution (RESS)-based process coupled with a gas ejector is presented along with an investigation of parameters affecting niosome morphology, size and encapsulation efficiency of a 0.2 M D-glucose solution in Tris buffer at physiological pH. The solubility of the non-ionic surfactant polyoxyethylene(4) sorbitan monostearate in SC-CO2 was determined at three pressures (10, 15 and 20 MPa) and three temperatures (40, 50 and 60 °C). Mole fraction of Tween61 in the vapor phase increased with pressure at 40 °C, but did not change with pressure at 50 or 60 °C. Solubility data were correlated using the Peng-Robinson equation of state (PREOS) with the Panagiotopoulos and Reid mixing rule. Vesicles were either multilamellar or unilamellar, depending on the degree of precipitation of the lipid formulation at the point of aqueous cargo introduction. Vesicle particle size distributions were bimodal, with the 80-99% of the liposomal volume contributed niosomes ranging in size from 3 to 7 μm and the remaining niosomes ranging from 239 to 969 nm, depending on the system configuration. Encapsulation efficiency as high as 28% using the gas ejector to introduce the glucose cargo solution was achieved. Vesicle particle size and encapsulation efficiency were shown to be dependent on cargo droplet formation.

  12. Cashew gum and inulin: New alternative for ginger essential oil microencapsulation.

    PubMed

    Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Silva, Eric Keven; Borges, Soraia Vilela; Oliveira, Cassiano Rodrigues de; Yoshida, Maria Irene; Feitosa, Judith Pessoa de Andrade; de Paula, Regina Célia Monteiro

    2016-11-20

    This study aimed to evaluate the effect of partial replacement of cashew gum by inulin used as wall materials, on the characteristics of ginger essential oil microencapsulated by spray drying with ultrasound assisted emulsions. The characterization of particles was evaluated as encapsulation efficiency and particle size. In addition, the properties of the microcapsules were studied through FTIR analysis, adsorption isotherms, thermal gravimetric analysis, X-ray and scanning electron microscopy. It was found that the solubility of the treatments was affected by the composition of the wall material and reached higher values (89.80%) when higher inulin concentrations were applied. The encapsulation efficiency (15.8%) was lower at the highest inulin concentration. The particles presented amorphous characteristics and treatment with cashew gum as encapsulant exhibited the highest water absorption at high water activity. The cashew gum and inulin matrix (3:1(w/w) ratio) showed the best characteristics regarding the encapsulation efficiency and morphology, showing no cracks in the structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    PubMed

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells

    PubMed Central

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-01-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004

  15. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome models.

  16. Optimization of gatifloxacin liposomal hydrogel for enhanced transcorneal permeation.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The aim of this study was to prepare and characterize a topically effective prolonged-release ophthalmic gatifloxacin liposomal hydrogel formulation. Reverse-phase evaporation was used for the preparation of liposomes consisting of phosphatidylcholine (PC) and cholesterol (CH). The effect of PC:CH molar ratio on the percentage of drug encapsulated was investigated. The effect of additives, such as stearylamine (SA) or dicetyl phosphate (DP), as positive and negative charge inducers, respectively, was studied. Morphology, mean size, encapsulation efficiency, and in vitro release of gatifloxacin from liposomes were evaluated. For hydrogel preparation, carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency was found at the 5:3 PC:CH molar ratio; by increasing CH content above this limit, the encapsulation efficiency decreased. Positively charged liposomes showed superior entrapment efficiency over other liposomes. Hydrogel-containing liposomes with lipid content PC, CH, and SA in a molar ratio of 5:3:1, respectively, showed best release and transcorneal permeation. These results suggest that the encapsulation of gatifloxacin into liposomes prolonged the in vitro release, depending on composition of the vesicles. In addition, the polymer hydrogel used in the preparation ensured steady, prolonged transcorneal permeation. In conclusion, gatifloxacin liposomal hydrogel is a suitable delivery system for the improvement of the ocular bioavailability of gatifloxacin.

  17. Assessment of formulated amodiaquine microparticles in Leishmania donovani infected rats.

    PubMed

    Nettey, Henry; Allotey-Babington, Grace Lovia; Somuah, Isaac; Banga, N'guessan Benoit; Afrane, Barima; Amponsah, Seth Kwabena; Annor, Henrietta; Darko, Henry; Hanson, Kwame; Aidoo, Anoa; Broni, Marisa Nyarkoa; Sasu, Clement; Nyarko, Alexander

    2017-02-01

    The aim of this study was to formulate, characterise and evaluate the activity of amodiaquine microparticles against Leishmania donovani. Microparticles were formulated by encapsulating the drug in bovine serum albumin using the spray-dryer method. The microparticles were evaluated for size, zeta potential, drug content, encapsulation efficiency and in vitro release profile. The size range of the microparticles formulated was between 1.9 and 10 μm with an average zeta potential of -25.5 mV. Of the expected 20% drug loading, an average of 18.27% was obtained giving an encapsulation efficiency of 91.35%. Pharmacokinetic profile of amodiaquine improved with microencapsulation of the drug with C max , AUC 0→48 and t 1//2 all significantly higher than amodiaquine solution. Amodiaquine microparticles showed an overall higher bioavailability and hence were more effective in eliminating intra-tissue parasites than the drug solution. It would therefore be expected that the formulated microparticles will be more effective in treating visceral leishmaniasis.

  18. Preparation and characterization of clove essential oil-loaded liposomes.

    PubMed

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Preparation and characterization of nanoemulsion].

    PubMed

    Sun, Yu-Jing; Wu, Dao-Cheng; Cao, Yun-Xin; Sui, Yan-Fang

    2005-01-01

    To prepare nanoemulsion-encapsulated BSA-FITC (NEBSA-FITC), study its characteristics, and measure its uptake by dendritic cells (DCs) and peritoneal macrophages. NEBSA-FITC was prepared by a method of interfacial polymerization.The encapsulation rate, drug-carrying capacity and stability of the nanoemulsion were determined by Sephadex-G100 chromatography. The shape and size of NEBSA-FITC were observed under electron microscope. The uptake of NEBSA-FITC by DCs and macrophage cells was detected by FACS and laser confocal microscopy. The mean size of NEBSA-FITC was (25+/-10) nm. The encapsulation rate was 91%, the drug-carrying capacity was 0.091 g/L and NEBSA-FITC had a good stability. The FACS analysis showed that DCs and macrophage cells could take in more NEBSA-FITC than free BSA. The observation under laser confocal microscope found that NEBSA-FITC was located in the cytoplasm of DCs. Nanoemulsion can be efficiently taken by DCs and macrophage cells, and therefore may be promising efficient carrier of APCs-targeted antitumor vaccine.

  20. Preparation and characterization of protein-loaded poly(epsilon-caprolactone) microparticles for oral vaccine delivery.

    PubMed

    Benoit, M A; Baras, B; Gillard, J

    1999-07-05

    This paper describes the conditions of preparation of poly(epsilon-caprolactone) (PCL) microparticles with a mean size between 5 and 10 microm, obtained by a double emulsion-solvent evaporation technique, suitable for oral vaccine delivery. Bovine serum albumin (BSA) was used as water-soluble model antigen for encapsulation. Different parameters influencing the microparticle size, the BSA loading and entrapment efficiency were investigated. Spherical, smooth and homogeneously distributed microparticles were produced with a BSA loading and entrapment efficiency reaching, respectively, 5% (w/w) and 30%. Polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF) analyses of BSA released from these particles confirmed that the entrapped protein seemed to remain unaltered by the protein encapsulation process. Copyright.

  1. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles.

    PubMed

    Durand, L; Habran, N; Henschel, V; Amighi, K

    2010-01-01

    The aim of this study was to encapsulate ethylhexyl methoxycinnamate (EMC), a commonly used UVB filter, in a solid lipid matrix in order to obtain microparticles and then nanoparticles to reduce its photo-instability under UV light exposure. Glyceryl behenate, rice bran wax and ozokerite were investigated for encapsulating EMC. The suspensions of nanoparticles contained 70% encapsulated EMC (relative to the lipid mass). The absorbance level at 310 nm of suspensions containing nanoparticles was more than twice that of those containing microparticles. So, decreasing the size of particles improved the efficiency of light protection, regardless of the lipid material used. Moreover, free EMC presented a 30% loss of its efficiency after 2 h of irradiation, whereas the three NLC formulations showed a loss of absorbency between 10% and 21%. The in vitro cutaneous penetration test did not show a higher potential penetration for EMC contained in nanosuspensions compared to free EMC.

  2. In situ forming biodegradable poly(ε-caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies.

    PubMed

    Salis, Andrea; Porcu, Elena P; Gavini, Elisabetta; Fois, Giulia R; Icaro Cornaglia, Antonia; Rassu, Giovanna; Diana, Marco; Maestri, Marcello; Giunchedi, Paolo; Nikolakakis, Ioannis

    2017-04-01

    In situ forming biodegradable poly(ε-caprolactone) (PCL) microspheres (PCL-ISM) system was developed as a novel embolic agent for transarterial embolization (TAE) therapy of hepatocellular carcinoma (HCC). Ibuprofen sodium (Ibu-Na) was loaded on this platform to evaluate its potential for the treatment of post embolization syndrome. The influence of formulation parameters on the size/shape, encapsulation efficiency and drug release was investigated using mixture experimental design. Regression models were derived and used to optimize the formulation for particle size, encapsulation efficiency and drug release profile for TAE therapy. An ex vivo model using isolated rat livers was established to assess the in situ formation of microspheres. All PCL-ISM components affected the studied properties and fitting indices of the regression models were high (Radj 2  = 0.810 for size, 0.964 encapsulation efficiency, and 0.993 or 0.971 for drug release at 30 min or 48 h). The optimized composition was: PCL = 4%, NMP = 43.1%, oil = 48.9%, surfactant = 2% and drug = 2%. Ex vivo studies revealed that PCL-ISM was able to form microspheres in the hepatic arterial bed. PCL-ISM system provides a novel tool for the treatment of HCC and post-embolization syndrome. It is capable of forming microspheres with desirable size and Ibu-Na release profile after injection into blood vessels.

  3. Biodegradable Chitosan Magnetic Nanoparticle Carriers for Sub-Cellular Targeting Delivery of Artesunate for Efficient Treatment of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Subramanian, Natesan; Abimanyu, Sugumaran; Vinoth, Jeevanesan; Sekar, Ponnusamy Chandra

    2010-12-01

    Artesunate is a semi-synthetic derivative of artemisinin, the active principle extracted from Artemisia annua. It possesses good anti-proliferative activity and anti-angiogenic activity with very low toxicity to normal healthy cells. The drawback of most cancer drugs is their inability to accumulate selectively in the cancerous cells. So, large quantities of doses have to be administered to get the required therapeutic concentration in the target site and it resulted in many serious side effects due to the exposure of healthy cells to higher concentrations of cytotoxic drugs. The problem may be solved by selectively and quantitatively accumulating the drug at target site using magnetic nanoparticles guided by an externally applied magnetic field. A modest attempt has been made in this present study, the artesunate magnetic nanoparticle was successfully formulated using two forms of chitosan and evaluated for its in-vitro characteristics like surface morphology, particle size and distribution, zeta potential, magnetic susceptibility, encapsulation efficiency, loading capacity and in-vitro drug release. The synthesized magnetite size was 73 nm and the size of developed magnetic nanoparticles of artesunate was in the range of 90 to 575 nm. Acetic acid soluble chitosan at low concentration exhibit highest encapsulation efficiency and drug loading whereas increase in water soluble chitosan concentration increases the encapsulation efficiency and drug loading in formulations. The developed chitosan magnetic nanoparticles of artesunate shows better release characteristics and may be screened for its in-vivo breast cancer activity.

  4. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.

    PubMed

    Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja

    2014-02-01

    This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Donelick, R. A.; Donelick, M. B.

    2016-12-01

    We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as coal combustion products (fly ash, bottom ash, boiler slag, other) that may be put to beneficial use as part of the encapsulating structure; however, coal strip mines have lower volume to surface ratios than mine pits increasing the potential need to use geomembranes.

  7. Controlling chitosan-based encapsulation for protein and vaccine delivery

    PubMed Central

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  8. Design and evaluation of liposomal formulation of pilocarpine nitrate.

    PubMed

    Rathod, S; Deshpande, S G

    2010-03-01

    Prolonged release drug delivery system of pilocarpine nitrate was made by optimizing thin layer film hydration method. Egg phosphatidylcholine and cholesterol were used to make multilamellar vesicles. Effects of charges over the vesicles were studied by incorporating dicetylphosphate and stearylamine. Various factors, which may affect the size, shape, encapsulation efficiency and release rate, were studied. Liposomes in the size range 0.2 to 1 µm were obtained by optimizing the process. Encapsulation efficiency of neutral, positive and negatively charged liposomes were found to be 32.5, 35.4 and 34.2 percent, respectively. In vitro drug release rate was studied on specially designed model. Biological response in terms of reduction in intraocular pressure was observed on rabbit eyes. Pilocarpine nitrate liposomes were lyophilized and stability studies were conducted.

  9. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation.

    PubMed

    Silva, A L; Rosalia, R A; Sazak, A; Carstens, M G; Ossendorp, F; Oostendorp, J; Jiskoot, W

    2013-04-01

    Overlapping synthetic long peptides (SLPs) hold great promise for immunotherapy of cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are being developed as delivery systems to improve the potency of peptide-based therapeutic cancer vaccines. Our aim was to optimize PLGA NP for SLP delivery with respect to encapsulation and release, using OVA24, a 24-residue long synthetic antigenic peptide covering a CTL epitope of ovalbumin (SIINFEKL), as a model antigen. Peptide-loaded PLGA NPs were prepared by a double emulsion/solvent evaporation technique. Using standard conditions (acidic inner aqueous phase), we observed that either encapsulation was very low (1-30%), or burst release extremely high (>70%) upon resuspension of NP in physiological buffers. By adjusting formulation and process parameters, we uncovered that the pH of the first emulsion was critical to efficient encapsulation and controlled release. In particular, an alkaline inner aqueous phase resulted in circa 330 nm sized NP with approximately 40% encapsulation efficiency and low (<10%) burst release. These NP showed enhanced MHC class I restricted T cell activation in vitro when compared to high-burst releasing NP and soluble OVA24, proving that efficient entrapment of the antigen is crucial to induce a potent cellular immune response. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    PubMed

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.

  11. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    PubMed

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation.

    PubMed

    Collins, David J; Neild, Adrian; deMello, Andrew; Liu, Ai-Qun; Ai, Ye

    2015-09-07

    There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within a controlled microenvironment. Most cell encapsulation work has focused on the development and use of passive methods, where droplets are produced continuously at high rates by pumping fluids from external pressure-driven reservoirs through defined microfluidic geometries. With limited exceptions, the number of cells encapsulated per droplet in these systems is dictated by Poisson statistics, reducing the proportion of droplets that contain the desired number of cells and thus the effective rate at which single cells can be encapsulated. Nevertheless, a number of recently developed actively-controlled droplet production methods present an alternative route to the production of droplets at similar rates and with the potential to improve the efficiency of single-cell encapsulation. In this critical review, we examine both passive and active methods for droplet production and explore how these can be used to deterministically and non-deterministically encapsulate cells.

  13. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    NASA Astrophysics Data System (ADS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  14. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    PubMed

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  15. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    PubMed Central

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  16. Optimisation of preparation conditions and properties of phytosterol liposome-encapsulating nattokinase.

    PubMed

    Dong, Xu-Yan; Kong, Fan-Pi; Yuan, Gang-You; Wei, Fang; Jiang, Mu-Lan; Li, Guang-Ming; Wang, Zhan; Zhao, Yuan-Di; Chen, Hong

    2012-01-01

    Phytosterol liposomes were prepared using the thin film method and used to encapsulate nattokinase (NK). In order to obtain a high encapsulation efficiency within the liposome, an orthogonal experiment (L9 (3)(4)) was applied to optimise the preparation conditions. The molar ratio of lecithin to phytosterols, NK activity and mass ratio of mannite to lecithin were the main factors that influenced the encapsulation efficiency of the liposomes. Based on the results of a single-factor test, these three factors were chosen for this study. We determined the optimum extraction conditions to be as follows: a molar ratio of lecithin to phytosterol of 2 : 1, NK activity of 2500 U mL⁻¹ and a mass ratio of mannite to lecithin of 3 : 1. Under these optimised conditions, an encapsulation efficiency of 65.25% was achieved, which agreed closely with the predicted result. Moreover, the zeta potential, size distribution and microstructure of the liposomes prepared were measured, and we found that the zeta potential was -51 ± 3 mV and the mean diameter was 194.1 nm. From the results of the scanning electron microscopy, we observed that the phytosterol liposomes were round and regular in shape and showed no aggregation.

  17. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    NASA Astrophysics Data System (ADS)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  18. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High-oil-load encapsulation of medium-chain triglycerides and D-limonene mixture in modified starch by spray drying.

    PubMed

    Paramita, Vita; Furuta, Takeshi; Yoshii, Hidefumi

    2012-02-01

    Oil mixtures of medium-chain triglycerides (MCT) and D-limonene in mixing ratios from 10 to 100 wt% were encapsulated in modified starch (wall material) by spray drying to produce oil-rich powders. The oil load (mass ratio of oil mixture to wall material) of the infeed emulsion markedly influenced the properties of the infeed liquid and the characteristics of the resulting powder. The viscosity of the infeed liquid and the particle size of the powder exponentially decreased with increasing oil load, while the emulsion droplet size in the infeed liquid increased. In addition, retention of D-limonene during spray drying also decreased markedly with increasing oil load. Irrespective of the different oil loads and concentrations of the wall material, D-limonene retention was well correlated with the emulsion droplet diameter of the infeed liquid. The encapsulation efficiency of the oil mixture exhibited a maximum value (almost 100%) at an oil load between 0.5 and 1.0, before decreasing at higher oil loads. At an oil load of 2.0, the encapsulation efficiency of D-limonene was reduced to almost zero, while around 40% of the initial MCT was encapsulated in the powder. The increase in oil load also led to increased amounts of surface oil of MCT and D-limonene in the resulting powder due to the increasing emulsion droplet diameter of the infeed liquids. This study proposes the microencapsulation of medium-chain triglycerides under high-oil-load conditions by spray drying. The powders prepared by this process provide significant benefits in terms of rapid energy conversion after consumption without accumulation in the body. Important quality factors of the powder products such as the encapsulation efficiency and the amount of surface oil were examined to understand the optimum process conditions for spray drying. © 2012 Institute of Food Technologists®

  20. Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles.

    PubMed

    Wernig, Karin; Griesbacher, Martin; Andreae, Fritz; Hajos, Franz; Wagner, Julian; Mosgoeller, Wilhelm; Zimmer, Andreas

    2008-09-10

    Drug delivery of protein and peptide-based drugs, which represent a growing and important therapeutic class, is hampered by these drugs' very short half-lives. High susceptibility towards enzymatic degradation necessitates frequent drug administration followed by poor adherence to therapy. Among these drugs is vasoactive intestinal peptide (VIP), a potent systemic and pulmonary vasodilator, which is a promising drug for the treatment of idiopathic pulmonary arterial hypertension (IPAH). Encapsulation of VIP into the nanoparticle matrix of biodegradable protamine-oligonucleotide nanoparticles (proticles) protects the peptide against rapid enzymatic degradation. Additionally, the nanoparticle matrix will be able to sustain drug release. Proticles consist of 18mer non-sense oligonucleotides and protamine, a polycationic arginine-rich peptide. VIP encapsulation occurs during self-assembly of the components. Within the present study, we evaluate nanoparticle size (hydrodynamic diameter) and zeta potential of VIP-loaded proticles as well as encapsulation efficiency and VIP release. Further, the pharmacological VIP response of "encapsulated VIP" is investigated using an ex vivo lung arterial model system. We found satisfying encapsulation efficiency (up to 80%), VIP release (77-87%), and an appropriate nanoparticle size (177-251 nm). Investigations on rat pulmonary arteries showed a modified VIP response of proticle-associated VIP. We noted differences in the profile of artery relaxation where VIP proticles lead to a 20-30% lower relaxation maximum than aqueous VIP solutions followed by prolonged vasodilatation. Our data indicate that proticles could be a feasible drug delivery system for a pulmonary VIP depot formulation.

  1. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method.

    PubMed

    Wagner, Michael E; Spoth, Katherine A; Kourkoutis, Lena F; Rizvi, Syed S H

    2016-12-01

    Niosomes were prepared using a novel supercritical carbon dioxide based method to simultaneously encapsulate ferrous sulfate and vitamin D3 as hydrophilic and hydrophobic cargo, respectively. Vesicle particle size was determined to be bimodal with peak diameters of 1.44 ± 0.16 μm and 7.21 ± 0.64 μm, with the smaller peak comprising 98.8% of the total niosomal volume. Encapsulation efficiency of ferrous sulfate was 25.1 ± 0.2% and encapsulation efficiency of vitamin D3 was 95.9 ± 1.47%. Physical stability of the produced niosomes was assessed throughout a storage period of 21 days. Niosomes showed good physical stability at 20 °C, but storage at 4 °C showed an initial burst release, indicating possible rupture of the niosomal membrane. The Korsmeyer-Peppas equation was used to model the release of ferrous sulfate over time at both storage temperatures.

  3. Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice.

    PubMed

    Fadel, Maha; Kassab, Kawser; Fadeel, Doa Abdel

    2010-03-01

    Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.

  4. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning

    PubMed Central

    Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.

    2016-01-01

    Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011

  5. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  6. Formulation of chitosan-TPP-pDNA nanocapsules for gene therapy applications

    NASA Astrophysics Data System (ADS)

    Gaspar, V. M.; Sousa, F.; Queiroz, J. A.; Correia, I. J.

    2011-01-01

    The encapsulation of DNA inside nanoparticles meant for gene delivery applications is a challenging process where several parameters need to be modulated in order to design nanocapsules with specific tailored characteristics. The purpose of this study was to investigate and improve the formulation parameters of plasmid DNA (pDNA) loaded in chitosan nanocapsules using tripolyphosphate (TPP) as polyanionic crosslinker. Nanocapsule morphology and encapsulation efficiency were analyzed as a function of chitosan degree of deacetylation and chitosan-TPP ratio. The manipulation of these parameters influenced not only the particle size but also the encapsulation and release of pDNA. Consequently the transfection efficiency of the nanoparticulated systems was also enhanced with the optimization of the particle characteristics. Overall, the differently formulated nanoparticulated systems possess singular properties that can be employed according to the desired gene delivery application.

  7. Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum l.) liposomes

    NASA Astrophysics Data System (ADS)

    Hudiyanti, D.; Fawrin, H.; Siahaan, P.

    2018-04-01

    In this study sesame liposomes were used to encapsulate both vitamin C and beta-carotene simultaneously. Liposomes were prepared with addition of cholesterol. The encapsulation efficiency (EE) of sesame liposomes for vitamin C in the present of beta-carotene was 77%. The addition of cholesterol increased the encapsulation efficiency. The highest encapsulation efficiency was 89% obtained in liposomes with 10% and 20% cholesterol. Contrary to that, the highest beta-carotene encapsulation efficiency of 78%, was found in the sesame liposomes prepared without the added cholesterol. Results showed that sesame liposomes can be used to encapsulate beta-carotene and vitamin C simultaneously. When beta-carotene and vitamin C were encapsulated concurrently, cholesterol intensified the efficiency of vitamin C encapsulation on the contrary it diminished the efficiency of beta-carotene encapsulation.

  8. Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines

    PubMed Central

    2017-01-01

    Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance. PMID:28474008

  9. Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines.

    PubMed

    Wang, Jianxin; Morales-Collazo, Oscar; Wei, Alexander

    2017-04-30

    Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance.

  10. Formulation of Nanoliposomal Vitamin D3 for Potential Application in Beverage Fortification

    PubMed Central

    Mohammadi, Maryam; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2014-01-01

    Purpose: Vitamin D, a liposoluble vitamin has many benefits on health. Encapsulation of bioactives in lipid-based carrier systems like nanoliposomes preserves their native properties against oxidation over time along with providing its stable aqueous dispersion. Methods: In the current study, vitamin D3 nanoliposomes were prepared using thin-film hydration-sonication method and fully characterized by different instrumental techniques. Results: According to FTIR and DSC results, no interaction was observed between encapsulated nutraceutical and liposome constituents. The particle size and size distribution (Span value) were calculated 82–90 nm and 0.70–0.85, respectively. TEM analysis showed nano sized globular and bilayer vesicles. In all formations, the encapsulation efficiency of vitamin D3 was calculated more than 93%. Addition of cholesterol to lecithin bilayer increased the negative zeta potential from -29 to -43mV. Conclusion: The results of this study concluded that the liposomal nanoparticles may be introduced as a suitable carrier for fortification of beverages with vitamin D3. PMID:25671191

  11. Characteristics of Artemether-Loaded Poly(lactic-co-glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability.

    PubMed

    Mangrio, Farhana Akbar; Dwivedi, Pankaj; Han, Shuya; Zhao, Gang; Gao, Dayong; Si, Ting; Xu, Ronald X

    2017-12-04

    Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.

  12. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Encapsulation of lutein in liposomes using supercritical carbon dioxide.

    PubMed

    Zhao, Lisha; Temelli, Feral; Curtis, Jonathan M; Chen, Lingyun

    2017-10-01

    Liposomes loaded with lutein were prepared utilizing supercritical carbon dioxide (SC-CO 2 ). The effects of pressure, depressurization rate, temperature and lutein-to-lipid ratio on particle size distribution, zeta potential, encapsulation efficiency (EE), bioactive loading, morphology, phase transition and crystallinity were investigated. Liposomes prepared by the SC-CO 2 method had a particle size of 147.6±1.9nm-195.4±2.3nm, an encapsulation efficiency of 56.7±0.7%-97.0±0.8% and a zeta potential of -54.5±1.2mV to -61.7±0.6mV. A higher pressure (200-300bar) and depressurization rate (90-200bar/min) promoted a higher encapsulation of lutein whereas the lutein-to-lipid ratio had the dominant effect on the morphology of vesicles along with size distribution and EE. X-ray diffraction data implied a substantial drop in the crystallinity of lutein upon its redistribution in the liposome membranes. Differential scanning calorimetry indicated a broadened phase transition upon the simultaneous rearrangement of lutein and phospholipid molecules into liposomal vesicles. The SC-CO 2 method resulted in particle characteristics highly associated with the ability of CO 2 to disperse phospholipids and lutein molecules. It offers a promising approach to use dense phase CO 2 to homogenize hydrophobic or amphiphilic aggregates suspended in an aqueous medium and regulate the vesicular characteristics via pressure and depressurization rate. The SC-CO 2 method has potential for scalable production of liposomal nanovesicles with desirable characteristics and free of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy

    NASA Astrophysics Data System (ADS)

    Ferreira, Roberta V.; da Mata Martins, Thaís Maria; Goes, Alfredo Miranda; Fabris, José D.; Cavalcante, Luis Carlos D.; Eugenio Fernandez Outon, Luis; Domingues, Rosana Z.

    2016-02-01

    The combination of magnetic hyperthermia therapy with the controlled release of chemotherapeutic agents in tumors may be an efficient therapeutic with few side effects because the bioavailability, tolerance and amount of the drug can be optimized. Here, we prepared magnetoliposomes consisting of magnetite nanoparticle cores and the anticancer drug gemcitabine encapsulated by a phospholipid bilayer. The potential of these magnetoliposomes for controlled drug release and cancer treatment via hyperthermic behavior was investigated. The magnetic nanoparticle encapsulation efficiency was dependent on the initial amount of magnetite nanoparticles present at the encapsulation stage; the best formulation was 66%. We chose this formulation to characterize the physicochemical properties of the magnetoliposomes and to encapsulate gemcitabine. The mean particle size and distribution were determined by dynamic light scattering (DLS), and the zeta potential was measured. The magnetoliposome formulations all had acceptable characteristics for systemic administration, with a mean size of approximately 150 nm and a polydispersity index <0.2. The magnetoliposomes were stable in aqueous suspension for at least one week, as determined by DLS. Temperature increases due to the dissipation energy of magnetoliposome suspensions subjected to an applied alternating magnetic field (AMF) were measured at different magnetic field intensities, and the values were appropriated for cancer treatments. The drug release profile at 37 °C showed that 17% of the gemcitabine was released after 72 h. Drug release from magnetoliposomes exposed to an AMF for 5 min reached 70%.

  15. Formulation and in vitro characterization of protein-loaded liposomes

    NASA Astrophysics Data System (ADS)

    Kuzimski, Lauren

    Background/Objective: Protein-based drugs are increasingly used to treat a variety of conditions including cancer and cardio-vascular disease. Due to the immune system's innate ability to degrade the foreign particles quickly, protein-based treatments are generally short-lived. To address this limitation, the objective of the study was to: 1) develop protein-loaded liposomes; 2) characterize size, stability, encapsulation efficiency and rate of protein release; and 3) determine intracellular uptake and distribution; and 4) protein structural changes. Method: Liposomes were loaded with a fluorescent-albumin using freeze-thaw (F/T) methodology. Albumin encapsulation and release were quantified by fluorescence spectroscopic techniques. Flow cytometry was used to determine liposome uptake by macrophages. Epifluorescence microscopy was used to determine cellular distribution of liposomes. Stability was determined using dynamic light scattering by measuring liposome size over one month period. Protein structure was determined using circular dichroism (CD). Result: Encapsulation of albumin in liposome was ˜90% and was dependent on F/T rates, with fifteen cycles yielding the highest encapsulation efficacy (p < 0.05). Albumin-loaded liposomes demonstrated consistent size (<300nm). Release of encapsulated albumin in physiological buffer at 25°C was ˜60% in 72 h. Fluorescence imaging suggested an endosomal route of cellular entry for the FITC-albumin liposome with maximum uptake rates in immune cells (30% at 2hour incubation). CD suggested protein structure is minimally impacted by freeze-thaw methodology. Conclusion: Using F/T as a loading method, we were able to successfully achieve a protein-loaded liposome that was under 300nm, had encapsulation of ˜90%. Synthesized liposomes demonstrated a burst release of encapsulate protein (60%) at 72 hours. Cellular trafficking confirmed endosomal uptake, and minimal protein damage was noticed in CD.

  16. Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol

    NASA Astrophysics Data System (ADS)

    Ngadiwiyana; Purbowatiningrum; Fachriyah, Enny; Ismiyarto

    2017-02-01

    Atherosclerosis vascular disease with clinical manifestations such as cardiovascular disease and stroke are the leading cause of death in Indonesia. One solution to these problems is a natural antihypercholesterol medicine by utilizing Cinnamomum casia extract. However, the use of natural extracts to lower blood cholesterol levels do not provide optimal results because it is possible that the active components of extract have been degraded/damaged during the absorption process. So that, we need to do the research to get a combination of chitosan nanoparticles-Cinnamomum casia. extract as a compound which has an antihypercholesterol activity through the in vitro study. Modification of natural extracts encapsulated nanochitosan be a freshness in this study, which were conducted using the method of inclusion. The combination of both has the dual function of protecting the natural extracts from degradation and deliver the natural extracts to the target site. Analysis of nanochitosan using the Particle Size Analyzer (PSA) shows the particle size of synthesis product that is equal to 64.9 nm. Encapsulation efficiency of Cinnamomum casia extract-Chitosan Nanoparticles known through UV-VIS spectrophotometry test and obtained the efficiency encapsulation percentage of 84.93%. Zeta Potential at 193,3 mv that chitosan appropriate for a delivery drug. Antihypercholesterol activity tested in vitro assay that showed the extract-nanoparticle chitosan in concentration 150 ppm gave the highest cholesterol decreasing level in the amount of 49.66% w/v. So it can be concluded that Cinnamomum casia extract can be encapsulated in nanoparticles of chitosan and proved that it has a cholesterol-lowering effect through the in vitro study.

  17. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.

    PubMed

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-19

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  18. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-01

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  19. Investigation on Physicochemical Characteristics of a Nanoliposome-Based System for Dual Drug Delivery

    NASA Astrophysics Data System (ADS)

    Nam, Jae Hyun; Kim, So-Yeon; Seong, Hasoo

    2018-04-01

    Synergistic effects of multiple drugs with different modes of action are utilized for combinatorial chemotherapy of intractable cancers. Translation of in vitro synergistic effects into the clinic can be realized using an efficient delivery system of the drugs. Despite a few studies on nano-sized liposomes containing erlotinib (ERL) and doxorubicin (DOX) in a single liposome vesicle, reliable and reproducible preparation methods as well as physicochemical characteristics of a non-PEGylated nanoliposome co-encapsulated with ERL and DOX have not been yet elucidated. In this study, ERL-encapsulated nanoliposomes were prepared using the lipid film-hydration method. By ultrasonication using a probe sonicator, the liposome diameter was reduced to less than 200 nm. DOX was loaded into the ERL-encapsulated nanoliposomes using ammonium sulfate (AS)-gradient or pH-gradient method. Effects of DOX-loading conditions on encapsulation efficiency (EE) of the DOX were investigated to determine an efficient drug-loading method. In the EE of DOX, AS-gradient method was more effective than pH gradient. The dual drug-encapsulated nanoliposomes had more than 90% EE of DOX and 30% EE of ERL, respectively. Transmission electron microscopy and selected area electron diffraction analyses of the dual drug-encapsulated nanoliposomes verified the highly oriented DOX-sulfate crystals inside the liposome as well as the less oriented small crystals of ERL in the outermost region of the nanoliposome. The nanoliposomes were stable at different temperatures without an increase of the nanoliposome diameter. The dual drug-encapsulated nanoliposomes showed a time-differential release of ERL and DOX, implying proper sequential releases for their synergism. The preparation methods and the physicochemical characteristics of the dual drug delivery system contribute to the development of the optimal process and more advanced systems for translational researches.

  20. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    PubMed

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    PubMed Central

    Cheng, Kuo-Wei; Hsu, Shan-hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. PMID:28280341

  2. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    PubMed

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  3. A novel alginate-encapsulated system to study biological response to critical-sized wear particles of UHMWPE loaded with alendronate sodium.

    PubMed

    Liu, Yumei; Shi, Feng; Bo, Lin; Zhi, Wei; Weng, Jie; Qu, Shuxin

    2017-10-01

    The aim of this study was to develop a novel alginate-encapsulated system (Alg beads) to investigate the cell response to critical-sized wear particles of ultra-high molecular weight polyethylene loaded with alendronate sodium (UHMWPE-ALN), one of the most effective drugs to treat bone resorption in clinic. The extrusion method was used to prepare Alg beads encapsulating rat calvarial osteoblasts (RCOs) and critical-sized UHMWPE-ALN wear particles with spherical morphology and uniform size. The morphology, permeability and stability of Alg beads were characterized. The proliferation, ALP activity, cell apoptosis and distribution of live/dead RCOs co-cultured with wear particles in Alg beads were evaluated. RCOs and critical-sized UHMWPE-ALN wear particles distributed evenly and contacted efficiently in Alg beads. Alg beads were both permeable to trypsin and BSA, while the smaller the molecular was, the larger the diffuse was. The proliferation of RCOs in Alg beads increased with time, which indicated that Alg beads provided suitable conditions for cell culture. The long-term stability of Alg beads indicated the possibility for the longer time of co-cultured cells with wear particles. Critical-sized UHMWPE-ALN and UHMWPE wear particles both inhibited the proliferation and differentiation of RCOs, and induced the apoptosis of RCOs encapsulated in Alg beads. However, these effects could be significantly alleviated by the ALN released from the critical-sized UHMWPE-ALN wear particles. The present results suggested that this novel-developed co-culture system was feasible to evaluate the cell response to critical-sized UHMWPE-ALN wear particles for a longer time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A hydrophobic dye-encapsulated nano-hybrid as an efficient fluorescent probe for living cell imaging.

    PubMed

    Chang, Shu; Wu, Xumeng; Li, Yongsheng; Niu, Dechao; Ma, Zhi; Zhao, Wenru; Gu, Jinlou; Dong, Wenjie; Ding, Feng; Zhu, Weihong; Shi, Jianlin

    2012-07-01

    Water-soluble hydrophobic-dye@nano-hybrids (DPN@NHs) with extraordinarily enhanced fluorescent performance were fabricated by encapsulating the hydrophobic dye molecules into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using 3-mercaptopropyltrimethoxy-silane. The DPN@NHs are 50 nm in size, are monodispersed in aqueous solution and have a quantum yield enhanced by 30 times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector.

    PubMed

    Xu, Cheng; Yang, Darong; Mei, Lin; Lu, Bingan; Chen, Libao; Li, Qiuhong; Zhu, Haizhen; Wang, Taihong

    2013-04-10

    Surface modification of inorganic nanoparticles (NPs) is extremely necessary for biomedical applications. However, the processes of conjugating ligands to NPs surface are complicated with low yield. In this study, a hydrophilic shell with excellent biocompatibility was successfully constructed on individual gold NPs or gold nanorods (NRs) by encapsulating NPs or NRs in graphene oxide (GO) nanosheets through electrostatic self-assembly. This versatile and facile approach remarkably decreased the cytotoxicity of gold NPs or NRs capping with surfactant cetyltrimethylammonium bromide (CTAB) and provided abundant functional groups on NPs surface for further linkage of polyethylenimine (PEI). The PEI-functionalized GO-encapsulating gold NPs (GOPEI-AuNPs) were applied to delivery DNA into HeLa cells as a novel gene vector. It exhibited high transfection efficiency of 65% while retaining 90% viability of HeLa cells. The efficiency was comparable to commercialized PEI 25 kDa with the cytotoxicity much less than PEI. Moreover, the results on transfection efficiency was higher than PEI-functionalized GO, which can be attributed to the small size of NPs/DNA complex (150 nm at the optimal w/w ratio) and the spherical structure facilitating the cellular uptake. Our work paves the way for future studies focusing on GO-encapsulating, NP-based nanovectors.

  6. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    PubMed

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    PubMed Central

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  8. Preparation and characterization of microparticles of β-cyclodextrin/glutathione and chitosan/glutathione obtained by spray-drying.

    PubMed

    Webber, Vanessa; de Siqueira Ferreira, Daniel; Barreto, Pedro Luis Manique; Weiss-Angeli, Valeria; Vanderlinde, Regina

    2018-03-01

    Reduced glutathione (GSH) is an efficient antioxidant on limitation of browning, of the loss of aromas and off-flavor formation in white wines. The encapsulation of GSH in a polymer system to be added in white wines may prolong its antioxidant action. The aim of this work was to prepare and characterize spray-dried microparticles using β-cyclodextrin (β-CD) or chitosan as polymers for encapsulation of GSH for its addition to wine to prevent oxidation. The microparticles obtained after the drying process were characterized regarding morphology, chemical interaction between GSH and polymers, thermal stability, microstructure, encapsulation efficiency and in vitro GSH release. SEM showed spherical microparticles, with wrinkled surfaces for β-CD/GSH and smooth surfaces for chitosan/GSH. A wide distribution of particle size was observed. In general, β-CD/GSH showed an average diameter smaller than the chitosan/GSH microparticles. FT-IR showed a possible interaction between GSH and both polymers. DSC and DRX showed that encapsulation process produced a marked decrease in GSH crystallinity. The encapsulation efficiency was 25.0% for chitosan/GSH and 62.4% for β-CD/GSH microparticles. The GSH release profiles from microparticles showed that β-CD can control the release behaviors of GSH better than chitosan in a model wine. Cumulative release data were fitted to an empirical equation to compute diffusional exponent (n), which indicates a trend the non-Fickian release of GSH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ciprofloxacin as ocular liposomal hydrogel.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 +/- 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 +/- 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.

  10. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery

    NASA Astrophysics Data System (ADS)

    da Silva, Indjara Mallmann; Boelter, Juliana Ferreira; da Silveira, Nádya Pesce; Brandelli, Adriano

    2014-07-01

    There is increased interest on the use of natural antimicrobial peptides in biomedicine and food preservation technologies. In this study, the antimicrobial activity of nisin encapsulated into nanovesicles containing polyanionic polysaccharides was investigated. Nisin was encapsulated in phosphatidylcholine (PC) liposomes containing chitosan or chondroitin sulfate by the thin-film hydration method and tested for antimicrobial activity against Listeria spp. The mean particle size of PC liposomes was 145 nm and varied to 210 and 134 nm with the incorporation of chitosan and chondroitin sulfate, respectively. Nisin-containing nanovesicles with and without incorporation of polysaccharides had a zeta potential values around -20 mV, showing mostly spherical structures when observed by transmission electron microscopy. Encapsulated nisin had similar efficiency as free nisin in inhibiting Listeria spp. isolated from bovine carcass, and greater efficiency in inhibiting Listeria monocytogenes. The formulation containing chitosan was more stable and more efficient in inhibiting L. monocytogenes when compared to the other nanovesicles tested. After 24 h, the viable cell counts were 2 log lower as compared with the other treatments and 7 log comparing to controls.

  11. Alginate/cashew gum nanoparticles for essential oil encapsulation.

    PubMed

    de Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2014-01-01

    Alginate/cashew gum nanoparticles were prepared via spray-drying, aiming at the development of a biopolymer blend for encapsulation of an essential oil. Nanoparticles were characterized regarding to their hydrodynamic volume, surface charge, Lippia sidoides essential oil content and release profile, in addition to being analyzed by infrared spectroscopy (FT-IR), thermal analysis (TGA/DSC) and X-ray diffractometry. Nanoparticles in solution were found to have averaged sizes in the range 223-399 nm, and zeta potential values ranging from -30 to -36 mV. Encapsulated oil levels varied from 1.9 to 4.4% with an encapsulation efficiency of up to 55%. The in vitro release profile showed that between 45 and 95% of oil was released within 30-50h. Kinetic studies revealed that release pattern follow a Korsmeyer-Peppas mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    PubMed Central

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P.C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  13. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.

    PubMed

    Wu, Daocheng; Wan, Mingxi

    2008-01-01

    Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

  14. Comparison of non-toxic methods for creating beta-carotene encapsulated in PMMA nanoparticles

    NASA Astrophysics Data System (ADS)

    Dobrzanski, Christopher D.

    Nano/microcapsules are becoming more prevalent in various industries such as drug delivery, cosmetics, etc. Current methods of particle formation often use toxic or carcinogenic/mutagenic/reprotoxic (CMR) chemicals. This study intends to improve upon existing methods of particle formation and compare their effectiveness in terms of entrapment efficiency, mean particle size, and yield utilizing only non-toxic chemicals. In this study, the solvent evaporation (SE), spontaneous emulsification, and spontaneous emulsion solvent diffusion (SESD) methods were compared in systems containing green solvents ethyl acetate, dimethyl carbonate or acetone. PMMA particles containing encapsulated beta carotene, an ultraviolet sensitive substance, were synthesized. It was desired to produce particles with minimum mean size and maximum yield and entrapment of beta carotene. The mass of the water phase, the mass of the polymer and the pumping or blending rate were varied for each synthesis method. The smallest particle sizes for SE and SESD both were obtained from the middle water phase sizes, 200 g and 100 g respectively. The particles obtained from the larger water phase in SESD were much bigger, about 5 microns in diameter, even larger than the ones obtained from SE. When varying the mass of PMMA used in each synthesis method, as expected, more PMMA led to larger particles. Increasing the blending rate in SE from 6,500 to 13,500 rpm had a minimal effect on average particle size, but the higher shear resulted in highly polydisperse particles (PDI = 0.87). By decreasing the pump rate in SESD, particles became smaller and had lower entrapment efficiency. The entrapment efficiencies of the particles were generally higher for the larger particles within a mode. Therefore, we found that minimizing the particle size while maximizing entrapment were somewhat contradictory goals. The solvent evaporation method was very consistent in terms of the values of mean particle size, yield, and entrapment efficiency. Comparing the synthesis methods, the smallest particles with the highest yield and entrapment efficiency were generated by the spontaneous emulsification method.

  15. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    PubMed

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  16. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique.

    PubMed

    Patel, Meghavi N; Lakkadwala, Sushant; Majrad, Mohamed S; Injeti, Elisha R; Gollmer, Steven M; Shah, Zahoor A; Boddu, Sai Hanuman Sagar; Nesamony, Jerry

    2014-12-01

    The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.

  17. Microencapsulation of vitamin e from palm fatty acid distillate with galactomannan and gum acacia using spray drying method

    NASA Astrophysics Data System (ADS)

    Tarigan, J. Br.; Kaban, J.; Zulmi, R.

    2018-02-01

    Vitamin E from palm fatty acid distillate (PFAD) has been encapsulated using spray drying method with gum acacia (GA) and mixed of galactomannan from Arenga pinnata (GAP) with GA as encapsulating agent. Composite films with thickness vary from 0.542 - 0.779 mm were prepared by incorporating vitamin E onto matrix of GA (7 g) with various concentration of GAP (0.1; 0.2; 0.3 and 0.4 g). The film obtained from 0.2 g GAP and 1.3 g vitamin E showed better compatibility and have viscosity similar with standard (ISO 9001:2008 and ISO 22000:2005). That composition was used for spray drying method rendering micro-particle size 11 µm and the particle had spherical shape. Although the increment of GAP decreasing moisture content and the particle size from 16 µm to 11 µm, the yield of microcapsule, encapsulation efficiency, the amount of vitamin E absorbed and oxidation stability of vitamin E were increased.

  18. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers.

    PubMed

    Zhang, Yaqiong; Niu, Yuge; Luo, Yangchao; Ge, Mei; Yang, Tian; Yu, Liangli Lucy; Wang, Qin

    2014-01-01

    Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Design and Characterization of Micro-Porous Hyaluronic Acid Hydrogels for in vitro Gene Transfer to mMSCs

    PubMed Central

    Tokatlian, Talar; Cam, Cynthia; Siegman, Shayne N.; Lei, Yuguo; Segura, Tatiana

    2013-01-01

    The effective and sustained delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration and therapeutic angiogenesis. One promising approach is to use porous hydrogel scaffolds to encapsulate and deliver nucleotides in the form of nanoparticles to the affected sites. We have designed and characterized micro-porous (µ-pore) hyaluronic acid hydrogels which allow for effective cell seeding in vitro post scaffold fabrication and allow for cell spreading and proliferation without requiring high levels of degradation. These factors, coupled with high loading efficiency of DNA polyplexes using a previously developed caged nanoparticle encapsulation (CnE) technique, then allowed for long-term sustained transfection and transgene expression of incorporated mMSCs. In this study, we examined the effect of pore size on gene transfer efficiency and the kinetics of transgene expression. For all investigated pore sizes (30, 60, and 100 µm), encapsulated DNA polyplexes were released steadily starting by day 4 for up to 10 days. Likewise, transgene expression was sustained over this period, although significant differences between different pore sizes were not observed. Cell viability was also shown to remain high over time, even in the presence of high concentrations of DNA polyplexes. The knowledge acquired through this in vitro model can be utilized to design and better predict scaffold-mediated gene delivery for local gene therapy in an in vivo model where host cells infiltrate the scaffold over time. PMID:22820309

  20. Development of curcumin-loaded poly(hydroxybutyrate- co-hydroxyvalerate) nanoparticles as anti-inflammatory carriers to human-activated endothelial cells

    NASA Astrophysics Data System (ADS)

    Simion, Viorel; Stan, Daniela; Gan, Ana-Maria; Pirvulescu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Deleanu, Mariana; Andrei, Eugen; Durdureanu-Angheluta, Anamaria; Bota, Marian; Enachescu, Marius; Calin, Manuela; Simionescu, Maya

    2013-12-01

    Curcumin (Cm)-loaded poly(hydroxybutyrate- co-hydroxyvalerate) (PHBV) nanoparticles (CmPN) were obtained and characterized and their effect on human endothelial cells (HEC) was assessed. Different CmPN formulations have been prepared using the emulsion solvent evaporation technique, and characterized for size, structure, Zeta potential, Cm entrapment efficiency, and in vitro Cm release. CmPN cytotoxicity and cellular uptake have been followed using HEC. Also, the effect of CmPN treatment on the p38MAPK signaling pathway in endothelial cells was investigated. The results obtained by electron and atomic force microscopy revealed the spherical shape of the CmPN formulation. Based on size and encapsulation efficiency, the CmPN formulation with the average diameter of 186 nm and with the highest encapsulation efficiency (83 %) has been used in the further studies. The release of Cm from CmPN was 18 % after 8 h of incubation at 37 °C, followed by a slow release until 144 h, when it reached 44 %, indicating a controlled release. CmPN are taken up by HEC and exhibited low cytotoxicity at concentrations up to 10 μM. The pre-treatment of HEC with CmPN before exposure to tumor necrosis factor-alpha (TNF-α) determined a decrease of p38MAPK phosphorylation. In conclusion, Cm encapsulated into PHBV nanoparticles, at concentration up to 10 μM, has low cytotoxicity and display anti-inflammatory activity on TNF-α-activated HEC by suppressing the phosphorylation of p38MAPK.

  1. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  2. First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol.

    PubMed

    Azzi, Joyce; Auezova, Lizette; Danjou, Pierre-Edouard; Fourmentin, Sophie; Greige-Gerges, Hélène

    2018-07-30

    Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    PubMed

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  4. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  5. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies.

    PubMed

    El-Zaafarany, Ghada M; Soliman, Mahmoud E; Mansour, Samar; Awad, Gehanne A S

    2016-04-30

    Lipid-based nanovectors offer effective carriers for brain delivery by improving drug potency and reducing off-target effects. Emulsomes are nano-triglyceride (TG) carriers formed of lipid cores supported by at least one phospholipid (PC) sheath. Due to their surface active properties, PC forms bilayers at the aqueous interface, thereby enabling encapsulated drug to benefit from better bioavailability and stability. Emulsomes of oxcarbazepine (OX) were prepared, aimed to offer nanocarriers for nasal delivery for brain targeting. Different TG cores (Compritol(®), tripalmitin, tristearin and triolein) and soya phosphatidylcholine in different amounts and ratios were used for emulsomal preparation. Particles were modulated to generate nanocarriers with suitable size, charge, encapsulation efficiency and prolonged release. Cytotoxicity and pharmacokinetic studies were also implemented. Nano-spherical OX-emulsomes with maximal encapsulation of 96.75% were generated. Stability studies showed changes within 30.6% and 11.2% in the size and EE% after 3 months. MTT assay proved a decrease in drug toxicity by its encapsulation in emulsomes. Incorporation of OX into emulsomes resulted in stable nanoformulations. Tailoring emulsomes properties by modulating the surface charge and particle size produced a stable system for the lipophilic drug with a prolonged release profile and mean residence time and proved direct nose-to-brain transport in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Determination of Formulation Conditions Allowing Double Emulsions Stabilized by PGPR and Sodium Caseinate to Be Used as Capsules.

    PubMed

    Nollet, Maxime; Laurichesse, Eric; Besse, Samantha; Soubabère, Olivier; Schmitt, Véronique

    2018-02-27

    Water-in-oil-in-water (W 1 /O/W 2 ) double emulsions stabilized by polyglycerol polyricinoleate (PGPR), a lipophilic food grade small polymer, and sodium caseinate, a hydrophilic milk protein, were developed to encapsulate vitamin B12, a model hydrophilic substance easy to titrate. Using rheology, sensitive to drop size evolution and water fluxes, static light scattering, and microscopy both giving the evolution of drops' size and vitamin B12 titration assessing the encapsulation, we were able to detect independently the double emulsion drop size, the encapsulation loss, and the flux of water as a function of time. By differentiating the PGPR required to cover the W 1 -droplets' surface from PGPR in excess in the oil phase, we built a PGPR-inner droplet volume fraction diagram highlighting the domains where the double emulsion is stable toward encapsulation and/or water fluxes. We demonstrated the key role played by nonadsorbed PGPR concentration in the intermediate sunflower oil phase on the emulsion stability while, surprisingly, the inner droplet volume fraction had no effect on the emulsion stability. At low PGPR concentration, a release of vitamin B12 was observed and the leakage mechanism of coalescence between droplets and oil-water interface of the oily drops (also called globules hereafter), was identified using confocal microscopy. For high enough PGPR content, the emulsions were stable and may therefore serve as efficient capsules without need of an additional gelling, thickening, complexion or interface rigidifying agent. We generalized these results with the encapsulation of an insecticide: Cydia pomonella granulovirus used in organic arboriculture.

  7. Development and characterization of polymer-oil nanostructured carrier (PONC) for controlled delivery of all-trans retinoic acid (ATRA)

    NASA Astrophysics Data System (ADS)

    Narvekar, Mayuri M.

    The commonly used PLGA-based delivery systems are often limited by their inadequate drug loading and release properties. This study reports the integration of oil into PLGA to form the prototype of a hybrid drug carrier PONC. Our primary goal is to confer the key strength of lipid-based drug carriers, i.e. efficient encapsulation of lipophilic compounds, to a PLGA system without taking away its various useful qualities. The PONC were formulated by emulsification solvent evaporation technique, which were then characterized for particle size, encapsulation efficiency, drug release and anticancer efficacy. The ATRA loaded PONC showed excellent encapsulation efficiency and release kinetics. Even after surface functionalization with PEG , controlled drug release kinetics was maintained, with 88.5% of the encapsulated ATRA released from the PEG-PONC in a uniform manner over 120 hours. It also showed favorable physicochemical properties and serum stability. PEG-PONC has demonstrated substantially superior activity over the free ATRA in ovarian cancer cells that are non-responsive to the standard chemotherapy. The newly developed PEG-PONC significantly reduced the IC50 values (p<0.05) in the chemoresistant cells in both MTT and colony formation assays. Hence, this new ATRA-nanoformulation may offer promising means for the delivery of lipophilic compounds like all-trans retinoic acid to treat highly resistant ovarian cancer.

  8. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    PubMed Central

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  9. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.

    PubMed

    Derikvand, Peyman; Etemadifar, Zahra

    2014-03-01

    Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels.

  10. Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying

    NASA Astrophysics Data System (ADS)

    Hammond, Samuel James

    Creating nanoparticles of beneficial nutraceuticals and pharmaceuticals has had a large surge of research due to the enhancement of absorption and bioavailability by decreasing their size. One of these ways is by electrohydrodynamic atomization, also known as electrospraying. In general, this novel process is done by forcing a liquid through a capillary nozzle and which is subjected to an electrical field. While there are different ways to create nanoparticles, the novel method of electrospraying can be beneficial over other types of nanoparticle formation. Reasons include high control over particle size and distribution by altering electrospray parameters (voltage, flow rate, distance, and time), higher encapsulation efficiency than other methods, and also it is a one step process without exposure to extreme conditions (Gomez-Estaca et. al. 2012, Jaworek and Sobcyzk 2008). The current study aimed to create a chitosan encapsulated theaflavin-2 enriched black tea extract (BTE) nanoparticles via electrospraying. The first step of this process was to create the smallest chitosan nanoparticles possible by altering the electrospray parameters and the chitosan-acetic acid solution parameters. The solution properties altered include chitosan molecular weight, acetic acid concentration, and chitosan concentration. Specifically, the electrospray parameters such as voltage, flow rate and distance from syringe to collector are the most important in determining particle size. After creating the smallest chitosan particles, the TF-2 enriched black tea extract was added to the chitosan-acetic acid solution to be electrosprayed. The particles were assessed with the following procedures: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) for particle morphology and size, and loading efficiency with ultraviolet--visible spectrophotometer (UV-VIS). Chitosan-BTE nanoparticles were successfully created in a one step process. Diameter of the particles on average ranged from 255 nm to 560 nm. Encapsulation efficiency was above 95% for all but one sample set. Future work includes MTT assay and cellular uptake.

  11. Ramizol® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation.

    PubMed

    Wright, Leah; Rao, Shasha; Thomas, Nicky; Boulos, Ramiz A; Prestidge, Clive A

    2018-04-11

    Novel antibiotic Ramizol ® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing. The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance. Ramizol ® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague-Dawley rats. Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague-Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in T max and T 1/2 when compared to the oral and IV routes. Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol ® . This formulation will allow further development of Ramizol ® for systemic infection eradication.

  12. The size-reduced Eudragit® RS microparticles prepared by solvent evaporation method - monitoring the effect of selected variables on tested parameters.

    PubMed

    Vasileiou, Kalliopi; Vysloužil, Jakub; Pavelková, Miroslava; Vysloužil, Jan; Kubová, Kateřina

    2018-01-01

    Size-reduced microparticles were successfully obtained by solvent evaporation method. Different parameters were applied in each sample and their influence on microparticles was evaluated. As a model drug the insoluble ibuprofen was selected for the encapsulation process with Eudragit® RS. The obtained microparticles were inspected by optical microscopy and scanning electron microscopy. The effect of aqueous phase volume (600, 400, 200 ml) and the concentration of polyvinyl alcohol (PVA; 1.0% and 0.1%) were studied. It was evaluated how those variations and also size can affect microparticle characteristics such as encapsulation efficiency, drug loading, burst effect and microparticle morphology. It was observed that the sample prepared with 600 ml aqueous phase and 1% concentration of polyvinyl alcohol gave the most favorable results.Key words: microparticles solvent evaporation sustained drug release Eudragit RS®.

  13. Effect of liquid-to-solid lipid ratio on characterizations of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for transdermal administration.

    PubMed

    Song, Aihua; Zhang, Xiaoshu; Li, Yanting; Mao, Xinjuan; Han, Fei

    2016-08-01

    The aim of this study is to evaluate the effect of liquid-to-solid lipid ratio on properties of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), and to clarify the superiority of NLCs over SLNs for transdermal administration. Particle size, zeta potential, drug encapsulation efficiency, in vitro occlusion factor, differential scanning calorimetry, X-ray diffractometry, in vitro percutaneous permeation profile, and stability of SLNs and NLCs were compared. Particle size, zeta potential, drug encapsulation efficiency, in vitro occlusion factor, and in vitro percutaneous permeation amount of the developed NLCs were all <200 nm, < -20 mV, >78%, >35, and >240 μg/cm(2), respectively, however, for SLNs were 280 nm, -29.11 mV, 63.2%, 32.54, and 225.9 μg/cm(2), respectively. After 3 months storage at 4 °C and 25 °C, almost no significant differences between the evaluated parameters of NLCs were observed. However, for SLNs, particle size was increased to higher than 300 nm (4 °C and 25 °C), drug encapsulation efficiency was decreased to 51.2 (25 °C), in vitro occlusion factor was also decreased to lower than 25 (4 °C and 25 °C), and the cumulative amount was decreased to 148.9 μg/cm(2) (25 °C) and 184.4 μg/cm(2) (4 °C), respectively. And DSC and XRD studies indicated that not only the crystalline peaks of the encapsulated flurbiprofen disappeared but also obvious difference between samples and bulk Compritol® ATO 888 was seen. It could be concluded that liquid-to-solid lipid ratio has significant impact on the properties of SLNs and NLCs, and NLCs showed better stability than SLNs. Therefore, NLCs might be a better option than SLNs for transdermal administration.

  14. Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes.

    PubMed

    Pandey, Abhijeet P; Karande, Kiran P; Sonawane, Raju O; Deshmukh, Prashant K

    2014-03-01

    In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study. A separate study was designed to investigate the robustness of the predicted design space. The particle size, %EE and %CE of the optimized CH-NLPs were 111.3 nm, 33.4% and 35.2%, respectively. The observed responses were in accordance with the predicted response, which confirms the suitability and robustness of the design space for CH-NLP formulation. In conclusion, optimization of the selected key variables will help minimize the problems related to size, %EE and %CE that are generally encountered when scaling up processes for NLP formulations. The robustness of the design space will help minimize both intra-batch and inter-batch variations, which are quite common in the pharmaceutical industry.

  15. Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and In Vitro Antifungal Evaluation.

    PubMed

    Casa, Diani Meza; Karam, Thaysa Ksiaskiewcz; Alves, Aline de Cristo Soares; Zgoda, Aline Aparecida; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    In this study, nanoparticles based on bovine serum albumin (BSA) containing amphotericin B (AmB) were obtained by the desolvation method and characterized with respect to size, size distribution, AmB encapsulation efficiency, AmB state of aggregation, and AmB in vitro release profile. After, the effect of nanoparticles on the cytotoxicity of human erythrocytes in vitro and efficacy over strains of Candida spp. were evaluated. The mean particle size was 156 nm and the AmB encapsulation efficiency was over 82%. The in vitro release profile revealed a sustained release of approximately 48% of AmB over 5 days. AmB is present in BSA nanoparticles as monomer. AmB-loaded nanoparticles showed very low index of hemolysis (less than 8%) in 72 h of assay compared to free AmB, which presented 100% of hemolysis in 2 h of incubation. The AmB-loaded BSA nanoparticles were as effective as free AmB against Candida albicans and Candida tropicalis, considering their sustained release profile. Thus, BSA nanoparticles are potential carriers for AmB, reducing its molecular aggregation and prolonging its release, resulting in lower cytotoxicity while maintaining its antifungal activity.

  16. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes.

    PubMed

    Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin

    2018-01-01

    The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy ( 1 H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1 H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.

  17. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes

    PubMed Central

    Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin

    2018-01-01

    The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.

  18. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    PubMed Central

    2013-01-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein’s diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes. PMID:23601503

  19. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.

    PubMed

    He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan

    2017-06-01

    Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Preparation and in vitro release characteristics of vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles].

    PubMed

    Tan, Rong; Liu, Ying; Feng, Nianping; Zhao, Jihui

    2011-06-01

    To prepare vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles (VCR-PBCA-NPs) and to investigate the in vitro release charactersitics. VCR-PBCA-NPs were prepared by emulsion polymerization method, and characterized for morphology, particle size, drug encapsulation efficiency and loading efficiency. The formulation was optimized using central composite design and response surface methodology. In vitro release study of VCR-PBCA-NPs was performed by dialysis technique. Model fitting was used to determine the kinetics and to discuss the mechanism. The nanoparticles were spherical and uniform with a mean diameter of (98.9 +/- 3.05) nm. The drug encapsulation efficiency and loading efficiency were (55.23 +/- 0.96)% and (7.87 +/- 0.11)%, respectively. In vitro release results showed that 63.66% of VCR was released from VCR-PBCA-NPs in 4 h, and the Weibull model fitted VCR release pattern best. The VCR-PBCA-NPs prepared in this study showed sustained release compared with VCR solution.

  1. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Enhanced in Vitro Anti-Tumor Activity of 5-Azacytidine by Entrapment into Solid Lipid Nanoparticles

    PubMed Central

    Jahanfar, Farhad; Hasani, Akbar; Shanebandi, Dariush; Rahmati, Mohammad; Hamishehkar, Hamed

    2016-01-01

    Purpose: In this study the effectiveness of encapsulating of 5-azacytidine into the lipid nanoparticles was investigated and in vitro effect of encapsulated 5-azacytidine studied on MCF-7 cell lines Methods: 5-azacytidine -loaded solid lipid nanoparticles were produced by double emulsification (w/o/w) method by using stearic acid as lipid matrix, soy lecithin and poloxamer 407 as surfactant and co-surfactant respectively. Particle size, zeta potential, surface morphology, entrapment efficiency and kinetic of drug release were studied. In vitro effect of 5-azacytidine on MCF-7 cell line studied by MTT assay, DAPI staining, Rhodamine B relative uptake, and also Real time RT-PCR was performed for studying difference effect of free and encapsulated drug on expression of RARß2 gene. Results: The formulation F5 with 55.84±0.46 % of entrapment efficiency shows zero order kinetic of drug release and selected for in vitro studies; the cytotoxicity of free drug and encapsulated drug in 48 h of incubation have significant difference. DAPI staining shows morphology of apoptotic nucleus in both free and encapsulated drug, Rhodamine B labeled SLNs show time dependency and accumulation of SLNs in cytoplasm. Real time qRT-PCR doesn’t show any significant difference (p>0.05) in expression of RARß2 gene in both cells treated with free or encapsulated drug. Conclusion: The results of the present study indicated that the entrapment of 5-azacytidine into SLNs enhanced its cytotoxicity performance and may pave a way for the future design of a desired dosage form for 5-azacytidine. PMID:27766220

  3. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    PubMed

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  5. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery.

    PubMed

    Maciel, Vinicius B V; Yoshida, Cristiana M P; Pereira, Susana M S S; Goycoolea, Francisco M; Franco, Telma T

    2017-10-12

    A polyelectrolyte complex system of chitosan-pectin nano- and microparticles was developed to encapsulate the hormone insulin. The aim of this work was to obtain small particles for oral insulin delivery without chemical crosslinkers based on natural and biodegradable polysaccharides. The nano- and microparticles were developed using chitosans (with different degrees of acetylation: 15.0% and 28.8%) and pectin solutions at various charge ratios (n⁺/n - given by the chitosan/pectin mass ratio) and total charge. Nano- and microparticles were characterized regarding particle size, zeta potential, production yield, encapsulation efficiency, stability in different media, transmission electron microscopy and cytotoxicity assays using Caco-2 cells. The insulin release was evaluated in vitro in simulated gastric and intestinal media. Small-sized particles (~240-~1900 nm) with a maximum production yield of ~34.0% were obtained. The highest encapsulation efficiency (~62.0%) of the system was observed at a charge ratio (n⁺/n - ) 5.00. The system was stable in various media, particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for oral administration of bioactive peptides.

  6. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  7. Cytotoxicity of solid lipid nanoparticles and nanostructured lipid carriers containing the local anesthetic dibucaine designed for topical application

    NASA Astrophysics Data System (ADS)

    Barbosa, R. M.; da Silva, C. M. G.; Bella, T. S.; de Araújo, D. R.; Marcato, P. D.; Durán, N.; de Paula, E.

    2013-04-01

    Dibucaine (DBC) is powerful long-lasting local anesthetic, but it is also considered fairly toxic to the CNS. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have attracted attention as carriers for drug delivery. The aim of this study was to develop and to evaluate the cytotoxic activity of DBC-loaded SLN and NLC against 3T3 fibroblast and HaCat keratinocyte cells. The SLN and NLC had myristyl myristate and Liponate®GC as their lipid matrices, respectively, plus a surfactant. SLN and NLC were characterized in terms in their diameter, size distribution, surface charge and DBC encapsulation efficiency. The particle size of SLN and NLC were around 234.33 and 166.62 nm, respectively. The polydispersity index was kept below 0.2 for both nanomaterials. Negative surface charges were observed for both nanoparticles, which decreased in the presence of the anesthetic. Encapsulation efficiency reached 76% and 90%, respectively, in SLN and NLC. DBC alone was found to be toxic to 3T3 and HaCat cells in culture. However, NLC and SLN loaded DBC decreased its intrinsic cytotoxic effect against 3T3 and HaCat cells. In conclusion, encapsulation of DBC in SLN and NLC decreased the in vitro toxicity of the local anesthetic, indicating the potential of these nanocarriers for clinical applications.

  8. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles.

    PubMed

    Ezzati Nazhad Dolatabadi, Jafar; Hamishehkar, Hamed; Eskandani, Morteza; Valizadeh, Hadi

    2014-05-01

    Solid lipid nanoparticles (SLNs) are novel drug delivery system for drug targeting in various routs of administration such as parenteral, oral, ophthalmic and topical. These carriers have some advantages such as high drug payload, increased drug stability, the possibility of incorporation of lipophilic and hydrophilic drugs, and low biotoxicity. In this study, alendronate sodium was used as a hydrophilic model drug and was incorporated into SLNs. Hot homogenization method was used for preparation of alendronate sodium-loaded SLN formulations and the encapsulation efficiency of drug in SLNs was determined by ultrafiltration method using centrifugal devices. Scanning electron microscopy (SEM) was carried out to study the morphological behaviors of prepared SLNs like sphericity. Several cytotoxicity studies including MTT, DAPI staining and DNA fragmentation assays were used for biocompatibility assays. High drug encapsulation efficiency (70-85%) was achieved by drug determination through derivatization with o-phthalaldehyde. The physical stability of drug-loaded SLNs in aqueous dispersions was assessed in terms of size and drug leakage during two weeks. Scanning electron microscopy images showed spherical particles in the nanometer range confirming the obtained data from size analyzer. Several cytotoxicity studies including MTT, DAPI staining and DNA fragmentation assays as well as flow cytometry analysis confirmed the low toxicity of alendronate-loaded SLNs. The cost-efficient procedure, the avoidance of organic solvents application, acceptable reproducibility, ease of manufacturing under mild preparation conditions, high level of drug encapsulation, desirable physical stability and biocompatibility are the advantages of the proposed SLN formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  10. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  11. Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity

    NASA Astrophysics Data System (ADS)

    Liang, Ruijing; Wang, Jing; Wu, Xian; Dong, Liyun; Deng, Renhua; Wang, Ke; Sullivan, Martin; Liu, Shanqin; Wu, Min; Tao, Juan; Yang, Xiangliang; Zhu, Jintao

    2013-11-01

    We present a simple, yet versatile strategy for the fabrication of uniform biodegradable polymer nanoparticles (NPs) with controllable sizes by a hand-driven membrane-extrusion emulsification approach. The size and size distribution of the NPs can be easily tuned by varying the experimental parameters, including initial polymer concentration, surfactant concentration, number of extrusion passes, membrane pore size, and polymer molecular weight. Moreover, hydrophobic drugs (e.g., paclitaxel (PTX)) and inorganic NPs (e.g., quantum dots (QDs) and magnetic NPs (MNPs)) can be effectively and simultaneously encapsulated into the polymer NPs to form the multifunctional hybrid NPs through this facile route. These PTX-loaded NPs exhibit high encapsulation efficiency and drug loading density as well as excellent drug sustained release performance. As a proof of concept, the A875 cell (melanoma cell line) experiment in vitro, including cellular uptake analysis by fluorescence microscope, cytotoxicity analysis of NPs, and magnetic resonance imaging (MRI) studies, indicates that the PTX-loaded hybrid NPs produced by this technique could be potentially applied as a multifunctional delivery system for drug delivery, bio-imaging, and tumor therapy, including malignant melanoma therapy.

  12. Spray-dried structured lipid containing long-chain polyunsaturated fatty acids for use in infant formulas.

    PubMed

    Nagachinta, Supakana; Akoh, Casimir C

    2013-10-01

    Human milk fat (HMF) analogs are structured lipids (SLs) modified to have palmitic acid content at the sn-2 position of the triacylglycerol (TAG) and fatty acid composition comparable to HMF. Some of these SLs are also designed to incorporate long-chain polyunsaturated fatty acids (LCPUFAs) because of their important role in infant development. In this study, Maillard reaction products (MRPs), obtained from heated whey protein isolates and corn syrup solids (CSS) solution, were used as encapsulants for microencapsulation of 2 enzymatically synthesized SLs for infant formula applications. The encapsulated SL powders were obtained through spray-drying and evaluated in terms of their microencapsulation efficiency, chemical and physical properties, oxidative stability, and dispersibility. The microencapsulation efficiency of the SLs was 90%. Dispersibility test using particle size measurement demonstrated that these powders dispersed quickly into a homogeneous suspension. The encapsulated SL powders had low peroxide and thiobarbituric acid-reactive substances values. Lower oxidative stability was obtained in the powder containing SL with a higher degree of unsaturation and a lower concentration of tocopherols. The results demonstrated that the degree of fatty acid unsaturation and concentration of endogenous antioxidant in starting oils influenced the oxidative stability of the encapsulated SLs. © 2013 Institute of Food Technologists®

  13. Microfluidic-Assisted Production of Size-Controlled Superparamagnetic Iron Oxide Nanoparticles-Loaded Poly(methyl methacrylate) Nanohybrids.

    PubMed

    Ding, Shukai; Attia, Mohamed F; Wallyn, Justine; Taddei, Chiara; Serra, Christophe A; Anton, Nicolas; Kassem, Mohamad; Schmutz, Marc; Er-Rafik, Meriem; Messaddeq, Nadia; Collard, Alexandre; Yu, Wei; Giordano, Michele; Vandamme, Thierry F

    2018-02-06

    In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.

  14. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  15. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  16. Cellular Trojan horse based polymer nanoreactors with light-sensitive activity.

    PubMed

    Baumann, Patric; Spulber, Mariana; Dinu, Ionel Adrian; Palivan, Cornelia G

    2014-08-07

    Stimulus-sensitive systems at the nanoscale represent ideal candidates for improving therapeutic and diagnostic approaches by producing rapid responses to the presence of specific molecules or conditions either by changing properties or by acting "on demand". Here we introduce an optimized light-sensitive nanoreactor based on encapsulation of a photosensitizer inside polymer vesicles to serve as an efficient source of reactive oxygen species (ROS) "on demand". Two types of amphiphilic block copolymers, poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline), PMOXA-PDMS-PMOXA, and poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone), PNVP-PDMS-PNVP, were used to encapsulate Rose Bengal-bovine serum albumin (RB-BSA) inside the cavity of vesicles. The difference of copolymers molecular properties (hydrophobic to hydrophilic ratio, different chemical nature of the hydrophilic block) influenced the encapsulation ability, and uptake by cells, allowing therefore a selection of the most efficient polymer system. Nanoreactors were optimized in terms of (i) size, (ii) stability, and (iii) encapsulation efficiency based on a combination of light scattering, TEM, and UV-vis spectroscopy. By illumination, encapsulated RB-BSA conjugates generated in situ ROS, which diffused through the polymer membrane to the environment of the vesicles, as proved by electron spin resonance spectroscopy (ESR). Optimum illumination conditions were obtained based on the effect of the illumination time on the amount of ROS produced in situ by the encapsulated RB-BSA conjugates. ROS diffusion monitored by ESR was dependent on the molecular weight of copolymer that influences the thickness of the polymer membrane. Upon uptake into HeLa cells our nontoxic nanoreactors acted as a Trojan horse: they produced illumination-controlled ROS in sufficient amounts to induce cell death under photodynamic therapy (PDT) conditions. Straightforward production, stability, and Trojan horse activity inside cells support our light-sensitive nanoreactors for medical applications which require ROS to be generated with precise time and space control.

  17. Förster resonance energy transfer between pyrene and bovine serum albumin: effect of the hydrophobic pockets of cyclodextrins.

    PubMed

    Maity, Arnab; Mukherjee, Puspal; Das, Tarasankar; Ghosh, Prasun; Purkayastha, Pradipta

    2012-06-15

    The phenomenon of Förster resonance energy transfer (FRET) between pyrene and bovine serum albumin (BSA) protein in presence of cyclodextrins (CDs) is explored in the present work. CDs provide hydrophobic environment and thus the aromatic molecules get encapsulated in them depending on the relative size and space. In this work we revealed that along with pyrene monomer, the side chains of amino acids in BSA can get trapped partly in the hydrophobic cavities of CDs if space permits. While being encapsulated by β-CD as pyrene monomer, it can interact with the BSA tryptophan moiety exposed toward the aqueous environment to form a dimer through π-π interaction. This, in turn, affects the energy transfer process by reducing the efficiency. On the other hand, pyrene excimer gets encapsulated in a γ-CD molecule due to availability of enough space. The excimer shows a new band at a higher wavelength. This further reduces FRET efficiency due to scarcity of acceptor for the tryptophan moieties in BSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Preparation and investigation of Ulex europaeus agglutinin I-conjugated liposomes as potential oral vaccine carriers.

    PubMed

    Li, KeXin; Chen, DaWei; Zhao, XiuLi; Hu, HaiYang; Yang, ChunRong; Pang, DaHai

    2011-11-01

    We prepared and optimized Ulex europaeus agglutinin I (UEAI)-modified Bovine serum albumin (BSA)-encapsulating liposomes (UEAI-LIP) as oral vaccine carriers and examined the feasibility of inducing systemic and mucosal immune responses by oral administration of UEAILIP. The prepared systems were characterized in vitro for their average size, zeta potential, encapsulation efficiency (EE%) and conjugation efficiency (CE%). In vitro release studies indicated that the presence of UEAI around the optimized liposomes was able to prevent a burst release of loaded BSA and provide sustained release of the encapsulated protein. In vivo immune-stimulating results in KM mice showed that BSA given intramuscularly generated systemic response only but both systemic and mucosal immune responses could be induced simultaneously in the groups in which BSA-loaded liposomes (LIP) and UEAI-LIP were administered intragastrically. Furthermore, the modification of UEAI on the surface of liposomes could further enhance the IgA and IgG levels obviously. In conclusion, this study demonstrated the high potential of lectin-modified liposomes containing the antigen as carriers for oral vaccine.

  19. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles.

    PubMed

    Ducat, E; Deprez, J; Gillet, A; Noël, A; Evrard, B; Peulen, O; Piel, G

    2011-11-28

    The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG(750)-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-09-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm-2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER.

  1. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    PubMed Central

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-01-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm−2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER. PMID:27658968

  2. Biocompatible microemulsions for fabrication of glyceryl monostearate solid lipid nanoparticles (SLN) of tretinoin.

    PubMed

    Shah, Kumar A; Joshi, Medha D; Patravale, Vandana B

    2009-08-01

    The objective of the present investigation was to fabricate glyceryl monostearate SLN by employing a biocompatible microemulsion as a template. Biocompatible excipients such as Tween 20 (as a surfactant) and Transcutol P (a cosourfactant) (at different K(m) ratios) were selected for the fabrication of microemulsions. Pseudo-ternary phase diagrams were plotted to identify the area of the microemulsion existence. Glyceryl monostearate SLN were fabricated by dispersing the microemulsion (maintained at 65 degrees C) into cold water (maintained at 2-3 degrees C). The particle size of the SLN was determined by photon correlation spectroscopy. Tretinoin, a lipophilic anti-acne agent was incorporated into SLN as a model drug. The encapsulation efficiency of tretinoin in the SLN was determined by using Nanosep ultrafilteration device at different lipid loads viz. 1%, 1.5% and 2%. Glyceryl monostearate SLN fabricated from biocompatible microemulsion template exhibited average particle size of 175 nm and polydispersity index of 0.833. Tretinoin could be successfully incorporated into SLN and the encapsulation efficiency ranged from 37-48% at different lipid loads.

  3. Effect of squalane on mebendazole-loaded Compritol® nanoparticles.

    PubMed

    Graves, Richard A; Ledet, Grace A; Nation, Cedric A; Pramar, Yashoda V; Bostanian, Levon A; Mandal, Tarun K

    2015-01-01

    The objective of this study is to develop nanostructured lipid formulations of Compritol for the delivery of mebendazole. The formulations were prepared with Compritol 888 ATO, squalane, and Pluronic F68. Nine batches with different amounts of modifier, squalane, and drug were prepared. The formulations were characterized by evaluating particle size, morphology, and zeta potential. The thermal properties of the formulations were analyzed by differential scanning calorimetry (DSC). The encapsulation efficiency of each formulation and the drug release rates from each formulation were quantified by UPLC. The particles were spherical and had median particle sizes between 300 and 600 nm (50th percentile). A linear relationship was observed between Compritol/squalane composition and the melting point of the mixture. The DSC scans of the formulations revealed some recrystallization of the drug from the formulations, and the amount of recrystallization correlated with the amount of squalane in the formulation. Approximately, 70% efficiency of encapsulation was observed in the formulations with 30% (w/w) squalane, and these formulations also had faster dissolution rates compared to the other formulations. Overall, the formulations with 30% squalane are the preferred formulation for future testing.

  4. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    PubMed

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PLGA Biodegradable Nanoparticles Containing Perphenazine or Chlorpromazine Hydrochloride: Effect of Formulation and Release

    PubMed Central

    Halayqa, Mohammed; Domańska, Urszula

    2014-01-01

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles. PMID:25535080

  6. PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release.

    PubMed

    Halayqa, Mohammed; Domańska, Urszula

    2014-12-22

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles.

  7. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics.

    PubMed

    Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-05-01

    Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.

  8. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  9. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  10. Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin.

    PubMed

    Xu, Wen-Ke; Jiang, Hui; Yang, Kui; Wang, Ya-Qin; Zhang, Qian; Zuo, Jian

    2017-03-01

    α-Mangostin (MG) is a versatile bioactive compound isolated from mangosteen and possesses significant pharmacokinetic shortages. To augment the potential clinical efficacy, MG-loaded self-microemulsion (MG-SME) was designed and prepared in this study, and its potential as a drug loading system was evaluated based on the pharmacokinetic performance and tissue distribution feature. The formula of MG-SME was optimized by an orthogonal test under the guidance of ternary phase diagram, and the prepared MG-SME was characterized by encapsulation efficiency, size distribution, and morphology. Optimized high performance liquid chromatography method was employed to determine concentrations of MG and characterize the pharmacokinetic and tissue distribution features of MG in rodents. It was found that diluted MG-SME was characterized as spherical particles with a mean diameter of 24.6 nm and an encapsulation efficiency of 87.26%. The delivery system enhanced the area under the curve of MG by 4.75 times and increased the distribution in lymphatic organs. These findings suggested that SME as a nano-sized delivery system efficiently promoted the digestive tract absorption of MG and modified its distribution in tissues. The targeting feature and high oral bioavailability of MG-SME promised a good clinical efficacy, especially for immune diseases. Copyright © 2017. Published by Elsevier Taiwan.

  11. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles

    PubMed Central

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  12. Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In Vitro characterization as an effective aerosol formulation in pulmonary diseases

    PubMed Central

    2012-01-01

    Background Alpha 1- antitrypsin (α1AT) belongs to the superfamily of serpins and inhibits different proteases. α1AT protects the lung from cellular inflammatory enzymes. In the absence of α1AT, the degradation of lung tissue results to pulmonary complications. The pulmonary route is a potent noninvasive route for systemic and local delivery. The aerosolized α1AT not only affects locally its main site of action but also avoids remaining in circulation for a long period of time in peripheral blood. Poly (D, L lactide-co glycolide) (PLGA) is a biodegradable and biocompatible polymer approved for sustained controlled release of peptides and proteins. The aim of this work was to prepare a wide range of particle size as a carrier of protein-loaded nanoparticles to deposit in different parts of the respiratory system especially in the deep lung. Various lactide to glycolide ratio of the copolymer was used to obtain different release profile of the drug which covers extended and rapid drug release in one formulation. Results Nonaqueous and double emulsion techniques were applied for the synthesis of nanoparticles. Nanoparticles were characterized in terms of surface morphology, size distribution, powder X-ray diffraction (XRD), encapsulation efficiency, in vitro drug release, FTIR spectroscopy and differential scanning calorimetry (DSC). To evaluate the nanoparticles cytotoxicity, cell cytotoxicity test was carried out on the Cor L105 human epithelial lung cancer cell line. Nanoparticles were spherical with an average size in the range of 100 nm to 1μ. The encapsulation efficiency was found to be higher when the double emulsion technique was applied. XRD and DSC results indicated that α1AT encapsulated in the nanoparticles existed in an amorphous or disordered-crystalline status in the polymer matrix. The lactic acid to glycolic acid ratio affects the release profile of α1AT. Hence, PLGA with a 50:50 ratios exhibited the ability to release %60 of the drug within 8, but the polymer with a ratio of 75:25 had a continuous and longer release profile. Cytotoxicity studies showed that nanoparticles do not affect cell growth and were not toxic to cells. Conclusion In summary, α1AT-loaded nanoparticles may be considered as a novel formulation for efficient treatment of many pulmonary diseases. PMID:22607686

  13. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    PubMed Central

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  14. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.

    PubMed

    Wang, Fengzhang; Yang, Yijie; Ju, Xingrong; Udenigwe, Chibuike C; He, Rong

    2018-03-21

    Curcumin is a polyphenol that exhibits several biological activities, but its low aqueous solubility results in low bioavailability. To improve curcumin bioavailability, this study has focused on developing a polyelectrolyte complexation method to form layer-by-layer assembled nanoparticles, for curcumin delivery, with positively charged chitosan (CS) and negatively charged acylated cruciferin (ACRU), a rapeseed globulin. Nanoparticles (NPs) were prepared from ACRU and CS (2:1) at pH 5.7. Three samples with weight of 5%, 10%, and 15% of curcumin, respectively, in ACRU/CS carrier were prepared. To verify the stability of the NPs, encapsulation efficiency and size of the 5% Cur-ACRU/CS NPs were determined at intervals of 5 days in a one month period. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry confirmed the electrostatic interaction and hydrogen bond formation between the carrier and core. The result showed that hollow ACRU/CS nanocapsules (ACRU/CS NPs) and curcumin-loaded ACRU/CS nanoparticles (Cur-ACRU/CS NPs) were homogenized spherical with average sizes of 200-450 nm and zeta potential of +15 mV. Encapsulation and loading efficiencies were 72% and 5.4%, respectively. In vitro release study using simulated gastro (SGF) and intestinal fluids (SIF) showed controlled release of curcumin in 6 h of exposure. Additionally, the Cur-ACRU/CS NPs are nontoxic to cultured Caco-2 cells, and the permeability assay indicated that Cur-ACRU/CS NPs had improved permeability efficiency of free curcumin through the Caco-2 cell monolayer. The findings suggest that ACRU/CS NPs can be used for encapsulation and delivery of curcumin in functional foods.

  15. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  16. Chitosan/cashew gum nanogels for essential oil encapsulation.

    PubMed

    Abreu, Flávia O M S; Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2012-08-01

    Nanogels based on chitosan and cashew gum were prepared and loaded with Lippia sidoides oil. Several parameters such as cashew gum concentration and relative oil content in the matrix had their influence on nanogel properties investigated. Nanogels were characterized regarding their morphologies, particle size distributions, zeta potential, Fourier transform infrared spectroscopy and essential oil contents. The release profile was investigated by UV/vis spectroscopy and its efficacy was determined through bioassays. Results showed that samples designed using relative ratios matrix:oil 10:2, gum:chitosan 1:1 and 5% gum concentration showed high loading (11.8%) and encapsulation efficiency (70%). Nanogels were found to exhibit average sizes in the range 335-558 nm. In vitro release profiles showed that nanoparticles presented slower and sustained release. Bioassays showed that larval mortality was related mainly to oil loading, with samples presenting more effective larvicide efficacies than the pure L. sidoides oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications.

    PubMed

    Udompornmongkol, Panisa; Chiang, Been-Huang

    2015-11-01

    The purpose of the present study was to fabricate polymeric nanoparticles as drug carriers for encapsulated curcumin with enhanced anti-colorectal cancer applications. Nanoparticles were formulated from chitosan and gum arabic, natural polysaccharides, via an emulsification solvent diffusion method. The formation of curcumin nanoparticles was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimeter. The results show that curcumin was entrapped in carriers with +48 mV, 136 nm size, and high encapsulation efficiency (95%). Based on an in vitro release study, we inferred that curcumin nanoparticles could tolerate hydrolysis due to gastric juice or small intestinal enzymes, and therefore, it should reach the colon largely intact. In addition, curcumin nanoparticles had higher anti-colorectal cancer properties than free curcumin due to greater cellular uptake. Therefore, we concluded that curcumin was successfully encapsulated in chitosan-gum arabic nanoparticles with superior anti-colorectal cancer activity. © The Author(s) 2015.

  18. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  19. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  20. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  1. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules

    NASA Astrophysics Data System (ADS)

    Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.

    2014-01-01

    Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.

  2. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  3. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  4. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shofiah, Siti; Muflihatun, Suharyadi, Edi

    2016-04-01

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.

  5. Insulin-egg yolk dispersions in self microemulsifying system.

    PubMed

    Singnurkar, P S; Gidwani, S K

    2008-11-01

    Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 μm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

  6. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals

    NASA Astrophysics Data System (ADS)

    Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang

    2017-06-01

    The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.

  7. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk.

    PubMed

    Pinilla, Cristian Mauricio Barreto; Noreña, Caciano Pelayo Zapata; Brandelli, Adriano

    2017-04-01

    Phospholipid nanovesicles were developed to improve the stability of garlic (Allium sativum L.) extract. Electron microscopy of liposomes revealed nanometric and spherical-shaped vesicles with a mean particle size of 174.6±17.3nm and polydispersity index of 0.26±0.02. The entrapment efficiency was 47.5±7.3% and the nanoliposomes had a zeta potential of -16.2±5.5mV. The antimicrobial activity of free and encapsulated garlic extract was evaluated against different strains of Listeria spp. in milk at 37°C for 24h. For free and encapsulated garlic extracts at 5% concentration, a decrease of 4log cycles in viable cell counts was observed at 10h, against four of the five strains of Listeria spp. tested. The results indicate that liposomes constitute a suitable system for encapsulation of unstable garlic active compounds and the encapsulation of garlic extract proves to be a promising technology for multiple applications, including antimicrobial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach.

    PubMed

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart.

  9. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach

    PubMed Central

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom–liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart. PMID:28144138

  10. Development of nanostructured lipid carrier for dacarbazine delivery

    NASA Astrophysics Data System (ADS)

    Almousallam, Musallam; Moia, Claudia; Zhu, Huijun

    2015-09-01

    Dacarbazine (Dac) is one of the most commonly used chemotherapy drugs for treating various cancers. However, its poor water solubility, short half-life in blood circulation, low response rate and high side effect limit its application. This study aimed to improve the drug solubility and prolong drug release by developing nanostructured lipid carriers (NLCs) for Dac delivery. The NLC and Dac-encapsulated NLC were synthesized with precirol ATO 5 and isopropyl myristate as lipids, tocopheryl polyethylene glycol succinate, soybean lecithin and Kolliphor P 188 as co-surfactants. The NLCs with controlled size were achieved using high shear dispersion following solidification of oil-in-water emulsion. For Dac encapsulation, the smallest NLC with 155 ± 10 nm in size, 0.2 ± 0.01 polydispersion index and -43.4 ± 2 mV zeta potential was selected. The resultant DLC-Dac possessed size, polydispersion index and zeta potential of 190 ± 10, 0.2 ± 0.01, and -43.5 ± 1.2, respectively. The drug encapsulation efficiency and drug loading were 98.5 % and 14 %, respectively. In vitro drug release study showed a biphasic pattern, with 50 % released in the first 2 h, and the remaining released sustainably for up to 30 h. This is the first report on the development of NLC for Dac delivery, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac.

  11. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.

    PubMed

    Abul Kalam, Mohd; Khan, Abdul Arif; Khan, Shahanavaj; Almalik, Abdulaziz; Alshamsan, Aws

    2016-06-01

    Indomethacin chitosan nanoparticles (NPs) were developed by ionotropic gelation and optimized by concentrations of chitosan and tripolyphosphate (TPP) and stirring time by 3-factor 3-level Box-Behnken experimental design. Optimal concentration of chitosan (A) and TPP (B) were found 0.6mg/mL and 0.4mg/mL with 120min stirring time (C), with applied constraints of minimizing particle size (R1) and maximizing encapsulation efficiency (R2) and drug release (R3). Based on obtained 3D response surface plots, factors A, B and C were found to give synergistic effect on R1, while factor A has a negative impact on R2 and R3. Interaction of AB was negative on R1 and R2 but positive on R3. The factor AC was having synergistic effect on R1 and on R3, while the same combination had a negative effect on R2. The interaction BC was positive on the all responses. NPs were found in the size range of 321-675nm with zeta potentials (+25 to +32mV) after 6 months storage. Encapsulation, drug release, and content were in the range of 56-79%, 48-73% and 98-99%, respectively. In vitro drug release data were fitted in different kinetic models and pattern of drug release followed Higuchi-matrix type. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microfabrication of curcumin-loaded microparticles using coaxial electrohydrodynamic atomization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Si, Ting; Liu, Zhongfa; Xu, Ronald X.

    2014-03-01

    Encapsulation of curcumin in PLGA microparticles is performed by a coaxial electrohydrodynamic atomization device. To optimize the process, the effects of different control parameters on morphology and size distribution of resultant microparticles are studied systemically. Four main flow modes are identified as the applied electric field intensity increases. The stable cone-jet configuration is found to be available for fabricating monodisperse microparticles with core-shell structures. The results are compared with those observed in traditional emulsion. The drug-loading efficiency is also checked. The present system is advantageous for the enhancement of particle size distribution and drug-loading efficiency in various applications such as drug delivery, biomedicine and image-guided therapy.

  13. Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert

    2017-11-01

    Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.

  14. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    PubMed

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe 2+ ) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia.

    PubMed

    Shende, Pravin; Deshmukh, Kiran; Trotta, Fransesco; Caldera, Fabrizio

    2013-11-01

    Cyclodextrin nanosponges are solid, porous nanoparticulate three dimensional structures, have been used as delivery system of different drugs. In this work, new cyclodextrin-based nanosponges of calcium carbonate were prepared by polymer condensation method to release the calcium in controlled manner in the treatment of hyperphosphatemia as novel carriers. SEM measurements revealed their roughly spherical shape, porous nature and mean particle size of about 400 nm. Zeta potentials of the nanosponges were sufficiently high to obtain stable formulations. The encapsulation efficiencies of calcium in nanosponge formulations were found to be 81-95%. The moisture contents of the nanosponges were in the range of 0.1-0.7%. The optimized formulation produces enteric and controlled release kinetics of calcium in the management and treatment of hyperphosphatemia. It was also observed that calcium ions bound efficiently to free phosphate in a pH-dependent fashion especially at pH 7. In accelerated stability study no significant changes occurred in physical appearance, size and nature of drug in formulation for 3 months. The results of FTIR and DSC confirmed that calcium carbonate was encapsulated in nanosponges structure. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. [Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang

    2012-06-01

    Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  18. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy

    PubMed Central

    Moin, Afrasim; Deb, Tamal K.; Osmani, Riyaz Ali M.; Bhosale, Rohit R.; Hani, Umme

    2016-01-01

    Objective: The rationale behind present research vocation was to develop and investigate a novel microsponge based gel as a topical carrier for the prolonged release and cutaneous drug deposition of fluconazole (FLZ); destined for facilitated fungal therapy. Materials and Methods: Microsponges were prepared using quasi-emulsion solvent diffusion method using Eudragit S-100. In the direction of optimization, the effect of formulation variables (drug-polymer ratio and amount of emulsifier) and diverse factors affecting physical characteristics of microsponge were investigated as well. Fabricated microsponges were characterized by differential scanning calorimetry, Fourier transform-infrared, scanning electron microscopy (SEM), particle size analysis, and also evaluated for drug content, encapsulation efficiency, in vitro drug release and in vitro antifungal activity. Results: Compatibility studies results reflected no sign of any chemical interaction between the drug and polymers used. Whereas, varied drug-polymer ratios and emulsifier concentration indicated significant effect on production yield, drug content, encapsulation efficiency, particle size and drug release. Spherical microsponges with a porous surface and 29.327 ± 0.31 μm mean particle size were evident from SEM micrographs. In vitro release outcomes, from microsponge loaded gels depicted that F1 formulation was more efficient to give extended drug release of 85.38% at the end of 8 h, while conventional formulation by releasing 83.17% of drug got exhausted incredibly earlier at the end of 4 h merely. Moreover, microsponge gels demonstrated substantial spreadability and extrudability along with promising antifungal activity. Conclusions: Fabricated microsponges would be impending pharmaceutical topical carriers of FLZ and a leading alternative to conventional therapy for efficient, safe and facilitated eradication of fungal infections. PMID:27057125

  19. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach.

    PubMed

    Leng, Donglei; Thanki, Kaushik; Fattal, Elias; Foged, Camilla; Yang, Mingshi

    2017-08-25

    Chronic obstructive pulmonary disease (COPD) is a complex disease, characterized by persistent airflow limitation and chronic inflammation. The purpose of this study was to design lipid-polymer hybrid nanoparticles (LPNs) loaded with the corticosteroid, budesonide, which could potentially be combined with small interfering RNA (siRNA) for COPD management. Here, we prepared LPNs based on the biodegradable polymer poly(dl-lactic-co-glycolic acid) (PLGA) and the cationic lipid dioleyltrimethylammonium propane (DOTAP) using a double emulsion solvent evaporation method. A quality-by-design (QbD) approach was adopted to define the optimal formulation parameters. The quality target product profile (QTPP) of the LPNs was identified based on risk assessment. Two critical formulation parameters (CFPs) were identified, including the theoretical budesonide loading and the theoretical DOTAP loading. The CFPs were linked to critical quality attributes (CQAs), which included the intensity-based hydrodynamic particle diameter (z-average), the polydispersity index (PDI), the zeta-potential, the budesonide encapsulation efficiency, the actual budesonide loading and the DOTAP encapsulation efficiency. A response surface methodology (RSM) was applied for the experimental design to evaluate the influence of the CFPs on the CQAs, and to identify the optimal operation space (OOS). All nanoparticle dispersions displayed monodisperse size distributions (PDI<0.2) with z-averages of approximately 150nm, suggesting that the size is not dependent on the investigated CFPs. In contrast, the zeta-potential was highly dependent on the theoretical DOTAP loading. Upon increased DOTAP loading, the zeta-potential reached a maximal point, after which it remained stable at the maximum value. This suggests that the LPN surface is covered by DOTAP, and that the DOTAP loading is saturable. The actual budesonide loading of the LPNs was mainly dependent on the initial amount of budesonide, and a clear positive effect was observed, which shows that the interaction between drug and PLGA increases when increasing the initial amount of budesonide. The OOS was modeled by applying the QTPP. The OOS had a budesonide encapsulation efficiency higher than 30%, a budesonide loading above 15μg budesonide/mg PLGA, a zeta-potential higher than 35mV and a DOTAP encapsulation efficiency above 50%. This study shows the importance of systematic formulation design for understanding the effect of formulation parameters on the characteristics of LPNs, eventually resulting in the identification of an OOS. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo.

    PubMed

    Gou, MaLing; Men, Ke; Shi, HuaShan; Xiang, MingLi; Zhang, Juan; Song, Jia; Long, JianLin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 ± 0.011) with a mean particle size of 27.3 ± 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 ± 1.02%, and drug loading of 12.95 ± 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t(1/2) and AUC of curcumin in vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesis in vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cells in vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg(-1) curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  1. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  2. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    PubMed

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  3. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  4. Radioprotective activity of curcumin-encapsulated liposomes against genotoxicity caused by Gamma Cobalt-60 irradiation in human blood cells.

    PubMed

    Nguyen, Minh-Hiep; Pham, Ngoc-Duy; Dong, Bingxue; Nguyen, Thi-Huynh-Nga; Bui, Chi-Bao; Hadinoto, Kunn

    2017-11-01

    While the radioprotective activity of curcumin against genotoxicity has been well established, its poor oral bioavailability has limited its successful clinical applications. Nanoscale formulations, including liposomes, have been demonstrated to improve curcumin bioavailability. The objective of the present work was (1) to prepare and characterize curcumin-encapsulated liposomes (i.e. size, colloidal stability, encapsulation efficiency, and payload), and (2) subsequently to evaluate their radioprotective activity against genotoxicity in human blood cells caused by Gamma Cobalt-60 irradiation. The curcumin-encapsulated liposomes were prepared by lipid-film hydration method using commercial phosphatidylcholine (i.e. Phospholipon ® 90G). The blood cells were obtained from healthy male donors (n = 3) under an approved ethics protocol. The cell uptake and the radioprotective activity of the curcumin-encapsulated liposomes were characterized by fluorescence microscopy and micronucleus assay, respectively. Nanoscale curcumin-encapsulated liposomes exhibiting good physical characteristics and successful uptake by the human blood cells were successfully prepared. The radioprotective activity of the curcumin-encapsulated liposomes was found to be dependent on the curcumin concentration, where an optimal concentration existed (i.e. 30 μg/mL) independent of the irradiation dose, above which the radioprotective activity had become stagnant (i.e. no more reduction in the micronuclei frequency). The present results established for the first time the radioprotective activity of curcumin-encapsulated liposomes in human blood cells, which coupled by its well-established bioavailability, boded well for its potential application as a nanoscale delivery system of other radioprotective phytochemicals.

  5. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  6. Selective Co-Encapsulation Inside an M6 L4 Cage.

    PubMed

    Leenders, Stefan H A M; Becker, René; Kumpulainen, Tatu; de Bruin, Bas; Sawada, Tomohisa; Kato, Taito; Fujita, Makoto; Reek, Joost N H

    2016-10-17

    There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M 6 L 4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shofiah, Siti, E-mail: esuharyadi@ugm.ac.id; Muflihatun,; Suharyadi, Edi

    2016-04-19

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles comparable sizes have been studied in detail. NiFe{sub 2}O{sub 4} were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe{sub 2}O{sub 4} was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe{sub 2}O{sub 4}more » as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe{sub 2}O{sub 4} became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe{sub 2}O{sub 3} phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe{sub 2}O{sub 4} nanoparticles.« less

  8. Solidification of liposomes by freeze-drying: the importance of incorporating gelatin as interior support on enhanced physical stability.

    PubMed

    Guan, Peipei; Lu, Yi; Qi, Jianping; Niu, Mengmeng; Lian, Ruyue; Wu, Wei

    2015-01-30

    The main purpose of this study was to investigate the effect of gelatin as interior support on the physical stability of freeze-dried liposomes. Anticancer agent paclitaxel (PTX) was selected as a model drug. Freeze-dried liposomes containing interior gelatin support (GLs) were prepared by thin-film dispersion/freeze-drying method. Several properties of the GLs, including entrapment efficiency, particle size and gelation temperature, were extensively characterized. Encapsulation efficiency of conventional liposomes (CLs) and liposomes containing lyoprotectants as interior support dropped to lower than 20% after reconstitution, while GLs still maintained an entrapment efficiency of over 84%. Scanning electron microscopy revealed well preserved liposomal structure of GLs after reconstitution. Meanwhile, the particle size and entrapment efficiency of GLs were also well preserved after reconstitution. In contrary, deformation of CLs and recrystallization of PTX were observed, as well as significant changes in particle size and entrapment efficiency. Taken together, interior gelatin support obviously enhanced the physical stability of liposomes against the lyophilization stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer.

    PubMed

    Prajakta, Dandekar; Ratnesh, Jain; Chandan, Kumar; Suresh, Subramanian; Grace, Samuel; Meera, Venkatesh; Vandana, Patravale

    2009-10-01

    The investigation was aimed at designing pH-sensitive, polymeric nanoparticles of curcumin, a natural anti-cancer agent, for the treatment of colon cancer. The objective was to enhance the bioavailability of curcumin, simultaneously reducing the required dose through selective targeting to colon. Eudragit S100 was chosen to aid targeting since the polymer dissolves at colonic pH to result in selective colonic release of the entrapped drug. Solvent emulsion-evaporation technique was employed to formulate the nanoparticles. Various process parameters were optimized and the optimized formulation was evaluated for particle size distribution and encapsulation efficiency before subjecting to freeze-drying. The freeze dried product was characterized for particle size, drug content, DSC studies, particle morphology. Anti-cancer potential of the formulation was demonstrated by MTT assay in HT-29 cell line. Nanometric, homogeneous, spherical particles were obtained with encapsulation efficiency of 72%. Freeze-dried nanoparticles exhibited a negative surface charge, drug content of > 99% and presence of drug in amorphous form which may result in possible enhanced absorption. MTT assay demonstrated almost double inhibition of the cancerous cells by nanoparticles, as compared to curcumin alone, at the concentrations tested. Enhanced action may be attributed to size influenced improved cellular uptake, and may result in reduction of overall dose requirement. Results indicate the potential for in vivo studies to establish the clinical application of the formulation.

  10. Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water soluble drugs.

    PubMed

    El-Say, Khalid M; El-Helw, Abdel-Rahim M; Ahmed, Osama A A; Hosny, Khaled M; Ahmed, Tarek A; Kharshoum, Rasha M; Fahmy, Usama A; Alsawahli, Majed

    2015-01-01

    The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 3(3) Box-Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0-∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.

  11. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  12. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  13. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.

    PubMed

    Ananta, Jeyarama S; Paulmurugan, Ramasamy; Massoud, Tarik F

    2016-01-01

    Current chemotherapies for brain glioblastoma do not achieve sufficient drug concentrations within tumors. Polymeric nanoparticles have useful physicochemical properties that make them promising as nanoparticle platforms for glioblastoma drug delivery. Poly[lactic-co-glycolic acid] (PLGA) nanoparticles encapsulating temozolomide (TMZ) could improve localized delivery and sustained drug release to glioblastomas. We investigated three different procedures to encapsulate TMZ within PLGA nanoparticles. We studied the biophysical features of optimized nanocarriers, including their size, shape, surface properties, and release characteristics of TMZ. We evaluated the antiproliferative and cytotoxic effects of TMZ-loaded PLGA nanoparticles on U87 MG glioblastoma cells. A single emulsion technique using a TMZ saturated aqueous phase produced nanoparticles ≤200 nm in size allowing a maximal drug loading of 4.4% w/w of polymer. There was a bi-phasic drug release pattern, with 80% of TMZ released within the first 6 h. Nanoparticles accumulated in the cytoplasm after effective endocytosis. There was no significant difference in cytotoxic effect of TMZ encapsulated within PLGA nanoparticles and free TMZ. PLGA nanoparticles are not suitable as carriers of TMZ for glioblastoma drug delivery on account of the overall high IC50 values of glioblastoma cells to TMZ and poor loading and encapsulation efficiencies. Further biotechnological developments aimed at improving the loading of TMZ in PLGA nanoparticles or co-delivery of small molecule sensitizers to improve the response of human glioblastoma cells to TMZ are required for this approach to be considered and optimized for future clinical translation.

  14. Nano spray drying for encapsulation of pharmaceuticals.

    PubMed

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cyclic Bis-porphyrin-Based Flexible Molecular Containers: Controlling Guest Arrangements and Supramolecular Catalysis by Tuning Cavity Size.

    PubMed

    Mondal, Pritam; Sarkar, Sabyasachi; Rath, Sankar Prasad

    2017-05-23

    Three cyclic zinc(II) bis-porphyrins (CB) with highly flexible linkers are employed as artificial molecular containers that efficiently encapsulate/coordinate various aromatic aldehydes within their cavities. Interestingly, the arrangements of guests and their reactivity inside the molecular clefts are significantly influenced by the cavity size of the cyclic containers. In the presence of polycyclic aromatic aldehydes, such as 3-formylperylene, as a guest, the cyclic bis-porphyrin host with a smaller cavity (CB1) forms a 1:1 sandwich complex. Upon slightly increasing the spacer length and thereby the cavity size, the cyclic host (CB2) encapsulates two molecules of 3-formylperylene that are also stacked together due to strong π-π interactions between them and CH-π interactions with the porphyrin rings. However, in the cyclic host (CB3) with an even larger cavity, two metal centers of the bis-porphyrin axially coordinate two molecules of 3-formylperylene within its cavity. Different arrangements of guest inside the cyclic bis-porphyrin hosts are investigated by using UV/Vis, ESI-MS, and 1 H NMR spectroscopy, along with X-ray structure determination of the host-guest complexes. Moreover, strong binding of guests within the cyclic bis-porphyrin hosts support the robust nature of the host-guest assemblies in solution. Such preferential binding of the bis-porphyrinic cavity towards aromatic aldehydes through encapsulation/coordination has been employed successfully to catalyze the Knoevenagel condensation of a series of polycyclic aldehydes with active methylene compounds (such as Meldrum's acid and 1, 3-dimethylbarbituric acid) under ambient conditions. Interestingly, the yields of the condensed products significantly increase upon increasing spacer lengths of the cyclic bis-porphyrins because more substrates can then be encapsulated within the cavity. Such controllable cavity size of the cyclic containers has profound implications for constructing highly functional and modular enzyme mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Treating acute cystitis with biodegradable micelle-encapsulated quercetin

    PubMed Central

    Wang, Bi Lan; Gao, Xiang; Men, Ke; Qiu, Jinfeng; Yang, Bowen; Gou, Ma Ling; Huang, Mei Juan; Huang, Ning; Qian, Zhi Yong; Zhao, Xia; Wei, Yu Quan

    2012-01-01

    Intravesical application of an anti-inflammatory drug is an efficient strategy for acute cystitis therapy. Quercetin (QU) is a potent anti-inflammatory agent; however, its poor water solubility restricts its clinical application. In an attempt to improve water solubility of QU, biodegradable monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles were used to encapsulate QU by self-assembly methods, creating QU/MPEG-PCL micelles. These QU/MPEG-PCL micelles with DL of 7% had a mean particle size of <34 nm, and could release QU for an extended period in vitro. The in vivo study indicated that intravesical application of MPEG-PCL micelles did not induce any toxicity to the bladder, and could efficiently deliver cargo to the bladder. Moreover, the therapeutic efficiency of intravesical administration of QU/MPEG-PCL micelles on acute cystitis was evaluated in vivo. Results indicated that QU/MPEG-PCL micelle treatment efficiently reduced the edema and inflammatory cell infiltration of the bladder in an Escherichia coli-induced acute cystitis model. These data suggested that MPEG-PCL micelle was a candidate intravesical drug carrier, and QU/MPEG-PCL micelles may have potential application in acute cystitis therapy. PMID:22661886

  17. Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats

    PubMed Central

    2014-01-01

    Objective To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. Methods NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. Results The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). Conclusion The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity. PMID:24641917

  18. Design, characterisation and application of alginate-based encapsulated pig liver esterase.

    PubMed

    Pauly, Jan; Gröger, Harald; Patel, Anant V

    2018-06-05

    Encapsulation of hydrolases in biopolymer-based hydrogels often suffers from low activities and encapsulation efficiencies along with high leaching and unsatisfactory recycling properties. Exemplified for the encapsulation of pig liver esterase the coating of alginate and chitosan beads have been studied by creating various biopolymer hydrogel beads. Enzyme activity and encapsulation efficiency were notably enhanced by chitosan coating of alginate beads while leaching remained nearly unchanged. This was caused by the enzymatic reaction acidifying the matrix, which increased enzyme retention through enhanced electrostatic enzyme-alginate interaction but decreased activity through enzyme deactivation. A practical and ready-to-use method for visualising pH in beads during reaction by co-encapsulation of a conventional pH indicator was also found. Our method proves that pH control inside the beads can only be realised by buffering. The resulting beads provided a specific activity of 0.267 μmol ∙ min -1 ∙ mg -1 , effectiveness factor 0.88, encapsulation efficiency of 88%, 5% leaching and good recycling properties. This work will contribute towards better understanding and application of encapsulated hydrolases for enzymatic syntheses. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Effects of melamine formaldehyde resin and CaCO3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs.

    PubMed

    Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng

    2013-08-01

    Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.

  20. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes.

    PubMed

    Nkanga, Christian Isalomboto; Krause, Rui Werner; Noundou, Xavier Siwe; Walker, Roderick Bryan

    2017-06-30

    Tuberculosis (TB) is a poverty related infectious disease that is rapidly giving rise to public health concerns. Lengthy drug administration and frequent adverse side-effects associated with TB treatment make anti-tubercular drugs (ATDs) good candidates for drug delivery studies. This work aimed to formulate and prepare liposomes as a cost-effective option for ATD delivery. Liposomes were prepared by film hydration using crude soybean lecithin (CL) and not pure phospholipids as in the normal practice. Cholesterol was also used (up to 25% mass ratio), and isoniazid (INH) was encapsulated as model drug using a freeze-thaw loading technique. Purified soybean lecithin (PL) was also used for comparative purposes, under the same conditions. INH-loaded liposomes were characterized for particle size, Zeta Potential (ZP), encapsulation efficiency (EE) and drug release. Physicochemical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared. INH-loaded CL-based liposomes showed high EE (79±2.45%). The average particle size (813.00±9.21nm) and ZP (-42.80±4.31mV) of this formulation are promising for the treatment of TB by pulmonary delivery. These findings suggest the possibility of encapsulating ATDs in liposomes made of crude soybean lecithin that is cheap and readily available. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Encapsulation of grape seed extract in polylactide microcapsules for sustained bioactivity and time-dependent release in dental material applications.

    PubMed

    Yourdkhani, Mostafa; Leme-Kraus, Ariene Arcas; Aydin, Berdan; Bedran-Russo, Ana Karina; White, Scott R

    2017-06-01

    To sustain the bioactivity of proanthocyanidins-rich plant-derived extracts via encapsulation within biodegradable polymer microcapsules. Polylactide microcapsules containing grape seed extract (GSE) were manufactured using a combination of double emulsion and solvent evaporation techniques. Microcapsule morphology, size distribution, and cross-section were examined via scanning electron microscopy. UV-vis measurements were carried out to evaluate the core loading and encapsulation efficiency of microcapsules. The bioactivity of extracts was evaluated after extraction from capsules via solvent partitioning one week or one year post-encapsulation process. Fifteen human molars were cut into 7mm×1.7mm×0.5mm thick mid-coronal dentin beams, demineralized, and treated with either encapsulated GSE, pristine GSE, or left untreated. The elastic modulus of dentin specimens was measured based on three-point bending experiments as an indirect assessment of the bioactivity of grape seed extracts. The effects of the encapsulation process and storage time on the bioactivity of extracts were analyzed. Polynuclear microcapsules with average diameter of 1.38μm and core loading of up to 38wt% were successfully manufactured. There were no statistically significant differences in the mean fold increase of elastic modulus values among the samples treated with encapsulated or pristine GSE (p=0.333), or the storage time (one week versus one year storage at room temperature, p=0.967). Polynuclear microcapsules containing proanthocyanidins-rich plant-derived extracts were prepared. The bioactivity of extracts was preserved after microencapsulation. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo.

    PubMed

    Yang, Xi; Li, Zhaojun; Wang, Ning; Li, Ling; Song, Linjiang; He, Tao; Sun, Lu; Wang, Zhihan; Wu, Qinjie; Luo, Na; Yi, Cheng; Gong, Changyang

    2015-05-18

    To develop injectable formulation and improve the stability of curcumin (Cur), Cur was encapsulated into monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) (MPEG-P(CL-co-TMC)) micelles through a single-step solid dispersion method. The obtained Cur micelles had a small particle size of 27.6 ± 0.7 nm with polydisperse index (PDI) of 0.11 ± 0.05, drug loading of 14.07 ± 0.94%, and encapsulation efficiency of 96.08 ± 3.23%. Both free Cur and Cur micelles efficiently suppressed growth of CT26 colon carcinoma cells in vitro. The results of in vitro anticancer studies confirmed that apoptosis induction and cellular uptake on CT26 cells had completely increased in Cur micelles compared with free Cur. Besides, Cur micelles were more effective in suppressing the tumor growth of subcutaneous CT26 colon in vivo, and the mechanisms included the inhibition of tumor proliferation and angiogenesis and increased apoptosis of tumor cells. Furthermore, few side effects were found in Cur micelles. Overall, our findings suggested that Cur micelles could be a stabilized aqueous formulation for intravenous application with improved antitumor activity, which may be a potential treatment strategy for colon cancer in the future.

  3. Optimization of Microencapsulation Composition of Menthol, Vanillin, and Benzyl Acetate inside Polyvinyl Alcohol with Coacervation Method for Application in Perfumery

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Raihani Rahman, Mohammad

    2017-07-01

    One of many applications of essential oils is as fragrance in perfumery. Menthol, benzyl acetate, and vanillin, each represents olfactive characteristic of peppermint leaves, jasmine flowers, and vanilla beans, are commonly used in perfumery. These components are highly volatile, hence the fragrance components will quickly evaporate resulting in short-lasting scent and low shelf life. In this research, said components have been successfully encapsulated simultaneously inside Polyvinyl Alcohol (PVA) using simple coacervation method to increase its shelf life. Optimization has been done using Central Composite Diagram with 4 independent variables, i.e. composition of menthol, benzyl acetate, vanillin, and tergitol 15-S-9 (as emulsifier). Encapsulation efficiency, loading capacity, and microcapsule size have been measured. In optimized composition of menthol (13.98 %w/w), benzyl acetate (14.75 %w/w), vanillin (17.84 %w/w), and tergitol 15-S-9 (13.4 %w/w) encapsulation efficiency of 97,34% and loading capacity of 46,46% have been achieved. Mean diameter of microcapsule is 20,24 μm and within range of 2,011-36,24 μm. Final product was achieved in the form of cross linked polyvinyl alcohol with hydrogel consistency and orange to yellow in color.

  4. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene.

    PubMed

    Khoshakhlagh, Khadije; Koocheki, Arash; Mohebbi, Mohebbat; Allafchian, Alireza

    2017-03-15

    In this study, the feasibility of developing Alyssum homolocarpum seed gum (AHSG) nanocapsules containing d-limonene by electrospraying has been investigated. d-limonene emulsions with constant AHSG (0.5% w/w) and various flavor concentrations (10-30% based on gum weight) with 0.1% Tween 20 were electrosprayed at 20kV and 0.1ml/h of flow rate. The effects of key parameters of emulsions (rheological properties, droplet size, surface tension and electrical conductivity) on the morphology of structures have been studied. The morphology of nanocapsules had strong dependency on solution properties. The aggregated irregular shaped nanoparticles were obtained from electrospraying of AHSG solution. After incorporation of 10 and 20% d-limonene, spherical nanocapsules were yielded. However, morphology of nanocapsules changed to nanofibers by increasing the flavor content to 30%. The encapsulation efficiency for 10 and 20% d-limonene loaded nanocapsules was around 87-93%. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were also employed to study the physicochemical characteristics of nanocapsules. These experiments provided evidences that electrosprayed AHSG nanoparticles introduce a novel and efficient carrier for encapsulation of bioactive ingredients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Formulation and optimization of zinc-pectinate beads for the controlled delivery of resveratrol.

    PubMed

    Das, Surajit; Ng, Ka-Yun; Ho, Paul C

    2010-06-01

    Preventive and therapeutic efficacies of resveratrol on several lower gastrointestinal (GI) diseases (e.g., colorectal cancer, colitis) are well documented. To overcome the problems due to its rapid absorption and metabolism at the upper GI tract, a delayed release formulation of resveratrol was designed to treat these lower GI diseases. The current study aimed to develop a delayed release formulation of resveratrol as multiparticulate pectinate beads by varying different formulation parameters. Zinc-pectinate (Zn-pectinate) beads exhibited better delayed drug release pattern than calcium-pectinate (Ca-pectinate) beads. The effects of the formulation parameters were investigated on shape, size, Zn content, moisture content, drug encapsulation efficiency, swelling-erosion, and resveratrol retention pattern of the formulated beads. Upon optimization of the formulation parameters in relative to the drug release profiles, the optimized beads were further subjected to morphological, chemical interaction, enzymatic degradation, and stability studies. Almost all prepared beads were spherical with approximately 1 mm diameter and efficiently encapsulated resveratrol. The formulation parameters revealed great influence on resveratrol retention and swelling-erosion behavior. In most of the cases, the drug release data more appropriately fitted with zero-order equation. This study demonstrates that the optimized Zn-pectinate beads can encapsulate very high amount of resveratrol and can be used as delayed release formulation of resveratrol.

  6. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains.

    PubMed

    Qiu, Chao; Chang, Ranran; Yang, Jie; Ge, Shengju; Xiong, Liu; Zhao, Mei; Li, Man; Sun, Qingjie

    2017-04-15

    Essential oils (EOs), including menthone, oregano, cinnamon, lavender, and citral, are natural products that have antimicrobial and antioxidant activities. However, extremely low water solubility, and easy degradation by heat, restrict their application. The aim of this work was to evaluate the enhancement in antioxidative and antimicrobial activities of EOs encapsulated in starch nanoparticles (SNPs) prepared by short glucan chains. For the first time, we have successfully fabricated menthone-loaded SNPs (SNPs-M) at different complexation temperatures (30, 60, and 90°C) by an in situ nanoprecipitation method. The SNPs-M displayed spherical shapes, and the particle sizes ranged from 93 to 113nm. The encapsulation efficiency (EE) of SNPs-M increased significantly with an increase in complexation temperature, and the maximum EE was 86.6%. The SNPs-M formed at 90°C had high crystallization and thermal stability. The durations of the antioxidant and antimicrobial activities of EOs was extended by their encapsulation in the SNPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nano-preparation of Andrographis paniculata extract by casein micelle for antidiabetic agent

    NASA Astrophysics Data System (ADS)

    Arbianti, Rita; Dewi, Veronica; Imansari, Farisa; Hermansyah, Heri; Sahlan, Muhamad

    2017-02-01

    Side effects caused by oral medications for person with diabetic are the background of the development of alternative treatments by traditional medicine, herbs. Andrographis paniculata (AP) is one of the herbs that is potent to be anti-diabetic agent. The active compound of AP, andrographolide have been examined to have anti-diabetic activity as α-glucosidase enzyme inhibitor. This research aims to encapsulate sambiloto's extract with casein micelle and produce nanoparticles which have anti-diabetic activity as α-glucosidase inhibitor. Extract of AP is encapsulated by casein micelle and made into nano size using sonicator. The dominant active compounds in AP extract coated by casein are andrographolide, neoandrographolide, 14-deoxy-11,12didehydroandrographolide with encapsulation efficiency of 68.83%, 89.15% and 81.69%, the average diameter of the particles is about 120.57 nm and its loading capacity is 28.85%. AP's extract has antidiabetic activity as α-glucosidase inhibitor with percent inhibition of 95%. The morphology of nanoencapsulated AP's extract analyzed by FE-SEM, were similar with casein micelle.

  8. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation.

    PubMed

    Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur

    2016-07-01

    Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A study of properties of "micelle-enhanced" polyelectrolyte capsules: Structure, encapsulation and in vitro release.

    PubMed

    Li, Xiaodong; Lu, Tian; Zhang, Jianxiang; Xu, Jiajie; Hu, Qiaoling; Zhao, Shifang; Shen, Jiacong

    2009-07-01

    "Micelle-enhanced" polyelectrolyte capsules were fabricated via a layer-by-layer technique, templated on hybrid calcium carbonate particles with built-in polymeric micelles based on polystyrene-b-poly(acrylic acid). Due to the presence of a large number of negatively charged micelles inside the polyelectrolyte capsule, which were liberated from templates, the capsule wall was reconstructed and had properties different to those of conventional polyelectrolyte capsules. This type of capsule could selectively entrap positively charged water-soluble substances. The encapsulation efficiency of positively charged substances was dependent on their molecular weight or size. For some positively charged compounds, such as rhodamine B and lysozyme, the concentration in the capsules was orders of magnitude higher than that in the incubation solution. In addition, in vitro release study suggested that the encapsulated compounds could be released through a sustained manner to a certain degree. All these results point to the fact that these capsules might be used as novel delivery systems for some water-soluble compounds.

  10. New trends in encapsulation of liposoluble vitamins.

    PubMed

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.

  11. Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications

    PubMed Central

    Khameneh, Bahman; Halimi, Vahid; Jaafari, Mahmoud Reza; Golmohammadzadeh, Shiva

    2015-01-01

    Objective(s): In the current study, sunscreen and moisturizing properties of solid lipid nanoparticle (SLN)-safranal formulations were evaluated. Materials and Methods: Series of SLN were prepared using glyceryl monostearate, Tween 80 and different amounts of safranal by high shear homogenization, and ultrasound and high-pressure homogenization (HPH) methods. SLN formulations were characterized for size, zeta potential, morphology, thermal properties, and encapsulation efficacy. The Sun Protection Factor (SPF) of the products was determined in vitro using transpore tape. The moisturizing activity of the products was also evaluated by corneometer. Results: The SPF of SLN-safranal formulations was increased when the amount of safranal increased. Mean particle size for all formulas was approximately 106 nm by probe sonication and 233 nm using HPH method. The encapsulation efficiency of safranal was around 70% for all SLN-safranal formulations. Conclusion: The results conclude that SLN-safranal formulations were found to be effective for topical delivery of safranal and succeeded in providing appropriate sunscreen properties. PMID:25810877

  12. Application of cashew tree gum on the production and stability of spray-dried fish oil.

    PubMed

    Botrel, Diego Alvarenga; Borges, Soraia Vilela; Fernandes, Regiane Victória de Barros; Antoniassi, Rosemar; de Faria-Machado, Adelia Ferreira; Feitosa, Judith Pessoa de Andrade; de Paula, Regina Celia Monteiro

    2017-04-15

    Evaluation of cashew gum compared to conventional materials was conducted regarding properties and oxidative stability of spray-dried fish oil. Emulsions produced with cashew gum showed lower viscosity when compared to Arabic gum. The particle size was larger (29.9μm) when cashew gum was used, and the encapsulation efficiency reached 76%, similar to that of modified starch but higher than that for Arabic gum (60%). The oxidation process for the surface oil was conducted and a relative lower formation of oxidation compounds was observed for the cashew gum treatment. GAB model was chosen to describe the moisture adsorption isotherm behaviours. Microparticles produced using Arabic and cashew gums showed greater water adsorption when exposed to higher relative humidities. Microparticles produced using cashew gum were more hygroscopic however encapsulation efficiency were higher and surface oil oxidation were less pronounced. Cashew gum can be further explored as an encapuslant material for spray drying processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less

  14. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    PubMed

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  15. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  16. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B.

    PubMed

    Jain, Arvind K; Goyal, Amit K; Mishra, Neeraj; Vaidya, Bhuvaneshwar; Mangal, Sharad; Vyas, Suresh P

    2010-03-15

    PLA/PLGA nanoparticles are well known as efficient vaccine delivery systems, but they have got limitation in oral vaccine delivery because of their sensitivity to harsh gastric environment. The aim of present study was to improve the stability of PLA nanoparticles in such environment by copolymerizing PLA with PEG. Nanoparticles were formulated using different block copolymers AB, ABA and BAB (where 'A' is PLA and 'B' is PEG) encapsulating hepatitis B surface antigen (HBsAg) to evaluate their efficacy as oral vaccine delivery system. The results of in vitro studies engrave the efficiency of copolymeric nanoparticles to retain encapsulated antigen and average particle size even after 2 h incubation in simulated gastric fluid and simulated intestinal fluid. Fluorescence microscopic studies indicated efficient uptake of copolymeric nanoparticles by gut mucosa of immunized mice model as compared to control. Finally copolymeric and PLA nanoparticles, encapsulating HBsAg, were evaluated for their adjuvancity in generating immune response after oral administration. PLA nanoparticles could not generate an effective immune response due to stability issues. On the other hand, oral administration of copolymeric nanoparticles exhibited effective levels of humoral immunity along with the mucosal (sIgA) and cellular immune response (T(H)1). The results of in vitro and in vivo studies demonstrate that BAB nanoparticles depict enhanced mucosal uptake leading to effective immune response as compared to other copolymeric nanoparticles. Present study indicates the efficacy of BAB nanoparticles as a promising carrier for oral immunization. 2009 Elsevier B.V. All rights reserved.

  17. Development of biodegradable drug delivery system to treat addiction.

    PubMed

    Mandal, T K

    1999-06-01

    Opiate addiction is a serious problem that has now spread worldwide to all levels of society. Buprenorphine has been used for several years for the treatment of opiate addiction. The objective of this project was to develop sustained-release biodegradable microcapsules for the parenteral delivery of buprenorphine. Biodegradable microcapsules of buprenorphine/poly(lactide-co-glycolide) were prepared using two main procedures based on an in-water drying process in a complex emulsion system. These procedures differ in the way the organic solvent was eliminated: evaporation or extraction. The effect of drug loading and the effect of partial saturation of the aqueous phase with the core material during the in-water solvent evaporation were also studied. The efficiency of encapsulation increased from 11% to 34% when the drug loading was decreased from 20% to 5%. There was no significant change in the efficiency of encapsulation when the aqueous phase was partially saturated with buprenorphine. In changing the solvent removal process from evaporation to extraction, no significant change in the efficiency of encapsulation was observed. The microcapsules prepared by the solvent evaporation were smooth and spherical. However, the microcapsules prepared by the extraction of the organic solvent lost their surface smoothness and became slightly irregular and porous compared with the other batches. The average particle size of the microcapsules was between 14 and 49 microns. The cumulative drug release was between 2% and 4% within the first 24 hr. A sustained drug release continued over 45 days.

  18. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    PubMed

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  19. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream.

    PubMed

    Kumar, Deep Diyuti; Mann, Bimlesh; Pothuraju, Ramesh; Sharma, Rajan; Bajaj, Rajesh; Minaxi

    2016-01-01

    In the present investigation, the preparation and characterization of a curcumin nanoemulsion with milk protein (sodium caseinate) and its incorporation into ice cream were undertaken. Among the different combinations, the most stable formulation was observed using milk fat (8%), medium chain triglycerides (2%), curcumin (0.24%) and sodium caseinate (6%) with a mean particle size of 333.8 ± 7.18 nm, a zeta potential of -44.1 ± 0.72 mV and an encapsulation efficiency of 96.9 ± 0.28%. The effect of different processing conditions (heating, pH and ionic strength) on the particle size distribution and zeta potential of the nanoemulsion was evaluated. During heat treatment, the particle size of the nanoemulsion was increased from 333.8 ± 7.18 to 351.1 ± 4.04 nm. The nanoemulsion was destabilized at pH 4.6 and the particle size increased above and below pH 5.0. However, there was a slight increase in the particle size with a change in the ionic concentration. The release kinetics data suggested that in simulated gastro-intestinal digestion, the nanoemulsion was stable against pepsin digestion (a 5.25% release of curcumin), while pancreatic action led to a 16.12% release of curcumin from the nanoemulsion. Finally, our formulation was successfully incorporated into ice cream and the sensory attributes were evaluated. No significant difference was observed in the scores of the sensory attributes between the control and ice cream prepared with a curcumin nanoemulsion. Moreover, the encapsulation efficiency of the curcumin incorporated into the ice cream was 93.7%, which indicates that it can withstand the processing conditions. The findings suggest that ice cream is a suitable dairy product for the delivery of lipophilic bioactive components (curcumin) which can be used for therapeutic purposes.

  20. Encapsulation of NF-κ B Decoy Oligonucleotides within Echogenic Liposomes and Ultrasound-Triggered Release

    PubMed Central

    Buchanan, Kyle D.; Huang, Shao-Ling; Kim, Hyunggun; McPherson, David D.; MacDonald, Robert C.

    2011-01-01

    Echogenic liposomes (ELIP) have additional promise, beyond diagnostic agents, as vehicles for delivering oligonucleotides (ODN), especially if the release of the agent can be triggered and its uptake can be enhanced by ultrasound application at a specific site. The purpose of this study was to co-encapsulate air and NF-κB decoy ODN within ELIP allowing ultrasound to release encapsulated ODN from ELIP, and to accurately quantify release of encapsulated ODN from ELIP upon ultrasound application. FITC-labeled sense ODN (2 mM) was incorporated within ELIP using freeze/thaw method. Encapsulation efficiency of FITC-ODN was spectrofluorometrically analyzed by quenching fluorescence of unencapsulated FITC-ODN using a complementary strand tagged with Iowa Black FQ-ODN. Quenching of FITC-ODN (0.05 μM) with Iowa Black FQ-ODN (0.1 μM) was found to be efficient (92.4 ± 0.2 %), allowing accurate determination of encapsulated ODN. Encapsulation efficiency of ODN was 14.2 ± 2.5 % in DPPC/DOPC/DPPG/CH liposomes and 29.6 ± 1.5 % in DPPC/DOPE/DPPG/CH liposomes. Application of ultrasound (1 MHz continuous wave, 0.26 MPa peak-to-peak pressure amplitude, 60 seconds.) to the latter formulation triggered 41.6 ± 4.3 % release of ODN from ODN-containing ELIP. We have thus demonstrated that ODN can be encapsulated into ELIP and released efficiently upon ultrasound application. These findings suggest potential applications for gene therapy in atherosclerosis treatment. PMID:19804805

  1. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  2. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer.

    PubMed

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0-∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.

  3. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer

    PubMed Central

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was −22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0–∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts. PMID:26316700

  4. Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice.

    PubMed

    Yadav, Monu; Parle, Milind; Sharma, Nidhi; Dhingra, Sameer; Raina, Neha; Jindal, Deepak Kumar

    2017-11-01

    To develop statistically optimized brain targeted Tween 80 coated chitosan nanoparticulate formulation for oral delivery of doxycycline hydrochloride for the treatment of psychosis and to evaluate its protective effect on ketamine induced behavioral, biochemical, neurochemical and histological alterations in mice. 3 2 full factorial design was used to optimize the nanoparticulate formulation to minimize particle size and maximize entrapment efficiency, while independent variables chosen were concentration of chitosan and Tween 80. The optimized formulation was characterized by particle size, drug entrapment efficiency, Fourier transform infrared, Transmission electron microscopy analysis and drug release behavior. Pure doxycycline hydrochloride (25 and 50 mg/kg, p.o.) and optimized doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles (DCNP opt ) (equivalent to 25 mg/kg doxycycline hydrochloride, p.o.) were explored against ketamine induced psychosis in mice. The experimental studies for DCNP opt , with mean particle size 237 nm and entrapment efficiency 78.16%, elucidated that the formulation successfully passed through blood brain barrier and exhibited significant antipsychotic activity. The underlying mechanism of action was further confirmed by behavioral, biochemical, neurochemical estimations and histopathological study. Significantly enhanced GABA and GSH level and diminished MDA, TNF-α and dopamine levels were observed after administration of DCNP opt at just half the dose of pure doxycycline hydrochloride, showing better penetration of doxycyline hydrochloride in the form of Tween 80 coated nanoparticles through blood brain barrier. This study demonstrates the hydrophilic drug doxycycline hydrochloride, loaded in Tween 80 coated chitosan nanoparticles, can be effectively brain targeted through oral delivery and therefore represents a suitable approach for the treatment of psychotic symptoms.

  5. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: ibuprofen.

    PubMed

    Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ((1)HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and (1)HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin

    NASA Astrophysics Data System (ADS)

    Sadeghi, R.; Moosavi-Movahedi, A. A.; Emam-jomeh, Z.; Kalbasi, A.; Razavi, S. H.; Karimi, M.; Kokini, J.

    2014-09-01

    The desolvation method was successfully used to prepare nanoparticles from bovine serum albumin (BSA) using ethanol, acetone, and their mixtures (70:30 and 50:50, respectively). Ethanol and mixtures of ethanol and acetone led to the most spherical nanoparticles, while using pure acetone resulted in a mixture of spherical and rod shape nanoparticle. Acetone was the solvent with higher encapsulation efficiency equal to 99.2 ± 0.36 %. The polydispersity values of BSA NPs in this study were 0.045 ± 0.007, 0.065 ± 0.013, 0.091 ± 0.012, and 0.120 ± 0.016 for ethanol (100) 4×, Et:Ac (70:30) 4×, Et:Ac (50:50) 4×, and acetone (100) 3×, respectively. Encapsulation efficiencies of curcumin inside BSA NPs were 19.4 ± 2.2 and 19.8 ± 1.6 % for 1.0 and 1.5 molar ratios of curcumin to BSA, respectively. Crosslinking using glutaraldehyde improved the stability of BSA NPs and curcumin-loaded BSA NPs and both groups of nanoparticles were stable for 1 month; the lyophilized curcumin-loaded BSA NPs were able to redisperse in water. The particle size and polydispersity index of redispersed NPs were higher than the original NPs before lyophilization. The size distribution study shows that after 10 s of sonication most nanoparticles were well dispersed; however, a small but significant fraction formed aggregates. Sonication for 10 s decreased the effective diameter and polydispersity of the redispersed nanoparticles, while increasing the sonication time to 20 s did not show significant changes. In vitro release study of curcumin from BSA NPs showed that these biocompatible nanoparticles have the ability to be used as a carrier to improve controlled release of curcumin.

  7. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo

    PubMed Central

    Luo, Yuling; Liu, Zhongbing; Zhang, Xiaoqin; Huang, Juan; Yu, Xin; Li, Jinwei; Xiong, Dan; Sun, Xiaoduan; Zhong, Zhirong

    2016-01-01

    The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA) to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs) were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 μm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy. PMID:27471381

  8. Gelled oil particles: a new approach to encapsulate a hydrophobic metallophthalocyanine.

    PubMed

    Siqueira-Moura, Marigilson P; Franceschi-Messant, Sophie; Blanzat, Muriel; Ré, Maria Inês; Perez, Emile; Rico-Lattes, Isabelle; Lattes, Armand; Tedesco, Antonio C

    2013-07-01

    Chloroaluminum phthalocyanine (ClAlPc) is a promising sensitizer molecule for photodynamic therapy, but its hydrophobicity makes it difficult to formulate. In this study, we have efficiently encapsulated ClAlPc into gelled soybean oil particles dispersed in water. 12-Hydroxystearic acid (HSA) and polyethyleneimine (PEI) were the gelling and stabilizing agents, respectively. The preparation process involved hot emulsification above the gelation temperature (Tgel), followed by cooling to room temperature, which gave a colloidal dispersion of gelled particles of oil in aqueous medium. The gelled particles containing ClAlPc had a medium diameter of 280 nm, homogeneous size distribution (polydispersity index ≈0.3) and large positive zeta potential (about +50 mV) and showed a spherical morphology. The gelled oil particle formulations exhibited good physical stability over a 6-month period. ClAlPc interfered with the HSA self-assembly only slightly, and decreased the gelation temperature to a small extent; however it did not affect gelation process of the oil droplets. The amounts of PEI and HSA employed during the preparation allowed us to control particle size and the dispersion stability, a phenomenon that results from complex electrostatic interactions between the positively charged PEI and the negatively charged HSA fibers present on the gelled particles surface. In summary, by using the right ClAlPc, HSA, and PEI proportions, we prepared very stable dispersions of gelled soybean oil particles with excellent ClAlPc encapsulation efficiency. The obtained colloidal formulation of gelled oil particles loaded with ClAlPc shall be very useful for photodynamic therapy protocols. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. In-vitro studies of enteric coated diclofenac sodium-carboxymethylcellulose microspheres.

    PubMed

    Arica, B; Arica, M Y; Kaş, H S; Hincal, A A; Hasirci, V

    1996-01-01

    MIcrospheres containing diclofenac sodium (DS) were prepared using carboxymethylcellulose (CMC) as the main support material (1.0, 2.0, 3.0% (w/v)) and aluminum chloride as the crosslinker. Drug to polymer ratios of 1:1, 1:2 and 1:4 were used to obtain a range of microspheres. The microspheres were then coated with an enteric coating material, Eudragit S-100, efficiency, % yield value, particle sizes an in-vitro dissolution behaviour were investigated. The surface of the enteric coated microspheres seemed to be all covered with Eudragit S-100 from scanning electron microscopy observation. It was also observed that increasing the CMC concentration led to an increase in the encapsulation efficiency, % yield value and particle size and decreased the release rate. Eudragit S-100 coating did not significantly alter the size but the release rate was significantly lower even when the lower concentration solution was used.

  10. Physical and biological characterization of sericin-loaded copolymer liposomes stabilized by polyvinyl alcohol.

    PubMed

    Suktham, Kunat; Koobkokkruad, Thongchai; Saesoo, Somsak; Saengkrit, Nattika; Surassmo, Suvimol

    2016-12-01

    Sericin protein (SP) is widely used as a nutrient biomaterial for biomedical and cosmeceutical applications although it shows low stability to heat and light. To overcome these problems and add value to wastewater from the silk industry, sericin protein was recovered as sericin-loaded copolymer-liposomes (SP-PVA-LP), prepared through thin film hydration. The size and morphology of the liposomes were investigated using dynamic light scattering (DLS), and electron microscopy (SEM and TEM). The particle size, liposome surface morphology and encapsulation efficiency of SP were dependent on PVA concentration. The hydrodynamic size of the nanoparticles was between 200 and 400nm, with the degree of negative charge contingent on sericin loading. SEM and TEM images confirmed the mono-dispersity, and spherical nature of the particles, with FTIR measurements confirming the presence of surface bound PVA. Exposure of liposomes to 500ppm sericin highlighted a dependence of encapsulation efficiency on PVA content; 2% surface PVA proved the optimal level for sericin loading. Cytotoxicity and viability assays revealed that SP-loaded surface modified liposomes promote cellular attachment and proliferation of human skin fibroblasts without adverse toxic effects. Surface modified copolymer liposomes show high performance in maintaining structural stability, and promoting enhancements in the solubility and bio-viability of sericin. Taken together, these biocompatible constructs allow for effective controlled release, augmenting sericin activity and resulting in effective drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.

    PubMed

    Mittal, Deepti; Md, Shadab; Hasan, Quamrul; Fazil, Mohammad; Ali, Asgar; Baboota, Sanjula; Ali, Javed

    2016-01-01

    The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.

  12. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model.

    PubMed

    İzgü, Fatih; Bayram, Günce; Tosun, Kübra; İzgü, Demet

    2017-01-01

    In this study, a liposomal lyophilized powder formulation of panomycocin was developed for therapeutic purposes against vulvovaginal candidiasis which affects 80% of women worldwide. Panomycocin is a potent antimycotic protein secreted by the yeast Wickerhamomyces anomalus NCYC 434. This study involved the preparation of panomycocin-loaded stratum corneum lipid liposomes (SCLLs), characterization of the SCLLs, and determination of antimycotic efficacy of the formulation against Candida albicans and Candida glabrata clinical vaginal isolates in a human vaginal epithelium tissue model. The encapsulation and loading efficiencies of SCLLs were 73% and 76.8%, respectively. In transmission electron microscopy images, the SCLLs appeared in the submicron size range. Dynamic light scattering analyses showed that the SCLLs had uniform size distribution. Zeta potential measurements revealed stable and positively charged SCLLs. In Fourier transform infrared spectroscopy analyses, no irreversible interactions between the encapsulated panomycocin and the SCLLs were detected. The SCLLs retained >98% of encapsulated panomycocin in aqueous solution up to 12 hours. The formulation was fungicidal at the same minimum fungicidal concentration values for non-formulated pure panomycocin when tested on an in vitro model of vaginal candidiasis. This is the first study in which SCLLs and a protein as an active ingredient have been utilized together in a formulation. The results obtained in this study led us to conduct further preclinical trials of this formulation for the development of an effective topical anti-candidal drug with improved safety.

  13. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model

    PubMed Central

    İzgü, Fatih; Bayram, Günce; Tosun, Kübra; İzgü, Demet

    2017-01-01

    In this study, a liposomal lyophilized powder formulation of panomycocin was developed for therapeutic purposes against vulvovaginal candidiasis which affects 80% of women worldwide. Panomycocin is a potent antimycotic protein secreted by the yeast Wickerhamomyces anomalus NCYC 434. This study involved the preparation of panomycocin-loaded stratum corneum lipid liposomes (SCLLs), characterization of the SCLLs, and determination of antimycotic efficacy of the formulation against Candida albicans and Candida glabrata clinical vaginal isolates in a human vaginal epithelium tissue model. The encapsulation and loading efficiencies of SCLLs were 73% and 76.8%, respectively. In transmission electron microscopy images, the SCLLs appeared in the submicron size range. Dynamic light scattering analyses showed that the SCLLs had uniform size distribution. Zeta potential measurements revealed stable and positively charged SCLLs. In Fourier transform infrared spectroscopy analyses, no irreversible interactions between the encapsulated panomycocin and the SCLLs were detected. The SCLLs retained >98% of encapsulated panomycocin in aqueous solution up to 12 hours. The formulation was fungicidal at the same minimum fungicidal concentration values for non-formulated pure panomycocin when tested on an in vitro model of vaginal candidiasis. This is the first study in which SCLLs and a protein as an active ingredient have been utilized together in a formulation. The results obtained in this study led us to conduct further preclinical trials of this formulation for the development of an effective topical anti-candidal drug with improved safety. PMID:28831255

  14. Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing.

    PubMed

    Mokhtarieh, Amir Abbas; Lee, Jieun; Kim, Semi; Lee, Myung Kyu

    2018-06-01

    Previously a scalable and extrusion-free method has been developed for efficient liposomal encapsulation of DNA by twice stepwise mixing of lipids in ethanol and DNA solution using T-shape mixing chamber. In this study, we prepared nanoliposomes encapsulating siRNA by simply discontinuous mixing of lipids in ethanol/ether/water mixture and acidic siRNA solution without use of special equipment. The simple mixing siRNA/liposomal particles (siRNA/SMLs) prepared using ethanol/ether/water (3:1:1) mixture showed 120.4 ± 20.2 nm particle size, 0.174 ± 0.033 polydispersity and 86.5 ± 2.76% siRNA encapsulation rate. In addition, the SMLs almost completely protected the encapsulated siRNA from RNase A digestion. Coupling of anti-human epidermal growth factor receptor (EGFR) Fab' to siRNA/SMLs enhanced EGFR-specific cell penetration of SMLs and induced siRNA dependent gene silencing. Unexpectedly, the Cy5.5-labeled Fab' showed almost no in vivo targeting to the xenografted A549 tumors in SCID-NOD mice. However, multiple injection of the unmodified siRNA/SMLs accumulated in the tumors and induced siRNA-dependent in vivo gene silencing. These results demonstrate that the siRNA/SMLs can be used as a siRNA delivery tool for gene therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree gum.

    PubMed

    Porto, Bruna Castro; Cristianini, Marcelo

    2018-04-15

    Dynamic high pressure (DHP) has been applied in the physical modification of biopolymers as polysaccharides, proteins and gums. It is known that DHP is able to promote degradation of polysaccharides (e.g. molecular weight reduction). However, few studies have assessed the effect of DHP on the emulsifying and encapsulating properties of polysaccharides. Thus, this study aimed to investigate the effect of DHP on the emulsifying (average droplet size and particle size distribution, optical and confocal scanning laser microscopy, rheology, zeta potential and electric conductivity, creaming index, and turbidity) and encapsulating (scanning electronic microscopy, flavor retention, average droplet size, and particle size distribution) properties of cashew tree gum (CG). The application of DHP process improved the emulsifying capacity of cashew tree gum (CG) by reducing the medium droplet size (D3,2 and D4,3), increasing the turbidity and improving the emulsion stability. However, no effect of DHP was observed on the encapsulating capacity of CG. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects of Formulation Variables on the Particle Size and Drug Encapsulation of Imatinib-Loaded Solid Lipid Nanoparticles.

    PubMed

    Gupta, Biki; Poudel, Bijay Kumar; Pathak, Shiva; Tak, Jin Wook; Lee, Hee Hyun; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-06-01

    Imatinib (IMT), an anticancer agent, inhibits receptor tyrosine kinases and is characterized by poor aqueous solubility, extensive first-pass metabolism, and rapid clearance. The aims of the current study are to prepare imatinib-loaded solid lipid nanoparticles (IMT-SLN) and study the effects of associated formulation variables on particle size and drug encapsulation on IMT-SLN using an experimental design. IMT-SLN was optimized by use of a "combo" approach involving Plackett-Burman design (PBD) and Box-Behnken design (BBD). PBD screening resulted in the determination of organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), and amount of Tween® 20 (Tw20) as three significant variables for particle size (S z), drug loading (DL), and encapsulation efficiency (EE) of IMT-SLN, which were used for optimization by BBD, yielding an optimized criteria of O/A = 0.04, D/L = 0.03, and Tw20 = 2.50% w/v. The optimized IMT-SLN exhibited monodispersed particles with a size range of 69.0 ± 0.9 nm, ζ-potential of -24.2 ± 1.2 mV, and DL and EE of 2.9 ± 0.1 and 97.6 ± 0.1% w/w, respectively. Results of in vitro release study showed a sustained release pattern, presumably by diffusion and erosion, with a higher release rate at pH 5.0, compared to pH 7.4. In conclusion, use of the combo experimental design approach enabled clear understanding of the effects of various formulation variables on IMT-SLN and aided in the preparation of a system which exhibited desirable physicochemical and release characteristics.

  17. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt.

    PubMed

    Sultana, K; Godward, G; Reynolds, N; Arumugaswamy, R; Peiris, P; Kailasapathy, K

    2000-12-05

    A modified method using calcium alginate for the microencapsulation of probiotic bacteria is reported in this study. Incorporation of Hi-Maize starch (a prebiotic) improved encapsulation of viable bacteria as compared to when the bacteria were encapsulated without the starch. Inclusion of glycerol (a cryo-protectant) with alginate mix increased the survival of bacteria when frozen at -20 degrees C. The acidification kinetics of encapsulated bacteria showed that the rate of acid produced was lower than that of free cultures. The encapsulated bacteria, however, did not demonstrate a significant increase in survival when subjected to in vitro high acid and bile salt conditions. A preliminary study was carried out in order to monitor the effects of encapsulation on the survival of Lactobacillus acidophilus and Bifidobacterium spp. in yoghurt over a period of 8 weeks. This study showed that the survival of encapsulated cultures of L. acidophilus and Bifidobacterium spp. showed a decline in viable count of about 0.5 log over a period of 8 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. The encapsulation method used in this study did not result in uniform bead size, and hence additional experiments need to be designed using uniform bead size in order to assess the role of different encapsulation parameters, such as bead size and alginate concentration, in providing protection to the bacteria.

  18. Study of Structural and Magnetic Properties of Silica and Polyethylene Glycol (PEG-4000)-Encapsulated Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Deswardani, F.; Maulia, R.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 has been successfully synthesized by using co-precipitation method. Two series of Mg0.5Ni0.5Fe2O4 silica encapsulated have been prepared by varying the concentration of silica and variation of PEG-4000 concentration. Analysis of X-Ray Diffraction (XRD) pattern showed that nanoparticles contained Mg0.5Ni0.5Fe2O4 spinel phase and γ-Fe2O3 phase with a particle size of 5.1 nm. The various of silica encapsulation give rise to produce a new phase of SiO2 and increase the particle size to 16.1 nm. PEG-4000 encapsulation affected to create a new phase of γ-FeO(OH), and reduce the particle size down to 4.5 nm. Fourier Transform Infra Red (FTIR) for Mg0.5Ni0.5Fe2O4 showed absorption peaks around 300-600 cm-1 which are M-O bond vibration. After silica encapsulation, there was new bond vibration typical of silica such as Si-O-Si (1049.28 cm-1), Si-OH (779.24 cm-1), and Si-O-Fe (570.93 cm-1). The PEG-4000 encapsulation creates a new vibration for typical of PEG-like of C-O (1103.28 cm-1) and C-H (925.83, 1481.33, and 2924.09 cm-1). Both of encapsulations series have M-O bond vibration indicating the presence of Mg0.5Ni0.5Fe2O4. After silica encapsulation, the coercivity of Mg0.5Ni0.5Fe2O4 decreased from 47 Oe to 10 Oe due to the decrease of particle size. Even though, the discrepancy of particle size as the effect of PEG-4000 encapsulation, the coercivity just slightly reduced to 46 Oe. The saturation magnetization of Mg0.5Ni0.5Fe2O4 decreased from 4.7 emu/g to 1 emu/g after silica encapsulation because diamagnetic SiO2. Otherwise, the saturation magnetization increased to 7.7 emu/g after PEG-4000 encapsulation because of domination of Mg0.5Ni0.5Fe2O4 phase ratio.

  19. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency.

    PubMed

    Mendez, Natalie; Herrera, Vanessa; Zhang, Lingzhi; Hedjran, Farah; Feuer, Ralph; Blair, Sarah L; Trogler, William C; Reid, Tony R; Kummel, Andrew C

    2014-11-01

    Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140 to 180 nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4 × higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Encapsulation of Adenovirus Serotype 5 in Anionic Lecithin Liposomes using a Bead-Based Immunoprecipitation Technique Enhances Transfection Efficiency

    PubMed Central

    Mendez, N.; Herrera, V.; Zhang, L.; Hedjran, F.; Feuer, R.; Blair, S.; Trogler, W.; Reid, T.

    2014-01-01

    Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140–180nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4× higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. PMID:25154663

  1. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  2. Development of droplet microfluidic platforms for the synthesis of monodisperse lipid vesicles and polymer particles

    NASA Astrophysics Data System (ADS)

    Teh, Shia-Yen

    This body of work presents my approaches to the design and development of microfluidic platforms for synthesizing monodisperse polymer particles and phospholipid vesicles. There is interest in both of these particles for use in a variety of biomedical applications. Poly(D,L-lactide-co-glycolic acid) (PLGA) particles in particular have been sought out as vehicles for drug delivery due to their biocompatibility and because the rate of degradation -- hence cargo release - can be controlled. On the other hand, liposomes possess membrane structures resembling that of cells, an ability to adopt both hydrophilic and hydrophobic molecules, and are easily functionalized, which make lipid vesicles the ideal candidate for applications ranging from targeted therapeutic delivery to formation of artificial cells. However, current methods of production for both of these particles result in a wide range of sizes and poor cargo uptake efficiency. We address these challenges by utilizing a flow focusing droplet generation design, which allows for fine control over droplet size and improves encapsulation efficiencies. The size of these droplets can be determined by channel geometry and the ratio of fluid flow rates. I will discuss the work I have done to improve upon current technologies to form nano- to micrometer sized PLGA particles and cell-sized lipid vesicles. Solvent evaporation and solvent extraction methods were implemented and tested in several device designs to optimize the formation process. The particles produced were characterized for their stability, size variation, and ability to encapsulate a model drug. The release profiles of PLGA particles were also measured to determine the length of delivery. In addition, I worked on the generation of monodisperse lipid vesicles to investigate the application of liposomes as an artificial cell. As a proof of principle, expression of green fluorescent protein (GFP) was successfully carried out in the lipid vesicles. This demonstrates the versatility of the microfluidic device for generating a range of particles of controlled size for therapeutic agent delivery and artificial cell applications.

  3. In Vitro Co-Delivery Evaluation of Novel Pegylated Nano-Liposomal Herbal Drugs of Silibinin and Glycyrrhizic Acid (Nano-Phytosome) to Hepatocellular Carcinoma Cells

    PubMed Central

    Ochi, Mohammad Mahdi; Amoabediny, Ghasem; Rezayat, Seyed Mahdi; Akbarzadeh, Azim; Ebrahimi, Bahman

    2016-01-01

    Objective This study aimed to evaluate a co-encapsulated pegylated nano-liposome system based on two herbal anti-tumor drugs, silibinin and glycyrrhizic acid, for delivery to a hepatocellular carcinoma (HCC) cell line (HepG2). Materials and Methods In this experimental study, co-encapsulated nano-liposomes by the thin layer film hydration method with HEPES buffer and sonication at 60% amplitude. Liposomes that co-encapsulated silibinin and glycyrrhizic acid were prepared with a specified molar ratio of dipalmitoylphosphatidylcholine (DPPC), cholesterol (CHOL), and methoxy-polyethylene glycol 2000 (PEG2000)–derived distearoyl phosphatidylethanolamine (mPEG2000-DSPE). We used the MTT technique to assess cytotoxicity for various concentrations of co-encapsulated nano-liposomes, free silibinin (25% w/v) and glycyrrhizic acid (75% w/v) on HepG2 and fibroblast cell lines over a 48-hour period. Results Formulation of pegylated nano-liposomes showed a narrow size distribution with an average diameter of 46.3 nm. The encapsulation efficiency (EE) for silibinin was 24.37%, whereas for glycyrrhizic acid it was 68.78%. Results of in vitro cytotoxicity showed significantly greater co-encapsulated nano-liposomes on the HepG2 cell line compared to the fibroblast cell line. The half maximal inhibitory concentration (IC50) for co-encapsulated pegylated nanoliposomal herbal drugs was 48.68 µg/ml and free silibinin with glycyrrhizic acid was 485.45 µg/ml on the HepG2 cell line. Conclusion This in vitro study showed that nano-liposome encapsulation of silibinin with glycyrrhizic acid increased the biological activity of free drugs, increased the stability of silibinin, and synergized the therapeutic effect of silibinin with glycyrrhizic acid. The IC50 of the co-encapsulated nano-liposomes was lower than the combination of free silibinin and glycyrrhizic acid on the HepG2 cell line. PMID:27540518

  4. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    NASA Astrophysics Data System (ADS)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  5. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    PubMed

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  6. Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency

    NASA Astrophysics Data System (ADS)

    Ali, Falah H.; Alwan, Dheyaa B.

    2018-05-01

    It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.

  7. Preparation and in vitro evaluation of simvastatin ethosome.

    PubMed

    An, Keyao; Sun, Yong; Xu, Lisa; Cui, Xiangzhen

    2011-12-01

    To prepare ethosome loading simvastatin,an orthogonal test was applied to optimize the prescriptions, and the qualities of simvastatin ethosome were characterized by the shape, particle size, encapsulation efficiency (EE), and stability. The formation of 40% (v/v) ethanol, 0.02% (m/v) cholesterol, 2.0% (m/v) soy lecithin, and 5% (m/v) polyoxyethylene hydrogenated castor oil showed the maximal EE (69.3%). We observed the shape of simvastatin ethosome through TEM. The average size of the particles was 52.4 ± 3.24 nm, which was detected by a N5 submicron particle size analyzer. After 120 days storage in 4? and at room temperature, the simvastatin ethosome had no significant change.

  8. Synchronous microencapsulation of multiple components in silymarin into PLGA nanoparticles by an emulsification/solvent evaporation method.

    PubMed

    Xie, Yunchang; Yi, Yueneng; Hu, Xiongwei; Shangguan, Mingzhu; Wang, Lijuan; Lu, Yi; Qi, Jianping; Wu, Wei

    2016-09-01

    The development of polymeric carriers loaded with extracts suffers from the drawback not to be able to incorporate simultaneously various pharmacological compounds into the formulation. The aim of this study was therefore to achieve synchronous microencapsulation of multiple components of silymarin into poly (lactic-co-glycolic acid) nanoparticle, the most commonly used polymeric carrier with biodegradability and safety. The main strategy taken was to improve the overall entrapment efficiency and to reduce the escaping ratio of the components of different physicochemical properties. The optimized nanoparticles were spherical in morphology with a mean particle size of 150 ± 5 nm. Under common preparative conditions, silybin and isosilybin were entrapped in high efficiency, whereas taxifolin, silychristin and silydianin, especially taxifolin, showed less entrapment because they were more hydrophilic. By changing the pH of the outer aqueous phase and saturating it with silymarin, the entrapment efficiency of taxifolin, silychristin and silydianin could be significantly improved to over 90%, the level similar to silybin and isosilybin, thereby achieving synchronous encapsulation. It could be concluded that synchronous encapsulation of multiple components of silymarin was achieved by optimizing the preparative variables.

  9. Effects of poly(lactic-co-glycolic acid) on preparation and characteristics of plasmid DNA-loaded solid lipid nanoparticles.

    PubMed

    Zhu, L; Xie, S; Dong, Z; Wang, X; Wang, Y; Zhou, W

    2011-09-01

    Poly(lactic-co-glycolic acid) (PLGA) was used as a polymeric emulsifier to encapsulate plasmid DNA into hydrogenated castor oil (HCO)-solid lipid nanoparticles (SLN) by w/o/w double emulsion and solvent evaporation techniques. The effects of PLGA on the preparation, characteristics and transfection efficiency of DNA-loaded SLN were studied. The results showed that PLGA was essential to form the primary w/o emulsion and the stability of the emulsion was enhanced with the increase of PLGA content. DNA-loaded SLN were spherical with smooth surfaces. The SLN had a negative charge in weak acid and alkaline environment but acquired a positive charge in acidic pH and the cationisation capacity of the SLN increased with the increase of PLGA/HCO ratio. Agarose gel electrophoresis demonstrated that the majority of the DNA maintained its structural integrity after preparation and being extracted or released from DNA-loaded SLN. When PLGA/HCO ratio increased from 5 to 15%, the encapsulation efficiency, loading capacity and transfection efficiency of the nanoparticles increased significantly, whereas the changes of particle size and polydispersity index were insignificant. Cytotoxicity study in cell culture demonstrated that the SLN was not toxic.

  10. Galactosylated DNA lipid nanocapsules for efficient hepatocyte targeting.

    PubMed

    Morille, M; Passirani, C; Letrou-Bonneval, E; Benoit, J-P; Pitard, B

    2009-09-11

    The main objective of gene therapy via a systemic pathway is the development of a stable and non-toxic gene vector that can encapsulate and deliver foreign genetic materials into specific cell types with the transfection efficiency of viral vectors. With this objective, DNA complexed with cationic lipids of DOTAP/DOPE was encapsulated into lipid nanocapsules (LNCs) forming nanocarriers (DNA LNCs) with a size suitable for systemic injection (109+/-6 nm). With the goal of increasing systemic delivery, LNCs were stabilised with long chains of poly(ethylene glycol) (PEG), either from a PEG lipid derivative (DSPE-mPEG(2000)) or from an amphiphilic block copolymer (F108). In order to overcome internalisation difficulties encountered with PEG shield, a specific ligand (galactose) was covalently added at the distal end of the PEG chains, in order to provide active targeting of the asialoglycoprotein-receptor present on hepatocytes. This study showed that DNA LNCs were as efficient as positively charged DOTAP/DOPE lipoplexes for transfection. In primary hepatocytes, when non-galactosylated, the two polymers significantly decreased the transfection, probably by creating a barrier around the DNA LNCs. Interestingly, galactosylated F108 coated DNA LNCs led to a 18-fold increase in luciferase expression compared to non-galactosylated ones.

  11. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core with a well-defined shell and the particle size was in agreement with the particle size analysis data obtained by DLS. DSC thermograms of the lyophilized SLNs indicate a reduction in the crystallinity order of GMS particles. The drug encapsulation efficiency was found to be approximately 30%. In vitro drug release studies from redispersed lyophilized SLNs showed that 17 % of the encapsulated drug was released within 2 h. The SLNs prepared in our lab demonstrated characteristics that can potentially be utilized in an anticancer drug delivery system. Future in vitro cell culture and in vivo animal model studies will delineate compatibility and utility of these formulations in biological systems.

  12. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    PubMed

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic response of the entrapped λ-Cy, but the presence or absence of the capsules does. Testing across other encapsulated products is needed to determine if size does not have influence on toxicity regardless of encapsulation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  14. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells

    PubMed Central

    Zhou, Zhao-xiong; Zhang, Bai-gen; Zhang, Hao; Huang, Xiao-zhong; Hu, Ya-li; Sun, Li; Wang, Xiao-min; Zhang, Ji-wei

    2009-01-01

    Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs). Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays. Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05). Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration. PMID:19890365

  15. Effect of drug loading method against drug dissolution mechanism of encapsulated amoxicillin trihydrate in matrix of semi-IPN chitosan-poly(N-vinylpyrrolidone) hydrogel with KHCO3 as pore forming agent in floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Fimantari, Khansa; Budianto, Emil

    2018-04-01

    Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.

  16. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates.

    PubMed

    Delfanian, Mojtaba; Razavi, Seyed M A; Haddad Khodaparast, Mohammad Hossein; Esmaeilzadeh Kenari, Reza; Golmohammadzadeh, Shiva

    2018-06-01

    In this study, the effect of natural macromolecules as carrier agents on the biological activity of nano-encapsulated Bene hull polyphenols (Pistacia atlantica subsp. Mutica) through W/O/W emulsions was evaluated. The W/O microemulsions as primary emulsions and a complex of soy protein isolate and basil seed gum (SPI-BSG), whey protein isolate and basil seed gum (WPI-BSG) and also Hi-Cap 100 in the outer aqueous phase were used to produce W/O/W nano-emulsions. Z-average size of emulsions stabilized by Hi-Cap, WPI-BSG, and SPI-BSG was 318, 736.9 and 1918 nm, respectively. The encapsulation efficiency of polyphenols for powders produced by Hi-Cap, WPI-BSG, and SPI-BSG was 95.25, 90.9 and 92.88%, respectively, which was decreased to 72.47, 67.12 and 64.44% after 6 weeks storage at 30 °C. The antioxidant activity of encapsulated polyphenols at 100, 200 and 300 ppm was measured in oil by peroxide and p-anisidine values during storage and was compared to non-encapsulated extract and synthetic antioxidant. Results showed oxidative alterations in oils containing encapsulated polyphenols was lower than unencapsulated form, which among them capsules produced by SPI-BSG exhibited higher antioxidant effects due to the better gradual release. Generally, the higher antioxidant potential was achieved with increased solubility and controlled release of polyphenols through their nano-encapsulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.

  18. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles.

    PubMed

    Shah, Rohan M; Eldridge, Daniel S; Palombo, Enzo A; Harding, Ian H

    2017-08-01

    The microwave-assisted production of solid lipid nanoparticles (SLNs) is a novel technique reported recently by our group. The small particle size, solid nature and use of physiologically well-tolerated lipid materials make SLNs an interesting and potentially efficacious drug carrier. The main purpose of this research work was to investigate the suitability of microwave-assisted microemulsion technique to encapsulate selected ionic drug substances such as miconazole nitrate and econazole nitrate. The microwave-produced SLNs had a small size (250-300nm), low polydispersity (<0.20), high encapsulation efficiency (72-87%) and loading capacity (3.6-4.3%). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies suggested reduced crystallinity of stearic acid in SLNs. The release studies demonstrated a slow, sustained but incomplete release of drugs (<60% after 24h) from microwave-produced SLNs. Data fitting of drug release data revealed that the release of both drugs from microwave-produced SLNs was governed by non-Fickian diffusion indicating that drug release was both diffusion- and dissolution- controlled. Anti-fungal efficacy of drug-loaded SLNs was evaluated on C. albicans. The cell viability studies showed that cytotoxicity of SLNs was concentration-dependent. These encouraging results suggest that the microwave-assisted procedure is suitable for encapsulation of ionic drugs and that microwave-produced SLNs can act as potential carriers of antifungal drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.

    PubMed

    Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon

    2009-10-07

    We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.

  20. Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods.

    PubMed

    Wang, Hong; Zhang, Guangxing; Sui, Hong; Liu, Yanhua; Park, Kinam; Wang, Wenping

    2015-12-30

    The O/W emulsion method has been widely used for the production of poly (lactide-co-glycolide) (PLGA) microparticles. Recently, a template method has been used to make homogeneous microparticles with predefined size and shape, and shown to be useful in encapsulating different types of active compounds. However, differences between the template method and emulsion method have not been examined. In the current study, PLGA microparticles were prepared by the two methods using glycyrrhetinic acid (GA) as a model drug. The properties of obtained microparticles were characterized and compared on drug distribution, in vitro release, and degradation. An encapsulation efficiency of over 70% and a mean particle size of about 40μm were found for both methods. DSC thermograms and XRPD diffractograms indicated that GA was highly dispersed or in the amorphous state in the matrix of microparticles. The emulsion method produced microparticles of a broad size distribution with a core-shell type structure and many drug-rich domains inside each microparticle. Its drug release and matrix degradation was slow before Day 50 and then accelerated. In contrast, the template method formed microparticles with narrow size distribution and drug distribution without apparent drug-rich domains. The template microparticles with a loading efficiency of 85% exhibited a zero-order release profile for 3 months after the initial burst release of 26.7%, and a steady surface erosion process as well. The same microparticles made by two different methods showed two distinguished drug release profiles. The two different methods can be supplementary with each other in optimization of drug formulation for achieving predetermined drug release patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of novel cationic chitosan-and anionic alginate–coated poly(d,l-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol

    PubMed Central

    Sanna, Vanna; Roggio, Anna Maria; Siliani, Silvia; Piccinini, Massimo; Marceddu, Salvatore; Mariani, Alberto; Sechi, Mario

    2012-01-01

    Background Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS)- and anionic alginate (Alg)-coated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) loaded with the bioactive polyphenolic trans-(E)-resveratrol (RSV) for biomedical applications. Methods NPs were prepared by the nanoprecipitation method and characterized in terms of morphology, size and zeta potential, encapsulation efficiency, Raman spectroscopy, swelling properties, differential scanning calorimetry, and in vitro release studies. The protective effect of the nanosystems under the light-stressed RSV and long-term stability were investigated. Results NPs turned out to be spherical in shape, with size ranging from 135 to about 580 nm, depending on the composition and the amount of polyelectrolytes, while the encapsulation efficiencies increased from 8% of uncoated poly(d,l-lactide-co-glycolide) (PLGA) to 23% and 32% of Alg- and CS-coated PLGA NPs, respectively. All nanocarriers are characterized by a biphasic release pattern, and more effective controlled release rates are obtained for NPs formulated with higher polyelectrolyte concentrations. Stability studies revealed that encapsulation provides significant protection against light-exposure degradation, by reducing the trans–cis photoisomerization reaction. Moreover, the nanosystems are able to prevent the degradation of trans isoform and the leakage of RSV from the carrier for a period of 6 months. Conclusion Our findings indicated that the newly developed CS- and Alg-coated PLGA NPs are suitable to be used for the delivery of bioactive RSV. The encapsulation of RSV into optimized polymeric NPs provides improved drug loading, effective controlled release, and protection against light-exposure degradation, thus opening new perspectives for the delivery of bioactive related phytochemicals to be used for (nano)chemoprevention/chemotherapy. PMID:23093904

  2. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration.

    PubMed

    Pawar, Harish; Wankhade, Shrikant Rameshrao; Yadav, Dharmendra K; Suresh, Sarasija

    2016-09-01

    Technology for development of biodegradable nanoparticles encapsulating combinations for enhanced efficacy. To develop docetaxel (DTX) and curcumin (CRM) co-encapsulated biodegradable nanoparticles for parenteral administration with potential for prolonged release and decreased toxicity. Modified emulsion solvent-evaporation technique was employed in the preparation of the nanoparticles optimized by the face centered-central composite design (FC-CCD). The uptake potential was studied in MCF-7 cells, while the toxicity was evaluated by in vitro hemolysis test. In vivo pharmacokinetic was evaluated in male Wistar rats. Co-encapsulated nanoparticles were developed of 219 nm size, 0.154 PDI, -13.74 mV zeta potential and 67.02% entrapment efficiency. Efficient uptake was observed by the nanoparticles in MCF-7 cells with decreased toxicity in comparison with the commercial DTX intravenous injection, Taxotere®. The nanoparticles exhibited biphasic release with initial burst release followed by sustained release for 5 days. The nanoparticles displayed a 4.3-fold increase in AUC (391.10 ± 32.94 versus 89.77 ± 10.58 μg/ml min) in comparison to Taxotere® with a 6.2-fold increase in MRT (24.78 ± 2.36 versus 3.58 ± 0.21 h). The nanoparticles exhibited increased uptake, prolonged in vitro and in vivo release, with decreased toxicity thus exhibiting potential for enhanced efficacy.

  3. Evaluation of hypericin-loaded solid lipid nanoparticles: physicochemical properties, photostability and phototoxicity.

    PubMed

    Youssef, Tareq; Fadel, Maha; Fahmy, Rania; Kassab, Kawser

    2012-01-01

    Hypericin (HYP), a natural photosensitizer, has powerful photo-oxidizing ability, tumor-seeking characteristics, and minimal dark toxicity; nevertheless, it has proven high lipid solubility compared to its sparingly water soluble nature. Therefore, its formulation into solid lipid nanoparticles (SLNs) has attracted increasing attention as a potential drug-delivery carrier. Two HYP-loaded SLNs formulations were prepared utilizing microemulsion-based technique. Thereafter, the physicochemical properties of the formulations were investigated and evaluated. HYP-loaded SLNs showed spherical shape with mean particle size ranging from 200-300 nm for both formulations (FA and FB). The encapsulation efficiencies reached above 80% and FA showed significant higher encapsulation than FB (P<0.05), also, the thermal analysis using differential scanning calorimetry (DSC) indicated good compatibility between hypericin and lipids forming the cores in both formulations. Spectroscopic measurements of the photostability study showed that hypericin encapsulation into SLNs improved its photostability, compared to free HYP in 0.1% ethanolic solution. However, photocytotoxicity studies on HepG2 cells revealed an evident inhibition of the photodynamic efficacy of HYP-loaded SLNs, compared to free HYP. In conclusion, although the elevated entrapment efficiency of HYP into SLNs increased its photostability, it decreased its phototoxicity which might be due to the quenching deactivation of HYP molecules resulting from SLN compactness and thickness structure. © 2012 Informa Healthcare USA, Inc.

  4. Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery.

    PubMed

    Bai, Linyi; Chao, Dongliang; Xing, Pengyao; Tou, Li Juan; Chen, Zhen; Jana, Avijit; Shen, Ze Xiang; Zhao, Yanli

    2016-06-15

    The lithium-sulfur (Li-S) battery presents a promising rechargeable energy storage technology for the increasing energy demand in a worldwide range. However, current main challenges in Li-S battery are structural degradation and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling, resulting in the corrosion and loss of active materials. Herein, we developed novel hybrids by employing metal-organic polyhedron (MOP) encapsulated PVP-functionalized sulfur nanoparticles (S@MOP), where the active sulfur component was efficiently encapsulated within the core of MOP and PVP as a surfactant was helpful to stabilize the sulfur nanoparticles and control the size and shape of corresponding hybrids during their syntheses. The amount of sulfur embedded into MOP could be controlled according to requirements. By using the S@MOP hybrids as cathodes, an obvious enhancement in the performance of Li-S battery was achieved, including high specific capacity with good cycling stability. The MOP encapsulation could enhance the utilization efficiency of sulfur. Importantly, the structure of the S@MOP hybrids was very stable, and they could last for almost 1000 cycles as cathodes in Li-S battery. Such high performance has rarely been obtained using metal-organic framework systems. The present approach opens up a promising route for further applications of MOP as host materials in electrochemical and energy storage fields.

  5. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  6. Liposomal lidocaine gel for topical use at the oral mucosa: characterization, in vitro assays and in vivo anesthetic efficacy in humans.

    PubMed

    Franz-Montan, Michelle; Baroni, Daniela; Brunetto, Giovana; Sobral, Viviane Roberta Vieira; da Silva, Camila Morais Gonçalves; Venâncio, Paulo; Zago, Patricia Wiziack; Cereda, Cintia Maria Saia; Volpato, Maria Cristina; de Araújo, Daniele Ribeiro; de Paula, Eneida; Groppo, Francisco Carlos

    2015-03-01

    To characterize liposomal-lidocaine formulations for topical use on oral mucosa and to compare their in vitro permeation and in vivo anesthetic efficacy with commercially available lidocaine formulations. Large unilamellar liposomes (400 nm) containing lidocaine were prepared using phosphatidylcholine, cholesterol, and α-tocoferol (4:3:0.07, w:w:w) and were characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and in vitro release. In vitro permeation across pig palatal mucosa and in vivo topical anesthetic efficacy on the palatal mucosa in healthy volunteers (double-blinded cross-over, placebo controlled study) were performed. The following formulations were tested: liposome-encapsulated 5% lidocaine (Liposome-Lido5); liposome-encapsulated 2.5% lidocaine (Liposome-Lido2.5); 5% lidocaine ointment (Xylocaina®), and eutectic mixture of lidocaine and prilocaine 2.5% (EMLA®). The Liposome-Lido5 and EMLA showed the best in vitro permeation parameters (flux and permeability coefficient) in comparison with Xylocaina and placebo groups, as well as the best in vivo topical anesthetic efficacy. We successfully developed and characterized a liposome encapsulated 5% lidocaine gel. It could be considered an option to other topical anesthetic agents for oral mucosa.

  7. Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.

    PubMed

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May

    2014-01-01

    The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties.

  8. Iron Complexation to Histone Deacetylase Inhibitors SAHA and LAQ824 in PEGylated Liposomes Can Considerably Improve Pharmacokinetics in Rats

    PubMed Central

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May P.

    2015-01-01

    PURPOSE The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M−1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29–35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h) and 211-fold improvement in the AUC∞ (105.7 μg·h/ml) compared to free LAQ (0.79 h, 0.5 μg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties. PMID:25579435

  9. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    PubMed Central

    Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju

    2014-01-01

    The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399

  10. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents.

    PubMed

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Nazareno, Mónica Azucena; Osorio, Coralia

    2015-11-15

    The microencapsulation of betalains from cactus fruit by spray drying was evaluated as a stabilization strategy for these pigments. The betalains used as active agent were extracted from purple fruits of Opuntia ficus-indica (BE) and encapsulated with maltodextrin and cladode mucilage MD-CM and only with MD. The microcapsulates were characterized by scanning electron microscopy (SEM), thermal analysis (TGA-DSC), tristimulus colorimetry, as well as, their humidity, water activity and dietary fiber content were also determined. The active agent content was measured by UV-Vis spectrophotometry and its composition confirmed by HPLC-ESIMS. A pigment storage stability test was performed at 18 °C and different relative humidities. The addition of CM in the formulation increased the encapsulation efficiency, diminished the moisture content, and allowed to obtain more uniform size and spherical particles, with high dietary fiber content. These microencapsulates are promising functional additive to be used as natural colorant in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process.

    PubMed

    Tsai, Wen-Chyan; Rizvi, Syed S H

    2017-09-01

    Organic solvent residues are always a concern with the liposomes produced by traditional techniques. Our objectives were to encapsulate hydrophilic and lipophilic compounds in liposomes using a newly designed supercritical fluid process coupled with vacuum-driven cargo loading. Supercritical carbon dioxide was chosen as the phospholipid-dissolving medium and an ecofriendly substitute for organic solvents. Liposomal microencapsulation was conducted via a 1000-μm expansion nozzle at 12.41MPa, 90°C, and aqueous cargo loading rate of 0.25ml/s. Vitamins C and E were selected as model hydrophilic and lipophilic compounds encapsulated in the integrated liposomes. The average vesicle size was 951.02nm with a zeta potential of -51.87mV. The encapsulation efficiency attained was 32.97% for vitamin C and 99.32% for vitamin E. Good emulsion stability was maintained during storage at 4°C for 20days. Simultaneous microencapsulation in the liposomes was successfully achieved with this supercritical fluid process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nanotechnology: current uses and future applications in the food industry.

    PubMed

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  13. Preparation and optimization of chlorophene-loaded nanospheres as controlled release antimicrobial delivery systems.

    PubMed

    Phuengkham, Hathaichanok; Teeranachaideekul, Veerawat; Chulasiri, Malyn; Nasongkla, Norased

    2016-01-01

    Chlorophene-loaded nanospheres with various formulation parameters were evaluated. The optimal formulation was found at 0.1% w/v of poloxamer 407, 15 mL of ethyl acetate and 20% initial chlorophene loading that provided the suitable size (179 nm), the highest loading content (19.2%), encapsulation efficiency (88.0%) and yield (91.6%). Moreover, encapsulation of chlorophene in nanospheres was able to prolong and sustain drug release over one month. Chlorophene-loaded nanospheres were effective against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans), the main cause of hospital-acquired infections. Chlorophene-loaded nanospheres were effective against S. aureus (>46 µg/mL) and C. albicans (>184 µg/mL). These nanospheres appeared to have profound effect on the time-dependent hemolytic activity due to gradual release of chlorophene. At the concentration of 46 µg/mL, nearly no HRBC hemolysis in 24 h compared to 80% of hemolysis from free drug. In conclusion, polymeric nanospheres were successfully fabricated to encapsulate chlorophene which can eliminate inherent toxicity of drugs and have potential uses in prolonged release of antimicrobial.

  14. Manufacture and Incorporation of Liposome-Entrapped Ethylenediaminetetraacetic Acid into Model Miniature Gouda-Type Cheese and Subsequent Effect on Starter Viability, pH, and Moisture Content.

    PubMed

    McAuliffe, Lisa N; Kilcawley, Kieran N; Sheehan, Jeremiah J; McSweeney, Paul L H

    2016-10-25

    Liposome-encapsulated ethylenediaminetetraacetic acid (EDTA) was incorporated into a model miniature Gouda-type cheese (20 g) in order to assess its effect on rennet gelation, starter viability, pH, and moisture content. EDTA was encapsulated within 2 different food-grade proliposome preparations, Pro-Lipo Duo and Pro-Lipo C (50% and 40% unsaturated soybean phospholipids and 50% and 60% aqueous medium, respectively), using the following high-shear technologies: Ultra-Turrax (5000 rpm), 2-stage homogenization (345 bar), or microfluidization (690 bar). Liposome size distribution was affected by the high-shear technology employed with the proportion of large vesicles (>100 nm) decreasing in the order microfluidization < 2-stage homogenization < Ultra-Turrax. All EDTA-containing liposomes were stable during 28 d refrigerated storage, with no significant (P ≤ 0.05) change in size distribution or EDTA entrapment efficiency (%EE). Liposome composition affected the entrapment of EDTA, with Pro-Lipo C having a significantly greater %EE than Pro-Lipo Duo, 63% and 54%, respectively. For this reason, Pro-Lipo C EDTA liposomes, with and without EDTA, were incorporated into model miniature Gouda-type cheese. Addition of liposome-encapsulated EDTA to milk during cheese making did not impact pH or rennet gel formation. No differences in composition or pH were evident in liposome-treated cheeses. The results of this study show that the incorporation of liposome-encapsulated EDTA into milk during cheese manufacture did not affect milk fermentation, moisture content, or pH, suggesting that this approach may be suitable for studying the effects of calcium equilibrium on the texture of brine-salted cheeses. © 2016 Institute of Food Technologists®.

  15. Sustained Release of Green Tea Polyphenols from Liposomal Nanoparticles; Release Kinetics and Mathematical Modelling.

    PubMed

    Prakash Upputuri, Ravi Theaj; Azad Mandal, Abul Kalam

    2017-01-01

    Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro , antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL -1 . In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.

  16. Preparation and Characterization of SN-38-Encapsulated Phytantriol Cubosomes Containing α-Monoglyceride Additives.

    PubMed

    Ali, Md Ashraf; Noguchi, Shuji; Iwao, Yasunori; Oka, Toshihiko; Itai, Shigeru

    2016-01-01

    SN-38 is a potent active metabolite of irinotecan that has been considered as an anticancer candidate. However, the clinical development of this compound has been hampered by its poor aqueous solubility and chemical instability. In this study, we developed SN-38-encapsulated cubosomes to resolve these problems. Six α-monoglyceride additives, comprising monocaprylin, monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin, were used to prepare phytantriol (PHYT) cubosomes by probe sonication. The mean particle size, polydispersity index, and zeta potential values of these systems were around 190-230 nm, 0.19-0.25 and -17 to -22 mV, respectively. Small-angle X-ray scattering analyses confirmed that the SN-38-encapsulated cubosomes existed in the Pn̄3m space group both with and without the additives. The monoglyceride additives led to around a two-fold increase in the solubility of SN-38 compared with the PHYT cubosome. The drug entrapment efficiency of PHYT cubosomes with additives was greater than 97%. The results of a stability study at 25°C showed no dramatic changes in the particle size or polydispersity index characteristics, with at least 85% of the SN-38 existing in its active lactone form after 10 d, demonstrating the high stability of the cubosome nanoparticles. Furthermore, approximately 55% of SN-38 was slowly released from the cubosomes with additives over 96 h in vitro under physiological conditions. Taken together, these results show that the SN-38-encapsulated PHYT cubosome particles are promising drug carriers that should be considered for further in vivo experiments, including drug delivery to tumor cells using the enhanced permeability and retention effect.

  17. TNF-α blocker effect of naringenin-loaded sericin microparticles that are potentially useful in the treatment of psoriasis.

    PubMed

    Chlapanidas, Theodora; Perteghella, Sara; Leoni, Flavio; Faragò, Silvio; Marazzi, Mario; Rossi, Daniela; Martino, Emanuela; Gaggeri, Raffaella; Collina, Simona

    2014-08-06

    This study aims to evaluate the effect of combined use of the racemic flavanone Naringenin (NRG) and the protein sericin as TNF-α blockers. Sericin (SMs) and (R/S) NRG-loaded Sericin (SNRGMs) microparticles were prepared by spray-drying, characterized in terms of morphology and particle size distribution, and encapsulation efficiency was determined. Concerning morphology and particle size distribution of microparticles, results indicated that they were not affected by the presence of NRG. The encapsulation efficiency was almost quantitative (93%), thus proving that sericin can be advantageously loaded with (R/S) NRG. Biological evaluation of (R/S) NRG, SMs and SNRGMs was then performed in lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (hPBMC). SNRGMs resulted cytotoxic at the higher dose used (200 μg/mL) and the effect was greater than (R/S) NRG alone. Moreover, even if sericin alone was not effective in suppressing LPS-induced serum TNF-α levels, SNRGMs loaded with 9.3% of (R/S) NRG were significantly more potent than (R/S) NRG alone. In summary, this study provides the proof of concept that sericin-based microspheres loaded with TNF-α-blockers could contribute to the down regulation of the cytokine and represents the starting point for the development of new topical formulations for the treatment of middle-stage psoriasis.

  18. TNF-α Blocker Effect of Naringenin-Loaded Sericin Microparticles that Are Potentially Useful in the Treatment of Psoriasis

    PubMed Central

    Chlapanidas, Theodora; Perteghella, Sara; Leoni, Flavio; Faragò, Silvio; Marazzi, Mario; Rossi, Daniela; Martino, Emanuela; Gaggeri, Raffaella; Collina, Simona

    2014-01-01

    This study aims to evaluate the effect of combined use of the racemic flavanone Naringenin (NRG) and the protein sericin as TNF-α blockers. Sericin (SMs) and (R/S) NRG-loaded Sericin (SNRGMs) microparticles were prepared by spray-drying, characterized in terms of morphology and particle size distribution, and encapsulation efficiency was determined. Concerning morphology and particle size distribution of microparticles, results indicated that they were not affected by the presence of NRG. The encapsulation efficiency was almost quantitative (93%), thus proving that sericin can be advantageously loaded with (R/S) NRG. Biological evaluation of (R/S) NRG, SMs and SNRGMs was then performed in lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (hPBMC). SNRGMs resulted cytotoxic at the higher dose used (200 μg/mL) and the effect was greater than (R/S) NRG alone. Moreover, even if sericin alone was not effective in suppressing LPS-induced serum TNF-α levels, SNRGMs loaded with 9.3% of (R/S) NRG were significantly more potent than (R/S) NRG alone. In summary, this study provides the proof of concept that sericin-based microspheres loaded with TNF-α-blockers could contribute to the down regulation of the cytokine and represents the starting point for the development of new topical formulations for the treatment of middle-stage psoriasis. PMID:25101847

  19. Mucoadhesive Microparticles for Gastroretentive Delivery: Preparation, Biodistribution and Targeting Evaluation

    PubMed Central

    Hou, Jing-Yi; Gao, Li-Na; Meng, Fan-Yun; Cui, Yuan-Lu

    2014-01-01

    The aim of this research was to prepare and characterize alginate-chitosan mucoadhesive microparticles containing puerarin. The microparticles were prepared by an emulsification-internal gelatin method using a combination of chitosan and Ca2+ as cationic components and alginate as anions. Surface morphology, particle size, drug loading, encapsulation efficiency and swelling ratio, in vitro drug released, in vitro evaluation of mucoadhesiveness and Fluorescence imaging of the gastrointestinal tract were determined. After optimization of the formulation, the encapsulation efficiency was dramatically increased from 70.3% to 99.2%, and a highly swelling ratio was achieved with a change in particle size from 50.3 ± 11.2 μm to 124.7 ± 25.6 μm. In ethanol induced gastric ulcers, administration of puerarin mucoadhesive microparticles at doses of 150 mg/kg, 300 mg/kg, 450 mg/kg and 600 mg/kg body weight prior to ethanol ingestion significantly protected the stomach ulceration. Consequently, significant changes were observed in inflammatory cytokines, such as prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and interleukin1β (IL-1β), in stomach tissues compared with the ethanol control group. In conclusion, core-shell type pH-sensitive mucoadhesive microparticles loaded with puerarin could enhance puerarin bioavailability and have the potential to alleviate ethanol-mediated gastric ulcers. PMID:25470180

  20. Comparative studies on exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles prepared by a novel ultra-fine particle processing system and spray drying.

    PubMed

    Zhu, Chune; Huang, Ying; Zhang, Xiaoying; Mei, Liling; Pan, Xin; Li, Ge; Wu, Chuanbin

    2015-08-01

    The purpose of this study was to compare the properties of exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles (Ex-PLGA-MPs) prepared by a novel ultra-fine particle processing system (UPPS) and spray drying. UPPS is a proprietary technology developed by our group based on the disk rotation principle. Characteristics of the MPs including morphology, particle size distribution, drug content, encapsulation efficiency and in vitro release were comparatively studied. Cytotoxicity of the MPs was examined on A549 cells and the pharmacodynamics was investigated in vivo in type 2 diabetes Sprague-Dawley (SD) rats. Ex-PLGA-MPs prepared by UPPS showed larger particle size, denser surface, greater encapsulation efficiency, less initial burst release, and stable sustained release for more than one month in vitro as compared with the spray drying MPs. Meanwhile, the UPPS MPs effectively controlled the body growth rate and blood glucose in diabetes rats for at least three weeks after a single injection, while the spray drying MPs showed effective control period of about two weeks. UPPS technology was demonstrated to manufacture Ex-PLGA-MPs as a potential sustained release protein/polypeptide delivery system, which is an alternative method for the most commonly used spray drying. This comparative research provides a new guidance for microparticle preparation technology. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Evaluation of the protective effects of curcuminoid (curcumin and bisdemethoxycurcumin)-loaded liposomes against bone turnover in a cell-based model of osteoarthritis.

    PubMed

    Yeh, Chih-Chang; Su, Yu-Han; Lin, Yu-Jhe; Chen, Pin-Jyun; Shi, Chung-Sheng; Chen, Cheng-Nan; Chang, Hsin-I

    2015-01-01

    Curcumin (Cur) and bisdemethoxycurcumin (BDMC), extracted from Curcuma longa, are poorly water-soluble polyphenol compounds that have shown anti-inflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in bone tissue, soybean phosphatidylcholines were used for liposome formulation. In this study, curcuminoid (Cur and BDMC)-loaded liposomes were characterized in terms of particle size, encapsulation efficiency, liposome stability, and cellular uptake. The results show that there is about 70% entrapment efficiency of Cur and BDMC in liposomes and that particle sizes are stable after liposome formation. Both types of liposome can inhibit macrophage inflammation and osteoclast differential activities. In comparison with free drugs (Cur and BDMC), curcuminoid-loaded liposomes were less cytotoxic and expressed high cellular uptake of the drugs. Of note is that Cur-loaded liposomes can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-loaded liposomes could not. With interleukin (IL)-1β stimulation, curcuminoid-loaded liposomes can successfully downregulate the expression of inflammatory markers on osteoblasts, and show a high osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio to prevent osteoclastogenesis. In the present study, we demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and can reduce osteoclast activity and maintain osteoblast functions. Therefore, curcuminoid-loaded liposomes may slow osteoarthritis progression.

  2. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.

  3. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  4. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology.

    PubMed

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming

    2013-09-15

    This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Development and evaluation of nanoparticles based on mPEG-PLA for controlled delivery of vinpocetine: in vitro and in vivo studies.

    PubMed

    Wang, Run; Xu, Yong

    2017-02-01

    The aim of present study was to develop VIN-loaded mPEG-PLA nanoparticle systems. The VIN mPEG-PLA nanoparticles were prepared using an emulsion solvent evaporation method, and studied their particle size, morphology, encapsulation efficiency and drug-loading coefficient. Moreover, the nanoparticles were evaluated on the drug release behaviors in vitro and bioavailability in vivo. The results show that the spherical nanoparticles obtained were negatively charged with a zeta potential of about -23.4 mV and characterized ∼110 nm with a narrow size distribution. The encapsulation efficiency and drug loading of prepared NPs were 76.4 ± 6.3 and 9.2 ± 2.2% (n=5), respectively. The in vitro release showed that the percent of accumulated dissolution of VIN NPs in phosphate-buffered saline 6.8 over 24 h was <80%, which was almost 100% of VIN in commercial injections. The in vivo study indicated that systemic absorption of VIN was significantly enhanced by incorporating into mPEG-PLA NPs compared with VIN injection (2.87-fold in AUC 0- t ). The results suggested that the form of VIN in mPEG-PLA NPs could enter the body circulation to perform sustained release in vitro and in vivo.

  6. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.

    PubMed

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2012-05-30

    Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential (<-6 mV) with average diameter> 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Improved oral bioavailability of valsartan using proliposomes: design, characterization and in vivo pharmacokinetics.

    PubMed

    Nekkanti, Vijaykumar; Venkatesan, Natarajan; Wang, Zhijun; Betageri, Guru V

    2015-01-01

    The objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6 ± 2.9% with a vesicle size of 364.1 ± 14.9 nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12 h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan.

  8. Synthesis of Nanomaterials by the Pulsed Plasma in Liquid and their Bio-medical Applications

    NASA Astrophysics Data System (ADS)

    Omurzak, E.; Abdullaeva, Z.; Satyvaldiev, A.; Zhasnakunov, Z.; Kelgenbaeva, Z.; Akai Tegin, R. Adil; Syrgakbek kyzy, D.; Doolotkeldieva, T.; Bobusheva, S.; Mashimo, T.

    2018-01-01

    Pulsed plasma in liquid is a simple, ecologically friendly, cost-efficient method based on electrical discharge between two metal electrodes submerged into a dielectric liquid. We synthesized carbon-encapsulated Fe (Fe@C) magnetic nanoparticles with low cytotoxicity using pulsed plasma in a liquid. Body-centered cubic Fe core nanoparticles showed good crystalline structures with an average size between 20 and 30 nm were encapsulated in onion-like carbon coatings with a thickness of 2-10 nm. Thermal gravimetric analysis showed a high stability of the as-synthesized samples under thermal treatment and oxidation. Cytotoxicity measurements showed higher cancer cell viability than samples synthesized by different methods. Carbon coated ZnO nanorods with about 20 nm thickness and 150 nm length were synthesized by this method using different surfactant materials such as cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). Cu and Ag nanoparticles of about 10 nm in size were also synthesized by the pulsed plasma in aquatic solution of 0.2 % gelatine as surfactant material. These nanoparticles showed high antibacterial activity for Erwinia amylovora and Escherichia coli.

  9. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    PubMed

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  10. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation.

    PubMed

    Cambronero-Rojas, Adrián; Torres-Vergara, Pablo; Godoy, Ricardo; von Plessing, Carlos; Sepúlveda, Jacqueline; Gómez-Gaete, Carolina

    2015-07-10

    Capreomycin sulfate (CS) is a second-line drug used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The adverse effects profile and uncomfortable administration scheme of CS has led to the development of formulations based on liposomes and polymeric microparticles. However, as CS is a water-soluble peptide that does not encapsulate properly into hydrophobic particulate matrices, it was necessary to reduce its aqueous solubility by forming the pharmacologically active capreomycin oleate (CO) ion pair. The aim of this research was to develop a new formulation of CO for intramuscular injection, based on biodegradable microparticles that encapsulate CO in order to provide a controlled release of the drug with reduced local and systemic adverse effects. The CO-loaded microparticles prepared by spray drying or solvent emulsion-evaporation were characterized in their morphology, encapsulation efficiency, in vitro/in vivo kinetics and tissue tolerance. Through scanning electron microscopy it was confirmed that the microparticles were monodisperse and spherical, with an optimal size for intramuscular administration. The interaction between CO and the components of the microparticle matrix was confirmed on both formulations by X-ray powder diffraction and differential scanning calorimetry analyses. The encapsulation efficiencies for the spray-dried and emulsion-evaporation microparticles were 92% and 56%, respectively. The in vitro kinetics performed on both formulations demonstrated a controlled and continuous release of CO from the microparticles, which was successfully reproduced on an in vivo rodent model. The results of the histological analysis demonstrated that none of the formulations produced significant tissue damage on the site of injection. Therefore, the results suggest that injectable CO microparticles obtained by spray drying and solvent emulsion-evaporation could represent an interesting therapeutic alternative for the treatment of MDR-TB. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Preparation, Optimization and Toxicity Evaluation of (SPION-PLGA) ±PEG Nanoparticles Loaded with Gemcitabine as a Multifunctional Nanoparticle for Therapeutic and Diagnostic Applications.

    PubMed

    Hamzian, Nima; Hashemi, Maryam; Ghorbani, Mahdi; Bahreyni Toosi, Mohammad Hossein; Ramezani, Mohammad

    2017-01-01

    The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA ± PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were simultaneously synthesized and encapsulated with Gemcitabine (Gem) in PLGA ± PEG copolymers via W/O/W double emulsification method. Optimum size and encapsulation efficiency for radiosensitization, hyperthermia and diagnostic applications were considered and the preparation parameters systematically were investigated and physicochemical characteristics of optimized nanoparticle were studied. Then SPION-PLGA and PLGA-Gem nanoparticles were prepared with the same optimized parameters and the toxicity of these nanoparticles was compared with Gemcitabine in human breast cancer cell line (MCF-7). The optimum preparation parameters were obtained with Gem/polymer equal to 0.04, SPION/polymer equal to 0.8 and 1% sucrose per 20 mg of polymer. The hydrodynamic diameters of all nanoparticles were under 200 nm. Encapsulation efficiency was adjusted between 13.2% to 16.1% for Gemcitabine and 48.2% to 50.1% for SPION. In-vitro Gemcitabine release kinetics had controlled behavior. Enhancement ratios for PLGA-Gem and SPION-PLGA-Gem at concentration of nanoparticles equal to IC50 of Gemcitabine were 1.53 and 1.89 respectively. The statistical difference was significant ( p -value = 0.006 for SPION-PLGA-Gem and p -value = 0.015 for PLGA-Gem compared with Gemcitabine). In conclusion, we have successfully developed a Gemcitabine loaded super paramagnetic PLGA-Iron Oxide multifunctional drag delivery system. Future work includes in-vitro and in-vivo investigation of radiosensitization and other application of these nanoparticles.

  12. Drug particle size influence on enteric beads produced by a droplet extrusion/precipitation method.

    PubMed

    Cerdeira, A M; Gouveia, L F; Goucha, P; Almeida, A J

    2000-01-01

    The influence of drug particle size on the production of enteric beads by a polymer precipitation technique was investigated. Drug particle dimensions are known to play an important role in most microencapsulation techniques. Bead morphology was greatly influenced by drug particle size, and spherical shaped beads could only be obtained after size reduction of nimesulide crystals. This is confirmed by the angle of repose measurements, which show a significant decrease in theta values when beads are formulated with smaller drug particles. Furthermore, results show that drug encapsulation efficiency and in vitro drug release rates are also greatly dependent on both drug particle size and drug/polymer ratio in the initial suspension. Preparations containing 10.2 microm drug particles show a two-fold increase in the release rates when compared to those prepared with 40 microm particles.

  13. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum

    PubMed Central

    Chen, Yun; Li, Qian; Wu, Qingsheng

    2014-01-01

    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. PMID:25061294

  14. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    PubMed

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  15. Functionalization of Lipid-Based Nutrient Supplement with β-Cyclodextrin Inclusions of Oregano Essential Oil.

    PubMed

    Gaur, Shashank; Lopez, Emely C; Ojha, Ankur; Andrade, Juan E

    2018-06-01

    Intestinal parasitic infection is one of the main causes of acute undernutrition in children. Oral consumption of oregano essential oil (OEO) can reduce intestinal parasitic infections, however, its addition to therapeutic and supplementary foods is hampered by its undesirable flavor. The objective of this study was to develop a functional lipid-based nutrient supplement (LNS) containing OEO, which is stable, acceptable and provides targeted intestinal delivery of bioactive. β-cyclodextrin (β-CyD) inclusion complexes of OEO (β-CyD-OEO), and carvacrol (β-CyD-CV) (1:1 molar) were prepared using slurry complexation (-20 °C) method and characterized based on encapsulation efficiency, moisture content, morphology, and 2-phase in vitro digestion stability. Carvacrol (CV) content was measured using reverse phase HPLC-UV. LNS containing β-CyD-OEO (27.2 mg encapsulate/20 g LNS) was formulated using Indian staples and ingredients. Discriminatory sensory tests (triangle) were performed with college students (n = 58) and low-income women (n = 25), with young children at home (1 to 6 years), living in Mehsana, India to evaluate differences between LNS with and without bioactive ingredient (β-CyD-OEO only). Moisture of dried complexes ranged 9.1% to 9.7% d.b., whereas water activity 0.35 to 0.412. The complex size and encapsulation efficiency of β-CyD-OEO and β-CyD-CV were 1.5 to 7 μm and 4 to 20 μm, and 86.04 ± 4.48% and 81.39 ± 3.34%, respectively. The bioactive complexes were stable through the gastric and intestinal phases. Bioaccessibility of encapsulated CV ranged 6.0% to 7.7%. Sensory tests revealed no differences (P > 0.05) in color, aroma, and taste between LNS with and without β-CyD-OEO complexes. Functionalization of LNS with β-CyD-OEO is feasible based on in vitro stability and sensory studies. Despite its antiparasitic activities, the addition of oregano essential oil into foods is limited due to its strong flavor and volatility. In this study, we evaluated the encapsulation of oregano essential oil with β-cyclodextrin and its addition into lipid-based nutrition supplements. The results revealed that complex encapsulation efficiency was above 80%. Also, the bioactive complexes were stable under in vitro gastrointestinal conditions. Sensory evaluation of LNS with and without encapsulated essential oil showed no difference in terms of color, aroma, and taste. The functional LNS can both address nutrient insufficiency as well as parasitic infection among malnourished populations in low-resource settings. © 2018 Institute of Food Technologists®.

  16. Production of nanoparticle drug delivery systems with microfluidics tools.

    PubMed

    Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Vandamme, Thierry F

    2015-04-01

    Nowadays the development of composite nano- and microparticles is an extensively studied area of research. This interest is growing because of the potential use of such particles in drug delivery systems. Indeed they can be used in various medical disciplines depending upon their sizes and their size distribution, which determine their final biomedical applications. Amongst the different techniques to produce nanoparticles, microfluidic techniques allow preparing particles having a specific size, a narrow size distribution and high encapsulation efficiency with ease. This review covers the general description of microfluidics, its techniques, advantages and disadvantages with focus on the encapsulation of active principles in polymeric nanoparticles as well as on pure drug nanoparticles. Polymeric nanoparticles constitute the majority of the examples reported; however lipid nanoparticulate systems (DNA, SiRNA nanocarriers) are very comparable and their formulation processes are in most cases exactly similar. Accordingly this review focuses also on active ingredient nanoparticles formulated by nanoprecipitation processes in microfluidic devices in general. It also provides detailed description of the different geometries of most common microfluidic devices and the crucial parameters involved in techniques designed to obtain the desired properties. Although the classical fabrication of nanoparticles drug delivery systems in batch is extremely well-described and developed, their production with microfluidic tools arises today as an emerging field with much more potential. In this review we present and discuss these new possibilities for biomedical applications through the current emerging developments.

  17. Albumin microspheres as an ocular delivery system for pilocarpine nitrate.

    PubMed

    Rathod, Sudha; Deshpande, S G

    2008-01-01

    Pilocarpine nitrate loaded egg albumin microspheres were prepared by thermal denaturation process in the size range of 1-12 mum. A series of batches were prepared to study factors, which may affect the size and entrapment efficiency of drug in microspheres and optimized the process. Drug loaded microspheres so obtained were evaluated for their size, entrapment efficiency, release rate and biological response. Electron photomicrographs were taken (8000X) to study the morphological characteristics of microspheres. The entrapment and encapsulation of pilocarpine after process optimization was found to be 82.63% and 62.5% respectively. In vitro dissolution rate studies revealed that the release of drug from the microspheres followed spherical matrix mechanism. Biological response of microspheric suspension was measured by reduction in intraocular pressure in albino rabbit eyes and compared with marketed eye drops. Various pharmacokinetic parameters viz. onset of action, duration of action, Tmax and AUC were studied. A measurable difference was found in the mean miotic response, duration and AUC of pilocarpine nitrate microspheric suspension.

  18. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    PubMed

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  19. Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles

    PubMed Central

    Woodhead, Jeffrey L.; Hall, Carol K.

    2011-01-01

    We use discontinuous molecular dynamics (DMD) computer simulation to investigate the encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles as a function of packing fraction, polymer volume fraction, solute mole fraction, and the interaction parameters between the hydrophobic head blocks and between the head and the solute. The encapsulation efficiency increases with increasing polymer volume fraction and packing fraction but decreases with increasing head-head interaction strength. The latter is due to an increased tendency for the solute to remain on the micelle surface. We compared two different nanoparticle assembly methods, one in which the solute and copolymer co-associate and the other in which the copolymer micelle is formed before the introduction of solute. The assembly method does not affect the encapsulation efficiency but does affect the solute uptake kinetics. Both head-solute interaction strength and head-head interaction strength affect the density profile of the micelles; increases in the former cause the solute to distribute more evenly throughout the micelle, while increases in the latter cause the solute to concentrate further from the center of the micelle. We explain our results in the context of a model of drug insertion into micelles formulated by Kumar and Prud’homme; as conditions become more conducive to micelle formation, a stronger energy barrier to solute insertion forms which in turn decreases the encapsulation efficiency of the system. PMID:21918582

  20. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence.

    PubMed

    Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A

    2016-08-01

    The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.

  1. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    PubMed Central

    Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853

  2. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation

    NASA Astrophysics Data System (ADS)

    Alver, Erol; Bulut, Mehmet; Metin, Ayşegül Ülkü; Çiftçi, Hakan

    2017-01-01

    Chitosan nanoparticles (CNPs) were prepared with ionotropic gelation between chitosan and tripolyphosphate for the removal of Congo Red. The production of chitosan nanoparticles and the dye removal process was carried out in one-step. The removal efficiency of Congo Red by encapsulation within chitosan from the aqueous solution and its storage stability are examined at different pH values. The influence of some parameters such as the initial dye concentration, pH value of the dye solution, electrolyte concentration, tripolyphosphate concentration, mixing time and speed on the encapsulation is examined. Congo Red removal efficiency and encapsulation capacity of chitosan nanoparticles were determined as above 98% and 5107 mg Congo Red/g chitosan, respectively.

  3. Encapsulation of cell into monodispersed hydrogels on microfluidic device

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Hyoung; Lee, Ji-Hye; Shim, Hyun-Woo; Lee, Nae-Rym; Jung, Jae-Hoon; Yoon, Tae-Ho; Kim, Dong-Pyo; Lee, Chang-Soo

    2007-12-01

    In here, we present the microfluidic approach to produce monodispersed microbeads that will contain viable cells. The utilization of microfludics is helpful to synthesize monodispersed alginate hydrogels and in situ encapsulate cell into the generating hydrogels in microfludic device. First, the condition of formation of hydrogels in multiphase flows including oil, CaCl II, and alginate was optimized. Based on the preliminary survey, microfludic device could easily manipulate the size of alginate beads having narrow size distribution. The microfluidic method manipulates the size of hydrogel microbeads from 30 to 200um with a variation less than 2%. For the proof of concept of cell entrapment, the live yeast expressing green fluorescence protein is successfully encapsulated in microfluidic device.

  4. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  5. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    PubMed

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  6. Amphiphilic Peptide Nanorods Based on Oligo-Phenylalanine as a Biocompatible Drug Carrier.

    PubMed

    Song, Su Jeong; Lee, Seulgi; Ryu, Kyoung-Seok; Choi, Joon Sig

    2017-09-20

    Peptide nanostructure has been widely explored for drug-delivery systems in recent studies. Peptides possess comparatively lower cytotoxicity and are more efficient than polymeric carriers. Here, we propose a peptide nanorod system, composed of an amphiphilic oligo-peptide RH 3 F 8 (Arg-His 3 -Phe 8 ), as a drug-delivery carrier. Arginine is an essential amino acid in typical cell-penetration peptides, and histidine induces endo- and lysosomal escape because of its proton sponge effect. Phenylalanine is introduced to provide rich hydrophobicity for stable self-assembly and drug encapsulation. The self-assembled structure of RH 3 F 8 showed nanorod-shaped morphology, positive surface charge, and retained formation in water for 35 days. RH 3 F 8 , labeled with Nile Red, showed high cellar uptake and accumulation in both cytoplasm and nucleus. The RH 3 F 8 nanorods demonstrated negligible cytotoxicity, as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and hemolysis assays. To confirm the efficiency of drug delivery, curcumin was encapsulated in the RH 3 F 8 nanorod system (RH 3 F 8 -Cur). RH 3 F 8 -Cur showed high encapsulation efficiency (24.63%) under the conditions of 200 μM curcumin. The RH 3 F 8 -Cur retained nanoscale size and positive surface charge, similar to those of the empty RH 3 F 8 nanorods. RH 3 F 8 -Cur displayed a robust anticancer effect in HeLa and A549 cells, and inhibited the proliferation of cancer cells in a zebrafish model. These results indicate that the RH 3 F 8 nanorods may be a promising candidate for a safe and effective drug-delivery system.

  7. Enhanced skin penetration of lidocaine through encapsulation into nanoethosomes and nanostructured lipid carriers: a comparative study.

    PubMed

    Babaei, S; Ghanbarzadeh, S; Adib, Z M; Kouhsoltani, M; Davaran, S; Hamishehkar, H

    2016-05-01

    Lipid based nanoparticles have become a major research object in topical drug delivery to enable drugs to pass the stratum corneum and reach the desired skin layer. The present investigation deals with the encapsulation of lidoacine into nanostructured lipid carriers (NLCs) and nanoethosomes for improving its dermal delivery and consequently local anesthetic efficacy. Concurrently these two topical delivery systems were compared. Lidocaine-loaded NLCs and nanoethosomes were characterized by various techniques and used for an in vitro skin penetration study using excised rat skin and Franz diffusion cells. The nanoparticles were tracked in the skin by following the Rhodamine-labled nanocarriers under fluorescent microscopy. Optimized lidocaine-loaded NLCs (size 96 nm, zeta potential -13.7 mV, encapsulation efficiency (EE) % 69.86% and loading capacity (LC) % 10.47%) and nanoethosomes (size 105.4 nm, zeta potential -33.6 mV, EE 40.14% and LC 8.02%) were chosen for a skin drug delivery study. Higher skin drug deposition of NLCs and nanoethosomal formulations compared to lidocaine hydroalcoholic solution represented a better localization of the drug in the skin. NLC formulation showed the lowest entered drug in the receptor phase of Franz diffusion cell in comparison with nanoethosomes and hydroalcoholic solution confirming the highest skin accumulation of drug. Both colloidal systems showed superiority over the drug solution for dermal delivery of lidocaine, however, NLC exhibited more promising characteristics than nanoethosomes regarding drug loading and skin targeted delivery.

  8. Microfluidics and BIO-encapsulation for drug- and cell-therapy

    NASA Astrophysics Data System (ADS)

    Aloisi, A.; Toma, C. C.; Di Corato, R.; Rinaldi, R.

    2017-08-01

    We present the construction and the application of biocompatible micro- and nano-structures that can be administered systemically and transport in a targeted and effective way drugs, small molecules, stem cells or immune system cells. These polymeric nano-systems represent a primary goal for the treatment of a wide family of neurological/systemic disorders, as well as tumors and/or acute injuries. As natural, biocompatible, biodegradable and non-immunogenic building blocks, alginate and chitosan are been currently exploited. Ionotropic pre-gelation of the alginate core, followed by chitosan polyelectrolyte complexation, allows to encapsulate selected active molecules by means of physical entrapment and electrostatic interactions within sub-micron sized hydrogel vesicles. Here we present a microfluidicassisted assembly method of nano- and micro-vesicles -under sterile, closed environment and gas exchange adjustable conditions, which is a critical issue, when the cargo to be uploaded is very sensitive. Polymer/polymer and polymer/drug mass ratio relationship are crucial in order to attain the optimum in terms of shuttle size and cargo concentration. By modulating polymer reticulation conditions, it become possible to control drug loading efficiency as well as drug delivery dynamics. Recent results on the application of these vesicles for the encapsulation and delivery of Inhibin-A and Decorin, proteins involved in acute kidney injury (AKI), for Renal tubular cell regeneration will be presented. Finally, the impact of these polysaccharide sub-micron vesicles on Human Immune cells and the metabolic and functional activity of cells embedded in the assembled vesicles will be presented and discussed.

  9. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    PubMed

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  10. Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma

    PubMed Central

    Scognamiglio, Immacolata; Di Martino, Maria Teresa; Campani, Virginia; Virgilio, Antonella; Galeone, Aldo; Gullà, Annamaria; Gallo Cantafio, Maria Eugenia; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Caraglia, Michele

    2014-01-01

    Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM. PMID:24683542

  11. Self-Assembled Lipid Nanoparticles for Oral Delivery of Heparin-Coated Iron Oxide Nanoparticles for Theranostic Purposes.

    PubMed

    Truzzi, Eleonora; Bongio, Chiara; Sacchetti, Francesca; Maretti, Eleonora; Montanari, Monica; Iannuccelli, Valentina; Vismara, Elena; Leo, Eliana

    2017-06-09

    Recently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool. SALNs were characterised for physico-chemical properties (particle size, surface charge, encapsulation efficiency, in vitro stability, and heparin leakage), as well as in vitro cytotoxicity by methyl thiazole tetrazolium (MTT) assay and cell internalisation in CaCo-2, a cell line model used as an indirect indication of intestinal lymphatic absorption. SALNs of about 180 nm, which are stable in suspension and have a high encapsulation efficiency (>90%) were obtained. SALNs were able to stabilise the heparin coating of Fe@hepa, which are typically unstable in physiological environments. Moreover, SALNs-Fe@hepa showed no cytotoxicity, although their ability to be internalised into CaCo-2 cells was highlighted by confocal microscopy analysis. Therefore, the results indicated that SALNs can be considered as a promising tool to orally deliver theranostic Fe@hepa into the lymphatic circulation, although further in vivo studies are needed to comprehend further potential applications.

  12. Development of PEG-PLGA based Intravenous Low Molecular Weight Heparin (LMWH) Nanoparticles Intended to Treat Venous Thrombosis.

    PubMed

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2016-01-01

    Anticoagulant therapy is effective in the treatment of DVT. In this regard, LMWH demonstrated significant promise. It is widely used clinically. The goal of this study was to prepare and evaluate intravenous sustained release stealth nanoparticles encapsulating LMWH using PLGA (polylactidecoglycolide) and different grades of PEG (poly ethylene glycols). The nanoparticles were prepared using w/o/w solvent evaporation technique. Prepared nanoparticles were evaluated for particle size, encapsulation efficiency, in-vitro drug release, anti-thrombotic activity in venous thrombosis rat model, estimation of aPTT, tissue bio-distribution studies and stability. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies confirmed the formation of smooth spherical particles. FTIR study reveals successful coating of PEG on the nanoparticles. DSC and XRD results demonstrated that drug changed its physical form in the formulation. The encapsulation efficiency was 63-74%. In vitro drug release was 57-75% for 48 hrs. Macrophage uptake of LMWH with pegylated nanoparticles was less compared to conventional PLGA nanoparticles. In vivo drug release was sustained for 48hrs; Optimized formulation exhibited good enhancement in pharmacokinetic parameters when compared to free drug solution. In vivo sustained release was also demonstrated with antithrombotic activity as well aPTT activity. Optimized formulation demonstrated significant stability, excellent antithrombotic activity in venous thrombosis rat model, improved aPTT levels when compared to free drug solution. An effective stealth LMWH nanoparticle formulation to treat venous thrombosis was successfully developed using w/o/w solvent evaporation technique.

  13. Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype.

    PubMed

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C; Manjunath, N; Pereira de Almeida, Luís

    2016-03-01

    Others and we showed that RNA interference holds great promise for the treatment of dominantly inherited neurodegenerative disorders such as Machado-Joseph disease (MJD), for which there is no available treatment. However, successful experiments involved intracranial administration of viral vectors and there is a need for a safer and less invasive procedure. In this work, we successfully generated stable nucleic acid lipid particles (SNALPs), incorporating a short peptide derived from rabies virus glycoprotein (RVG-9r) and encapsulating small interfering RNAs (siRNAs), which can target mutant ataxin-3. The developed formulation exhibited important features that make it adequate for systemic administration: high encapsulation efficiency of siRNAs, ability to protect the encapsulated siRNAs, appropriate and homogeneous particle size distribution. Following optimization of the formulation and in vitro validation of its efficacy to silence the MJD-causing protein - mutant ataxin-3 - in neuronal cells, in vivo experiments showed that intravenous administration of RVG-9r-targeted SNALPs efficiently silenced mutant ataxin-3 reducing neuropathology and motor behavior deficits in two mouse models of MJD. To our knowledge, this is the first report showing beneficial impact of a non-viral gene silencing strategy in MJD and the first time that a non-invasive systemic administration proved to be beneficial on a polyglutamine disorder. Our study opens new avenues towards MJD therapy that can also be applied to other neurodegenerative diseases linked to the production of pathogenic proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits.

    PubMed

    Warsi, Musarrat H; Anwar, Mohammed; Garg, Vaidehi; Jain, Gaurav K; Talegaonkar, Sushama; Ahmad, Farhan J; Khar, Roop K

    2014-10-01

    Poor drug penetration and rapid clearance after topical instillation of a drug formulation into the eyes are the major causes for the lower ocular bioavailability from conventional eye drops. Along with this, poor encapsulation efficiency of hydrophilic drug in polymeric nanoparticles remains a major formulation challenge. Taking this perspective into consideration, dorzolamide (DZ)-loaded PLGA nanoparticles were developed employing two different emulsifiers (PVA and vitamin E TPGS) and the effects of various formulation and process variables on particle size and encapsulation efficiency were assessed. Nanoparticles emulsified with vitamin E TPGS (DZ-T-NPs) were found to possess enhanced drug encapsulation (59.8±6.1%) as compared to those developed with PVA as emulsifier (DZ-P-NPs). Transcorneal permeation study revealed a significant enhancement in permeation (1.8-2.5 fold) as compared to solution. In addition, ex vivo biodistribution study showed a higher concentration of drug in the aqueous humour (1.5-2.3 fold). Histological and IR-camera studies proved the non-irritant potential of the formulations. Pharmacoscintigraphic studies revealed the reduced corneal clearance, as well as naso-lachrymal drainage in comparison to drug solution. Furthermore, efficacy study revealed that DZ-P-NPs and DZ-T-NPs significantly reduced the intraocular pressure by 22.81% and 29.12%, respectively, after a single topical instillation into the eye. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  16. Risk management and statistical multivariate analysis approach for design and optimization of satranidazole nanoparticles.

    PubMed

    Dhat, Shalaka; Pund, Swati; Kokare, Chandrakant; Sharma, Pankaj; Shrivastava, Birendra

    2017-01-01

    Rapidly evolving technical and regulatory landscapes of the pharmaceutical product development necessitates risk management with application of multivariate analysis using Process Analytical Technology (PAT) and Quality by Design (QbD). Poorly soluble, high dose drug, Satranidazole was optimally nanoprecipitated (SAT-NP) employing principles of Formulation by Design (FbD). The potential risk factors influencing the critical quality attributes (CQA) of SAT-NP were identified using Ishikawa diagram. Plackett-Burman screening design was adopted to screen the eight critical formulation and process parameters influencing the mean particle size, zeta potential and dissolution efficiency at 30min in pH7.4 dissolution medium. Pareto charts (individual and cumulative) revealed three most critical factors influencing CQA of SAT-NP viz. aqueous stabilizer (Polyvinyl alcohol), release modifier (Eudragit® S 100) and volume of aqueous phase. The levels of these three critical formulation attributes were optimized by FbD within established design space to minimize mean particle size, poly dispersity index, and maximize encapsulation efficiency of SAT-NP. Lenth's and Bayesian analysis along with mathematical modeling of results allowed identification and quantification of critical formulation attributes significantly active on the selected CQAs. The optimized SAT-NP exhibited mean particle size; 216nm, polydispersity index; 0.250, zeta potential; -3.75mV and encapsulation efficiency; 78.3%. The product was lyophilized using mannitol to form readily redispersible powder. X-ray diffraction analysis confirmed the conversion of crystalline SAT to amorphous form. In vitro release of SAT-NP in gradually pH changing media showed <20% release in pH1.2 and pH6.8 in 5h, while, complete release (>95%) in pH7.4 in next 3h, indicative of burst release after a lag time. This investigation demonstrated effective application of risk management and QbD tools in developing site-specific release SAT-NP by nanoprecipitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of Metronidazole-Loaded Colon-Targeted Microparticulate Drug Delivery System.

    PubMed

    Kumar, Manoj; Awasthi, Rajendra

    2015-01-01

    Crohn’s disease and ulcerative colitis are the main autoimmune inflammatory bowel diseases. Metronidazole is the most commonly used drug for the treatment of Crohn’s disease. However, the pharmacokinetic profile of this drug indicates that the largest amount of the drug is absorbed from the upper part of the intestines and very little concentration of the drugs reaches the colon.Objectives: The aim of this investigation was to formulate metronidazole loaded microspheres for the efficient therapy of inflammatory bowel diseases.Material and Methods: Microspheres were prepared using the emulsification-solvent evaporation method. The effect of Eudragit S100 concentration and the ratio of liquid paraffin (light: heavy) on percentage yield, particle size, morphology, drug encapsulation and in vitro drug release was examined. Drug-polymer interaction was investigated using Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that the particle had good flow properties, encapsulation efficiency (56.11 ・} 1.51–81.02 ・} 2.14%)and cumulative drug release (64.14 ・} 0.83–79.69 ・} 2.45%) in a phosphate buffer (pH 6.8) after 10 h of the dissolution study.An increased particle size was observed with an increasing polymer concentration. It was observed that the Eudragit had a positive effect on the drug encapsulation and negative effect on drug release. Aggregation of drug-polymer droplets was observed at a lower level of magnesium stearate during microsphere preparation. The results of FTIR spectroscopy revealed the absence of any drug-polymer interactions. However, slight peak shifting and suppression in peak height was observed.This might be due to the minor ionic interactions. The microspheres were discrete, spherical and free-flowing. The spherical shape of the microspheres was confirmed from SEM photomicrographs. The developed microspheres showed a controlled drug release and were found to follow Higuchi’s model. The release mechanism of metronidazole from the microspheres was Fickian diffusion without swelling. The results suggest that the developed microspheres could enhance drug entrapment, and inflect the drug release.

  18. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    PubMed

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  19. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate.

    PubMed

    Leng, Zhen-Hua; Zhuang, Qian-Fen; Li, Yan-Chao; He, Zeng; Chen, Zhao; Huang, Sai-Peng; Jia, Hong-Ying; Zhou, Jian-Wei; Liu, Yang; Du, Li-Bo

    2013-10-15

    Encapsulating anticancer drugs to synthetic polymer is a promising approach to improve the efficiency and reduce the side effects of anticancer drugs. In this study, novel chitosan derivatives with polyamidoamine moieties (CS-PAMAM) were synthesized and characterized by morphology, particle size, and zeta potential. Then the anticancer drug-methotrexate-encapsulated CS-PAMAM was prepared by hydrophobic-hydrophilic interactions. The drug release assay showed that the amount of the methotrexate release from CS-PAMAM was pH depended. Meanwhile, the cell viability assay illustrated that CS-PAMAM was suitable for the drug delivery because of its low cytotoxicity on cells. Moreover, our results showed that the CS-PAMAM could significantly improve the cytotoxicity of free methotrexate on A549 cells. These results demonstrate that CS-PAMAM may provide a suitable platform for the water-insoluble drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Functionalized nanocompartments (Synthosomes): limitations and prospective applications in industrial biotechnology.

    PubMed

    Onaca, Ozana; Nallani, Madhavan; Ihle, Saskia; Schenk, Alexander; Schwaneberg, Ulrich

    2006-01-01

    Synthosomes are mechanically stable vesicles with a block copolymer membrane and an engineered transmembrane protein acting as selective gate. The polymer vesicles are nanometer-sized (50-1000 nm) and functionalized by loading them with enzymes for bioconversions or encapsulating charged macromolecules for selective compound recovery/release. The Synthosome system might become a novel technology platform for biocatalysis and selective product recovery. Progress in Synthosome research comprises employed block copolymers, transmembrane channel engineering, and functionalizations, which are discussed here in detail. The challenges in transmembrane protein engineering, as well as cost-effective production, in block copolymer design and the state of the art in Synthosome characterization comprising quantification of encapsulated protein, translocation efficiency, number of transmembrane channels per vesicle, and enzyme kinetics are also presented and discussed. An assessment of the Synthosome technology platform for prospective applications in industrial (white) biotechnology concludes this review.

  2. Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells.

    PubMed

    Costa, Marcilia P; Feitosa, Anderson C S; Oliveira, Fátima C E; Cavalcanti, Bruno C; da Silva, Eufrânio N; Dias, Gleiston G; Sales, Francisco A M; Sousa, Bruno L; Barroso-Neto, Ito L; Pessoa, Cláudia; Caetano, Ewerton W S; Di Fiore, Stefano; Fischer, Rainer; Ladeira, Luiz O; Freire, Valder N

    2016-07-02

    Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.

  3. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  4. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.

    PubMed

    Min, Kyung Hyun; Park, Kyeongsoon; Kim, Yoo-Shin; Bae, Sang Mun; Lee, Seulki; Jo, Hyung Gon; Park, Rang-Woon; Kim, In-San; Jeong, Seo Young; Kim, Kwangmeyung; Kwon, Ick Chan

    2008-05-08

    To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5beta-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method and the drug loading efficiency was above 80%. CPT-encapsulated HGC (CPT-HGC) nanoparticles formed nano-sized self-aggregates in aqueous media (280-330 nm in diameter) and showed sustained release of CPT for 1 week. Also, HGC nanoparticles effectively protected the active lactone ring of CPT from the hydrolysis under physiological condition, due to the encapsulation of CPT into the hydrophobic cores in the HGC nanoparticles. The CPT-HGC nanoparticles exhibited significant antitumor effects and high tumor targeting ability towards MDA-MB231 human breast cancer xenografts subcutaneously implanted in nude mice. Tumor growth was significantly inhibited after i.v. injection of CPT-HGC nanoparticles at doses of 10 mg/kg and 30 mg/kg, compared to free CPT at dose of 30 mg/kg. The significant antitumor efficacy of CPT-HGC nanoparticles was attributed to the ability of the nanoparticles to show both prolonged blood circulation and high accumulation in tumors, as confirmed by near infrared (NIR) fluorescence imaging systems. Thus, the delivery of CPT to tumor tissues at a high concentration, with the assistance of HGC nanoparticles, exerted a potent therapeutic effect. These results reveal the promising potential of HGC nanoparticles-encapsulated CPT as a stable and effective drug delivery system in cancer therapy.

  5. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  6. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  8. Encapsulation performance of layer-by-layer microcapsules for proteins.

    PubMed

    De Temmerman, Marie-Luce; Demeester, Jo; De Vos, Filip; De Smedt, Stefaan C

    2011-04-11

    This study reports on the encapsulation efficiency of proteins in dextran sulfate/poly-L-arginine-based microcapsules, fabricated via layer-by-layer assembly (LbL). For this purpose, radiolabeled proteins are entrapped in CaCO(3) microparticles, followed by LbL coating of the CaCO(3) cores and subsequent dissolving of the CaCO(3) using EDTA. To allow to improve protein encapsulation in LbL microcapsules, we studied all steps in the preparation of the microcapsules where loss of protein load might occur. The encapsulation efficiency of proteins in LbL microcapsules turns out to be strongly dependent on both the charge and molecular weight of the protein as well as on the number of polyelectrolyte bilayers the microcapsules consist of.

  9. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    PubMed

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and evaluation of nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene.

    PubMed

    Ma, Tao; Jiang, Jin-Ling; Liu, Ying; Ye, Zheng-Bao; Zhang, Jun

    2014-09-01

    c-Myc plays a key role in glioma cancer stem cell maintenance. A drug delivery system, nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene (NPs-c-Myc-siRNA-pDNAs), for the treatment of glioma, has not previously been reported. NPs-c-Myc-siRNA-pDNAs were prepared and evaluated in vitro. Three kinds of c-Myc-siRNA fragments were separately synthesized and linked with empty siRNA expression vectors in the mole ratio of 3:1 by T4 DNA ligase. The linked products were then separately transfected into Escherichia coli. DH5α followed by extraction with Endofree plasmid Mega kit (Qiagen, Hilden, Germany) obtained c-Myc-siRNA-pDNAs. Finally, the recombinant c-Myc-siRNA3-pDNAs, generating the highest transfection efficiency and the greatest apoptotic ability, were chosen for encapsulation into NPs by the double-emulsion solvent-evaporation procedure, followed by stability, transfection efficiency, as well as qualitative and quantitative apoptosis evaluation. NPs-c-Myc-siRNA3-pDNAs were obtained with spherical shape in uniform size below 150 nm, with the zeta potential about -18 mV, the encapsulation efficiency and loading capacity as 76.3 ± 5.4% and 1.91 ± 0.06%, respectively. The stability results showed that c-Myc-siRNA3-pDNAs remained structurally and functionally stable after encapsulated into NPs, and NPs could prevent the loaded c-Myc-siRNA3-pDNAs from DNase degradation. The transfection efficiency of NPs-c-Myc-siRNA3-pDNAs was proven to be positive. Furthermore, NPs-c-Myc-siRNA3-pDNAs produced significant apoptosis with the apoptotic rate at 24.77 ± 5.39% and early apoptosis cells observed. Methoxy-poly-(ethylene-glycol)-poly-(lactide-co-glycolide) nanoparticles (MPEG-PLGA-NPs) are potential delivery carriers for c-Myc-siRNA3-pDNAs.

  11. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects.

    PubMed

    Ye, Yong; Xing, Haiting; Li, Yue

    2014-01-01

    Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH), decrease of inflammatory cytokines TNF-α and IL-1β in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142-220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The sasanquasaponin took effect through inflammatory alleviation in central tissues. The sasanquasaponin nanocapsules with phaeophorbide have photo responsiveness and neuroprotective effects under the irradiation of red light. This preparation presents a new approach to brain neuroprotection, and has potential for clinical application.

  12. Preparation and optimization of matrix metalloproteinase-1-loaded poly(lactide- co-glycolide- co-caprolactone) nanoparticles with rotatable central composite design and response surface methodology

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan

    2012-07-01

    Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.

  13. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies.

    PubMed

    Li, XueMing; Xu, YuanLong; Chen, GuoGuang; Wei, Ping; Ping, QiNeng

    2008-01-01

    The objective of the present study was to incorporate the hydrophilic anti-cancer drug 5-Fluorouracil(5-FU) into poly(lactide-co-glycolide) (PLGA) nanoparticles(NP) to improve the oral bioavailability. Owing to the high solubility of 5-FU in basic water, the water-in-oil-in-water (w/o/w) emulsification process has been chosen as one of the most appropriate method for the encapsulation of 5-FU, and the ammonia solution was used as the inner aqueous phase solvent to increase the solubility of 5-FU. In order to reach submicron size as well as increasing the grade of monodispersity compared to previous preparation techniques, we prepared 5-FU loaded PLGA-NP by a high-pressure emulsification-solvent evaporation process. The PLGA-NPs were characterized with respect to their morphology, particle size, size distribution, 5-FU encapsulation efficiency, in vitro and in vivo studies in rats. In vitro release of 5-FU from nanoparticles appeared to have two components with an initial rapid release due to the surface associated drug and followed by a slower exponential release of 5-FU, which was dissolved in the core. The in vivo research was studied in male Sprague-Dawley rats after an oral 5-FU dose of 45 mg/kg. Single oral administration of 5-FU loaded PLGA-NP to rats produced bioavailability, which was statistically higher than 5-FU solution as negative control. And the MRT (mean residence time) of 5-FU loaded PLGA-NP was significantly (P < 0.05) modified. Thus, it is possible to design a controlled drug delivery system for oral 5-FU delivery, improving therapy efficiency by possible reduction of time intervals between peroral administrations and reduction of local gastrointestinal side effects.

  14. Miconazole Nitrate-loaded Microparticles For Buccal Use: Immediate Drug Release and Antifungal Effect.

    PubMed

    Cartagena, Andres Felipe; Lyra, Amanda Martinez; Kapuchczinski, Aline Cristina; Urban, Amanda Migliorini; Esmerino, Luis Antonio; Klein, Traudi; Nadal, Jessica Mendes; Farago, Paulo Vitor; Campanha, Nara Hellen

    2017-01-01

    Miconazole nitrate has been widely employed in treatment of oral mycoses, however your immediate bio-availability and location in the affected area is critical. The aim of this study was to prepare and evaluate Eudragit® L100 and Gantrez MS-955 microparticles containing miconazole nitrate for oral delivery. Microparticles were prepared by spray-drying method to achieve high encapsulation efficiency and increase the drug solubility. The microparticles were formed containing 10% and 20% of drug on polymer Eudragit® L100 (E10 and E20), Gantrez MS-955 (G10 and G20) or their combination (EG10 and EG20). The influence of formulation factors (polymer:drug ratio, type of polymer) on yield percent, encapsulation efficiency, particle size, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry, in vitro drug release and antifungal activity were investigated. Acceptable yield, micrometer-sized and drug-loading efficiencies higher than 89% were obtained. No change in FTIR assignments was recorded after the microencapsulation procedure. X-ray and differential scanning calorimetry studies revealed amorphous/non-crystalline formulations. Miconazole nitrate-microparticles provided a remarkable increase of dissolution rate of the drug. Miconazole nitrate and G10, G20 and EG20 microparticles fitted to biexponential kinetic model, and E10, E20 and EG10 microparticles, monoexponential kinetic model. The antifungal activity test demonstrated that miconazole nitrate-microparticles possessed the same anti-Candida albicans activity as the pure drug. These results indicate that miconazole nitrate-microparticles are feasible carriers for increased release of miconazole at oral environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Preparation, characterization and cytotoxic evaluation of bovine serum albumin nanoparticles encapsulating 5-methylmellein: A secondary metabolite isolated from Xylaria psidii.

    PubMed

    Arora, Divya; Kumar, Amit; Gupta, Prasoon; Chashoo, Gousia; Jaglan, Sundeep

    2017-12-01

    In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95 ± 4.44 nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26 ± 4.48% and 7.09 ± 0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.

    PubMed

    Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena

    2004-08-01

    In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.

  17. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Quyen Tran, Ngoc; Khoa Nguyen, Cuu; Phuong Nguyen, Thi

    2013-12-01

    Dendrimer, a new class of hyper-branched polymer with predetermined molecular weight and well-controlled size, has received much attention in nanobiomedical applications such as drug carrier, gene therapy, disease diagnosis, etc. In this study, pegylated polyamidoamine (PAMAM) dendrimer at generation 3.0 (G 3.0) and carboxylated PAMAM dendrimer G 2.5 were prepared for loading anticancer drugs. For loading cisplatin, carboxylated dendrimer could carry 26.64 wt/wt% of cisplatin. The nanocomplexes have size ranging from 10 to 30 nm in diameter. The drug nanocarrier showed activity against NCI-H460 lung cancer cell line with half maximal inhibitory (IC50) of 23.11 ± 2.08 μg ml-1. Pegylated PAMAM dendrimers (G 3.0) were synthesized below 40 nm in diameter for carrying 5-fluorouracil (5-FU). For 5-FU encapsulation, pegylated dendrimer showed a high drug-loading efficiency of the drug and a slow release profile of 5-FU. The drug nanocarrier system exhibited an antiproliferative activity against MCF-7 cells (breast cancer cell) with a half maximal inhibitory (IC50) of 9.92 ± 0.19 μg ml-1. In vivo tumor xenograft study showed that the 5-FU encapsulated pegylation of dendrimer exhibited a significant decrement in volume of tumor which was generated by MCF-7 cancer cells. These positive results from our studies could pave the ways for further research of drugs dendrimer nanocarriers toward cancer chemotherapy.

  18. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen.

    PubMed

    Zhang, Lina; Zhang, Qi; Wang, Xin; Zhang, Wenji; Lin, Congcong; Chen, Fen; Yang, Xinggang; Pan, Weisan

    2015-08-15

    A novel delivery system based on drug-cyclodextrin (CD) complexation and liposomes has been developed to improve therapeutic effect. Three different means, i.e., co-evaporation (COE), co-ground (GR) and co-lyophilization (COL) and three different CDs (β-CD, HP-β-CD and SBE-β-CD) were contrasted to investigate the characteristics of the end products. FP/FP-CD loaded liposomes were obtained by thin layer evaporation technique. Size, zeta potential and encapsulation efficiency were investigated by light scattering analysis and minicolumn centrifugation. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) showed the amorphous form of complexes and spherical morphology of FP-HP-β-CD COE loaded liposomes. The pH 7.4 phosphate buffer solution (PBS) was selected as the medium for the in vitro release. Wistar rats were put into use to study the pharmacokinetic behavior in vivo. FP-HP-β-CD COE loaded liposomes showed the better physicochemical characters that followed the average particle size, polydispersity index, zeta potential and mean encapsulation efficiency 158±10 nm, 0.19±0.1, -12.4±0.1 mW and 56.1±0.5%, separately. The relative bioavailability of FP-HP-β-CD COE loaded liposomes was 420%, 201% and 402% compared with FP solution, FP-HP-β-CD and FP-liposomes, respectively. In conclusion, the novel delivery system improved the relative bioavailability of FP significantly and provided a perspective way for delivery of insoluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nanoencapsulation of phase change materials for advanced thermal energy storage systems

    PubMed Central

    Shchukina, E. M.; Graham, M.; Zheng, Z.

    2018-01-01

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, “on demand” energy release/uptake. PMID:29658558

  20. Nanoencapsulation of phase change materials for advanced thermal energy storage systems.

    PubMed

    Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G

    2018-06-05

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, "on demand" energy release/uptake.

  1. Nano-aggregates: emerging delivery tools for tumor therapy.

    PubMed

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.

  2. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  3. Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation.

    PubMed

    Park, Minsung; Shin, Sungchul; Cheng, Jie; Hyun, Jinho

    2017-02-20

    We describe the nanocomposite membrane for cell encapsulation using nanocelluose hydrogels. One of the surfaces of bacterial cellulose (BC) pellicles was coated with collagen to enhance cell adhesion and the opposite side of the BC pellicles was coated with alginate to protect transplanted cells from immune rejection by the reduced pore size of the composite membrane. The morphology of nanocomposite membrane was observed by scanning electron microscopy and the permeability of the membrane was estimated by the release test using different molecular weights of polymer solution. The nanocomposite membrane was permeable to small molecules but impermeable to large molecules such as IgG antibodies inferring the potential use in cell implantation. In addition, the BC-based nanocomposite membrane showed a superior mechanical property due to the incorporation of compared with alginate membranes. The cells attached efficiently to the surface of BC composite membranes with a high level of cell viability as well as bioactivity. Cells grown on the BC composite membrane kit released dopamine freely to the medium through the membrane, which showed that the BC composite membrane would be a promising cell encapsulation material in implantation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile.

    PubMed

    Kumar, Nagendra; Chaurasia, Sundeep; Patel, Ravi R; Khan, Gayasuddin; Kumar, Vikas; Mishra, Brahmeshwar

    2017-03-01

    Atorvastatin calcium (ATR), a second generation statin drug, was encapsulated in eudragit RSPO-based polymeric nanoparticles. The effect of independent variables (polymer content, stabilizer concentration, volume of chloroform and homogenization speed) on response variables (mean diameter particle size and entrapment efficiency) were investigated by employing central composite experimental design. All the independent variables were found to be significant for determining the response variables. Solid-state characterization study indicated the absence of physicochemical interaction between drug and polymer in formulation. Morphological study exhibited homogenous spherical shape of formulated nanoparticles. In vitro release study in phosphate buffer (pH 7.4) demonstrated sustained release profile over 24 h. Pharmacokinetic study in Charles Foster rats showed significant enhancement in oral bioavailability as compared to pure drug suspension. Efficacy study (lipid profile and blood glucose level) significantly justified the effectiveness of formulation having 50% less dose of ATR as compared to pure drug suspension. The effectiveness of formulation was further justified with an improved plasma safety profile of treated rats. Hence, ATR encapsulated eudragit RSPO nanoparticles can serve as potential drug delivery approach to enhance drug bioavailability, efficacy and safety profiles to alter existing marketed drug products.

  5. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.

    PubMed

    Choi, Won San; Koo, Hye Young; Kim, Dong-Yu

    2008-05-06

    Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.

  6. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  7. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  8. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues

    NASA Astrophysics Data System (ADS)

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent.Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06673e

  9. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles.

    PubMed

    Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A

    2013-09-01

    The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be of benefit to DNA vaccination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells.

    PubMed

    Yesil-Celiktas, Ozlem; Pala, Cansu; Cetin-Uyanikgil, E Oyku; Sevimli-Gur, Canan

    2017-02-15

    Mesoporous silica carriers are emerging as therapeutic drug delivery systems. The objective of this study was to develop a formulation for synthesizing silica-PAMAM dendrimer hybrid nanoparticles with sol-gel technique. Subsequently, black carrot anthocyanins were encapsulated and investigated for their capability in terms of inhibiting the proliferative effects of neuroblastoma (Neuro 2A). In this context, particle size distributions were ascertained followed by thermal analysis (DSC), scanning electron microscopy and encapsulation efficiency. Subsequently, in vitro release kinetics was determined along with cytotoxicity of empty and anthocyanin doped hybrid nanoparticles. The lowest particle size was 134.8 nm with a zeta potential of +19.78 mV which enhanced electrostatic interaction with the cell membrane in the cytotoxicity analyses. As the anthocyanin content was totally released at the end of 6 days, the cytotoxicity was observed for 134 h, reaching an inhibition of 87.9%. On the other hand, Neuro 2A cells incubated with empty nanoparticles exhibited a high proliferation indicating that hybrid nanoparticles were not toxic to the cells and the inhibitory effect was associated with the anthocyanins. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules.

    PubMed

    Sugiura, Shinji; Oda, Tatsuya; Aoyagi, Yasuyuki; Matsuo, Ryota; Enomoto, Tsuyoshi; Matsumoto, Kunio; Nakamura, Toshikazu; Satake, Mitsuo; Ochiai, Atsushi; Ohkohchi, Nobuhiro; Nakajima, Mitsutoshi

    2007-02-01

    Microencapsulation of genetically engineered cells has attracted much attention as an alternative nonviral strategy to gene therapy. Though smaller microcapsules (i.e. less than 300 microm) theoretically have various advantages, technical limitations made it difficult to prove this notion. We have developed a novel microfabricated device, namely a micro-airflow-nozzle (MAN), to produce 100 to 300 microm alginate microcapsules with a narrow size distribution. The MAN is composed of a nozzle with a 60 microm internal diameter for an alginate solution channel and airflow channels next to the nozzle. An alginate solution extruded through the nozzle was sheared by the airflow. The resulting alginate droplets fell directly into a CaCl2 solution, and calcium alginate beads were formed. The device enabled us to successfully encapsulate living cells into 150 microm microcapsules, as well as control microcapsule size by simply changing the airflow rate. The encapsulated cells had a higher growth rate and greater secretion activity of marker protein in 150 microm microcapsules compared to larger microcapsules prepared by conventional methods because of their high diffusion efficiency and effective scaffold surface area. The advantages of smaller microcapsules offer new prospects for the advancement of microencapsulation technology.

  12. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A

    2016-06-25

    The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.

    PubMed

    Eklund, Karin; Ahnesjö, Anders

    2010-11-01

    Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode were shown to give comparable, or better, results than the traditionally used shielded diode. Spectra calculated for photon fields in water can be directly used for modeling the response of unshielded silicon diodes with plastic encapsulations. Unshielded diodes used together with appropriate corrections can replace shielded diodes in photon dose measurements.

  14. Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.

    PubMed

    Felipo, F; Vaquero, M; del Agua, C

    2004-09-01

    An extraordinary case of encapsulated fat necrosis characterized by its large size, diffuse formation of pseudomembranes, and tendency to recur after excision is reported. A 67-year-old Caucasian woman suffering from morbid obesity was admitted for diagnosis and surgical treatment of a soft tissue mass showing a longest diameter of 14 cm and lying adjacently to the scar from previous appendicectomy. Histopathologic features were consistent with a nodular-cystic encapsulated fat necrosis with diffuse pseudomembranous transformation. Eight months after surgery, a new larger mass (longest diameter of 18 cm) sharing identical histopathologic features appeared in the same location. Encapsulated fat necrosis is a well-defined entity even though several names have been proposed for this condition, including mobile encapsulated lipoma, encapsulated necrosis, or nodular-cystic fat necrosis. Its pathogenesis seems to be related to ischemic changes secondary to previous trauma. It may occasionally show degenerative changes, including dystrophic calcifications and presence of pseudomembranes. To our knowledge, these are the first reported cases of encapsulated fat necrosis presenting as lesions of such size and showing diffuse formation of pseudomembranes; these particular features made diagnosis difficult and led to consideration of a wide range of potential diagnostic possibilities. This case expands the clinico-pathologic spectrum of membranocystic fat necrosis, including the potential ability of this subcutaneous fatty tissue abnormality to recur after surgical excision. Felipo F, Vaquero M, del Agua C. Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.

  15. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  16. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.

    PubMed

    Chiesa, E; Dorati, R; Modena, T; Conti, B; Genta, I

    2018-01-30

    Design of Experiment-assisted evaluation of critical process (total flow rate, TFR, flow rate ratio, FRR) and formulation (polymer concentration and structure, drug:polymer ratio) variables in a novel microfluidics-based device, a staggered herringbone micromixer (SHM), for poly(lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (NPs) manufacturing was performed in order to systematically evaluate and mathematically describe their effects on NPs sizes and drug encapsulation; a small hydrophilic moiety, N-acetylcysteine, was chosen as challenging model drug. SHM-assisted nanoprecipitation method consistently yielded NPs with tailor made sizes (in the range of 100-900 nm) and polydispersity index range from 0.061 to 0.286. Significant effects on NPs sizes were highlighted for TFR and FRR: increasing TFR (from 5 to 15 mL/min) and decreasing FRR (from 1:1 to 1:5 v/v, acetonitrile: buffer) NPs with mean diameter <200 nm were obtained. SHM technique allowed for flexible, application-specific tuning of PLGA NPs size using organic solvents with relatively low toxicity (acetone, acetonitrile), varying aqueous phase composition (Tris buffer vs PVA aqueous solution) and PLGA characteristics (Mw ranging from 25-90 kDa, capped or un-capped PLGA, different lactide:glycolide molar ratio). A very satisfactory N-Ac encapsulation efficiency (more than 67%) and a prolonged release (by 168 h) were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  18. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    PubMed

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  19. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    PubMed

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect carvacrol structure and increase its efficiency and stability. Moreover, nano-encapsulation of carvacrol is more efficient than nano-emulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Exergy analysis of encapsulation of photochromic dye by spray drying

    NASA Astrophysics Data System (ADS)

    Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.

  1. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    NASA Astrophysics Data System (ADS)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  2. Effects of pore forming agents of potassium bicarbonate and drug loading method against dissolution mechanisms of amoxicillin drugs encapsulated in hydrogel full-Ipn chitosan-poly(N-vinylcaprolactam) as a floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil

    2018-04-01

    The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.

  3. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    PubMed Central

    Zizzari, Alessandra; Bianco, Monica; Perrone, Elisabetta; Amato, Francesco; Maruccio, Giuseppe; Rendina, Filippo; Arima, Valentina

    2017-01-01

    Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow. PMID:29232873

  4. Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine.

    PubMed

    Jahan, Sheikh Tasnim; Sadat, Sams Ma; Haddadi, Azita

    2018-01-01

    The aim of this research was to develop a targeted antigen-adjuvant assembled delivery system that will enable dendritic cells (DCs) to efficiently mature to recognize antigens released from tumor cells. It is important to target the DCs with greater efficiency to prime T cell immune responses. In brief, model antigen, ovalbumin (OV), and monophosphoryl lipid A adjuvant were encapsulated within the nanoparticle (NP) by double emulsification solvent evaporation method. Targeted NPs were obtained through ligand incorporation via physical adsorption or chemical conjugation process. Intracellular uptake of the NPs and the maturation of DCs were evaluated with flow cytometry. Remarkably, the developed delivery system had suitable physicochemical properties, such as particle size, surface charge, OV encapsulation efficiency, biphasic OV release pattern, and safety profile. The ligand modified formulations had higher targeting efficiency than the non-tailored NPs. This was also evident when the targeted formulations expressed comparatively higher fold increase in surface activation markers such as CD40, CD86, and major histocompatibility complex class II molecules. The maturation of DCs was further confirmed through secretion of extracellular cytokines compared to control cells in the DC microenvironment. Physicochemical characterization of NPs was performed based on the polymer end groups, their viscosities, and ligand-NP bonding type. In conclusion, the DC stimulatory response was integrated to develop a relationship between the NP structure and desired immune response. Therefore, the present study narrates a comparative evaluation of some selected parameters to choose a suitable formulation useful for in vivo cancer immunotherapy.

  5. Comparison of anti-EGFR-Fab’ conjugated immunoliposomes modified with two different conjugation linkers for siRNa delivery in SMMC-7721 cells

    PubMed Central

    Deng, Li; Zhang, Yingying; Ma, Lulu; Jing, Xiaolong; Ke, Xingfa; Lian, Jianhao; Zhao, Qiang; Yan, Bo; Zhang, Jinfeng; Yao, Jianzhong; Chen, Jianming

    2013-01-01

    Background Targeted liposome-polycation-DNA complex (LPD), mainly conjugated with antibodies using functionalized PEG derivatives, is an effective nanovector for systemic delivery of small interference RNA (siRNA). However, there are few studies reporting the effect of different conjugation linkers on LPD for gene silencing. To clarify the influence of antibody conjugation linkers on LPD, we prepared two different immunoliposomes to deliver siRNA in which DSPE-PEG-COOH and DSPE-PEG-MAL, the commonly used PEG derivative linkers, were used to conjugate anti-EGFR Fab’ with the liposome. Methods First, 600 μg of anti-EGFR Fab’ was conjugated with 28.35 μL of a micelle solution containing DSPE-PEG-MAL or DSPE-PEG-COOH, and then post inserted into the prepared LPD. Various liposome parameters, including particle size, zeta potential, stability, and encapsulation efficiency were evaluated, and the targeting ability and gene silencing activity of TLPD-FPC (DSPE-PEG-COOH conjugated with Fab’) was compared with that of TLPD-FPM (DSPE-PEG-MAL conjugated with Fab’) in SMMC-7721 hepatocellular carcinoma cells. Results There was no significant difference in particle size between the two TLPDs, but the zeta potential was significantly different. Further, although there was no significant difference in siRNA encapsulation efficiency, cell viability, or serum stability between TLPD-FPM and TLPD-FPC, cellular uptake of TLPD-FPM was significantly greater than that of TLPD-FPC in EGFR-overexpressing SMMC-7721 cells. The luciferase gene silencing efficiency of TLPD-FPM was approximately three-fold high than that of TLPD-FPC. Conclusion Different conjugation linkers whereby antibodies are conjugated with LPD can affect the physicochemical properties of LPD and antibody conjugation efficiency, thus directly affecting the gene silencing effect of TLPD. Immunoliposomes prepared by DSPE-PEG-MAL conjugation with anti-EGFR Fab’ are more effective than TLPD containing DSPE-PEG-COOH in targeting hepatocellular carcinoma cells for siRNA delivery. PMID:24023515

  6. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: formulation aspects and nanoparticle stability to nebulization.

    PubMed

    Beck-Broichsitter, Moritz; Kleimann, Pia; Gessler, Tobias; Seeger, Werner; Kissel, Thomas; Schmehl, Thomas

    2012-01-17

    Polymeric nanoparticles meet the increasing interest for drug delivery applications and hold great promise to improve controlled drug delivery to the lung. Here, we present a series of investigations that were carried out to understand the impact of formulation variables on the nebulization performance of novel biodegradable sildenafil-loaded nanoparticles designed for targeted aerosol therapy of life-threatening pulmonary arterial hypertension. Narrowly distributed poly(D,L-lactide-co-glycolide) nanoparticles (size: ∼200 nm) were prepared by a solvent evaporation technique using poly(vinyl alcohol) (PVA) as stabilizer. The aerodynamic and output characteristics using the Aeroneb Pro nebulizer correlated well with the dynamic viscosity of the employed fluids for nebulization. The nebulization performance was mainly affected by the amount of employed stabilizer, rather than by the applied nanoparticle concentration. Nanoparticles revealed physical stability against forces generated during aerosolization, what is attributed to the adsorbed PVA layer around the nanoparticles. Sildenafil was successfully encapsulated into nanoparticles (encapsulation efficiency: ∼80%). Size, size distribution and sildenafil content of nanoparticles were not affected by nebulization and the in vitro drug release profile demonstrated a sustained sildenafil release over ∼120 min. The current study suggests that the prepared sildenafil-loaded nanoparticles are a promising pharmaceutical for the therapy of pulmonary arterial hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin.

    PubMed

    Martinez, Nelida Y; Andrade, Patricia F; Durán, Nelson; Cavalitto, Sebastian

    2017-10-01

    In the present work, a double emulsion was developed for the encapsulation of Bovine Serum Albumin (BSA) as a model protein for the future encapsulation of viral proteins. The first emulsion polydispersity index (PDI) was studied with increasing concentrations of poly (ε-caprolactone) (PCL) as stabilizer (from 16% w/v to 5% w/v) and polyvinyl alcohol (PVA) as the surfactant in the second emulsion at 1.5% w/v. Results suggest that at decreasing concentrations of PCL the PDI of the emulsion also decrease, indicating that viscosity of the emulsion is crucial in the homogeneity of the resultant size distribution of the nanoparticles. When PVA concentration in the second emulsion was increased from 1.5% w/v to 2.5% w/v the PDI also increased. To study the relationship between the structure of the surfactant in the second emulsion and the resultant BSA encapsulation, emulsions were prepared with Pluronic F68 and PVA both at 1.5% w/v and PCL in the first emulsion at 5% w/v. Results indicated that Pluronic F68 was a better stabilizer because at the same experimental conditions encapsulation of BSA was 1.5 higher than PVA. FTIR studies confirmed the presence of BSA in the nanoparticles. SEM and TEM microscopies showed a size distribution of 300nm-500nm size of nanoparticles. Circular dichroism studies demonstrated that the secondary structure of the protein was conserved after the encapsulation into the nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  9. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  10. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ~87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.

  11. Preparation and in vitro evaluation of heparin-loaded polymeric nanoparticles.

    PubMed

    Jiao, Y Y; Ubrich, N; Marchand-Arvier, M; Vigneron, C; Hoffman, M; Maincent, P

    2001-01-01

    Nanoparticles of a highly soluble macromolecular drug, heparin, were formulated with two biodegradable polymers (poly-E-caprolactone [PCL] and poly (D, L-lactic-co-glycolic-acid) 50/50 [PLAGA]) and two nonbiodegradable positively charged polymers (Eudragit RS and RL) by the double emulsion and solvent evaporation method, using a high-pressure homogenization device. The encapsulation efficiency and heparin release profiles were studied as a function of the type of polymers employed (alone or in combination) and the concentration of heparin. Optimal encapsulation efficiency was observed when 5000 IU of heparin were incorporated in the first emulsion. High drug entrapment efficiency was observed in both Eudragit RS and RL nanoparticles (60% and 98%, respectively), compared with PLAGA and PCL nanoparticles (<14%). The use of the two types of Eudragit in combination with PCL and PLAGA increased the encapsulation efficiency compared with these two biodegradable polymers used alone; however, the in vitro drug release was not modified and remained low. On the other hand, the addition of esterase to the dissolution medium resulted in a significant increase in heparin release. The in vitro biological activity of released heparin, evaluated by measuring the anti-Xa activity by a colorimetric assay, was conserved after the encapsulation process.

  12. Formulation and characterization of alprazolam-loaded nanoliposomes: screening of process variables and optimizing characteristics using RSM.

    PubMed

    Hashemi, Seyed Hesamoddin; Montazer, Majid; Naghdi, Nasser; Toliyat, Tayebeh

    2018-02-01

    This research study aimed to develop a novel sustained release formulation of alprazolam that can also be used for transdermal delivery. This was carried out, for the first time, through encapsulation of alprazolam in nanoliposomes using ethanol injection. In order to obtain the best formulation, four process variables, including the solvent/nonsolvent volume ratio, phospholipid concentration, alprazolam concentration, and cholesterol content were considered as key factors. Response surface methodology (RSM) and a central composite design (CCD) model were used to investigate the effect of these factors on vesicle size (VS) and encapsulation efficiency (EE) as the major properties of nanoliposomes. Experimental data were statistically analyzed, and two significant quadratic models were developed to test the VS and EE responses. The findings indicate that alprazolam and phospholipid concentrations have a significant effect on the mean VS. However, EE was significantly affected by both the alprazolam and phospholipid concentrations and the cholesterol content. The optimized formulation for preparation of alprazolam-loaded nanoliposomes with appropriate VS and EE was suggested. Small unilamellar vesicles (SUVs), ranging in size from 50 to 100 nm were clearly observed in the transmission electron microscopy (TEM) images, which is appropriate for transdermal delivery of alprazolam. The study of the prepared nanoliposomes over 28 days at 4 °C confirmed the stability of the formulations containing cholesterol. The results of an in vitro release study of alprazolam-loaded nanoliposomes in phosphate buffered saline (PBS), pH 7.4 for 24 h at 37 °C using dialysis, indicated the sustained release of alprazolam due to encapsulation.

  13. Thermophilic Ferritin: Versatile Nanohost

    NASA Astrophysics Data System (ADS)

    Pulsipher, Katherine W.

    Thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) is a 24meric, hollow, cage-like protein, whose native function is the oxidation, mineralization, and storage of iron. Unique among ferritins, its self-assembly is dependent on high ionic strength, reflecting the deep sea thermal vent environment where A. fulgidus is found. This ionic strength dependence can be used to encapsulate charged cargo within the AfFtn cavity. Its subunits self-assemble into tetrahedral symmetry, resulting in four, large (4.5 nm), triangular pores, not found in other ferritins. Due to its size (12 nm outer diameter, 8 nm inner diameter), self-assembly properties, and potential for both genetic and chemical modification, AfFtn is an ideal nanocontainer for a variety of cargo, including inorganic nanoparticles and proteins. We have sought to better understand the self-assembly of AfFtn and its encapsulation of various cargo. Guided by computational analysis and through mutagenesis, we have investigated the role of electrostatics along the AfFtn trimeric interface in self-assembly. We have developed a series of single point mutants with increasingly favorable cage assembly. One specific mutation, E65R, has a dramatic effect on AfFtn, almost entirely preventing disassembly and enhancing thermal stability by 14°C. By using a novel graphene-based microelectrode, we have determined that AfFtn maintains its quaternary structure upon encapsulation of a gold nanoparticle, developing a new tool for investigating protein-nanomaterial interactions. We have also shown that AfFtn can be used to template seeded gold nanoparticle growth and have explored two often neglected factors in ferritin-nanoparticle templating: the charge of the gold salt used, and the size of the protein pores. Our results demonstrate that the open, porous structure of AfFtn allows more efficient particle growth than typical closed-pore ferritins. Finally, we have expanded the cargo uptake of AfFtn beyond nanoparticles to include proteins, encapsulating supercharged GFP. The AfFtn-cargo complexes developed here have application in catalysis, nanomaterials synthesis, and targeted delivery.

  14. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model

    NASA Astrophysics Data System (ADS)

    Agashe, H.; Lagisetty, P.; Sahoo, K.; Bourne, D.; Grady, B.; Awasthi, V.

    2011-06-01

    3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a "drug-in-CD-in liposome" approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze-thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k 1:1 value of 9.9 M-1. The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration-rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α- t 1/2 of 21.4 min and β- t 1/2 of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using "drug-in-CD-in liposome" approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution.

  15. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model

    PubMed Central

    Agashe, H.; Lagisetty, P.; Sahoo, K.; Bourne, D.; Grady, B.

    2011-01-01

    3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a “drug-in-CD-in liposome” approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze–thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k1:1 value of 9.9 M−1. The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration–rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α-t1/2 of 21.4 min and β-t1/2 of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using “drug-in-CD-in liposome” approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution. PMID:21779150

  16. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model.

    PubMed

    Agashe, H; Lagisetty, P; Sahoo, K; Bourne, D; Grady, B; Awasthi, V

    2011-06-01

    3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a "drug-in-CD-in liposome" approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze-thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k(1:1) value of 9.9 M(-1). The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration-rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α-t(1/2) of 21.4 min and β-t(1/2) of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using "drug-in-CD-in liposome" approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution.

  17. Microfluidic-Based Generation of Size-Controlled, Biofunctionalized Synthetic Polymer Microgels for Cell Encapsulation

    PubMed Central

    Headen, Devon M.; Aubry, Guillaume; Lu, Hang

    2014-01-01

    Cell and islet microencapsulation in synthetic hydrogels provide an immunoprotective and cell-supportive microenvironment. A microfluidic strategy for the genaration of biofunctionalized, synthetic microgel particles with precise control over particle size and molecular permeability for cell and protein delivery is presented. These engineered capsules support high cell viability and function of encapsulated human stem cells and islets. PMID:24615922

  18. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.

    PubMed

    Lima, Adriel M; Pizzol, Carine Dal; Monteiro, Fabíola B F; Creczynski-Pasa, Tânia B; Andrade, Gislaine P; Ribeiro, Anderson O; Perussi, Janice R

    2013-08-05

    The hydrophobicity of some photosensitizers can induce aggregation in biological systems, which consequently reduces photodynamic activity. The conjugation of photosensitizers with nanocarrier systems can potentially be used to overcome this problem. The objective of this study was to prepare and characterise hypericin-loaded solid lipid nanoparticles (Hy-SLN) for use in photodynamic therapy (PDT). SLN were prepared using the ultrasonication technique, and their physicochemical properties were characterised. The mean particle size was found to be 153 nm, with a low polydispersity index of 0.28. One of the major advantages of the SLN formulation is its high entrapment efficiency (EE%). Hy-SLN showed greater than 80% EE and a drug loading capacity of 5.22% (w/w). To determine the photodynamic efficiency of Hy before and after encapsulation in SLN, the rate constants for the photodecomposition of two (1)O2 trapping reagents, DPBF and AU, were determined. These rate constants exhibited an increase of 60% and 50% for each method, respectively, which is most likely due to an increase in the lifetime of the triplet state caused by the increase in solubility. Hy-SLN presented a 30% increase in cell uptake and a correlated improvement of 26% in cytotoxicity. Thus, all these advantages suggest that Hy-loaded SLN has potential for use in PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    PubMed

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  20. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation

    PubMed Central

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2017-01-01

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood–brain barrier and/or blood–brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(-ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide — a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM. PMID:26428461

  1. Development and optimization of doxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells.

    PubMed

    Deng, Liwei; Li, Li; Yang, Hong; Li, Li; Zhao, Fenglong; Wu, Chunhui; Liu, Yiyao

    2014-04-01

    Microbubbles (MBs, usually 2-8 microm) as ultrasound contrast agent and drug carrier are promising for ultrasonic imaging and drug delivery. However, MBs posed some limitations due to their large diameters. In the current study, we developed a nanoscale bubbles (nanobubbles, NBs) by encapsulating the doxorubicin (DOX) into poly(lactic-co-glycolic acid) (PLGA) shells (denoted as DOX-PLGA NBs) for drug delivery into cancer cells. The size, morphology, particle stability, drug encapsulation efficiency, and drug payload were determined. The results showed that the DOX-PLGA NBs were uniform (270 +/- 3 nm) and spherical with a smooth surface, and were well dispersed and stable in water. The encapsulation efficiency and payload of DOX increased with its initial loading concentrations. The release behavior of DOX from the DOX-PLGA NBs exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous release at both pH 7.4 and pH 4.4, and also presented in a pH-triggered releasing profile. The qualitative analysis of cellular internalization into HeLa cells by inverted fluorescence microscope showed that the cellular uptake of DOX-PLGA NBs was both concentration- and time-dependent. Moreover, the cell viability was also investigated using CCK-8 assay. It was found that DOX-PLGA NBs showed greater HeLa cell growth inhibition effect in vitro compared with free DOX. It was concluded that the DOX-PLGA NBs were biocompatible and appropriate for anti-cancer drug delivery, and were potentially promising as a new therapeutic system for cancer treatment.

  2. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation.

    PubMed

    Fayyazbakhsh, Fateme; Solati-Hashjin, Mehran; Keshtkar, Abbas; Shokrgozar, Mohammad Ali; Dehghan, Mohammad Mehdi; Larijani, Bagher

    2017-10-01

    Incorporating the controlled release of vitamin D3 (VD3) into biodegradable porous scaffolds is a new approach to equipping multifunctional therapeutics for osteoporosis. The current investigation involves the encapsulation of VD3 into gelatin through the one-step desolvation method. The layered double hydroxides-hydroxyapatite nanocomposite (LDH-HAp) and pure LDH were combined with the gelatin-VD3 complex to reinforce the porous biodegradable structure and enhance the biological response. Afterwards, glutaraldehyde was used to form crosslinks within the gelatin chains. The encapsulation efficiency and loading capacity showed approximately 40% and 50% reduction after crosslinking, respectively. The particle size, zeta potential, contact angle, Young's modulus and porosity were measured to find the effect of VD3 on the scaffolds' physiochemical properties. To explore the bioactivity and degradation behavior, the scaffolds were immersed in simulated body fluid. The VD3 release kinetics followed the Korsmeyer-Peppas model and non-Fickian release pattern. The greater osteblastic expression was observed in VD3-containing scaffolds due to the higher alkaline phosphatase activity which was excited more by HAp (P<0.05). Alizarin red staining illustrated that VD3 induced more calcium deposition, which indicates the signaling role of VD3 on osteoconductivity and biomineralization. The findings provide new insights on the VD3 encapsulation within hydrophilic matrices to protect VD3 and enable the signaling ability for bone tissue engineering scaffolds, which could improve the bone healing efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine.

    PubMed

    Zhao, Kai; Sun, Yanwei; Chen, Gang; Rong, Guangyu; Kang, Hong; Jin, Zheng; Wang, Xiaohua

    2016-09-20

    Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel.

    PubMed

    Nayak, Atul; Das, Diganta B; Vladisavljević, Goran T

    2014-05-01

    Lidocaine hydrochloride (LidH) was formulated in sodium carboxymethyl cellulose/ gelatine (NaCMC/GEL) hydrogel and a 'poke and patch' microneedle delivery method was used to enhance permeation flux of LidH. The microparticles were formed by electrostatic interactions between NaCMC and GEL macromolecules within a water/oil emulsion in paraffin oil and the covalent crosslinking was by glutaraldehyde. The GEL to NaCMC mass ratio was varied between 1.6 and 2.7. The LidH encapsulation yield was 1.2 to 7% w/w. LidH NaCMC/GEL was assessed for encapsulation efficiency, zeta potential, mean particle size and morphology. Subsequent in vitro skin permeation studies were performed via passive diffusion and microneedle assisted permeation of LidH NaCMC/GEL to determine the maximum permeation rate through full thickness skin. LidH 2.4% w/w NaCMC/GEL 1:1.6 and 1:2.3 respectively, possessed optimum zeta potential. LidH 2.4% w/w NaCMC/GEL 1:2.3 and 1:2.7 demonstrate higher pseudoplastic behaviour. Encapsulation efficiency (14.9-17.2%) was similar for LidH 2.4% w/w NaCMC/GEL 1:1.6-1:2.3. Microneedle assisted permeation flux was optimum for LidH 2.4% w/w NaCMC/GEL 1:2.3 at 6.1 μg/ml/h. LidH 2.4% w/w LidH NaCMC/GEL 1:2.3 crossed the minimum therapeutic drug threshold with microneedle skin permeation in less than 70 min.

  5. Tranexamic Acid-Encapsulating Thermosensitive Liposomes for Site-Specific Pharmaco-Laser Therapy of Port Wine Stains

    PubMed Central

    van Raath, M. Ingmar; Weijer, Ruud; Nguyen, Gia Hung; Choi, Bernard; de Kroon, Anton I.; Heger, Michal

    2017-01-01

    Site-specific pharmaco-laser therapy (SSPLT) is a developmental stage treatment modality designed to non-invasively remove superficial vascular pathologies such as port wine stains (PWS) by combining conventional laser therapy with the prior administration of a prothrombotic and/or antifibrinolytic pharmaceutical-containing drug delivery system. For the antifibrinolytic SSPLT component, six different PEGylated thermosensitive liposomal formulations encapsulating tranexamic acid (TA), a potent antifibrinolytic lysine analogue, were characterized for drug:lipid ratio, encapsulation efficiency, size, endovesicular TA concentration (CTA), phase transition temperature (Tm), and assayed for heat-induced TA release. Assays were developed for the quantification of liposomal TA and heat-induced TA release from two candidate formulations. The outcome parameters were then combined with a 3D histological reconstruction of a port wine stain biopsy to extrapolate in vivo posologies for SSPLT. The prime formulation, DPPC:DSPE-PEG2000 (96:4 molar ratio), had a drug:lipid molar ratio of 0.82, an encapsulation efficiency of 1.29%, a diameter of 155 nm, and a CTA of 214 mM. The peak TA release from this formulation (Tm = 42.3 °C) comprised 96% within 2.5 min, whereas this was 94% in 2 min for DPPC:MPPC:DSPE-PEG2000 (86:10:4) liposomes (Tm = 41.5 °C). Computational analysis revealed that <400 DPPC:DSPE-PEG2000 (96:4 molar ratio) liposomes are needed to treat a PWS of 40 cm2, compared to a three-fold greater quantity of DPPC:MPPC:DSPE-PEG2000 (86:10:4) liposomes, indicating that, in light of the assayed parameters and endovascular laser-tissue interactions, the former formulation is most suitable for antifibrinolytic SSPLT. This was further confirmed with experiments involving ex vivo and in vivo liposome-platelet and liposome-red blood cell association as well as uptake and toxicity assays with cultured endothelial cells (HUVECs), macrophages (RAW 264.7), and hepatocytes (HepG2). PMID:29342342

  6. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.

    PubMed

    Huang, Renliang; Wu, Mengyun; Goldman, Mark J; Li, Zhi

    2015-06-01

    Enzyme encapsulation is a simple, gentle, and general method for immobilizing enzyme, but it often suffers from one or more problems regarding enzyme loading efficiency, enzyme leakage, mechanical stability, and recyclability. Here we report a novel, simple, and efficient method for enzyme encapsulation to overcome these problems by forming stable organic-inorganic hybrid capsules. A new, facile, one-step, and template-free synthesis of organic-inorganic capsules in aqueous phase were developed based on PEI-induced simultaneous interfacial self-assembly of Fmoc-FF and polycondensation of silicate. Addition of an aqueous solution of Fmoc-FF and sodium silicate into an aqueous solution of PEI gave a new class of organic-inorganic hybrid capsules (FPSi) with multi-layered structure in high yield. The capsules are mechanically stable due to the incorporation of inorganic silica. Direct encapsulation of enzyme such as epoxide hydrolase SpEH and BSA along with the formation of the organic-inorganic capsules gave high yield of enzyme-containing capsules (∼1.2 mm in diameter), >90% enzyme loading efficiency, high specific enzyme loading (158 mg protein g(-1) carrier), and low enzyme leakage (<3% after 48 h incubation). FPSi-SpEH capsules catalyzed the hydrolysis of cyclohexene oxide to give (1R, 2R)-cyclohexane-1,2-diol in high yield and concentration, with high specific activity (6.94 U mg(-1) protein) and the same high enantioselectivity as the free enzyme. The immobilized SpEH demonstrated also excellent operational stability and recyclability: retaining 87% productivity after 20 cycles with a total reaction time of 80 h. The new enzyme encapsulation method is efficient, practical, and also better than other reported encapsulation methods. © 2015 Wiley Periodicals, Inc.

  7. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  8. Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line

    PubMed Central

    2011-01-01

    Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore. PMID:21309555

  9. Modified extrusion-spheronization as a technique of microencapsulation for stabilization of choline bitartrate using hydrogenated soya bean oil.

    PubMed

    Gangurde, Avinash Bhaskar; Sav, Ajay Kumar; Javeer, Sharadchandra Dagadu; Moravkar, Kailas K; Pawar, Jaywant N; Amin, Purnima D

    2015-01-01

    Choline bitartrate (CBT) is a vital nutrient for fetal brain development and memory function. It is hygroscopic in nature which is associated with stability related problem during storage such as development of fishy odor and discoloration. Microencapsulation method was adopted to resolve the stability problem and for this hydrogenated soya bean oil (HSO) was used as encapsulating agent. Industrially feasible modified extrusion-spheronization technique was selected for microencapsulation. HSO was used as encapsulating agent, hydroxypropyl methyl cellulose E5/E15 as binder and microcrystalline cellulose as spheronization aid. Formulated pellets were evaluated for parameters such as flow property, morphological characteristics, hardness-friability index (HFI), drug content, encapsulation efficiency, and in vitro drug release. The optimized formulations were also characterized for particle size (by laser diffractometry), differential scanning calorimetry, powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy, and scanning electron microscopy. The results from the study showed that coating of 90% and 60% CBT was successful with respect to all desired evaluation parameters. Optimized formulation was kept for 6 months stability study as per ICH guidelines, and there was no change in color, moisture content, drug content, and no fishy odor was observed. Microencapsulated pellets of CBT using HSO as encapsulating agent were developed using modified extrusion spheronization technique. Optimized formulations, CBT 90% (F5), and CBT 60% (F10), were found to be stable for 4M and 6M, respectively, at accelerated conditions.

  10. Thyrotropin-Releasing Hormone Loaded and Chitosan Engineered Polymeric Nanoparticles: Towards Effective Delivery of Neuropeptides.

    PubMed

    Kaur, Sarabjit; Bhararia, Avani; Sharma, Krishna; Mittal, Sherry; Jain, Rahul; Wangoo, Nishima; Sharma, Rohit K

    2016-05-01

    Thyrotropin-Releasing Hormone (TRH), a tripeptide amide with molecular formula L-pGlu-L-His-L- Pro-NH2, is used in the treatment of brain/spinal injury and certain central nervous system (CNS) disorders, including schizophrenia, Alzheimer's disease, epilepsy, depression, shock and ischemia due to its profound effects on the CNS. However, TRH's therapeutic activity is severely hampered because of instability and hydrophilicity owing to its peptidic nature which results into ineffective penetration into the blood brain barrier. In the present study, we report the synthesis and stability studies of novel chitosan engineered TRH encapsulated poly(lactide-co-glycolide) (PLGA) based nanoformulation. The aim of such an encapsulation is to allow effective delivery of TRH in biological systems as the peptidase degrade naked TRH. The synthesis of TRH was carried out manually in solution phase followed by its encapsulation using PLGA to form polymeric nanoparticles (NPs) via nanoprecipitation technique. Different parameters such as type of organic phase, concentration of stabilizer, ratio of organic phase and aqueous phase, rate of addition of organic phase were optimized, tested and evaluated for particle size, encapsulation efficiency, and stability of NPs. The TRH-PLGA NPs were then surface modified with chitosan to achieve positive surface charge rendering them potential membrane penetrating agents. PLGA, PLGA-TRH, Chitosan-PLGA and Chitosan-PLGA-TRH NPs were characterized and analyzed using Dynamic Light Scattering (DLS), Transmissiom Electron Microscopy (TEM) and Infra-red spectroscopic techniques.

  11. Frequency domain, time-resolved and spectroscopic investigations of photosensitizers encapsulated in liposomal phantoms

    NASA Astrophysics Data System (ADS)

    Mermut, Ozzy; Bouchard, Jean-Pierre; Cormier, Jean-Francois; Diamond, Kevin R.; Noiseux, Isabelle; Vernon, Marcia L.; Patterson, Michael S.

    2007-07-01

    A broadband frequency domain fluorescence lifetime system (from ns to ms time scale) has been developed to study the photochemical and photodynamic behavior of model, well-controlled photosensitizer-encapsulating liposomes. Liposomes are known to be efficient and selective photosensitizer (PS) drug delivery vesicles, however, their chemical and physical effects on the photochemical properties of the photosensitizer have not been well characterized. The liposomes employed in this study (both blank and photosensitizer-complexed) were characterized to determine their: a) size distribution (dynamic light scattering), b) image (scanning electron microscope, confocal fluorescence microscopy), c) concentration of particles (flow cytometry), d) temperature-dependant phase transition behavior (differential scanning calorimetry, and e) spectrofluorescent spectrophotometric properties, e.g. aggregation, in the confined environment. The fluorescence decay behavior of two families of encapsulated photosensitizers, di-and tetrasulfonated metallophthalocyanines, and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH), has been examined as a function of the liposome's physical properties (size-scale, distribution and concentration of scatterer) and the impact of the photosensitizer spatial confinement determined. It is found that the achievable size range and distribution of the PS-liposomes is controlled by the chemical nature of the PS for large liposomes (1000 nm), and is PS independent for small PS-liposomes (~140nm). The lifetime decay behavior was studied for all three photosensitizer-liposome systems and compared before and after confinement. We found the nature of the decay to be similar before and after encapsulation for the sulfonated phthalocyanines containing ionic moieties (primarily monoexponential) but not for HPPH. In the latter, the decay transitioned from multi- to monoexponential decay upon localizing lypophilic HPPH to the liposomal membrane. This behavior was confirmed by obtaining a similar change in lifetime response with an independent timedomain system. We also varied the environment in temperature and oxygen content to examine the effects on the fluorescent lifetimes of the liposomal complexes. The fluorescence decay of all three PS-containing liposomes showed that the local spatial confinement of PS (dictated by the PS chemistry) into different domains within the liposome directly controls the temperature-response. Membrane-bound photosensitizers were less sensitive to temperature effects as illustrated by the decay dynamics observed in solu, that is, they developed a unique decay behavior that correlated with the phase transition of the membrane. The fluorescent lifetime of PS-encapsulated liposomes in deoxygenated environments, relevant to oxygen independent type I phototoxicity, was also probed in the frequency-domain revealing that liposome-confined PS display very different trends than those observed in solu.

  12. Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy

    PubMed Central

    Batalla, Jessica; Cabrera, Humberto; San Martín-Martínez, Eduardo; Korte, Dorota; Calderón, Antonio; Marín, Ernesto

    2015-01-01

    In this study the encapsulation of core shell carboxyl CdSe/ZnS quantum dots (QDs) by phospholipids liposome complexes is presented. It makes the quantum dots water soluble and photo-stable. Fluorescence self-quenching of the QDs inside the liposomes was observed. Therefore, the thermal lens microscopy (TLM) was found to be an useful tool for measuring the encapsulation efficiency of the QDs by the liposomes, for which an optimum value of 36% was determined. The obtained limit of detection (LOD) for determining QDs concentration by TLM was 0.13 nM. Moreover, the encapsulated QDs showed no prominent cytotoxicity toward Breast cancer cells line MDA-MB-231. This study was supported by UV-visible spectroscopy, high resolution transmission electron microscopy (HRTEM) and dynamic light scattering measurements (DLS). PMID:26504640

  13. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.

    PubMed

    François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier

    2011-11-04

    Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  15. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2014-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 ns to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 42 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect. PMID:21748265

  16. Effect of drug loading method against the dissolution mechanism of encapsulated amoxicillin trihidrate drug in matrix of semi-IPN chitosan-poly (N-vinyl pyrrolidone) hydrogel with pore forming agent CaCO3

    NASA Astrophysics Data System (ADS)

    Nurjannah, Yanah; Budianto, Emil

    2018-04-01

    Heliobacter pylori (H.pylori) is a type of bacteria that causes inflammation in the lining of the stomach. The treatment of the bacterial infection by using conventional medicine which is amoxicillin trihidrate has a very short retention time in the stomach which is about 1-1,5 hours. Floating drug delivery system is expected to have a long retention time in the stomach so the efficiency of drug can be achieved. In this study, has been synthesized matrix of semi-IPN chitosan-Poly(N-vinil pyrrolidone) hydrogel with a pore-forming agent of CaCO3 under optimum conditions. Amoxicillin is encapsulated in a matrix hydrogel to be applied as a floating drug delivery system by in situ loading and post loading methods. The encapsulation efficiency and dissolution of in situ loading and post loading hydrogels are performed in vitro on gastric pH. In situ loading hydrogel shows higer percentage of encapsulation efficiency and dissolution compared to post loading hydrogel. The encapsulation efficiency of in situ and post loading hydrogels were 92,1% and 89,4%, respectively. The aim of drug dissolution by mathematical equation model is to know kinetics and the mecanism of dissolution. The kinetics release of in situ hydrogel tends to follow first order kinetics, while the post loading hydrogel follow the Higuchi model. The dissolution mecanism of hydrogels is erosion.

  17. Antibiotic release from biodegradable PHBV microparticles.

    PubMed

    Sendil, D; Gürsel, I; Wise, D L; Hasirci, V

    1999-05-20

    For the treatment of periodontal diseases, design of a controlled release system seemed very appropriate for an effective, long term result. In this study a novel, biodegradable microbial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV of various valerate contents containing a well established antibiotic, tetracycline, known to be effective against many of the periodontal disease related microorganisms, was used in the construction of a controlled release system. Tetracycline was loaded in the PHBV microspheres and microcapsules both in its acidic (TC) and in neutral form (TCN). Microcapsules of PHBV were prepared under different conditions using w/o/w double emulsion and their properties such as encapsulation efficiency, loading, release characteristics, and morphological properties were investigated. It was found that concentration of emulsifiers polyvinyl alcohol (PVA) and gelatin (varied between 0-4%) influenced the encapsulation efficiency appreciably. In order to increase encapsulation efficiency (from the obtained range of 18.1-30.1%) and slow down the release of the highly soluble tetracycline.HCl, it was neutralized with NaOH. Encapsulation efficiency of neutralized tetracycline was much higher (51.9-65.3%) due to the insoluble form of the drug used during encapsulation. The release behaviour of neither of the drugs was found to be of zero order. Rather the trends fitted reasonably well to Higuchi's approach for release from spherical micropheres. Biodegradability was not an appreciable parameter in the release from microcapsules because release was complete before any signs of degradation were observed.

  18. Efficiencies of Dye-Sensitized Solar Cells using Ferritin-Encapsulated Quantum Dots with Various Staining Methods

    NASA Astrophysics Data System (ADS)

    Perez, Luis

    Dye-sensitized solar cells (DSSC) have the potential to replace traditional and cost-inefficient crystalline silicon or ruthenium solar cells. This can only be accomplished by optimizing DSSC's energy efficiency. One of the major components in a dye-sensitized solar cell is the porous layer of titanium dioxide. This layer is coated with a molecular dye that absorbs sunlight. The research conducted for this paper focuses on the different methods used to dye the porous TiO2 layer with ferritin-encapsulated quantum dots. Multiple anodes were dyed using a method known as SILAR which involves deposition through alternate immersion in two different solutions. The efficiencies of DSSCs with ferritin-encapsulated lead sulfide dye deposited using SILAR were subsequently compared against the efficiencies produced by cells using the traditional immersion method. It was concluded that both methods resulted in similar efficiencies (? .074%) however, the SILAR method dyed the TiO2 coating significantly faster than the immersion method. On a related note, our experiments concluded that conducting 2 SILAR cycles yields the highest possible efficiency for this particular binding method. National Science Foundation.

  19. Urea photosynthesis inside polyelectrolyte capsules: effect of confined media.

    PubMed

    Shchukin, Dmitry G; Möhwald, Helmuth

    2005-06-07

    The influence of the restricted volume of poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules of different size (2.2, 4.2, and 8.1 microm) on the TiO2-assisted photosynthesis of urea from inorganic precursors (CO2 and NO(3-)) in aqueous solution was demonstrated. Poly(vinyl alcohol) was employed as electron donor to facilitate the photosynthetic process. Decreasing the size of the confined microvolume of polyelectrolyte capsules accelerates the NO(3-) photoreduction, which is a limiting stage of the urea photosynthesis and, correspondingly, increases the efficiency of urea production. The highest yield of urea photosynthesis (37%) was achieved for Cu-modified TiO2 nanoparticles encapsulated inside 2.2 microm poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules.

  20. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.

    PubMed

    Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy

    2014-04-01

    (-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.

  1. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  2. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    PubMed Central

    Kelly, Alan L.

    2017-01-01

    The effects of the initial emulsion structure (droplet size and emulsifier) on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT) digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI)-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN)-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers. PMID:28930195

  3. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    PubMed

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    PubMed

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  5. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  6. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres.

    PubMed

    El-Bary, Ahmed Abd; Aboelwafa, Ahmed A; Al Sharabi, Ibrahim M

    2012-03-01

    The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.

  7. Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections.

    PubMed

    Argenziano, Monica; Banche, Giuliana; Luganini, Anna; Finesso, Nicole; Allizond, Valeria; Gulino, Giulia Rossana; Khadjavi, Amina; Spagnolo, Rita; Tullio, Vivian; Giribaldi, Giuliana; Guiot, Caterina; Cuffini, Anna Maria; Prato, Mauro; Cavalli, Roberta

    2017-05-15

    Vancomycin (Vm) currently represents the gold standard against methicillin-resistant Staphylococcus aureus (MRSA) infections. However, it is associated with low oral bioavailability, formulation stability issues, and severe side effects upon systemic administration. These drawbacks could be overcome by Vm topical administration if properly encapsulated in a nanocarrier. Intriguingly, nanobubbles (NBs) are responsive to physical external stimuli such as ultrasound (US), promoting drug delivery. In this work, perfluoropentane (PFP)-cored NBs were loaded with Vm by coupling to the outer dextran sulfate shell. Vm-loaded NBs (VmLNBs) displayed ∼300nm sizes, anionic surfaces and good drug encapsulation efficiency. In vitro, VmLNBs showed prolonged drug release kinetics, not accompanied by cytotoxicity on human keratinocytes. Interestingly, VmLNBs were generally more effective than Vm alone in MRSA killing, with VmLNB antibacterial activity being more sustained over time as a result of prolonged drug release profile. Besides, VmLNBs were not internalized by staphylococci, opposite to Vm solution. Further US association promoted drug delivery from VmLNBs through an in vitro model of porcine skin. Taken together, these results support the hypothesis that proper Vm encapsulation in US-responsive NBs might be a promising strategy for the topical treatment of MRSA wound infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer.

    PubMed

    Chen, Yishan; Wu, Qinjie; Song, Linjiang; He, Tao; Li, Yuchen; Li, Ling; Su, Weijun; Liu, Lei; Qian, Zhiyong; Gong, Changyang

    2015-01-14

    The natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) was discovered to possess antitumor activity, revealing its potential value in future chemotherapy. However, its poor water solubility makes it difficult for intravenous administration. In this study, the monomethyl poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) copolymer was applied to prepare nanoassemblies of fisetin by a self-assembly procedure. The prepared fisetin micelles gained a mean particle size of 22 ± 3 nm, polydisperse index of 0.163 ± 0.032, drug loading of 9.88 ± 0.14%, and encapsulation efficiency of 98.53 ± 0.02%. Compared with free fisetin, fisetin micelles demonstrated a sustained and prolonged in vitro release behavior, as well as enhanced cytotoxicity, cellular uptake, and fisetin-induced apoptosis in CT26 cells. As for in vivo studies, fisetin micelles were more competent for suppressing tumor growth and prolonging survival time than free fisetin in the subcutaneous CT26 tumor model. Furthermore, histological analysis, terminal deoxynucleotidyl transferase-mediated nick-end labeling assay, immunohistochemical detection of Ki-67, and microvessel density detection were conducted, demonstrating that fisetin micelles gained increased tumor apoptosis induction, proliferation suppression, and antiangiogenesis activities. In conclusion, we have successfully produced a MPEG-PCL-based nanocarrier encapsulating fisetin with enhanced antitumor activity.

  9. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations.

    PubMed

    Xin, Yuxuan; Qi, Qi; Mao, Zhenmin; Zhan, Xiaoping

    2017-08-07

    A novel ultrasound-responsive liposomal system for tumor targeting was prepared in order to increase the antitumor efficacy and decrease serious side effects. In this paper, PLGA nanoparticles were used ultrasound-responsive agents instead of conventional microbubbles. The PLGA-nanoparticles were prepared by an emulsion solvent evaporation method. The liposomes were prepared by a lipid film hydration method. Particle size, zeta potential, encapsulation efficiency and drug loading capacity of the liposomes were studied by light scattering analysis and dialysis. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were used to investigate the morphology of liposomes. The release in vitro was carried out in the pH 7.4 phosphate buffer solutions, as a result, liposome L3 encapsulating PLGA-nanoparticles displayed good stability under simulative physiological conditions and quickly responsive release under the ultrasound. The release in vivo was carried out on the rats, as a result, liposome L3 showed higher bioavailability than traditional intravenous injectable administration, and liposome L3 showed higher elimination ratio after stimulation by ultrasound than L3 without stimulation. Thus, the novel ultrasound-responsive liposome encapsulating PLGA-nanoparticles has a potential to be developed as a new drug delivery system for anti-tumor drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation.

    PubMed

    Kamel, Kamel M; Khalil, Islam A; Rateb, Mostafa E; Elgendy, Hosieny; Elhawary, Seham

    2017-09-13

    This study aimed to coat lipid-based nanocarriers with chitosan to encapsulate nutraceuticals, minimize opsonization, and facilitate passive-targeting. Phase one was concerned with standardization according to the World Health Organization. Qualitative analysis using liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) investigated the active constituents, especially reported cytotoxic agents. Cinnamaldehyde and rosmarinic acid were selected to be quantified using high-performance liquid chromatography. Phase two was aimed to encapsulate both extracts in solid lipid nanoparticles (core) and chitosan (shell) to gain the advantages of both materials properties. The developed experimental model suggested an optimum formulation with 2% lipid, 2.3% surfactant, and 0.4% chitosan to achieve a particle size of 254.77 nm, polydispersity index of 0.28, zeta potential of +15.26, and entrapment efficiency percentage of 77.3% and 69.1% for cinnamon and oregano, respectively. Phase three was focused on the evaluation of cytotoxic activity unencapsulated/encapsulated cinnamon and oregano extracts with/without 5-fluorouracil on HCT-116 cells. This study confirmed the success of the suggested combination with 5-fluorouracil for treating human colon carcinoma with a low dose leading to decreasing side effects and allowing uninterrupted therapy.

  11. Enhanced Immunomodulatory Activity of Gelatin-Encapsulated Rubus coreanus Miquel Nanoparticles

    PubMed Central

    Seo, Yong Chang; Choi, Woon Yong; Lee, Choon Geun; Cha, Seon Woo; Kim, Young Ock; Kim, Jin-Chul; Drummen, Gregor P. C.; Lee, Hyeon Yong

    2011-01-01

    The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-α) from B- and T-cells on average at a ~2–3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune cell activities, including proliferation, cytokine secretion, and antibody production. PMID:22272118

  12. Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes.

    PubMed

    Zhang, Yuanhong; Zhao, Mouming; Ning, Zhengxiang; Yu, Shujuan; Tang, Ning; Zhou, Feibai

    2018-04-25

    Soy proteins are prone to aggregate upon proteolysis, hindering their sustainable development in food processing. Here, a continuous work on the large insoluble peptide aggregates was carried out, aiming to develop a new type of soy peptide-based nanoparticle (SPN) for active cargo delivery. Sono-assembled SPN in spherical appearance and core-shell structure maintained by noncovalent interactions was successfully fabricated, exhibiting small particle size (103.95 nm) in a homogeneous distribution state (PDI = 0.18). Curcumin as a model cargo was efficiently encapsulated into SPN upon sonication, showing high water dispersity (129.6 mg/L, 10 4 higher than its water solubility) and storage stability. Additionally, the pepsin-resistant SPN contributed to the controlled release of curcumin at the intestinal phase and thus significantly improved the bioaccessibility. Encapsulated curcumin was effective in protecting glutamate-induced toxicity in PC12 cells, where the matrix SPN can simultaneously reduce lipid peroxidation and elevate antioxidant enzymes levels, innovatively demonstrating its bifunctionality during cellular delivery.

  13. Chitosan films incorporated with nettle (Urtica dioica L.) extract-loaded nanoliposomes: I. Physicochemical characterisation and antimicrobial properties.

    PubMed

    Haghju, Sara; Beigzadeh, Sara; Almasi, Hadi; Hamishehkar, Hamed

    2016-07-17

    The objective of this study was to characterise and compare physical, mechanical and antimicrobial properties of chitosan-based films, containing free or nanoencapsulated nettle (Urtica dioica L.) extract (NE) at concentrations of 0, 0.5, 1 and 1.5% w/w. Nanoliposomes were prepared using soy-lecithin by thin-film hydration and sonication method to generate an average size of 107-136 nm with 70% encapsulation efficiency. The information on FT-IR reflected that some new interaction have occurred between chitosan and nanoliposomes. Despite the increasing yellowness and decreasing whiteness indexes, the nanoliposomes incorporation improved the thermal properties and mechanical stiffness and caused to decrease water vapour permeability (WVP), moisture uptake and water solubility. The possible antimicrobial activity of the films containing NE-loaded nanoliposomes against Staphylococcus aureus was decreased in comparison to free NE-incorporated films, which could be due to the inhibition effect of the encapsulation that prevents the release of NE from the matrix.

  14. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.

    PubMed

    Yan, Jing-Kun; Qiu, Wen-Yi; Wang, Yao-Yao; Wu, Jian-Yong

    2017-07-19

    Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.

  15. Formulation and characterization of Turkish oregano microcapsules prepared by spray-drying technology.

    PubMed

    Baranauskaite, Juste; Ivanauskas, Liudas; Masteikova, Ruta; Kopustinskiene, Dalia; Baranauskas, Algirdas; Bernatoniene, Jurga

    2017-09-01

    The aim of this study was optimization of spray-drying process conditions for microencapsulation of Turkish oregano extract. Different concentrations of maltodextrin and gum arabic as encapsulating agents (wall material) as well as influence of selected processing variables were evaluated. The optimal conditions were maintained on the basis of the load of main bioactive compounds - ursolic, rosmarinic acids and carvacrol - in prepared microparticles after comparison of all significant response variables using desirability function. Physicomechanical properties of powders such as flowability, wettability, solubility, moisture content as well as product yield, encapsulation efficiency (EE), density, morphology and size distribution of prepared microparticles have been determined. The results demonstrated that the optimal conditions for spray-drying mixture consisted of two parts of wall material solution and one part of ethanolic oregano extract when the feed flow rate was 40 mL/min and air inlet temperature -170 °C. Optimal concentration of wall materials in solution was 20% while the ratio of maltodextrin and gum arabic was 8.74:1.26.

  16. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. High-Fidelity Piezoelectric Audio Device

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  18. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy.

    PubMed

    Sanson, Charles; Diou, Odile; Thévenot, Julie; Ibarboure, Emmanuel; Soum, Alain; Brûlet, Annie; Miraux, Sylvain; Thiaudière, Eric; Tan, Sisareuth; Brisson, Alain; Dupuis, Vincent; Sandre, Olivier; Lecommandoux, Sébastien

    2011-02-22

    Hydrophobically modified maghemite (γ-Fe(2)O(3)) nanoparticles were encapsulated within the membrane of poly(trimethylene carbonate)-b-poly(l-glutamic acid) (PTMC-b-PGA) block copolymer vesicles using a nanoprecipitation process. This formation method gives simple access to highly magnetic nanoparticles (MNPs) (loaded up to 70 wt %) together with good control over the vesicles size (100-400 nm). The simultaneous loading of maghemite nanoparticles and doxorubicin was also achieved by nanoprecipitation. The deformation of the vesicle membrane under an applied magnetic field has been evidenced by small angle neutron scattering. These superparamagnetic hybrid self-assemblies display enhanced contrast properties that open potential applications for magnetic resonance imaging. They can also be guided in a magnetic field gradient. The feasibility of controlled drug release by radio frequency magnetic hyperthermia was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of magneto-chemotherapy. These magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.

  19. Encapsulation of black carrot juice using spray and freeze drying.

    PubMed

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.

  20. Preparation of inorganic/organic polymer hybrid microcapsules with high encapsulation efficiency by an electrospray technique.

    PubMed

    Yunoki, Ayumi; Tsuchiya, Eiko; Fukui, Yu; Fujii, Akihiro; Maruyama, Tatsuo

    2014-08-13

    Microcapsules composed of calcium phosphate and chitosan were prepared in a single step by electrospraying. An aqueous solution containing calcium chloride and chitosan was electrosprayed into a phosphate solution to form a calcium phosphate shell on the sprayed droplets. The resulting microcapsules were 350 μm in average diameter. Investigation using fluorescently labeled chitosan and XRD measurements revealed that the shells of the microcapsules were composed of calcium phosphate (mainly hydroxyapatite) and chitosan. Instead of chitosan, poly(diallyldimethylammonium chloride) and polyethylene glycol were also available for microcapsule production by electrospraying. Variations in the electrospraying conditions resulted in a variety of microcapsule shapes. Various types of substrates were successfully encapsulated in microcapsules with a high encapsulation efficiency (more than 80%). Finally, we succeeded in the encapsulation of living yeast cells in microcapsules, and observed their growth within these microcapsules.

  1. Analysis of Thermal Energy Storage Tank by ANSYS and Comparison with Experimental Results to Improve its Thermal Efficiency

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    The discontinuous temperament of the solar power forces to consider about the energy storage. This work is to analyze the tank, amount of energy stored and its storage time. The thermal and flow analysis has been done by ANSYS with different set temperature values. The experimentation is done for various encapsulating materials with different phase change material (PCM). Findings: The results obtained from experimental work are compared with ANSYS output. The competence of the TES is calculated and further improvements are made to enhance its performance. During charging process the temperature distribution from heat transfer fluid (HTF) to PCM is maximum in copper encapsulations followed by aluminium encapsulations and brass encapsulations. The comparison shows only when the electrical power as an input source. The efficient way of captivating solar energy could be a better replacement for electrical input.

  2. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds.

    PubMed

    Wang, Ruoxi; Tian, Zhigang; Chen, Lingyun

    2011-03-15

    Novel microparticles (3-5 μm) were created by pre-emulsifying barley proteins with a homogenizer followed a microfluidizer system. These microparticles exhibited a high oil carrying capacity (encapsulation efficiency, 93-97%; loading efficiency, 46-49%). Microparticle degradation and bioactive compound release behaviours were studied in the simulated gastro-intestinal (GI) tract. The data revealed that nano-encapsulations (20-30 nm) were formed as a result of enzymatic degradation of barley protein microparticle bulk matrix in the simulated gastric tract. These nano-encapsulations delivered β-carotene to a simulated human intestinal tract intact, where they were degraded by pancreatic enzymes and steadily released the β-carotene. These uniquely structured microparticles may provide a new strategy for the nutraceutical and pharmaceutical industries to develop targeted delivery systems for lipophilic bioactive compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A novel system for water soluble protein encapsulation with high efficiency: "micelles enhanced" polyelectrolyte capsules.

    PubMed

    Li, Xiaodong; Li, Xiaohui; Zhang, Jianxiang; Zhao, Shifang; Shen, Jiacong

    2008-06-01

    Novel "micelles enhanced" polyelectrolyte (PE) capsules based on functional templates of hybrid calcium carbonate were fabricated. Evidences suggested that the structure of capsule wall was different from that of conventional PE capsules, and the wall permeability of these PE capsules changed significantly. Lysozyme, a positively charged protein in neutral solution, was studied as a model protein to be encapsulated into the "micelles enhanced" PE capsules. Confocal laser scanning microscope was used to observe the entrapping process in real time, while UV-Vis spectroscope and scanning force microscope measurements suggested the high efficiency of encapsulation. In addition, the fluorescence recovery after photobleaching technique was employed to determine the existence form of deposited molecules. Further studies showed even negatively charged water-soluble peptides or proteins can be encapsulated into these hybrid capsules by modulating the pH value in bulk solution under its isoelectronic point as well. Copyright 2007 Wiley Periodicals, Inc.

  4. Encapsulation of basic fibroblast growth factor by polyelectrolyte multilayer microcapsules and its controlled release for enhancing cell proliferation.

    PubMed

    She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N

    2012-07-09

    Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.

  5. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  6. DNA hydrogel microspheres and their potential applications for protein delivery and live cell monitoring

    PubMed Central

    Kim, Taeyoung; Park, Seongmin; Baek, Solhee; Lee, Jong Bum; Park, Nokyoung

    2016-01-01

    Microfluidic devices have been extensively developed as methods for microscale materials fabrication. It has also been adopted for polymeric microsphere fabrication and in situ drug encapsulation. Here, we employed multi-inlet microfluidic channels for DNA hydrogel microsphere formation and in situ protein encapsulation. The release of encapsulated proteins from DNA hydrogels showed different profiles accordingly with the size of microspheres. PMID:27279936

  7. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  8. Development of poly-l-lysine-coated calcium-alginate microspheres encapsulating fluorescein-labeled dextrans

    NASA Astrophysics Data System (ADS)

    Charron, Luc; Harmer, Andrea; Lilge, Lothar

    2005-09-01

    A technique to produce fluorescent cell phantom standards based on calcium alginate microspheres with encapsulated fluorescein-labeled dextrans is presented. An electrostatic ionotropic gelation method is used to create the microspheres which are then exposed to an encapsulation method using poly-l-lysine to trap the dextrans inside. Both procedures were examined in detail to find the optimal parameters producing cell phantoms meeting our requirements. Size distributions favoring 10-20 microns microspheres were obtained by varying the high voltage and needle size parameters. Typical size distributions of the samples were centered at 150 μm diameter. Neither the molecular weight nor the charge of the dextrans had a significant effect on their retention in the microspheres, though anionic dextrans were chosen to help in future capillary electrophoresis work. Increasing the exposure time of the microspheres to the poly-l-lysine solution decreased the leakage rates of fluorescein-labeled dextrans.

  9. Co-delivery of siRNA and hypericin into cancer cells by hyaluronic acid modified PLGA-PEI nanoparticles.

    PubMed

    Li, Yanan; Zhang, Junling; Wang, Buhai; Shen, Yan; Ouahab, Ammar

    2016-01-01

    Malignant tumors cause more death because of the resistance of the hypoxic cancer cell toward radiotherapy. Targeting for hypoxic cancer area and gene silencing to overcome the hypoxia are two kinds of important therapeutic strategies for treating tumors. In order to explore the combined effects of gene therapy and hypericin (Hy) on tumor cells, hypoxia-inducible factor 1 alpha (HIF-1α) small interfering ribonucleic acid (siRNA) was transfected into the hypoxic human nasopharyngeal carcinoma (CNE2) cells using Hy-encapsulated nanocomplexes (Hy-HPP NPs) as a carrier which would achieve dual targeting to the tumor necrosis area. NPs were prepared by emulsion-diffusion-evaporation method. Formulations were evaluated by conducting in vitro physicochemical studies, electrophoresis, in vivo study, and biochemical studies. Hy-loaded nanoparticles with a mean size of around 160 nm was able to enhance the accumulation in the tumors by enhanced permeability and retention effect. The electrophoresis confirmed the good stability of siRNA/Hy-HPP NPs in the presence of phosphate-buffered saline (pH 7.4), competitive heparin, and RNase. The results of transfection showed that the uptake of siRNA was significantly increased up to 50% in CNE2 cells. The level of the HIF-1α with Hy-encapsulated nanocomplexes was significantly reduced to 30% in the transfected CNE2 cells. In vivo studies, the carrier exhibited higher intensity at the tumor tissue cells and higher affinity toward the necrotic tumor tissue. Results demonstrated that Hy-HPP NPs could significantly enhance the tranfection efficiency of siRNA, suggesting Hy-encapsulated nanoparticle as an efficient gene carrier. The co-delivery of HIF-1α siRNA (siHIF-1α) and Hy could efficiently decrease the level of HIF-1α and increase the affinity toward necrotic tissues. Hence, this is a promising strategy for further application in radiotherapy.

  10. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.

    PubMed

    Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung

    2010-02-17

    Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.

  11. Comparison of Different Encapsulating Adhesives to Enhance the Efficiencies and Lifetimes of Polymeric Solar Cells

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Hua; Chen, Chen-Ming; Hsieh, Tsung-Eong; Tang, Rong-Ming; Tsai, Yu Sheng; Chu, Wei-Ping; Liu, Mark O.; Juang, Fuh-Shyang

    2009-04-01

    Polymeric solar cells (PSCs) with a derivative of C60 [[6,6]-phenyl C61-butyric acid methyl ester (PCBM)], and 3-hexylthiophene (P3HT) as active layers have been fabricated. The PSC devices were also packaged with glass and novel UV glues to improve their lifetimes and power conversion efficiencies (PCEs). After encapsulation with UV glue I, II, and III, the PCEs of PSCs reached 4, 4.82, and 6%, respectively, and their half-lifetimes increased to 16-18, 26-28, and 90 h, respectively, while the PCEs and half-lifetimes of PSCs without encapsulation were 3.76% and 2.5 h, respectively.

  12. Design of novel multifunctional targeting nano-carrier drug delivery system based on CD44 receptor and tumor microenvironment pH condition.

    PubMed

    Chen, Daquan; Lian, Shengnan; Sun, Jingfang; Liu, Zongliang; Zhao, Feng; Jiang, Yongtao; Gao, Mingming; Sun, Kaoxiang; Liu, Wanhui; Fu, Fenghua

    2016-01-01

    In this study, to develop a multifunctional targeting nano-carrier drug delivery system for cancer therapy, the novel pH-sensitive ketal based oligosaccharides of hyaluronan (oHA) conjugates were synthesized by chemical conjugation of hydrophobic menthone 1,2-glycerol ketal (MGK) to the backbone of oHA with the histidine as the linker of proton sponge effect. The multifunctional oHA conjugates, oHA-histidine-MGK (oHM) carried the pH-sensitive MGK as hydrophobic moieties and oHA as the target of CD44 receptor. The oHM could self-assemble to nano-sized spherical shape with the average diameters of 128.6 nm at pH 7.4 PBS conditions. The oHM nanoparticles (oHMN) could release encapsulated curcumin (Cur) with 82.6% at pH 5.0 compared with 49.3% at pH 7.4. The results of cytotoxicity assay indicated that encapsulated Cur in oHMN (Cur-oHMN) were stable and have less toxicity compared to Cur suspension. The anti-tumor efficacy in vivo suggested that Cur-oHMN suppressed tumor growth most efficiently. These results present the promising potential of oHMN as a stable and effective nano-sized pH-sensitive drug delivery system for cancer treatment.

  13. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  14. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    PubMed

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  15. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    PubMed

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  16. Dual pH-responsive and CD44 receptor targeted multifunctional nanoparticles for anticancer intracellular delivery

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Sun, Jingfang; Lian, Shengnan; Liu, Zongliang; Sun, Kaoxiang; Liu, Wanhui; Wu, Zimei; Zhang, Qiang

    2014-11-01

    In this article, we prepared a multifunctional oligosaccharides of hyaluronan (oHA) conjugates, oHA-histidine-menthone 1,2-glycerol ketal (oHM). The oHM conjugates possess pH-sensitive menthone 1,2-glycerol ketal (MGK) as hydrophobic moieties and oHA as the target of CD44 receptor. The polymeric mPEG-Chitosan-Ketal (PCK) carrying pH-sensitive ketal group as hydrophobic moieties and PEG group as hydrophilic moieties were synthesized. The two pH-sensitive ketal derivatives were employed to fabricate nanoparticles for anti-tumor drug delivery. The oHM-PCK nanoparticles (oHPN) can spontaneously self-assemble into mixed micellar structure with nano-sized spherical shape of 100-200 nm at pH 7.4 PBS conditions. The oHPN could release encapsulated curcumin with 92.6 % at pH 5.0 compared with 55.3 % at pH 7.4. The results of cytotoxicity assay indicated that encapsulated curcumin in oHPN (Cur-oHPN) have less toxicity compared to curcumin suspension. The anti-tumor efficacy in vivo suggested that Cur-oHPN suppressed tumor growth most efficiently. These results present the promising potential of oHPN as an effective nano-sized pH-sensitive drug delivery system for intracellular delivery.

  17. Determination of silica coating efficiency on metal particles using multiple digestion methods.

    PubMed

    Wang, Jun; Topham, Nathan; Wu, Chang-Yu

    2011-10-15

    Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO(3)/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO(3)/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(l-histidine) and d-α-Vitamin E Succinate for Reversing Tumor Multidrug Resistance.

    PubMed

    Li, Zhen; Chen, Qixian; Qi, Yan; Liu, Zhihao; Hao, Tangna; Sun, Xiaoxin; Qiao, Mingxi; Ma, Xiaodong; Xu, Ting; Zhao, Xiuli; Yang, Chunrong; Chen, Dawei

    2018-04-11

    A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG-PLH-VES/B nanoparticulate system has been demonstrated to provide a promising strategy for efficient delivery of DOX into MCF-7/ADR cancerous cells and reversing MDR.

  19. High hydrostatic pressure encapsulation of doxorubicin in ferritin nanocages with enhanced efficiency.

    PubMed

    Wang, Qi; Zhang, Chun; Liu, Liping; Li, Zenglan; Guo, Fangxia; Li, Xiunan; Luo, Jian; Zhao, Dawei; Liu, Yongdong; Su, Zhiguo

    2017-07-20

    Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Improved Cytotoxic Effect of Doxorubicin by Its Combination with Sclareol in Solid Lipid Nanoparticle Suspension.

    PubMed

    Oliveira, Mariana Silva; Lima, Bruno Henrique Santiago; Goulart, Gisele Assis Castro; Mussi, Samuel Vidal; Borges, Gabriel Silva Marques; Oréfice, Rodrigo Lambert; Ferreira, Lucas Antônio Miranda

    2018-08-01

    This work aims to develop, characterize, and evaluate the anticancer activity of solid lipid nanoparticles (SLN) containing doxorubicin (DOX), an antitumoral from the antracycline class, and sclareol (SC), a lipophilic labdene diterpene (SLN-DOX-SC). The SLN were characterized by Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Small Angle X-ray Diffraction (SAXS), in vitro release, transmission electron microscopy, and polarized light microscopy. Evaluation of cell viability was performed in two cell cultures: MCF-7 (human breast cancer) and 4T1 (murine breast cancer). The SLN showed a size in the range of 128 nm, negative zeta potential, DOX encapsulation efficiency (EE) of 99%, and drug loading (DL) of 66 mg/g. Characterization of the formulation by DSC, XRD, and SAXS revealed the presence of DOX inside the nanoparticles of SLN and suggested increased expulsion/release of this drug when associated with SC. The release profiles revealed that the SLN-DOX-SC showed controlled release of DOX at pH 7.4 with enhanced drug release at low pH, useful for cancer treatment. The SLN-DOX-SC demonstrated to be more effective than the free DOX against 4T1 cells. So, the developed SLN efficiently encapsulate DOX and SC and show good potential as an alternative for cancer treatment.

  1. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects

    PubMed Central

    Zhang, Xiaojin; Li, Yan; Chen, Y. Eugene; Chen, Jihua; Ma, Peter X.

    2016-01-01

    MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell' miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting Gsk-3β to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering. PMID:26765931

  2. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef.

    PubMed

    Cui, Haiying; Yuan, Lu; Lin, Lin

    2017-12-01

    In recent years, phages used for the reduction of pathogenic bacteria have fostered many attentions, but they are liable to lost bioactivity in food due to the presence of acidic compounds, enzymes and evaporite materials. To improve the stability of phages, a chitosan edible film containing liposome-encapsulated phage was engineered in the present study. The characteristics of liposome-encapsulated phage and the chitosan film containing liposome-encapsulated phage were investigated. The encapsulation efficiency of phages in liposome reached 57.66±0.12%. Besides, the desirable physical properties of chitosan film were obtained. The chitosan film embedded with liposome-encapsulated phage exhibited high antibacterial activity against Escherichia coli O157:H7, without the impact on the sensory properties of beef. Hence, chitosan film containing liposome-encapsulated phage could be a promising antibacterial packaging for beef preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Production of Methanol from Methane by Encapsulated Methylosinus sporium.

    PubMed

    Patel, Sanjay K S; Jeong, Jae-Hoon; Mehariya, Sanjeet; Otari, Sachin V; Madan, Bharat; Haw, Jung Rim; Lee, Jung-Kul; Zhang, Liaoyuan; Kim, In-Won

    2016-12-28

    Massive reserves of methane (CH₄) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of CH₄ to methanol. The present study demonstrates the bioconversion of CH₄ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum . Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium , was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, 30°C, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of CH₄ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

  4. Development of Poly(lactide-co-glicolide) Nanoparticles Incorporating Morphine Hydrochloride to Prolong its Circulation in Blood.

    PubMed

    Gomez-Murcia, Victoria; Montalban, Mercedes Garcia; Gomez-Fernandez, Juan C; Almela, Pilar

    2017-01-01

    Formulations incorporating nanoparticles (NPs) are widely used to prolong drug release. In this regard, poly(lactide-co-glicolide) (PLGA) is often used in their preparation due to its high degree of biocompatibility and biodegradability. In the present study, morphine HCl is incorporated in PLGA-NPs and different preparation alternatives are evaluated for their effects on the properties, stability and capacity of encapsulation. NPs were prepared by a double emulsion solvent diffusion-ammonium loading (DESD-AL) or double emulsion solvent diffusion-traditional (DESD-T) technique. NP morphology, size, zeta potential and encapsulation efficiency were investigated. In vitro studies were performed in phosphate buffer pH 7.4 at 37 ºC and deionized water at 4ºC. Adult male Swiss mice were used to study the pharmacokinetic behavior in vivo. Our results show that DESD-AL provides a higher level of morphine entrapment and that increasing the sonication time reduces the size but does not appreciably reduce the entrapment percentage. It was also observed that NP stability was greater when Pluronic F68 was used rather than PVA, and that in vitro assays provided better results with low concentrations of both stabilizers. Lyophilized NPs, after rehydration showed properties that were only slightly different from those of the untreated ones, with no sign of precipitation or aggregation. Finally, the obtained NPs enhanced morphine bioavailability. In conclusion, a useful method for encapsulating morphine in order to obtain an extended delivery period is described and its effects are compared with those of the free drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Development of serratiopeptidase and metronidazole based alginate microspheres for wound healing.

    PubMed

    Rath, G; Johal, E S; Goyal, Amit K

    2011-02-01

    The objective of this study was to establish an effective therapy system for wound management. The present work describes preparation of metronidazole/serratiopeptidase loaded alginate microspheres by emulsification method. In vitro characterizations like particle size analysis, % yield, % encapsulation, and in vitro release were carried out. Wound healing assessment was determined by physical, histological, and biochemical methods. Wound healing performance of experimental formulations was compared with marketed product in rabbits. Result obtained for alginate microspheres showed good loading efficiency with spherical in shape. Experimentation suggests wound healing is improved by using serratiopeptidase and metronidazole in full thickness wounds in rabbits.

  6. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    PubMed

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  7. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin.

    PubMed

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O

    2016-11-16

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

  8. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin

    PubMed Central

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O

    2016-01-01

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders. PMID:27848996

  9. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin

    NASA Astrophysics Data System (ADS)

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O.

    2016-11-01

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

  10. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells

    DOE PAGES

    Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; ...

    2015-06-25

    The efficiency of organometal trihalide perovskites (OTP) solar cells have reached that parity of single crystal silicon, and its nature abundant raw material and solution-process capability promise a bright future for commercialization. However, the vacuum based techniques for metal electrode deposition and additional encapsulation layer increase the cost of the perovskite solar cells dramatically and impede their commercialization process. Here, we report a vacuum-free low temperature lamination technique to fabricate the top electrode by commercial conductive tapes (C-tape). The simple fabrication method yields good quality contact and high efficiency device of 12.7%. The C-tapes also encapsulated the devices effectively, resultingmore » in greatly improved device stability. As a result, the combination of lamination of electrodes and encapsulation layers into a single step significantly reduce the cost of device fabrication.« less

  11. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes.

    PubMed

    Niu, Chengcheng; Wang, Zhigang; Lu, Guangming; Krupka, Tianyi M; Sun, Yang; You, Yufang; Song, Weixiang; Ran, Haitao; Li, Pan; Zheng, Yuanyi

    2013-03-01

    Current strategies for tumor-induced sentinel lymph node detection and metastasis therapy have limitations. In this work, we co-encapsulated iron oxide nanoparticles and chemotherapeutic drug into poly(lactic-co-glycolic acid) (PLGA) microbubbles to form multifunctional polymer microbubbles (MPMBs) for both tumor lymph node imaging and therapy. Fe(3)O(4) nanoparticles and doxorubicin (DOX) co-encapsulated PLGA microbubbles were prepared and filled with perfluorocarbon gas. Enhancement of ultrasound (US)/magnetic resonance (MR) imaging and US triggered drug delivery were evaluated both in vitro and in vivo. The MPMBs exhibited characters like narrow size distribution and smooth surface with a mean diameter of 868.0 ± 68.73 nm. In addition, varying the concentration of Fe(3)O(4) nanoparticles in the bubbles did not significantly influence the DOX encapsulation efficiency or drug loading efficiency. Our in vitro results demonstrated that these MPMBs could enhance both US and MR imaging which was further validated in vivo showing that these MPMBs enhanced tumor lymph nodes signals. The anti-tumor effect of MPMBs mediated chemotherapy was assessed in vivo using end markers like tumor proliferation index, micro blood vessel density and micro lymphatic vessel density, which were shown consistently the lowest after the MPMBs plus sonication treatment compared to controls. In line with these findings, the tumor cell apoptotic index was found the largest after the MPMBs plus sonication treatment. In conclusion, we have successfully developed a doxorubicin loaded superparamagnetic PLGA-Iron Oxide multifunctional theranostic agent for dual-mode US/MR Imaging of lymph node, and for low frequency US triggered therapy of metastasis in lymph nodes, which might provide a strategy for the imaging and chemotherapy of primary tumor and their metastases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy.

    PubMed

    Cao, Jie; Ge, Ruifen; Zhang, Min; Xia, Junfei; Han, Shangcong; Lu, Wei; Liang, Yan; Zhang, Tingting; Sun, Yong

    2018-05-17

    Functional theranostic systems for drug delivery capable of concurrent near-infrared (NIR) fluorescence imaging, active tumor targeting and anticancer therapies are desired for concise cancer diagnosis and treatment. Dendrimers with controllable size and surface functionalities are good candidates for such platforms. However, integration of active targeting ligands and imaging agents separately on the surface or encapsulation of the imaging agents in the inner core of the dendrimers will result in a more complex composition or reduced drug loading efficiency. Herein, we reported a PAMAM-based theranostic system, with a simple integrin-specific imaging ligand prepared from two motifs. One motif is a NIR carbocyanine fluorescent dye (Cyp) for precise in vivo monitoring of the system and identification of tumor or cancer cells, and the other is a novel tumor-penetrating cyclic peptide (CRGDKGPDC, abbreviated iRGD). BSA was non-covalently bonded with Cyp to reduce NIR agent fluorescence-quenching aggregates and enhance imaging signals. The chemotherapy effect of these dendritic systems was achieved by encapsulating paclitaxel into the hydrophobic interior of the dendrimers. In vitro and in vivo targeting and penetrating studies revealed that a significantly high amount of the dendritic systems was endocytosed by HepG2 cells and enhanced accumulation and penetration at tumor sites. Our safety evaluation showed that masking of cationic-end groups of PAMAM to neutral or anionic groups has resulted in decreased or even zero-toxicity. The preliminary antitumor efficacy of the dendritic system was evaluated. In vitro and in vivo studies confirmed that paclitaxel-encapsulated functionalized PAMAM can efficiently kill HepG2 cancer cells. In conclusion, our functionalized theranostic dendritic system could be a promising nanocarrier to effectively deliver drugs to deep tumor regions for anticancer therapy.

  13. Hepatitis Virus Capsid Polymorphs Respond Differently to Changes in Encapsulated Cargo Size

    PubMed Central

    He, Li; Porterfield, J. Zachary; van der Schoot, Paul; Zlotnick, Adam; Dragnea, Bogdan

    2017-01-01

    A templated assembly approach for Hepatitis B virus-like particles was employed to determine how the T = 3 and T = 4 polymorphs of the Hepatitis B virus (HBV) icosahedral cores respond to a systematic, gradual change in the encapsulated cargo size. It was found that assembly into complete virus-like particles occurs cooperatively around a variety of core diameters, albeit the degree of cooperativity varies. Among these virus-like particles, it was found that those of an outer diameter similar to T = 4 are able to accommodate the widest range of cargo sizes. PMID:24010404

  14. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    PubMed

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  15. Modified extrusion-spheronization as a technique of microencapsulation for stabilization of choline bitartrate using hydrogenated soya bean oil

    PubMed Central

    Gangurde, Avinash Bhaskar; Sav, Ajay Kumar; Javeer, Sharadchandra Dagadu; Moravkar, Kailas K; Pawar, Jaywant N; Amin, Purnima D

    2015-01-01

    Introduction: Choline bitartrate (CBT) is a vital nutrient for fetal brain development and memory function. It is hygroscopic in nature which is associated with stability related problem during storage such as development of fishy odor and discoloration. Aim: Microencapsulation method was adopted to resolve the stability problem and for this hydrogenated soya bean oil (HSO) was used as encapsulating agent. Materials and Methods: Industrially feasible modified extrusion-spheronization technique was selected for microencapsulation. HSO was used as encapsulating agent, hydroxypropyl methyl cellulose E5/E15 as binder and microcrystalline cellulose as spheronization aid. Formulated pellets were evaluated for parameters such as flow property, morphological characteristics, hardness-friability index (HFI), drug content, encapsulation efficiency, and in vitro drug release. The optimized formulations were also characterized for particle size (by laser diffractometry), differential scanning calorimetry, powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy, and scanning electron microscopy. Results and Discussions: The results from the study showed that coating of 90% and 60% CBT was successful with respect to all desired evaluation parameters. Optimized formulation was kept for 6 months stability study as per ICH guidelines, and there was no change in color, moisture content, drug content, and no fishy odor was observed. Conclusion: Microencapsulated pellets of CBT using HSO as encapsulating agent were developed using modified extrusion spheronization technique. Optimized formulations, CBT 90% (F5), and CBT 60% (F10), were found to be stable for 4M and 6M, respectively, at accelerated conditions. PMID:26682198

  16. Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes.

    PubMed

    Ohlsson, Gabriel; Tabaei, Seyed R; Beech, Jason; Kvassman, Jan; Johanson, Urban; Kjellbom, Per; Tegenfeldt, Jonas O; Höök, Fredrik

    2012-11-21

    Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (<10 ms) the solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications.

  17. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.

    PubMed

    Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-11-01

    Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery. Copyright © 2012 Wiley Periodicals, Inc.

  18. Creatinine-based non-phospholipid vesicular carrier for improved oral bioavailability of Azithromycin.

    PubMed

    Ullah, Shafi; Shah, Muhammad Raza; Shoaib, Mohammad; Imran, Muhammad; Shah, Syed Wadood Ali; Ali, Imdad; Ahmed, Farid

    2017-06-01

    Novel, safe, efficient and cost effective nano-carriers from renewable resources have got greater interest for enhancing solubility and bioavailability of hydrophobic dugs. This study reports the synthesis of a novel biocompatible non-phospholipid human metabolite "Creatinine" based niosomal delivery system for Azithromycin improved oral bioavailability. Synthesized surfactant was characterized through spectroscopic and spectrometric techniques and then the potential for niosomal vesicle formation was evaluated using Azithromycin as model drug. Drug loaded vesicles were characterized for size, polydispersity index (PDI), shape, drug encapsulation efficiency (EE), in vitro release and drug-excipient interaction using zetasizer, atomic force microscope (AFM), LC-MS/MS and FTIR. The biocompatibility of surfactant was investigated through cells cytotoxicity, blood hemolysis and acute toxicity. Azithromycin encapsulated in niosomes was investigated for in vivo bioavailability in rabbits. The vesicles were spherical with 247 ± 4.67 nm diameter hosting 73.29 ± 3.51% of the drug. Surfactant was nontoxic against cell cultures and caused 5.80 ± 0.51% hemolysis at 1000 µg/mL. It was also found safe in mice up to 2.5 g/kg body weight. Synthesized surfactant based niosomal vesicles revealed enhanced oral bioavailability of Azithromycin in rabbits. The results of the present study confirm that the novel surfactant is highly biocompatible and the niosomal vesicles can be efficiently used for improving the oral bioavailability of poor water soluble drugs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlgemuth, J.; Bokria, J.; Gu, X.

    Polymeric encapsulation materials may a change size when processed at typical module lamination temperatures. The relief of residual strain, trapped during the manufacture of encapsulation sheet, can affect module performance and reliability. For example, displaced cells and interconnects threaten: cell fracture; broken interconnects (open circuits and ground faults); delamination at interfaces; and void formation. A standardized test for the characterization of change in linear dimensions of encapsulation sheet has been developed and verified. The IEC 62788-1-5 standard quantifies the maximum change in linear dimensions that may occur to allow for process control of size change. Developments incorporated into the Committeemore » Draft (CD) of the standard as well as the assessment of the repeatability and reproducibility of the test method are described here. No pass/fail criteria are given in the standard, rather a repeatable protocol to quantify the change in dimension is provided to aid those working with encapsulation. The round-robin experiment described here identified that the repeatability and reproducibility of measurements is on the order of 1%. Recent refinements to the test procedure to improve repeatability and reproducibility include: the use of a convection oven to improve the thermal equilibration time constant and its uniformity; well-defined measurement locations reduce the effects of sampling size -and location- relative to the specimen edges; a standardized sand substrate may be readily obtained to reduce friction that would otherwise complicate the results; specimen sampling is defined, so that material is examined at known sites across the width and length of rolls; and encapsulation should be examined at the manufacturer’s recommended processing temperature, except when a cross-linking reaction may limit the size change. EVA, for example, should be examined 100 °C, between its melt transition (occurring up to 80 °C) and the onset of cross-linking (often at 100 °C).« less

  20. Quality by design: optimization of a liquid filled pH-responsive macroparticles using Draper-Lin composite design.

    PubMed

    Rafati, Hasan; Talebpour, Zahra; Adlnasab, Laleh; Ebrahimi, Samad Nejad

    2009-07-01

    In this study, pH responsive macroparticles incorporating peppermint oil (PO) were prepared using a simple emulsification/polymer precipitation technique. The formulations were examined for their properties and the desired quality was then achieved using a quality by design (QBD) approach. For this purpose, a Draper-Lin small composite design study was employed in order to investigate the effect of four independent variables, including the PO to water ratio, the concentration of pH sensitive polymer (hydroxypropyl methylcellulose phthalate), acid and plasticizer concentrations, on the encapsulation efficiency and PO loading. The analysis of variance showed that the polymer concentration was the most important variable on encapsulation efficiency (p < 0.05). The multiple regression analysis of the results led to equations that adequately described the influence of the independent variables on the selected responses. Furthermore, the desirability function was employed as an effective tool for transforming each response separately and encompassing all of these responses in an overall desirability function for global optimization of the encapsulation process. The optimized macroparticles were predicted to yield 93.4% encapsulation efficiency and 72.8% PO loading, which were remarkably close to the experimental values of 89.2% and 69.5%, consequently.

  1. [Preparation of Oenothera biennis Oil Solid Lipid Nanoparticles Based on Microemulsion Technique].

    PubMed

    Piao, Lin-mei; Jin, Yong; Cui, Yan-lin; Yin, Shou-yu

    2015-06-01

    To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. The preparation process is simple, stable and feasible.

  2. Studies on paclitaxel-loaded glyceryl monostearate nanoparticles.

    PubMed

    Shenoy, Vikram Subraya; Rajyaguru, Tushar Himmatlal; Gude, Rajiv Phondu; Murthy, Rayasa S Ramchandra

    2009-09-01

    Solid lipid nanoparticles (SLNs) of Paclitaxel were prepared by modified Hot homogenization method using Glyceryl monostearate (GMS). The SLNs were characterized for its physicochemical characteristics such as mean particle size, percentage entrapment efficiency and zeta potential, which were found to be 226 nm, 92.43% and -29.4 mV, respectively. The Transmission Electron Microscopy (TEM) studies showed that prepared SLNs were of spherical shape. The drug retarding efficiency of the lipid (GMS) was better in pH 7.4 compared to pH 3.5. The release profile showed a tendency to follow Higuchi diffusion pattern at pH 7.4 and Peppas-Korsenmeyer model at pH 3.5. Chemosensitivity assay carried out using B16F10 cell lines showed that anti-proliferative activity of Paclitaxel was not hindered due to encapsulation.

  3. Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing.

    PubMed

    Rasekh, Manoochehr; Ahmad, Zeeshan; Cross, Richard; Hernández-Gil, Javier; Wilton-Ely, James D E T; Miller, Philip W

    2017-06-05

    Naturally occurring polymers are promising biocompatible materials that have many applications for emerging therapies, drug delivery systems, and diagnostic agents. The handling and processing of such materials still constitutes a major challenge, which can limit the full exploitation of their properties. This study explores an ambient environment processing technique: coaxial electrospray (CO-ES) to encapsulate genistein (an isoflavonoid and model drug), superparamagnetic iron oxide nanoparticles (SPIONs, 10-15 nm), and a fluorophore (BODIPY) into a layered (triglyceride tristearin shell) particulate system, with a view to constructing a theranostic agent. Mode mapping of CO-ES led to an optimized atomization engineering window for stable jetting, leading to encapsulation of SPIONs within particles of diameter 0.65-1.2 μm and drug encapsulation efficiencies of around 92%. Electron microscopy was used to image the encapsulated SPIONs and confirm core-shell triglyceride encapsulation in addition to further physicochemical characterization (AFM, FTIR, DSC, and TGA). Cell viability assays (MTT, HeLa cells) were used to determine optimal SPION loaded particles (∼1 mg/mL), while in vitro release profile experiments (PBS, pH = 7.4) demonstrate a triphasic release profile. Further cell studies confirmed cell uptake and internalization at selected time points (t = 1, 2, and 4 h). The results suggest potential for using the CO-ES technique as an efficient way to encapsulate SPIONs together with sensitive drugs for the development of multimodal particles that have potential application for combined imaging and therapy.

  4. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.

    PubMed

    Gonzalez-Mira, E; Egea, M A; Souto, E B; Calpena, A C; García, M L

    2011-01-28

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol(®) 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween(®) 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (∼90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  5. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mira, E.; Egea, M. A.; Souto, E. B.; Calpena, A. C.; García, M. L.

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol® 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween® 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (~90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  6. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation†

    PubMed Central

    Stachowiak, Jeanne C.; Richmond, David L.; Li, Thomas H.; Brochard-Wyart, Françoise

    2010-01-01

    Encapsulation of macromolecules within lipid vesicles has the potential to drive biological discovery and enable development of novel, cell-like therapeutics and sensors. However, rapid and reliable production of large numbers of unilamellar vesicles loaded with unrestricted and precisely-controlled contents requires new technologies that overcome size, uniformity, and throughput limitations of existing approaches. Here we present a high-throughput microfluidic method for vesicle formation and encapsulation using an inkjet printer at rates up to 200 Hz. We show how multiple high-frequency pulses of the inkjet’s piezoelectric actuator create a microfluidic jet that deforms a bilayer lipid membrane, controlling formation of individual vesicles. Variations in pulse number, pulse voltage, and solution viscosity are used to control the vesicle size. As a first step toward cell-like reconstitution using this method, we encapsulate the cytoskeletal protein actin and use co-encapsulated microspheres to track its polymerization into a densely entangled cytoskeletal network upon vesicle formation. PMID:19568667

  7. Quantum confinement of nanocrystals within amorphous matrices

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Collins, Reuben T.; Nourbakhsh, Zahra; Akbarzadeh, Hadi

    2014-02-01

    Nanocrystals encapsulated within an amorphous matrix are computationally analyzed to quantify the degree to which the matrix modifies the nature of their quantum-confinement power—i.e., the relationship between nanocrystal size and the gap between valence- and conduction-band edges. A special geometry allows exactly the same amorphous matrix to be applied to nanocrystals of increasing size to precisely quantify changes in confinement without the noise typically associated with encapsulating structures that are different for each nanocrystal. The results both explain and quantify the degree to which amorphous matrices redshift the character of quantum confinement. The character of this confinement depends on both the type of encapsulating material and the separation distance between the nanocrystals within it. Surprisingly, the analysis also identifies a critical nanocrystal threshold below which quantum confinement is not possible—a feature unique to amorphous encapsulation. Although applied to silicon nanocrystals within an amorphous silicon matrix, the methodology can be used to accurately analyze the confinement softening of other amorphous systems as well.

  8. Determination of the interfacial rheological properties of a PLA encapsulated contrast agent using in vitro attenuation and scattering

    PubMed Central

    Paul, Shirshendu; Russakow, Daniel; Rodgers, Tyler; Sarkar, Kausik; Cochran, Michael; Wheatley, Margaret

    2013-01-01

    The stabilizing encapsulation of a microbubble based ultrasound contrast agent (UCA) critically affects its acoustic properties. Polymers, which behave differently from commonly used materials—e.g. lipids or proteins—for the monolayer encapsulation, hold potential for better stability and control over encapsulation properties. Air-filled microbubbles coated with Poly (D, L-lactide) (PLA) are characterized here using in vitro acoustic experiments and several models of encapsulation. The interfacial rheological properties of the encapsulation are determined according to each of these models using attenuation of ultrasound through a suspension of these microbubbles. Then the model predictions are compared with scattered nonlinear—sub- and second harmonic—responses. For this microbubble population (average diameter 1.9 μm), the peak in attenuation measurement indicates a weighted average resonance frequency of 2.5–3 MHz, which, in contrast to other encapsulated microbubbles, is lower than the resonance frequency of a free bubble of similar size (diameter 1.9 μm). This apparently contradictory result stems from the extremely low surface dilatational elasticity (around 0.01–0.07 N/m) and the reduced surface tension of the PLA encapsulation as well as the polydispersity of the bubble population. All models considered here are shown to behave similarly even in the nonlinear regime because of the low value of the surface dilatational elasticity. Pressure dependent scattering measurements at two different excitation frequencies (2.25 and 3 MHz) show strongly non-linear behavior with 25–30 dB and 5–20 dB enhancements in fundamental and second-harmonic responses respectively for a concentration of 1.33 μg/mL of suspension. Subharmonic responses are registered above a relatively low generation threshold of 100–150 kPa with up to 20 dB enhancement beyond that pressure. Numerical predictions from all models show good agreement with the experimentally measured fundamental response, but not with the second harmonic response. The characteristic features of subharmonic response and the steady response beyond the threshold are matched well by model predictions. However, prediction of the threshold value depends on property values and the size distribution. The variation in size distribution from sample to sample leads to variation in estimated encapsulation property values—the lowest estimated value of surface dilatational viscosity better predicts the subharmonic threshold. PMID:23643050

  9. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects

    PubMed Central

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Context: Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. Objective: The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. Materials and Methods: B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. Results: The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of −31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. Conclusion: B-NLCs described in this study are well-suited for the delivery of baicalin. SUMMARY Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ: Streptozotocin, TC: Total cholesterol, TEM: Transmission Electron Microscope, TG: Total Triglyceride, ZP: Zeta Potential. PMID:27601850

  10. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects.

    PubMed

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ: Streptozotocin, TC: Total cholesterol, TEM: Transmission Electron Microscope, TG: Total Triglyceride, ZP: Zeta Potential.

  11. Curcumin Delivery by Poly(Lactide)-Based Co-Polymeric Micelles: An In Vitro Anticancer Study.

    PubMed

    Kumari, Preeti; Swami, Muddineti Omkara; Nadipalli, Sravan Kumar; Myneni, Srividya; Ghosh, Balaram; Biswas, Swati

    2016-04-01

    This work describes the synthesis of block co-polymeric micelles, methoxy-poly(ethylene glycol)-poly(D,L-lactide) (mPEG-PLA) to encapsulate Curcumin (CUR), thereby improving the dispersibility and chemical stability of curcumin, prolonging its cellular uptake and enhancing its bioavailability. CUR-mPEG-PLA micelles, was prepared using the thin-film hydration method and evaluated in vitro. The preparation process was optimized with a central composite design (CCD). Micelles were characterized by size, transmission electron microscopy, loading capacity, and critical micelle concentration (CMC). The cytotoxicity of CUR-mPEG-PLA micelles was investigated against murine melanoma cells, B16F10 and human breast cancer cells, MDA-MB-231. The average size of the CUR-mPEG-PLA micelles was 110 ± 5 nm with polydispersity index in the range of 0.15-0.31, and the encapsulating efficiency for CUR was 91.89 ± 1.2, and 11.06 ± 0.8% for drug-loading. Sustained release of CUR from micelles was observed with 9.73% CUR release from micelles compared to 64.24% release of free curcumin in first 6 h under sink condition. The CUR-mPEG-PLA was efficiently taken up by the cancer cells, B16F10 and MDA-MB-231. Following 24 h incubation, CUR-mPEG-PLA induced higher cytotoxicity compared to free CUR in MDA-MB-231 cell lines indicating exposure of higher dose of free CUR to cells lead to up-regulation of drug efflux mechanisms leading to decreased cell death in case of free CUR administration. Our results indicate that the proposed micellar system has the potential to serve as an efficient carrier for CUR by effectively solubilizing, stabilizing and delivering the drug in a controlled manner to the cancer cells.

  12. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.

    PubMed

    Chen, Z X; Li, B; Liu, T; Wang, X; Zhu, Y; Wang, L; Wang, X H; Niu, X; Xiao, Y; Sun, Q

    2017-03-01

    Paeonol shows effective anti-allergic, anti-inflammatory and analgesic activities. However, because of its poor solubility in water and high volatility at room temperature, the application of this drug is restricted in the clinic. The objective of this research was to develop a biocompatible paeonol formulation with improved stability, skin delivery and pharmacokinetic efficiency. In this paper, paeonol-loaded vesicles were prepared using an ethanol injection method. Nano-vesicles were characterized for their physical properties and encapsulation efficiency (EE). Drug permeation behavior in vitro and deposition quantity in porcine ear skin were measured with a Valia-Chien (V-C) diffusion device. Additionally, a validated and sensitive high performance liquid chromatography (HPLC) method was developed to analyze paeonol concentrations in rat plasma after transdermal administration. The results showed that the particle-size order of the nano-vesicles was the following: transethosomes (122.5±7.5nm)

  13. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    PubMed

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  14. Development of a large area space solar cell assembly

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1982-01-01

    The development of a large area high efficiency solar cell assembly is described. The assembly consists of an ion implanted silicon solar cell and glass cover. The important attributes of fabrication are the use of a back surface field which is compatible with a back surface reflector, and integration of coverglass application and cell fabrications. Cell development experiments concerned optimization of ion implantation processing of 2 ohm-cm boron-doped silicon. Process parameters were selected based on these experiments and cells with area of 34.3 sq cm wre fabricated. The average AMO efficiency of the twenty-five best cells was 13.9% and the best bell had an efficiency of 14.4%. An important innovation in cell encapsulation was also developed. In this technique, the coverglass is applied before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated. Adhesive investigated were EVA, FEP-Teflon sheet and DC 93-500. Details of processing and results are reported.

  15. Photosensitive function of encapsulated dye in carbon nanotubes.

    PubMed

    Yanagi, Kazuhiro; Iakoubovskii, Konstantin; Matsui, Hiroyuki; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Miyata, Yasumitsu; Maniwa, Yutaka; Kazaoui, Said; Minami, Nobutsugu; Kataura, Hiromichi

    2007-04-25

    Single-wall carbon nanotubes (SWCNTs) exhibit resonant absorption localized in specific spectral regions. To expand the light spectrum that can be utilized by SWCNTs, we have encapsulated squarylium dye into SWCNTs and clarified its microscopic structure and photosensitizing function. X-ray diffraction and polarization-resolved optical absorption measurements revealed that the encapsulated dye molecules are located at an off center position inside the tubes and aligned to the nanotube axis. Efficient energy transfer from the encapsulated dye to SWCNTs was clearly observed in the photoluminescence spectra. Enhancement of transient absorption saturation in the S1 state of the semiconducting SWCNTs was detected after the photoexcitation of the encapsulated dye, which indicates that ultrafast (<190 fs) energy transfer occurred from the dye to the SWCNTs.

  16. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics.

    PubMed

    Ramji, Ramesh; Wang, Ming; Bhagat, Ali Asgar S; Tan Shao Weng, Daniel; Thakor, Nitish V; Teck Lim, Chwee; Chen, Chia-Hung

    2014-05-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.

  17. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis.

    PubMed

    Elazar, Victoria; Adwan, Hassan; Bäuerle, Tobias; Rohekar, Keren; Golomb, Gershon; Berger, Martin R

    2010-04-01

    Poor prognosis in mammary carcinoma is associated with a certain expression profile of a defined set of genes including osteopontin and bone sialoprotein. Efficient and specific delivery of antisenses (AS) and a protection of the sequences from degradation are the crucial conditions for AS therapeutic efficiency. We hypothesized that effective and safe AS delivery direceted against these genes could be achieved by polymeric nanoparticles (NP) fabricated from a biocompatible polymer. Due to their nano-size range and small negative charge, AS-NP can overcome the absorption barrier offering increased resistance to nuclease degradation, sustained duration of AS administration, and consequently, prolonged antisense action. The ASs designed against OPN and BSP-II were successfully encapsulated in NP composed of the biodegradable and biocompatible polylactide-co-glycolide polymer (PLGA), exhibiting sustained release and stability of the ASs. The therapeutic efficacy of the AS-NP delivery system was examined in vitro, and in a breast cancer bone metastasis animal model of MDA-MB-231 human breast cancer cells in nude rats. Treatment with OPN-AS or BSP-AS loaded NP in comparison with osmotic mini-pumps (locoregional injection and SC implants, respectively) resulted in a significant decrease in both, tumor bone metastasis incidence and in the size of the lesions in rats with metastases. Despite its smaller dose, AS-NP exhibited a better therapeutic efficacy than osmotic mini-pumps in terms of lesion ratio at later time periods (8-12 weeks). It may be concluded that AS delivery by NP is a promising therapeutic modality providing stability of the encapsulated AS and a sustained release.

  18. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.

    PubMed

    Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen

    2016-08-12

    The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.

  19. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    PubMed Central

    Ahmed, Osama AA; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance. PMID:25670883

  20. Hydroxypropyl-β-cyclodextrin for Delivery of Baicalin via Inclusion Complexation by Supercritical Fluid Encapsulation.

    PubMed

    Li, Ying; He, Zhen-Dan; Zheng, Qian-En; Hu, Chengshen; Lai, Wing-Fu

    2018-05-14

    Over the years, various methods have been developed to enhance the solubility of insoluble drugs; however, most of these methods are time-consuming and labor intensive or involve the use of toxic materials. A method that can safely and effectively enhance the solubility of insoluble drugs is lacking. This study adopted baicalin as an insoluble drug model, and used hydroxypropyl-β-cyclodextrin for the delivery of baicalin via the inclusion complexation by supercritical fluid encapsulation. Different parameters for the complex preparation as well as the physicochemical properties of the complex have been investigated. Our results showed that when compared to the conventional solution mixing approach, supercritical fluid encapsulation enables a more precise control of the properties of the complex, and gives higher loading and encapsulation efficiency. It is anticipated that our reported method can be useful in enhancing the preparation efficiency of inclusion complexes, and can expand the application potential of insoluble herbal ingredients in treatment development and pharmaceutical formulation.

  1. Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds.

    PubMed

    Comunian, Talita A; Ravanfar, Raheleh; de Castro, Inar Alves; Dando, Robin; Favaro-Trindade, Carmen S; Abbaspourrad, Alireza

    2017-10-15

    Echium oil is rich in omega-3 fatty acids, which are important because of their benefits to human health; it is, however, unstable. The objective of this work was the coencapsulation of echium oil and quercetin or sinapic acid by microfluidic and ionic gelation techniques. The treatments were analyzed utilizing optical and scanning electron microscopy, encapsulation yield, particle size, thermogravimetry, Fourier transform infrared spectroscopy, stability under stress conditions, and oil oxidative/phenolic compound stability for 30days at 40°C. High encapsulation yield values were obtained (91-97% and 77-90% for the phenolic compounds and oil) and the encapsulated oil was almost seven times more stable than the non-encapsulated oil (0.34 vs 2.42mgMDA/kg oil for encapsulated and non-encapsulated oil, respectively). Encapsulation was shown to promote oxidative stability, allowing new vehicles for the application of these compounds in food without the use of solvents and high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    PubMed

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P < 0.05) cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P < 0.05). Both STP and eSTP increased pH, whereas SPP and eSPP decreased pH (P < 0.05). The higher orthophosphate (OP) was obtained with STP or SPP compared to their encapsulated counterparts (P < 0.05). The lowest OP was determined in samples with HMP or eHMP (P < 0.05). A 77 °C EPCT resulted in lower OP in chicken compared to 74 and 71 °C (P < 0.05), dissimilar to beef, where EPCT did not affect OP. In encapsulated or unencapsulated form, using STP and SPP enhanced reduction in TBARS and lipid hydroperoxides (LPO) compared with HMP (P < 0.05). Regardless of the phosphate type, more effective lipid oxidation inhibition was achieved by the use of encapsulated forms (P < 0.05). Increasing EPCT resulted in lower TBARS in beef and higher LPO values in both beef and chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  3. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  4. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  5. W/O/W multiple emulsions with diclofenac sodium.

    PubMed

    Lindenstruth, Kai; Müller, Bernd W

    2004-11-01

    The disperse oil droplets of W/O/W multiple emulsions contain small water droplets, in which drugs could be incorporated, but the structure of these emulsions is also the reason for possible instability. Due to the middle oil phase which acts as a 'semipermeable' membrane the passage of water across the oil phase can take place. However, the emulsions have been produced in a two-step-production process so not only the leakage of encapsulated drug molecules out of the inner water phase during storage but also a production-induced reduction of the encapsulation rate should be considered. The aim of this study was to ascertain how far the production-induced reduction of the encapsulation rate relates to the size of inner water droplets and to evaluate the relevance of multiple emulsions as drug carrier for diclofenac sodium. Therefore multiple emulsions were produced according to a central composite design. During the second production step it was observed that the parameters pressure and temperature have an influence on the size of the oil droplets in the W/O/W multiple emulsions. Further experiments with different W/O emulsions resulted in W/O/W multiple emulsions with different encapsulation rates of diclofenac sodium, due to the different sizes of the inner water droplets, which were obtained in the first production step.

  6. Microsponges based novel drug delivery system for augmented arthritis therapy

    PubMed Central

    Osmani, Riyaz Ali M.; Aloorkar, Nagesh H.; Ingale, Dipti J.; Kulkarni, Parthasarathi K.; Hani, Umme; Bhosale, Rohit R.; Jayachandra Dev, Dandasi

    2015-01-01

    The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug–polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 μm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug–polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders. PMID:26594124

  7. Microsponges based novel drug delivery system for augmented arthritis therapy.

    PubMed

    Osmani, Riyaz Ali M; Aloorkar, Nagesh H; Ingale, Dipti J; Kulkarni, Parthasarathi K; Hani, Umme; Bhosale, Rohit R; Jayachandra Dev, Dandasi

    2015-10-01

    The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug-polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 μm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug-polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders.

  8. Melittin liposomes surface modified with poloxamer 188: in vitro characterization and in vivo evaluation.

    PubMed

    Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C

    2011-05-01

    Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes.

  9. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  10. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N

    2017-03-15

    The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction

    PubMed Central

    Serpooshan, Vahid; Sivanesan, Senthilkumar; Huang, Xiaoran; Mahmoudi, Morteza; Malkovskiy, Andrey V.; Zhao, Mingming; Inayathullah, Mohammed; Wagh, Dhananjay; Zhang, Xuexiang J.; Metzler, Scott; Bernstein, Daniel; Wu, Joseph C.; Ruiz-Lozano, Pilar; Rajadas, Jayakumar

    2017-01-01

    Nanoparticle-mediated sustained delivery of therapeutics is one of the highly effective and increasingly utilized applications of nanomedicine. Here, we report the development and application of a drug delivery system consisting of polyethylene glycol (PEG)-conjugated liposomal nanoparticles as an efficient in vivo delivery approach for [Pyr1]-apelin-13 polypeptide. Apelin is an adipokine that regulates a variety of biological functions including cardiac hypertrophy and hypertrophy-induced heart failure. The clinical use of apelin has been greatly impaired by its remarkably short half-life in circulation. Here, we investigate whether [Pyr1]-apelin-13 encapsulation in liposome nanocarriers, conjugated with PEG polymer on their surface, can prolong apelin stability in the blood stream and potentiate apelin beneficial effects in cardiac function. Atomic force microscopy and dynamic light scattering were used to assess the structure and size distribution of drug-laden nanoparticles. [Pyr1]-apelin-13 encapsulation in PEGylated liposomal nanocarriers resulted in sustained and extended drug release both in vitro and in vivo. Moreover, intraperitoneal injection of [Pyr1]-apelin-13 nanocarriers in a mouse model of pressure-overload induced heart failure demonstrated a sustainable long-term effect of [Pyr1]-apelin-13 in preventing cardiac dysfunction. We concluded that this engineered nanocarrier system can serve as a delivery platform for treating heart injuries through sustained bioavailability of cardioprotective therapeutics. PMID:25443792

  12. Fabrication of self-assembled chitosan-dispersed LDL nanoparticles for drug delivery with a one-step green method.

    PubMed

    Tian, Jing; Xu, Shasha; Deng, Hongbing; Song, Xinxing; Li, Xiujuan; Chen, Jiajia; Cao, Feng; Li, Bin

    2017-01-30

    Self-assembled nanoparticles (NPs) composed of chitosan (CS) and low density lipoprotein (LDL) of hen eggs were prepared by a one-step green synthesis of mixing CS solution and LDL suspension. The formulated CS-LDL NPs were then applied to encapsulate doxorubicin hydrochloride (DOX) with the encapsulation efficiency of 51.7%. The average particle size and ζ-potential of DOX-loaded CS-LDL NPs (CS-LDL-DOX NPs) were 179nm and +48.3mV, respectively. The encapsulated DOX showed less cytotoxicity than free DOX after 24-h incubation with gastric cancer SGC7901 cells, which may be due to extended release. Cellular uptake of CS-LDL-DOX NPs was significant higher than that of free DOX due to the endocytosis of tumor cells. Thus CS-LDL-DOX NPs showed a potential in reducing cytotoxicity of DOX by extended release behavior and preferential uptake compared to free DOX. In addition, flow cytometry and terminal-deoxynucleotidyl-transferase-mediated dUTP nick-end labeling assay demonstrated that CS-LDL-DOX NPs induced the apoptosis of cancer cells. Autophagy was involved in effects caused by CS-LDL-DOX NPs through blocking AKT/mTOR signaling, which was demonstrated by the analyses of the expression of LC3, p62, AKT, p-AKT, mTOR and p-mTOR. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  14. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy

    NASA Astrophysics Data System (ADS)

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L.; Taratula, Oleh

    2015-02-01

    Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure. Electronic supplementary information (ESI) available: Fig. S1-S5: Size distribution of SiNc-NP measured by dynamic light scattering (Fig. S1); absorption spectra of free SiNc 2 in THF before and after irradiation with the 785 nm laser diode for 30 min (Fig. S2); in vitro cytotoxicity of free DOX against A2780/AD human ovarian cancer cells (Fig. S3); the release profiles of SiNc from SiNc-NP under various conditions (Fig. S4); body weight curves of the mice with or without treatment (Fig. S5). See DOI: 10.1039/c4nr06050d

  15. Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum-nopal mucilage as new wall materials.

    PubMed

    Cortés-Camargo, Stefani; Cruz-Olivares, Julian; Barragán-Huerta, Blanca E; Dublán-García, Octavio; Román-Guerrero, Angélica; Pérez-Alonso, César

    2017-06-01

    Mesquite gum (MG) and nopal mucilage (NM) mixtures were used for microencapsulation of lemon essential oil (LEO) by spray drying. Emulsions of MG, NM and MG-NM mixtures (25-75, 50-50, 75-25) were evaluated according to the droplet size (1.49-9.16 μm), viscosity and zeta potential (-16.07 to -20.13 mV), and microcapsules were characterised in particle size (11.9-44.4 μm), morphology, volatile oil retention (VOR) (45.9-74.4%), encapsulation efficiency (EE) (70.9-90.6%), oxidative stability and thermal analysis. The higher concentration of MG led to smaller droplet sizes and lower viscosity in the emulsions, and smaller particle sizes with the highest VOR in microcapsules. The higher concentration of NM induced to higher viscosity in the emulsions, and larger particle sizes with the highest values of EE and oxidative stability in microcapsules. This work shows evidence that MG-NM mixtures can have synergic effect in desirable characteristics such as retention and shelf life extension of LEO in microcapsules.

  16. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d) provide improved in vitro controlled release of antigenic TT. PMID:23103983

  17. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or matrix-encapsulated PbS nanocrystal films containing a tunable fraction of insulating ZnS domains, we uniquely distinguish the dynamics of charge scattering on defects from other processes of exciton dissociation. The measured times are subsequently used to estimate the diffusion length and the carrier mobility for each film type within hopping transport regime. It is demonstrated that nanocrystal films encapsulated into semiconductor matrices exhibit a lower probability of charge scattering than nanocrystal solids cross-linked with either 3-mercaptopropionic acid or 1,2-ethanedithiol molecular linkers. The suppression of carrier scattering in matrix-encapsulated nanocrystal films is attributed to a relatively low density of surface defects at nanocrystal/matrix interfaces. High stability and low density of defects made it possible to fabricate infrared-emitting nanocrystal solids. Presently, an important challenge facing the development of nanocrystal infrared emitters concerns the fact that both the emission quantum yield and the stability of colloidal nanoparticles become compromised when nanoparticle solutions are processed into solids. Here, we address this issue by developing an assembly technique that encapsulates infrared-emitting PbS NCs into crystalline CdS matrices, designed to preserve NC emission characteristics upon film processing. Here, the morphology of these matrices was designed to suppress the nonradiative carrier decay, whereby increasing the exciton lifetime up to 1 mus, and boosting the emission quantum yield to an unprecedented 3.7% for inorganically encapsulated PbS NC solids.

  18. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy

    PubMed Central

    Iqbal, Sakib; Rashid, Mohammad H.; Arbab, Ali S.; Khan, Mujibur

    2017-01-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19–23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50–160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22–90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52–53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%. PMID:28845137

  19. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy.

    PubMed

    Iqbal, Sakib; Rashid, Mohammad H; Arbab, Ali S; Khan, Mujibur

    2017-04-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19-23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50-160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22-90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52-53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%.

  20. Colorful Packages: Encapsulation of Fluorescent Proteins in Complex Coacervate Core Micelles

    PubMed Central

    Westphal, Adrie H.; Kleijn, J. Mieke; Borst, Jan Willem

    2017-01-01

    Encapsulation of proteins can be beneficial for food and biomedical applications. To study their biophysical properties in complex coacervate core micelles (C3Ms), we previously encapsulated enhanced green fluorescent protein (EGFP) and its monomeric variant, mEGFP, with the cationic-neutral diblock copolymer poly(2-methyl-vinyl-pyridinium)n-b-poly(ethylene-oxide)m (P2MVPn-b-PEOm) as enveloping material. C3Ms with high packaging densities of fluorescent proteins (FPs) were obtained, resulting in a restricted orientational freedom of the protein molecules, influencing their structural and spectral properties. To address the generality of this behavior, we encapsulated seven FPs with P2MVP41-b-PEO205 and P2MVP128-b-PEO477. Dynamic light scattering and fluorescence correlation spectroscopy showed lower encapsulation efficiencies for members of the Anthozoa class (anFPs) than for Hydrozoa FPs derived from Aequorea victoria (avFPs). Far-UV CD spectra of the free FPs showed remarkable differences between avFPs and anFPs, caused by rounder barrel structures for avFPs and more elliptic ones for anFPs. These structural differences, along with the differences in charge distribution, might explain the variations in encapsulation efficiency between avFPs and anFPs. Furthermore, the avFPs remain monomeric in C3Ms with minor spectral and structural changes. In contrast, the encapsulation of anFPs gives rise to decreased quantum yields (monomeric Kusabira Orange 2 (mKO2) and Tag red fluorescent protein (TagRFP)) or to a pKa shift of the chromophore (FP variant mCherry). PMID:28753915

Top