Sample records for size high sensitivity

  1. Ultra-sensitive magnetic microscopy with an atomic magnetometer and flux guides

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    Many applications in neuroscience, biomedical research, and material science require high-sensitivity, high-resolution magnetometry. In order to meet this need we recently combined a cm-size spin-exchange relaxation-free Atomic Magnetometer (AM) with a flux guide (FG) to produce ultra-sensitive FG-AM magnetic microscopy. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution to tiny magnetic objects. In this talk, we will describe existing and next generation FG-AM devices and present experimental and numerical tests of its sensitivity and resolution. We demonstrate that an optimized FG-AM has sufficient resolution and sensitivity for the detection of a small number of neurons, which would be an important milestone in neuroscience. In addition, as a demonstration of one possible application of the FG-AM device, we conducted high-resolution magnetic imaging of micron-size magnetic particles. We will show that the device can produce clear microscopic magnetic image of 10 μm-size magnetic particles.

  2. Simplified HCC-ART score for highly sensitive detection of small-sized and early-stage hepatocellular carcinoma in the widely used Okuda, CLIP, and BCLC staging systems.

    PubMed

    Attallah, Abdelfattah M; Omran, Mohamed M; Attallah, Ahmed A; Abdelrazek, Mohamed A; Farid, Khaled; El-Dosoky, Ibrahim

    2017-04-01

    Small-sized HCC can be effectively cured by surgery with good clinical outcomes. A highly sensitive HCC α-fetoprotein routine test (HCC-ART) for HCC diagnosis as well as a simplied form of the HCC-ART were reported in the British Journal of Cancer. Here, we verified and studied the applicability of the HCC-ART to the detection of early-stage HCC. 341 cirrhotic patients and 318 HCC patients were included in this study. For each, the HCC-ART score was calculated, and then the sensitivity, specificity, and results of an ROC curve analysis were compared between the HCC-ART and AFP when these biomarkers were used to detect small-sized HCC. Different HCC-ART cutoffs were set for the detection of different tumor sizes. The HCC-ART (AUC = 0.871, 70% sensitivity, 97% specificity) and the simplified HCC-ART (AUC = 0.934, 82% sensitivity, 100% specificity) were found to have high predictive power when attempting to separate cirrhotic patients from those with small-sized HCC. The simplified HCC-ART score was superior to AFP for determining stages according to the early Okuda (0.950 AUC, 84% sensitivity, 99% specificity), CLIP (0.945 AUC, 84% sensitivity, 99% specificity), and BCLC (1.000 AUC, 100% sensitivity, 99% specificity) staging systems. The simplified HCC-ART score was more strongly correlated than AFP and other staging systems with HCC tumor size (P < 0.0001; r = 0.8). The HCC-ART is superior to AFP for diagnosing early-stage HCC. Due to its advantages of minimal variability and a wide continuous scale for assessing HCC severity, the simplified HCC-ART has the potential to be more widely used than the original HCC-ART.

  3. Measurement of dispersion of nanoparticles in a dense suspension by high-sensitivity low-coherence dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki

    2014-08-01

    High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.

  4. Nature's crucible: Manufacturing optical nonlinearities for high resolution, high sensitivity encoding in the compound eye of the fly, Musca domestica

    NASA Technical Reports Server (NTRS)

    Wilcox, Mike

    1993-01-01

    The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.

  5. Magnetic relaxometry as applied to sensitive cancer detection and localization

    DOE PAGES

    De Haro, Leyma P.; Karaulanov, Todor; Vreeland, Erika C.; ...

    2015-06-02

    Abstract Here we describe superparamagnetic relaxometry (SPMR), a technology that utilizes highly sensitive magnetic sensors and superparamagnetic nanoparticles for cancer detection. Using SPMR, we sensitively and specifically detect nanoparticles conjugated to biomarkers for various types of cancer. SPMR offers high contrast In SPMR measurements, a brief magnetizing pulse is used to align superparamagnetic nanoparticles of a discrete size. Following the pulse, an array of superconducting quantum interference detectors (SQUID) sensors detect the decaying magnetization field. NP size is chosen so that, when bound, the induced field decays in seconds. They are functionalized with specific biomarkers and incubated with cancer cellsmore » As a result, superparamagnetic NPs developed here have small size dispersion. Cell incubation studies measure specificity for different cell lines and antibodies with very high contrast.« less

  6. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    PubMed

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  7. A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells.

    PubMed

    Yang, Yan; Gillis, Kevin D

    2004-12-01

    We have used membrane capacitance measurements and carbon-fiber amperometry to assay exocytosis triggered by photorelease of caged Ca(2+) to directly measure the Ca(2+) sensitivity of exocytosis from the INS-1 insulin-secreting cell line. We find heterogeneity of the Ca(2+) sensitivity of release in that a small proportion of granules makes up a highly Ca(2+)-sensitive pool (HCSP), whereas the bulk of granules have a lower sensitivity to Ca(2+). A substantial HCSP remains after brief membrane depolarization, suggesting that the majority of granules with high sensitivity to Ca(2+) are not located close to Ca(2+) channels. The HCSP is enhanced in size by glucose, cAMP, and a phorbol ester, whereas the Ca(2+)-sensitive rate constant of exocytosis from the HCSP is unaffected by cAMP and phorbol ester. The effects of cAMP and phorbol ester on the HCSP are mediated by PKA and PKC, respectively, because they can be blocked with specific protein kinase inhibitors. The size of the HCSP can be enhanced by glucose even in the presence of high concentrations of phorbol ester or cAMP, suggesting that glucose can increase granule pool sizes independently of activation of PKA or PKC. The effects of PKA and PKC on the size of the HCSP are not additive, suggesting they converge on a common mechanism. Carbon-fiber amperometry was used to assay quantal exocytosis of serotonin (5-HT) from insulin-containing granules following preincubation of INS-1 cells with 5-HT and a precursor. The amount or kinetics of release of 5-HT from each granule is not significantly different between granules with higher or lower sensitivity to Ca(2+), suggesting that granules in these two pools do not differ in morphology or fusion kinetics. We conclude that glucose and second messengers can modulate insulin release triggered by a high-affinity Ca(2+) sensor that is poised to respond to modest, global elevations of [Ca(2+)](i).

  8. MOSFET detectors in quality assurance of tomotherapy treatments.

    PubMed

    Cherpak, Amanda; Studinski, Ryan C N; Cygler, Joanna E

    2008-02-01

    The purpose of this work was to characterize metal oxide semiconductor field-effect transistors (MOSFETs) in a 6 MV conventional linac and investigate their use for quality assurance of radiotherapy treatments with a tomotherapy Hi-Art unit. High sensitivity and standard sensitivity MOSFETs were first calibrated and then tested for reproducibility, field size dependence, and accuracy of measuring surface dose in a 6 MV beam as well as in a tomotherapy Hi-Art unit. In vivo measurements were performed on both a RANDO phantom and several head and neck cancer patients treated with tomotherapy and compared to TLD measurements and treatment plan doses to evaluate the performance of MOSFETs in a high gradient radiation field. The average calibration factor found was 0.345+/-2.5%cGy/mV for the high sensitivity MOSFETs tested and 0.901+/-2.4%cGy/mV for the standard sensitivity MOSFETs. MOSFET measured surface doses had an average agreement with ion chamber measurements of 1.55% for the high sensitivity MOSFET and 5.23% for the standard sensitivity MOSFET when averaged over all trials and field sizes tested. No significant dependence on field size was found for the standard sensitivity MOSFETs, however a maximum difference of 5.34% was found for the high sensitivity MOSFET calibration factors in the field sizes tested. Measurements made with MOSFETS on head and neck patients treated on a tomotherapy Hi-Art unit had an average agreement of (3.26+/-0.03)% with TLD measurements, however the average of the absolute difference between the MOSFET measurements and the treatment plan skin doses was (12.2+/-7.5)%. The MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1.4% to 6.6%. Similar results were found from trials using a RANDO phantom. The MOSFETs performed well when used in the tomotherapy Hi-Art unit and did not increase the overall treatment set-up time when used for patient measurements. It was found that MOSFETs are suitable detectors for surface dose measurements in both conventional beam and tomotherapy treatments and they can provide valuable skin dose information in areas where the treatment planning system may not be accurate.

  9. Easy-to-Fabricate and High-Sensitivity LSPR Type Specific Protein Detection Sensor Using AAO Nano-Pore Size Control

    PubMed Central

    Kim, Sae-Wan; Lee, Jae-Sung; Lee, Sang-Won; Kang, Byoung-Ho; Kwon, Jin-Beom; Kim, Ok-Sik; Kim, Ju-Seong; Kim, Eung-Soo; Kwon, Dae-Hyuk; Kang, Shin-Won

    2017-01-01

    In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily. PMID:28406469

  10. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  11. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. High-Sensitivity Microwave Optics.

    ERIC Educational Resources Information Center

    Nunn, W. M., Jr.

    1981-01-01

    Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…

  13. Development of high sensitivity and high speed large size blank inspection system LBIS

    NASA Astrophysics Data System (ADS)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  14. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  15. Ultrasound detection of simulated intra-ocular foreign bodies by minimally trained personnel.

    PubMed

    Sargsyan, Ashot E; Dulchavsky, Alexandria G; Adams, James; Melton, Shannon; Hamilton, Douglas R; Dulchavsky, Scott A

    2008-01-01

    To test the ability of non-expert ultrasound operators of divergent backgrounds to detect the presence, size, location, and composition of foreign bodies in an ocular model. High school students (N = 10) and NASA astronauts (N = 4) completed a brief ultrasound training session which focused on basic ultrasound principles and the detection of foreign bodies. The operators used portable ultrasound devices to detect foreign objects of varying location, size (0.5-2 mm), and material (glass, plastic, metal) in a gelatinous ocular model. Operator findings were compared to known foreign object parameters and ultrasound experts (N = 2) to determine accuracy across and between groups. Ultrasound had high sensitivity (astronauts 85%, students 87%, and experts 100%) and specificity (astronauts 81%, students 83%, and experts 95%) for the detection of foreign bodies. All user groups were able to accurately detect the presence of foreign bodies in this model (astronauts 84%, students 81%, and experts 97%). Astronaut and student sensitivity results for material (64% vs. 48%), size (60% vs. 46%), and position (77% vs. 64%) were not statistically different. Experts' results for material (85%), size (90%), and position (98%) were higher; however, the small sample size precluded statistical conclusions. Ultrasound can be used by operators with varying training to detect the presence, location, and composition of intraocular foreign bodies with high sensitivity, specificity, and accuracy.

  16. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    PubMed

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  17. Sensitivity to Verbally and Physically Harassing Behaviors and Reported Incidents in Junior High/Middle School Students.

    ERIC Educational Resources Information Center

    Turner, Penelope B.

    This thesis investigates the sensitivity of junior high/middle school students to statements depicting verbal and physical sexual harassment. The independent variables that were investigated included gender, grade level, age, size of district, grades received, participation in sports, birth order, developmental level, and self-esteem. Students…

  18. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm

    PubMed Central

    Christen, Patrik; Schulte, Friederike A.; Zwahlen, Alexander; van Rietbergen, Bert; Boutroy, Stephanie; Melton, L. Joseph; Amin, Shreyasee; Khosla, Sundeep; Goldhahn, Jörg; Müller, Ralph

    2016-01-01

    A bone loading estimation algorithm was previously developed that provides in vivo loading conditions required for in vivo bone remodelling simulations. The algorithm derives a bone's loading history from its microstructure as assessed by high-resolution (HR) computed tomography (CT). This reverse engineering approach showed accurate and realistic results based on micro-CT and HR-peripheral quantitative CT images. However, its voxel size dependency, reproducibility and sensitivity still need to be investigated, which is the purpose of this study. Voxel size dependency was tested on cadaveric distal radii with micro-CT images scanned at 25 µm and downscaled to 50, 61, 75, 82, 100, 125 and 150 µm. Reproducibility was calculated with repeated in vitro as well as in vivo HR-pQCT measurements at 82 µm. Sensitivity was defined using HR-pQCT images from women with fracture versus non-fracture, and low versus high bone volume fraction, expecting similar and different loading histories, respectively. Our results indicate that the algorithm is voxel size independent within an average (maximum) error of 8.2% (32.9%) at 61 µm, but that the dependency increases considerably at voxel sizes bigger than 82 µm. In vitro and in vivo reproducibility are up to 4.5% and 10.2%, respectively, which is comparable to other in vitro studies and slightly higher than in other in vivo studies. Subjects with different bone volume fraction were clearly distinguished but not subjects with and without fracture. This is in agreement with bone adapting to customary loading but not to fall loads. We conclude that the in vivo bone loading estimation algorithm provides reproducible, sensitive and fairly voxel size independent results at up to 82 µm, but that smaller voxel sizes would be advantageous. PMID:26790999

  20. Highly sensitive nanostructure SnO2 based gas sensor for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Korgaokar, Sushil; Moradiya, Meet; Prajapati, Om; Thakkar, Pranav; Pala, Jay; Savaliya, Chirag; Parikh, Sachin; Markna, J. H.

    2017-05-01

    A major quantity of pollutants are produced from industries and vehicles in the form of gas. New approaches are needed to solve well-known environmental pollutants like CO, CO2, NO2, SOx. Therefore detection with effective gas sensors is a vital part of pollution prevention efforts. There is a need to develop fast, rapid, cost-effective, highly sensitive, low power, and non-intrusive rugged sensors that can be easily installed. In the present study, nanostructured SnO2 used as a sensitive material in the devices and synthesized using hydrothermal process. The detailed development of the fabrication of SnO2 nanostructures gas sensor is described, which shows the remarkable change in the sensing properties with varying particle size. Additionally, we have used X-ray diffraction, scanning electron microscopy (SEM) for characterization and carefully examined the relative parameters like response magnitude (sensitivity) and selectivity of SnO2 nano structures with different particle size.

  1. Highly Sensitive Hot-Wire Anemometry Based on Macro-Sized Double-Walled Carbon Nanotube Strands.

    PubMed

    Wang, Dingqu; Xiong, Wei; Zhou, Zhaoying; Zhu, Rong; Yang, Xing; Li, Weihua; Jiang, Yueyuan; Zhang, Yajun

    2017-08-01

    This paper presents a highly sensitive flow-rate sensor with carbon nanotubes (CNTs) as sensing elements. The sensor uses micro-size centimeters long double-walled CNT (DWCNT) strands as hot-wires to sense fluid velocity. In the theoretical analysis, the sensitivity of the sensor is demonstrated to be positively related to the ratio of its surface. We assemble the flow sensor by suspending the DWCNT strand directly on two tungsten prongs and dripping a small amount of silver glue onto each contact between the DWCNT and the prongs. The DWCNT exhibits a positive TCR of 1980 ppm/K. The self-heating effect on the DWCNT was observed while constant current was applied between the two prongs. This sensor can evidently respond to flow rate, and requires only several milliwatts to operate. We have, thus far, demonstrated that the CNT-based flow sensor has better sensitivity than the Pt-coated DWCNT sensor.

  2. Sensitivity of Amoxicillin-Resistant Helicobacter pylori to Other Penicillins

    PubMed Central

    Dore, Maria P.; Graham, David Y.; Sepulveda, Antonia R.; Realdi, Giuseppe; Osato, Michael S.

    1999-01-01

    The sensitivities to penicillins and to a penicillin and β-lactamase inhibitor combination agent were determined for Helicobacter pylori strains that were sensitive, moderately resistant, or highly resistant to amoxicillin. All strains were resistant to nafcillin and oxacillin. Moderately resistant strains showed an intermediate zone of inhibition to ticarcillin, mezlocillin, piperacillin, and amoxicillin-clavulanic acid. High-level resistance was associated with the smallest zone size for all penicillins tested. PMID:10390249

  3. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  4. Thermoelectricity in atom-sized junctions at room temperatures

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  5. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS).

    PubMed

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.

  6. Ligand-Controlled Integration of Zn and Tb by Photoactive Terpyridyl-Functionalized Tricarboxylates as Highly Selective and Sensitive Sensors for Nitrofurans.

    PubMed

    Zhou, Zhi-Hang; Dong, Wen-Wen; Wu, Ya-Pan; Zhao, Jun; Li, Dong-Sheng; Wu, Tao; Bu, Xian-Hui

    2018-04-02

    The integration of terpyridyl and tricarboxylate functionality in a novel ligand allows concerted 3:1 stoichiometric assembly of size-and charge-complementary Zn 2+ /Tb 3+ ions into a water-stable 3D luminescent framework (CTGU-8) capable of highly selective, sensitive, and recyclable of nitrofurans.

  7. An inter-laboratory comparison of PNH clone detection by high-sensitivity flow cytometry in a Russian cohort.

    PubMed

    Sipol, Alexandra A; Babenko, Elena V; Borisov, Vyacheslav I; Naumova, Elena V; Boyakova, Elena V; Yakunin, Dimitry I; Glazanova, Tatyana V; Chubukina, Zhanna V; Pronkina, Natalya V; Popov, Alexander M; Saveliev, Leonid I; Lugovskaya, Svetlana A; Lisukov, Igor A; Kulagin, Alexander D; Illingworth, Andrea J

    2015-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal stem cell disorder characterized by partial or absolute deficiency of glycophosphatidyl-inositol (GPI) anchor-linked surface proteins on blood cells. A lack of precise diagnostic standards for flow cytometry has hampered useful comparisons of data between laboratories. We report data from the first study evaluating the reproducibility of high-sensitivity flow cytometry for PNH in Russia. PNH clone sizes were determined at diagnosis in PNH patients at a central laboratory and compared with follow-up measurements in six laboratories across the country. Analyses in each laboratory were performed according to recommendations from the International Clinical Cytometry Society (ICCS) and the more recent 'practical guidelines'. Follow-up measurements were compared with each other and with the values determined at diagnosis. PNH clone size measurements were determined in seven diagnosed PNH patients (five females, two males: mean age 37 years); five had a history of aplastic anemia and three (one with and two without aplastic anemia) had severe hemolytic PNH and elevated plasma lactate dehydrogenase. PNH clone sizes at diagnosis were low in patients with less severe clinical symptoms (0.41-9.7% of granulocytes) and high in patients with severe symptoms (58-99%). There were only minimal differences in the follow-up clone size measurement for each patient between the six laboratories, particularly in those with high values at diagnosis. The ICCS-recommended high-sensitivity flow cytometry protocol was effective for detecting major and minor PNH clones in Russian PNH patients, and showed high reproducibility between laboratories.

  8. Foliar ozone injury on different-sized Prumus serotina Ehrh. trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.

    1995-06-01

    Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozonemore » uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.« less

  9. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and Characterization of Cyclotrimethylenetrinitramine (RDX) with Reduced Sensitivity

    PubMed Central

    Wang, Yuqiao; Li, Xin; Chen, Shusen; Ma, Xiao; Yu, Ziyang; Jin, Shaohua; Li, Lijie; Chen, Yu

    2017-01-01

    The internal defects and shape of cyclotrimethylenetrinitramine (RDX) crystal are critical parameters for the preparation of reduced sensitivity RDX (RS-RDX). In the current study, RDX was re-crystallized and spheroidized to form the high-quality RDX that was further characterized by purity, apparent density, size distribution, specific surface area, impact sensitivity, and shock sensitivity. The effects of re-crystallization solvent on the growth morphology of RDX crystal were investigated by both theoretical simulation and experiment test, and consistent results were obtained. The high-quality RDX exhibited a high purity (≥99.90%), high apparent density (≥1.811 g/cm3), spherical shape, and relatively low impact sensitivity (6%). Its specific surface area was reduced more than 30%. Compared with conventional RDXs, the high-quality RDX reduced the shock sensitivities of PBXN-109 and PBXW-115 by more than 30%, indicating that it was a RS-RDX. The reduced sensitivity and good processability of the high-quality RDX would be significant in improving the performances of RDX-based PBXs. PMID:28825661

  11. [Effect of inoculum size on sensitivity and specificity of the double-disk synergy test for the detection of wide-spectrum beta-lactamases].

    PubMed

    Bedenić, B; Boras, A

    2001-01-01

    The plasmid-mediated extended-spectrum beta-lactamases (ESBL) confer resistance to oxymino-cephalosporins, such as cefotaxime, ceftazidime, and ceftriaxone and to monobactams such as aztreonam. It is well known fact that ESBL producing bacteria exhibit a pronounced inoculum effect against broad spectrum cephalosporins like ceftazidime, cefotaxime, ceftriaxone and cefoperazone. The aim of this investigation was to determine the effect of inoculum size on the sensitivity and specificity of double-disk synergy test (DDST) which is the test most frequently used for detection of ESBLs, in comparison with other two methods (determination of ceftazidime MIC with and without clavulanate and inhibitor potentiated disk-diffusion test) which are seldom used in clinical laboratories. The experiments were performed on a set of K. pneumoniae strains with previously characterized beta-lactamases which comprise: 10 SHV-5 beta-lactamase producing K. pneumoniae, 20 SHV-2 + 1 SHV 2a beta-lactamase producing K. pneumoniae, 7 SHV-12 beta-lactamase producing K. pneumoniae, 39 putative SHV ESBL producing K. pneumoniae and 26 K. pneumoniae isolates highly susceptible to ceftazidime according to Kirby-Bauer disk-diffusion method and thus considered to be ESBL negative. According to the results of this investigation, increase in inoculum size affected more significantly the sensitivity of DDST than of other two methods. The sensitivity of the DDST was lower when a higher inoculum size of 10(8) CFU/ml was applied, in distinction from other two methods (MIC determination and inhibitor potentiated disk-diffusion test) which retained high sensitivity regardless of the density of bacterial suspension. On the other hand, DDST displayed higher specificity compared to other two methods regardless of the inoculum size. This investigation found that DDST is a reliable method but it is important to standardize the inoculum size.

  12. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    PubMed Central

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-01-01

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766

  13. Correlated evolution between hearing sensitivity and social calls in bats

    PubMed Central

    Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S

    2006-01-01

    Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288

  14. Micro-machined thermo-conductivity detector

    DOEpatents

    Yu, Conrad

    2003-01-01

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  15. Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection.

    PubMed

    Daaboul, George G; Lopez, Carlos A; Chinnala, Jyothsna; Goldberg, Bennett B; Connor, John H; Ünlü, M Selim

    2014-06-24

    Rapid, sensitive, and direct label-free capture and characterization of nanoparticles from complex media such as blood or serum will broadly impact medicine and the life sciences. We demonstrate identification of virus particles in complex samples for replication-competent wild-type vesicular stomatitis virus (VSV), defective VSV, and Ebola- and Marburg-pseudotyped VSV with high sensitivity and specificity. Size discrimination of the imaged nanoparticles (virions) allows differentiation between modified viruses having different genome lengths and facilitates a reduction in the counting of nonspecifically bound particles to achieve a limit-of-detection (LOD) of 5 × 10(3) pfu/mL for the Ebola and Marburg VSV pseudotypes. We demonstrate the simultaneous detection of multiple viruses in a single sample (composed of serum or whole blood) for screening applications and uncompromised detection capabilities in samples contaminated with high levels of bacteria. By employing affinity-based capture, size discrimination, and a "digital" detection scheme to count single virus particles, we show that a robust and sensitive virus/nanoparticle sensing assay can be established for targets in complex samples. The nanoparticle microscopy system is termed the Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and is capable of high-throughput and rapid sizing of large numbers of biological nanoparticles on an antibody microarray for research and diagnostic applications.

  16. Weber's Illusion and Body Shape: Anisotropy of Tactile Size Perception on the Hand

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Haggard, Patrick

    2011-01-01

    The perceived distance between touches on a single skin surface is larger on regions of high tactile sensitivity than those with lower acuity, an effect known as "Weber's illusion". This illusion suggests that tactile size perception involves a representation of the perceived size of body parts preserving characteristics of the somatosensory…

  17. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS)

    PubMed Central

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960

  18. Geometrical optimization of a local ballistic magnetic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanda, Yuhsuke; Hara, Masahiro; Nomura, Tatsuya

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  19. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  20. Sensor fusion to enable next generation low cost Night Vision systems

    NASA Astrophysics Data System (ADS)

    Schweiger, R.; Franz, S.; Löhlein, O.; Ritter, W.; Källhammer, J.-E.; Franks, J.; Krekels, T.

    2010-04-01

    The next generation of automotive Night Vision Enhancement systems offers automatic pedestrian recognition with a performance beyond current Night Vision systems at a lower cost. This will allow high market penetration, covering the luxury as well as compact car segments. Improved performance can be achieved by fusing a Far Infrared (FIR) sensor with a Near Infrared (NIR) sensor. However, fusing with today's FIR systems will be too costly to get a high market penetration. The main cost drivers of the FIR system are its resolution and its sensitivity. Sensor cost is largely determined by sensor die size. Fewer and smaller pixels will reduce die size but also resolution and sensitivity. Sensitivity limits are mainly determined by inclement weather performance. Sensitivity requirements should be matched to the possibilities of low cost FIR optics, especially implications of molding of highly complex optical surfaces. As a FIR sensor specified for fusion can have lower resolution as well as lower sensitivity, fusing FIR and NIR can solve performance and cost problems. To allow compensation of FIR-sensor degradation on the pedestrian detection capabilities, a fusion approach called MultiSensorBoosting is presented that produces a classifier holding highly discriminative sub-pixel features from both sensors at once. The algorithm is applied on data with different resolution and on data obtained from cameras with varying optics to incorporate various sensor sensitivities. As it is not feasible to record representative data with all different sensor configurations, transformation routines on existing high resolution data recorded with high sensitivity cameras are investigated in order to determine the effects of lower resolution and lower sensitivity to the overall detection performance. This paper also gives an overview of the first results showing that a reduction of FIR sensor resolution can be compensated using fusion techniques and a reduction of sensitivity can be compensated.

  1. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  2. Rice Fertilization-Independent Endosperm1 Regulates Seed Size under Heat Stress by Controlling Early Endosperm Development1[W

    PubMed Central

    Folsom, Jing J.; Begcy, Kevin; Hao, Xiaojuan; Wang, Dong; Walia, Harkamal

    2014-01-01

    Although heat stress reduces seed size in rice (Oryza sativa), little is known about the molecular mechanisms underlying the observed reduction in seed size and yield. To elucidate the mechanistic basis of heat sensitivity and reduced seed size, we imposed a moderate (34°C) and a high (42°C) heat stress treatment on developing rice seeds during the postfertilization stage. Both stress treatments reduced the final seed size. At a cellular level, the moderate heat stress resulted in precocious endosperm cellularization, whereas severe heat-stressed seeds failed to cellularize. Initiation of endosperm cellularization is a critical developmental transition required for normal seed development, and it is controlled by Polycomb Repressive Complex2 (PRC2) in Arabidopsis (Arabidopsis thaliana). We observed that a member of PRC2 called Fertilization-Independent Endosperm1 (OsFIE1) was sensitive to temperature changes, and its expression was negatively correlated with the duration of the syncytial stage during heat stress. Seeds from plants overexpressing OsFIE1 had reduced seed size and exhibited precocious cellularization. The DNA methylation status and a repressive histone modification of OsFIE1 were observed to be temperature sensitive. Our data suggested that the thermal sensitivity of seed enlargement could partly be caused by altered epigenetic regulation of endosperm development during the transition from the syncytial to the cellularized state. PMID:24590858

  3. Communication Studies of DMP and SMP Machines

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Understanding the interplay between machines and problems is key to obtaining high performance on parallel machines. This paper investigates the interplay between programming paradigms and communication capabilities of parallel machines. In particular, we explicate the communication capabilities of the IBM SP-2 distributed-memory multiprocessor and the SGI PowerCHALLENGEarray symmetric multiprocessor. Two benchmark problems of bitonic sorting and Fast Fourier Transform are selected for experiments. Communication-efficient algorithms are developed to exploit the overlapping capabilities of the machines. Programs are written in Message-Passing Interface for portability and identical codes are used for both machines. Various data sizes and message sizes are used to test the machines' communication capabilities. Experimental results indicate that the communication performance of the multiprocessors are consistent with the size of messages. The SP-2 is sensitive to message size but yields a much higher communication overlapping because of the communication co-processor. The PowerCHALLENGEarray is not highly sensitive to message size and yields a low communication overlapping. Bitonic sorting yields lower performance compared to FFT due to a smaller computation-to-communication ratio.

  4. Evidence of Kittel type behaviour of the permittivity of a nanostructured high sensitivity piezoelectric

    NASA Astrophysics Data System (ADS)

    BalčiÅ«nas, Sergejus; Ivanov, Maksim; Grigalaitis, Robertas; Banys, Juras; Amorín, Harvey; Castro, Alicia; Algueró, Miguel

    2018-05-01

    The broadband dielectric properties of high sensitivity piezoelectric 0.36BiScO3-0.64PbTiO3 ceramics with average grain sizes from 1.6 μm down to 26 nm were investigated in the 100-500 K temperature range. The grain size dependence of the dielectric permittivity was analysed within the effective medium approximation. It was found that the generalised core-shell (or brick wall) model correctly explains the size dependence down to the nanoscale. For the first time, the grain bulk and boundary properties were obtained without making any assumptions of values of the parameters or simplifications. Two contributions to dielectric permittivity of the grain bulk are described. The first is the size-independent one, which follows the Curie-Weiss law. The second one is shown to plausibly follow the Kittel's law. This seems to suggest the unexpected persistence of mobile ferroelectric domains at the nanoscale (26 nm grains). Alternative explanations are discussed.

  5. Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Mason, B. H.; Walsh, J. L.

    2001-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.

  6. Non-radioactive detection of trinucleotide repeat size variability.

    PubMed

    Tomé, Stéphanie; Nicole, Annie; Gomes-Pereira, Mario; Gourdon, Genevieve

    2014-03-06

    Many human diseases are associated with the abnormal expansion of unstable trinucleotide repeat sequences. The mechanisms of trinucleotide repeat size mutation have not been fully dissected, and their understanding must be grounded on the detailed analysis of repeat size distributions in human tissues and animal models. Small-pool PCR (SP-PCR) is a robust, highly sensitive and efficient PCR-based approach to assess the levels of repeat size variation, providing both quantitative and qualitative data. The method relies on the amplification of a very low number of DNA molecules, through sucessive dilution of a stock genomic DNA solution. Radioactive Southern blot hybridization is sensitive enough to detect SP-PCR products derived from single template molecules, separated by agarose gel electrophoresis and transferred onto DNA membranes. We describe a variation of the detection method that uses digoxigenin-labelled locked nucleic acid probes. This protocol keeps the sensitivity of the original method, while eliminating the health risks associated with the manipulation of radiolabelled probes, and the burden associated with their regulation, manipulation and waste disposal.

  7. Sensitive and molecular size-selective detection of proteins using a chip-based and heteroliganded gold nanoisland by localized surface plasmon resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Surin; Lee, Suseung; Yi, Jongheop

    2011-04-01

    A highly sensitive and molecular size-selective method for the detection of proteins using heteroliganded gold nanoislands and localized surface plasmon resonance (LSPR) is described. Two different heteroligands with different chain lengths (3-mercaptopionicacid and decanethiol) were used in fabricating nanoholes for the size-dependent separation of a protein in comparison with its aggregate. Their ratios on gold nanoisland were optimized for the sensitive detection of superoxide dismutase (SOD1). This protein has been implicated in the pathology of amyotrophic lateral sclerosis (ALS). Upon exposure of the optimized gold nanoisland to a solution of SOD1 and aggregates thereof, changes in the LSPR spectra were observed which are attributed to the size-selective and covalent chemical binding of SOD1 to the nanoholes. With a lower detection limit of 1.0 ng/ml, the method can be used to selectively detect SOD1 in the presence of aggregates at the molecular level.

  8. Wavelet method for CT colonography computer-aided polyp detection.

    PubMed

    Li, Jiang; Van Uitert, Robert; Yao, Jianhua; Petrick, Nicholas; Franaszek, Marek; Huang, Adam; Summers, Ronald M

    2008-08-01

    Computed tomographic colonography (CTC) computer aided detection (CAD) is a new method to detect colon polyps. Colonic polyps are abnormal growths that may become cancerous. Detection and removal of colonic polyps, particularly larger ones, has been shown to reduce the incidence of colorectal cancer. While high sensitivities and low false positive rates are consistently achieved for the detection of polyps sized 1 cm or larger, lower sensitivities and higher false positive rates occur when the goal of CAD is to identify "medium"-sized polyps, 6-9 mm in diameter. Such medium-sized polyps may be important for clinical patient management. We have developed a wavelet-based postprocessor to reduce false positives for this polyp size range. We applied the wavelet-based postprocessor to CTC CAD findings from 44 patients in whom 45 polyps with sizes of 6-9 mm were found at segmentally unblinded optical colonoscopy and visible on retrospective review of the CT colonography images. Prior to the application of the wavelet-based postprocessor, the CTC CAD system detected 33 of the polyps (sensitivity 73.33%) with 12.4 false positives per patient, a sensitivity comparable to that of expert radiologists. Fourfold cross validation with 5000 bootstraps showed that the wavelet-based postprocessor could reduce the false positives by 56.61% (p <0.001), to 5.38 per patient (95% confidence interval [4.41, 6.34]), without significant sensitivity degradation (32/45, 71.11%, 95% confidence interval [66.39%, 75.74%], p=0.1713). We conclude that this wavelet-based postprocessor can substantially reduce the false positive rate of our CTC CAD for this important polyp size range.

  9. A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening.

    PubMed

    Jiang, Yu; Liu, Xu; Dang, Tran Chien; Huang, Xiwei; Feng, Hao; Zhang, Qing; Yu, Hao

    2018-04-01

    Foodborne bacteria, inducing outbreaks of infection or poisoning, have posed great threats to food safety. Potentiometric sensors can identify bacteria levels in food by measuring medium's pH changes. However, most of these sensors face the limitation of low sensitivity and high cost. In this paper, we developed a high-sensitivity ion-sensitive field-effect transistor sensor. It is small sized, cost-efficient, and can be massively fabricated in a standard 65-nm complementary metal-oxide-semiconductor process. A subthreshold pH-to-time-to-voltage conversion scheme was proposed to improve the sensitivity. Furthermore, design parameters, such as chemical sensing area, transistor size, and discharging time, were optimized to enhance the performance. The intrinsic sensitivity of passivation membrane was calculated as 33.2 mV/pH. It was amplified to 123.8 mV/pH with a 0.01-pH resolution, which greatly exceeded 6.3 mV/pH observed in a traditional source-follower based readout structure. The sensing system was applied to Escherichia coli (E. coli) detection with densities ranging from 14 to 140 cfu/mL. Compared to the conventional direct plate counting method (24 h), more efficient sixfold smaller screening time (4 h) was achieved to differentiate samples' E. coli levels. The demonstrated portable, time-saving, and low-cost prescreen system has great potential for food safety detection.

  10. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  11. Redox-sensitive Pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation

    PubMed Central

    Liu, Yuling; Fu, Sai; Lin, Longfei; Cao, Yuhong; Xie, Xi; Yu, Hua; Chen, Meiwan; Li, Hui

    2017-01-01

    Pluronic F127 (F127), an amphiphilic triblock copolymer, has been shown to have significant potential for drug delivery, as it is able to incorporate hydrophobic drugs and self-assemble into nanosize micelles. However, it suffers from dissociation upon dilution owing to the relatively high critical micelle concentration and lack of stimuli-responsive behavior. Here, we synthesized the α-tocopherol (TOC) modified F127 polymer (F127-SS-TOC) via a redox-sensitive disulfide bond between F127 and TOC, which formed stable micelles at relatively low critical micelle concentration and was sensitive to the intracellular redox environment. The particle size and zeta potential of the F127-SS-TOC micelles were 51.87±6.39 nm and -8.43±2.27 mV, respectively, and little changes in both particle size and zeta potential were observed within 7 days at room temperature. With 10 mM dithiothreitol stimulation, the F127-SS-TOC micelles rapidly dissociated followed by a significant change in size, which demonstrated a high reduction sensitivity of the micelles. In addition, the micelles showed a high hemocompatibility even at a high micelle concentration (1,000 μg/mL). Low cytotoxicity of the F127-SS-TOC micelles at concentrations ranging from 12.5 μg/mL to 200 μg/mL was also found on both Bel 7402 and L02 cells. Overall, our results demonstrated F127-SS-TOC micelles as a stable and safe aqueous formulation with a considerable potential for drug delivery. PMID:28435248

  12. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss.

    PubMed

    Basner, Mathias; Dinges, David F

    2011-05-01

    The psychomotor vigilance test (PVT) is among the most widely used measures of behavioral alertness, but there is large variation among published studies in PVT performance outcomes and test durations. To promote standardization of the PVT and increase its sensitivity and specificity to sleep loss, we determined PVT metrics and task durations that optimally discriminated sleep deprived subjects from alert subjects. Repeated-measures experiments involving 10-min PVT assessments every 2 h across both acute total sleep deprivation (TSD) and 5 days of chronic partial sleep deprivation (PSD). Controlled laboratory environment. 74 healthy subjects (34 female), aged 22-45 years. TSD experiment involving 33 h awake (N = 31 subjects) and a PSD experiment involving 5 nights of 4 h time in bed (N = 43 subjects). In a paired t-test paradigm and for both TSD and PSD, effect sizes of 10 different PVT performance outcomes were calculated. Effect sizes were high for both TSD (1.59-1.94) and PSD (0.88-1.21) for PVT metrics related to lapses and to measures of psychomotor speed, i.e., mean 1/RT (response time) and mean slowest 10% 1/RT. In contrast, PVT mean and median RT outcomes scored low to moderate effect sizes influenced by extreme values. Analyses facilitating only portions of the full 10-min PVT indicated that for some outcomes, high effect sizes could be achieved with PVT durations considerably shorter than 10 min, although metrics involving lapses seemed to profit from longer test durations in TSD. Due to their superior conceptual and statistical properties and high sensitivity to sleep deprivation, metrics involving response speed and lapses should be considered primary outcomes for the 10-min PVT. In contrast, PVT mean and median metrics, which are among the most widely used outcomes, should be avoided as primary measures of alertness. Our analyses also suggest that some shorter-duration PVT versions may be sensitive to sleep loss, depending on the outcome variable selected, although this will need to be confirmed in comparative analyses of separate duration versions of the PVT. Using both sensitive PVT metrics and optimal test durations maximizes the sensitivity of the PVT to sleep loss and therefore potentially decreases the sample size needed to detect the same neurobehavioral deficit. We propose criteria to better standardize the 10-min PVT and facilitate between-study comparisons and meta-analyses.

  13. Obese and overweight individuals are less sensitive to information about meal times in portion size judgements.

    PubMed

    Zimmerman, A R; Mason, A; Rogers, P J; Brunstrom, J M

    2017-11-16

    Obesity is related to a tendency to discount the future. Information regarding inter-meal interval (IMI) allows meal planning. We sought to assess how obese, overweight, and lean people select portion sizes based on the length of an IMI. We hypothesised that individuals with a high BMI would discount information about the IMI. In addition, we investigated how reduced sensitivity to IMIs relates to monetary temporal discounting. Participants (lean, n=35; overweight, n=31; obese, n=22), selected lunchtime portion sizes in response to information about the timings of their next meal. In seven trials, the time of the IMI was systematically manipulated, ranging from 'right now' to '8 h'. Participants then completed a monetary temporal discounting task. BMI was included as a continuous measure. For each participant, we conducted a linear regression of portion size on IMI to yield a gradient that reflected reduced sensitivity to future meal timings. As expected, participants selected larger portion sizes in response to a long IMI. Consistent with our hypothesis, individuals with a high BMI discounted information about the IMI (β=-3.49, P=0.015; confidence interval (CI) 6.29 to -0.70). Monetary discounting also negatively predicted BMI (β=-8.1, P=0.003; CI=-13.43 to -2.77), but did not correlate with IMI sensitivity (P>0.05). These results are the first to demonstrate that temporal discounting operates in planning from one meal to the next, and is more prevalent in obese and overweight, relative to lean individuals. Participants with a high BMI discounted concerns about potential future fullness and hunger in the IMI. Our observations might begin to explain associations between obesity and irregular meal timings or help to form the basis for a targeted intervention that promotes future thinking in meal planning.International Journal of Obesity accepted article preview online, 16 November 2017. doi:10.1038/ijo.2017.275.

  14. Nano-textured high sensitivity ion sensitive field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less

  15. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna

    2012-10-15

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44-4.1 kBq/mL, corresponding to 46-400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to scoremore » the presence of spheres. Results: Sensitivity was 100% for lesions {>=}12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained {>=}90% for injected activities as low as 100 MBq, for lesions {>=}8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon attenuation.« less

  16. An ultrasensitive bio-surrogate for nanoporous filter membrane performance metrology directed towards contamination control in microlithography applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan; Mish, Barbara; Qiu, Jian; Singh, Amarnauth; Varanasi, Rao; Bedford, Eilidh; Smith, Martin

    2016-03-01

    Contamination tolerances in semiconductor manufacturing processes have changed dramatically in the past two decades, reaching below 20 nm according to the guidelines of the International Technology Roadmap for Semiconductors. The move to narrower line widths drives the need for innovative filtration technologies that can achieve higher particle/contaminant removal performance resulting in cleaner process fluids. Nanoporous filter membrane metrology tools that have been the workhorse over the past decade are also now reaching limits. For example, nanoparticle (NP) challenge testing is commonly applied for assessing particle retention performance of filter membranes. Factors such as high NP size dispersity, low NP detection sensitivity, and high NP particle-filter affinity impose challenges in characterizing the next generation of nanoporous filter membranes. We report a novel bio-surrogate, 5 nm DNA-dendrimer conjugate for evaluating particle retention performance of nanoporous filter membranes. A technique capable of single molecule detection is employed to detect sparse concentration of conjugate in filter permeate, providing >1000- fold higher detection sensitivity than any existing 5 nm-sized particle enumeration technique. This bio-surrogate also offers narrow size distribution, high stability and chemical tunability. This bio-surrogate can discriminate various sub-15 nm pore-rated nanoporous filter membranes based on their particle retention performance. Due to high bio-surrogate detection sensitivity, a lower challenge concentration of bio-surrogate (as compared to other NPs of this size) can be used for filter testing, providing a better representation of customer applications. This new method should provide better understanding of the next generation filter membranes for removing defect-causing contaminants from lithography processes.

  17. Determining water sensitive card spread factors for real world tank mixes

    USDA-ARS?s Scientific Manuscript database

    The use of water sensitive cards provides a quick and easy method to sample the coverage and deposition from spray applications. Typically, this measure is limited to percent coverage as measures of droplet size, and thus deposition rate, are highly influenced by the stain diameter resulting from t...

  18. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.

    PubMed

    Hu, Linhua; Dai, Songyuan; Weng, Jian; Xiao, Shangfeng; Sui, Yifeng; Huang, Yang; Chen, Shuanghong; Kong, Fantai; Pan, Xu; Liang, Linyun; Wang, Kongjia

    2007-01-18

    The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group.

  19. Maximizing Sensitivity of the Psychomotor Vigilance Test (PVT) to Sleep Loss

    PubMed Central

    Basner, Mathias; Dinges, David F.

    2011-01-01

    Study Objectives: The psychomotor vigilance test (PVT) is among the most widely used measures of behavioral alertness, but there is large variation among published studies in PVT performance outcomes and test durations. To promote standardization of the PVT and increase its sensitivity and specificity to sleep loss, we determined PVT metrics and task durations that optimally discriminated sleep deprived subjects from alert subjects. Design: Repeated-measures experiments involving 10-min PVT assessments every 2 h across both acute total sleep deprivation (TSD) and 5 days of chronic partial sleep deprivation (PSD). Setting: Controlled laboratory environment. Participants: 74 healthy subjects (34 female), aged 22–45 years. Interventions: TSD experiment involving 33 h awake (N = 31 subjects) and a PSD experiment involving 5 nights of 4 h time in bed (N = 43 subjects). Measurements and Results: In a paired t-test paradigm and for both TSD and PSD, effect sizes of 10 different PVT performance outcomes were calculated. Effect sizes were high for both TSD (1.59–1.94) and PSD (0.88–1.21) for PVT metrics related to lapses and to measures of psychomotor speed, i.e., mean 1/RT (response time) and mean slowest 10% 1/RT. In contrast, PVT mean and median RT outcomes scored low to moderate effect sizes influenced by extreme values. Analyses facilitating only portions of the full 10-min PVT indicated that for some outcomes, high effect sizes could be achieved with PVT durations considerably shorter than 10 min, although metrics involving lapses seemed to profit from longer test durations in TSD. Conclusions: Due to their superior conceptual and statistical properties and high sensitivity to sleep deprivation, metrics involving response speed and lapses should be considered primary outcomes for the 10-min PVT. In contrast, PVT mean and median metrics, which are among the most widely used outcomes, should be avoided as primary measures of alertness. Our analyses also suggest that some shorter-duration PVT versions may be sensitive to sleep loss, depending on the outcome variable selected, although this will need to be confirmed in comparative analyses of separate duration versions of the PVT. Using both sensitive PVT metrics and optimal test durations maximizes the sensitivity of the PVT to sleep loss and therefore potentially decreases the sample size needed to detect the same neurobehavioral deficit. We propose criteria to better standardize the 10-min PVT and facilitate between-study comparisons and meta-analyses. Citation: Basner M; Dinges DF. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. SLEEP 2011;34(5):581-591. PMID:21532951

  20. Plasmonic hydrogen sensor based on integrated microring resonator

    NASA Astrophysics Data System (ADS)

    Yi, Ya Sha; Wu, Da Chuan

    2017-12-01

    We have proposed and demonstrated numerically an ultrasmall and highly sensitive plasmonic hydrogen sensor based on an integrated microring resonator, with a footprint size as small as 4×4 μm2. With a palladium (Pd) or platinum (Pt) hydrogen-sensitive layer coated on the inner surface of the microring resonator and the excitation of surface plasmon modes at the interface from the microring resonator waveguide, the device is highly sensitive to low hydrogen concentration variation, and the sensitivity is at least one order of magnitude larger than that of the optical fiber-based hydrogen sensor. We have also investigated the tradeoff between the portion coverage of the Pd/Pt layer and the sensitivity, as well as the width of the hydrogen-sensitive layer. This ultrasmall plasmonic hydrogen sensor holds promise for the realization of a highly compact sensor with integration capability for applications in hydrogen fuel economy.

  1. Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury

    NASA Astrophysics Data System (ADS)

    Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.

    2008-02-01

    Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.

  2. Creep of quartz by dislocation and grain boundary processes

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  3. Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.

    PubMed

    Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen

    2014-12-02

    A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.

  4. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    PubMed

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  5. Detection of briefly flashed sine-gratings in dark-adapted vision.

    PubMed

    Hofmann, M I; Barnes, C S; Hallett, P E

    1990-01-01

    Scotopic contrast sensitivity was measured near 20 deg retinal eccentricity for briefly flashed (10 or 20 msec) sine-wave gratings presented in darkness to dark-adapted subjects. For very low spatial frequencies (0.2-0.5 c/deg), curves of contrast sensitivity vs luminous energy show evidence of a low rod plateau and a high scotopic region, with an intervening transition at around -2 to -2.5 log scot td sec. Similar measurements made using long flashed or flickering gratings do not show a plateau. The results suggest that vision in the low rod region is impaired for brief flashes. For the briefly flashed stimuli, curves of contrast sensitivity versus spatial frequency in the low region were best fit by simple Gaussian functions with a variable centre size (sigma c = 0.5----0.25 deg), size decreasing with increasing flash energy. Difference-of-Gaussian functions with constant centre size (sigma c = 0.25 deg) provided the best fit in the high region. Overt input from the cones and grating area artefacts are excluded by appropriate tests. Calculation of photon flux into the receptive field centres suggests that signal compression in P alpha ganglion cells contributes to the low rod plateau.

  6. Hypoadiponectinemia, elevated iron and high-sensitivity C-reactive protein levels and their relation with prostate size in benign prostatic hyperplasia.

    PubMed

    Nandeesha, H; Eldhose, A; Dorairajan, L N; Anandhi, B

    2017-09-01

    Elevated iron, high-sensitivity C-reactive protein (CRP) and hypoadiponectinemia are known to initiate tumour development. There is paucity of data regarding the above-mentioned parameters and their relation with prostate size in benign prostatic hyperplasia (BPH). The present study was designed to assess the levels of iron, hs-CRP and adiponectin levels and their association with prostate size in BPH patients. A total of 37 BPH cases and 36 controls were enrolled in the study. Iron, hs-CRP and adiponectin were estimated in both the groups. Iron and hs-CRP were significantly increased and adiponectin was significantly reduced in BPH cases when compared with controls. Iron (r = .397, p = .015), hs-CRP (r = .341, p = .039) and adiponectin (r = -.464, p = .004) were significantly associated with prostate size in BPH cases. Multivariate linear regression analysis showed that iron acts as predictor of prostate size in BPH (R 2  = 0.395, β = 0.526, p = .001). We conclude that iron and hs-CRP are elevated and adiponectin is reduced in BPH cases and associated with prostate size. © 2016 Blackwell Verlag GmbH.

  7. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-01

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a

  8. Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae).

    PubMed

    Rodrigues-Junior, A G; Baskin, C C; Baskin, J M; Garcia, Q S

    2018-03-23

    Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY-breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity. Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy-breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated. Fresh seeds were insensitive to dormancy break at wet-high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction. Seeds of S. multijuga exhibit sensitivity cycling to PY-breaking. Seeds become sensitive during winter and can germinate with the onset of the spring-summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  9. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  10. Sibship size, sibling cognitive sensitivity, and children's receptive vocabulary.

    PubMed

    Prime, Heather; Pauker, Sharon; Plamondon, André; Perlman, Michal; Jenkins, Jennifer

    2014-02-01

    The aim of the current study was to examine the relationship between sibship size and children's vocabulary as a function of quality of sibling interactions. It was hypothesized that coming from a larger sibship (ie, 3+ children) would be related to lower receptive vocabulary in children. However, we expected this association to be moderated by the level of cognitive sensitivity shown by children's next-in-age older siblings. Data on 385 children (mean age = 3.15 years) and their next-in-age older siblings (mean age = 5.57 years) were collected and included demographic questionnaires, direct testing of children's receptive vocabulary, and videos of mother-child and sibling interactions. Sibling dyads were taped engaging in a cooperative building task and tapes were coded for the amount of cognitive sensitivity the older sibling exhibited toward the younger sibling. Hierarchical regression analyses were conducted and showed an interaction between sibship size and sibling cognitive sensitivity in the prediction of children's receptive vocabulary; children exposed to large sibships whose next-in-age older sibling exhibited higher levels of cognitive sensitivity were less likely to show low vocabulary skills when compared with those children exposed to large sibships whose siblings showed lower levels of cognitive sensitivity. Children who show sensitivity to the cognitive needs of their younger siblings provide a rich environment for language development. The negative impact of large sibships on language development is moderated by the presence of an older sibling who shows high cognitive sensitivity.

  11. Aptamer-functionalized nano-biosensors.

    PubMed

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  12. Fiber optic refractive index and magnetic field sensors based on microhole-induced inline Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei

    2018-04-01

    A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient  >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of  -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.

  13. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  14. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  15. A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Romo-Herrera, J. M.; González, A. L.; Guerrini, L.; Castiello, F. R.; Alonso-Nuñez, G.; Contreras, O. E.; Alvarez-Puebla, R. A.

    2016-03-01

    High and uniform near fields are localized at the eight similar sharp corners of cubic gold nanoparticles. Moreover, by introducing concavity in the particle lateral planes, such field intensities can be further increased and tuned in the near infrared region without altering the overall size of the nanoparticles. Herein, we perform a thorough investigation of the morphological, crystallographic and plasmonic properties of concave gold nanocubes (GNCs) in the sub-70 nm size range, for their potential application as highly efficient SERS substrates in size-limiting cases. Theoretical calculations indicate that the highest increment of the near-field is located at the eight sharp tips and, interestingly, a medium near-field increment is also activated over the volume next to the concave surface. Remarkably, the plasmonic response of the concave cubic morphology showed great sensitivity to the concavity degree. Experimental SERS analysis nicely matches the outcome of the theoretical model, confirming that medium-sized concave GNCs (35 nm side length) possess the highest SERS activity upon excitation with a 633 nm laser, whereas larger 61 nm side concave GNCs dominate the optical response at 785 nm. Due to their size-intensity trade off, we envision that such small concave gold nanocubes can provide a highly active and efficient SERS platform for size-limiting applications, especially when near infrared excitations are required.High and uniform near fields are localized at the eight similar sharp corners of cubic gold nanoparticles. Moreover, by introducing concavity in the particle lateral planes, such field intensities can be further increased and tuned in the near infrared region without altering the overall size of the nanoparticles. Herein, we perform a thorough investigation of the morphological, crystallographic and plasmonic properties of concave gold nanocubes (GNCs) in the sub-70 nm size range, for their potential application as highly efficient SERS substrates in size-limiting cases. Theoretical calculations indicate that the highest increment of the near-field is located at the eight sharp tips and, interestingly, a medium near-field increment is also activated over the volume next to the concave surface. Remarkably, the plasmonic response of the concave cubic morphology showed great sensitivity to the concavity degree. Experimental SERS analysis nicely matches the outcome of the theoretical model, confirming that medium-sized concave GNCs (35 nm side length) possess the highest SERS activity upon excitation with a 633 nm laser, whereas larger 61 nm side concave GNCs dominate the optical response at 785 nm. Due to their size-intensity trade off, we envision that such small concave gold nanocubes can provide a highly active and efficient SERS platform for size-limiting applications, especially when near infrared excitations are required. Electronic supplementary information (ESI) available: Nanoparticle size distribution analysis (Fig. SI-1); extended TEM analysis on nanocubes morphology (Fig. SI-2, SI-3 and SI-4); comparison of GNCs size and concavity degree (Fig. SI-4); optical response calculations using the curved edges model (Fig. SI-5); simulated optical absorption spectra as a function of the concavity depth (Fig. SI-6); background SERS spectrum (Fig. SI-8) and details on the calculation of the SERS enhancement factors. See DOI: 10.1039/c6nr01155a

  16. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  17. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe.

    PubMed

    Khansaritoreh, Elmira; Dulamsuren, Choimaa; Klinge, Michael; Ariunbaatar, Tumurbaatar; Bat-Enerel, Banzragch; Batsaikhan, Ganbaatar; Ganbaatar, Kherlenchimeg; Saindovdon, Davaadorj; Yeruult, Yolk; Tsogtbaatar, Jamsran; Tuya, Daramragchaa; Leuschner, Christoph; Hauck, Markus

    2017-09-01

    Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure. © 2017 John Wiley & Sons Ltd.

  18. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 06: Patient-specific QA Procedure for Gated VMAT SABR Treatments using 10x Beam in Flattening-Filter Free Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Chitsazzadeh, Shadi; Wells, Derek

    2016-08-15

    Purpose: To develop a highly sensitive patient specific QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: A platform was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside the ArcCheck. The Quasar phantom controller uses a patient-specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. With this system the ion chamber is used to QA the correct phase of the gated delivery and the ArcCheck diodes are used to QA the overall dose distribution. This novelmore » approach requires a single plan delivery for a complete QA of a gated plan. The sensitivity of the gating QA procedure was investigated with respect to the following parameters: PTV size, exhale duration, baseline drift, gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns is currently undergoing to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less

  19. An anionic Na(i)-organic framework platform: separation of organic dyes and post-modification for highly sensitive detection of picric acid.

    PubMed

    Chen, Di-Ming; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen; Chen, Min; Du, Miao

    2017-09-26

    A cage-based anionic Na(i)-organic framework with a unique Na 9 cluster-based secondary building unit and a cage-in-cage structure was constructed. The selective separation of dyes with different charges and sizes was investigated. Furthermore, the Rh6G@MOF composite could be applied as a recyclable fluorescent sensor for detecting picric acid (PA) with high sensitivity and selectivity.

  20. Felling and skidding productivity and harvesting cost in southern pine forests

    Treesearch

    R.A. Kluender; B.J. Stokes

    1996-01-01

    Sixteen stands were harvested at various levels of basal area removed (intensity). Chainsaw felling productivity was more sensitive to stem diameter than harvest intensity. Skidding productivity was highest when removing large trees at high intensity. Harvesting cost was more sensitive to stem size than harvest intensity, although harvest intensity was a very important...

  1. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    PubMed Central

    Lei, Qian; Xiao, Zhu; Wang, Mingpu

    2017-01-01

    Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C), while the precipitation nucleation was scarce in the low-temperature zone (<250 °C) and in the high-temperature zone (>400 °C). Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C), and corresponding time-temperature-property (TTP) curves of the studied alloy have been established. PMID:28925964

  2. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands. © 2014 John Wiley & Sons Ltd.

  3. The reduced local lymph node assay: the impact of group size.

    PubMed

    Ryan, Cindy A; Chaney, Joel G; Kern, Petra S; Patlewicz, Grace Y; Basketter, David A; Betts, Catherine J; Dearman, Rebecca J; Kimber, Ian; Gerberick, G Frank

    2008-05-01

    The local lymph node assay (LLNA) is a skin sensitization test that provides animal welfare benefits. To reduce animal usage further, a modified version (rLLNA) was proposed. Conducting the rLLNA as a screening test with a single high dose group and vehicle control differentiated accurately between skin sensitizers and non-sensitizers. This study examined whether a reduction in animal number/group is feasible. Historical data were utilized to examine the impact of conducting the rLLNA with two mice/group. To assess the effect on the stimulation index (SI) 41 datasets with individual animal data derived using five mice/group were analysed. SIs were calculated on all possible combinations of two control and two high dose group disintegrations per minute (dpm) values. For 25 of 33 sensitizer datasets, > 96% of possible dpm combinations resulted in a calculated SI > 3. The lowest percentages of positive SIs were observed with weak allergens when, in the standard LLNA, the mean SIs would have been nearer to the threshold value of 3. The results indicate that moderate, strong and extreme allergens are more likely than weak allergens to be identified as sensitizers when group sizes of two mice are used within the rLLNA. It is concluded that a rLLNA with two mice/group would display decreased sensitivity and is inappropriate for use in hazard identification. Copyright (c) 2007 John Wiley & Sons, Ltd.

  4. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  5. High-numerical-aperture-based virtual point detectors for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Wang, Lihong V.

    2008-07-01

    The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.

  6. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.

    PubMed

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-12-21

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  7. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    PubMed Central

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-01-01

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608

  8. Hollow glass microsphere-structured Fabry-Perot interferometric sensor for highly sensitive temperature measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Junna; Zhou, Ciming; Fan, Dian; Ou, Yiwen

    2017-04-01

    We propose and demonstrate a miniature Fabry-Perot (F-P) interferometric sensor based on a hollow glass microsphere (HGM) for highly sensitive temperature measurement. The sensor head is fabricated by sticking a HGM on the end face of a single-mode fiber, and it consists of a short air F-P cavity between the front and the rear surfaces of the HGM. A sensor with 135.7280-μm cavity length was tested for temperature measurement from -5 °C to 50 °C. The obtained sensitivity reached up to 24.5 pm/°C and the variation rate of the HGM- F-P's cavity length was2.1 nm/°C. The advantages of compact size, easy fabrication and low cost make the sensor suitable for highly sensitive temperature sensing.

  9. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Kashfuddoja, Mohammad; Prasath, R. G. R.; Ramji, M.

    2014-11-01

    In this work, the experimental characterization of polymer-matrix and polymer based carbon fiber reinforced composite laminate by employing a whole field non-contact digital image correlation (DIC) technique is presented. The properties are evaluated based on full field data obtained from DIC measurements by performing a series of tests as per ASTM standards. The evaluated properties are compared with the results obtained from conventional testing and analytical models and they are found to closely match. Further, sensitivity of DIC parameters on material properties is investigated and their optimum value is identified. It is found that the subset size has more influence on material properties as compared to step size and their predicted optimum value for the case of both matrix and composite material is found consistent with each other. The aspect ratio of region of interest (ROI) chosen for correlation should be the same as that of camera resolution aspect ratio for better correlation. Also, an open cutout panel made of the same composite laminate is taken into consideration to demonstrate the sensitivity of DIC parameters on predicting complex strain field surrounding the hole. It is observed that the strain field surrounding the hole is much more sensitive to step size rather than subset size. Lower step size produced highly pixilated strain field, showing sensitivity of local strain at the expense of computational time in addition with random scattered noisy pattern whereas higher step size mitigates the noisy pattern at the expense of losing the details present in data and even alters the natural trend of strain field leading to erroneous maximum strain locations. The subset size variation mainly presents a smoothing effect, eliminating noise from strain field while maintaining the details in the data without altering their natural trend. However, the increase in subset size significantly reduces the strain data at hole edge due to discontinuity in correlation. Also, the DIC results are compared with FEA prediction to ascertain the suitable value of DIC parameters towards better accuracy.

  10. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.

    2017-07-01

    Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.

  11. Molecular hydrodynamics of high explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belak, J.

    1994-11-01

    High explosives release mechanical energy through chemical reactions. Applications of high explosives are vast in the mining and military industries and are beginning to see more civilian applications such as the deployment of airbags in modern automobiles. One of the central issues surrounding explosive materials is decreasing their sensitivity, necessary for their safe handling, while maintaining a high yield. Many practical tests have been devised to determine the sensitivity of explosive materials to shock, to impact, to spark, and to friction. These tests have great value in determining yield and setting precautions for safe handling but tell little of themore » mechanisms of initiation. How is the mechanical energy of impact or friction transformed into the chemical excitation that initiates explosion? The answer is intimately related to the structure of the explosive material, the size and distribution of grains, the size and presence of open areas such as voids and gas bubbles, and inevitably the bonding between explosive molecules.« less

  12. Estimation of the sensitivity of the surveillance system for avian influenza in the western region of Cuba.

    PubMed

    Ferrer, Edyniesky; Calistri, Paolo; Fonseca, Osvaldo; Ippoliti, Carla; Alfonso, Pastor; Iannetti, Simona; Abeledo, María A; Fernández, Octavio; Percedo, María I; Pérez, Antonio

    2013-01-01

    Although avian influenza (AI) virus of H5 and H7 subtypes has the potential to mutate to a highly pathogenic form and cause very high mortalities in some poultry species, most AI infections in poultry are due to low pathogenic AI (LPAI). Hence serological surveys, coupled with passive surveillance activities, are essential to detect sub-clinical infections by LPAI viruses, H5 and H7 subtypes. However the proper planning of an active surveillance system should be based on a careful estimation of its performance. Therefore, the sensitivity of the active surveillance system for AI in the western region of Cuba was assessed by a stochastic model quantifying the probability of revealing at least one animal infected by H5 or H7 subtype. The diagnostic sensitivity of the haemagglutination inhibition assay and different levels of within-flock prevalence (5%, 12% and 30%) were considered. The sensitivity of the surveillance system was then assessed under five different samples size scenarios: testing 20, 30, 40, 50 or 60 animals in each flock. Poultry flock sites in the western region of Cuba with a size ranging from 10,000 to 335,000 birds were included in the study.

  13. Development of neutron measurement in high gamma field using new nuclear emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14more » MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)« less

  14. Photonic crystal nanofiber air-mode cavity with high Q-factor and high sensitivity for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan

    2018-01-01

    Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).

  15. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  16. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  17. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis

    PubMed Central

    Adnan, Tassha Hilda

    2016-01-01

    Sensitivity and specificity analysis is commonly used for screening and diagnostic tests. The main issue researchers face is to determine the sufficient sample sizes that are related with screening and diagnostic studies. Although the formula for sample size calculation is available but concerning majority of the researchers are not mathematicians or statisticians, hence, sample size calculation might not be easy for them. This review paper provides sample size tables with regards to sensitivity and specificity analysis. These tables were derived from formulation of sensitivity and specificity test using Power Analysis and Sample Size (PASS) software based on desired type I error, power and effect size. The approaches on how to use the tables were also discussed. PMID:27891446

  18. Design considerations for high-altitude, long-endurance, microwave-powered aircraft. M.S. Thesis - George Washington Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Q.

    1985-01-01

    The sizing and performance analyses have been conducted in the design of long-endurance, high-altitude airplanes. These airplanes receive power either continuously beamed from a phased array transmitter or intermittently beamed from a dish transmitter. Results are presented for the cases of flight in zero wind speed and nonzero wind speed. Sensitivity studies indicate that the vehicle size is relatively insensitive to changes in the transmitter size. Cost estimates were made using models that excluded the airplane cost. Using a reference payload, results obtained from array and dish configurations were compared. Comparisons showed savings in cost as well as smaller vehicle sizes when an array transmitter was used.

  19. Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): Influence of hydrology, nutrient composition, food resource availability and predation

    NASA Astrophysics Data System (ADS)

    Badosa, Anna; Boix, Dani; Brucet, Sandra; López-Flores, Rocío; Gascón, Stéphanie; Quintana, Xavier D.

    2007-01-01

    The influence of hydrology, nutrient composition, food resource availability and predation on zooplankton taxonomic and size diversity was analyzed in several shallow lagoons of a Mediterranean salt marsh (Baix Ter Wetlands, NE Iberian Peninsula). Taxonomic diversity correlated better with variables related to the trophic state, such as nutrient concentrations, whereas size diversity was more sensitive to fish predation. However, the fish predation influence on the size diversity was only significant when fishes reached high densities. Under low fish densities no predation effects were observed and the food resource availability (FR a) appeared to be more important in structuring the zooplankton community. Nevertheless, the two diversity indexes showed opposite responses to this factor. With increasing FR a the taxonomic diversity increased and the size diversity decreased. Neither taxonomic nor size diversity of the zooplankton community correlated with other physical or biotic factors such as hydrological variability or macroinvertebrate predation. The relationships found suggest that the size diversity is mainly related to biotic interactions, such as fish predation or inter/intraspecific competition, while the taxonomic diversity appears to be more sensitive to abiotic factors such as the nutrient composition.

  20. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  1. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  2. Sensitivity of Beam Parameters to a Station C Solenoid Scan on Axis II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Martin E.

    Magnet scans are a standard technique for determining beam parameters in accelerators. Beam parameters are inferred from spot size measurements using a model of the beam optics. The sensitivity of the measured beam spot size to the beam parameters is investigated for typical DARHT Axis II beam energies and currents. In a typical S4 solenoid scan, the downstream transport is tuned to achieve a round beam at Station C with an envelope radius of about 1.5 cm with a very small divergence with S4 off. The typical beam energy and current are 16.0 MeV and 1.625 kA. Figures 1-3 showmore » the sensitivity of the bean size at Station C to the emittance, initial radius and initial angle respectively. To better understand the relative sensitivity of the beam size to the emittance, initial radius and initial angle, linear regressions were performed for each parameter as a function of the S4 setting. The results are shown in Figure 4. The measured slope was scaled to have a maximum value of 1 in order to present the relative sensitivities in a single plot. Figure 4 clearly shows the beam size at the minimum of the S4 scan is most sensitive to emittance and relatively insensitive to initial radius and angle as expected. The beam emittance is also very sensitive to the beam size of the converging beam and becomes insensitive to the beam size of the diverging beam. Measurements of the beam size of the diverging beam provide the greatest sensitivity to the initial beam radius and to a lesser extent the initial beam angle. The converging beam size is initially very sensitive to the emittance and initial angle at low S4 currents. As the S4 current is increased the sensitivity to the emittance remains strong while the sensitivity to the initial angle diminishes.« less

  3. Hot electron induced NIR detection in CdS films.

    PubMed

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-03-11

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.

  4. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  5. High-speed spectral nanocytology for early cancer screening

    PubMed Central

    Subramanian, Hariharan; Maneval, Charles D.; White, Craig A.; Levenson, Richard M.; Backman, Vadim

    2013-01-01

    Abstract. High-throughput partial wave spectroscopy (HTPWS) is introduced as a high-speed spectral nanocytology technique that utilizes the field effect of carcinogenesis to perform minimally invasive cancer screening on at-risk populations. HTPWS uses fully automated hardware and an acousto-optic tunable filter to scan slides at low magnification, to select cells, and to rapidly acquire spectra at each spatial pixel in a cell between 450 and 700 nm, completing measurements of 30 cells in 40 min. Statistical quantitative analysis on the size and density of intracellular nanostructures extracted from the spectra at each pixel in a cell yields the diagnostic biomarker, disorder strength (Ld). Linear correlation between Ld and the length scale of nanostructures was measured in phantoms with R2=0.93. Diagnostic sensitivity was demonstrated by measuring significantly higher Ld from a human colon cancer cell line (HT29 control vector) than a less aggressive variant (epidermal growth factor receptor knockdown). Clinical diagnostic performance for lung cancer screening was tested on 23 patients, yielding a significant difference in Ld between smokers and cancer patients, p=0.02 and effect size=1.00. The high-throughput performance, nanoscale sensitivity, and diagnostic sensitivity make HTPWS a potentially clinically relevant modality for risk stratification of the large populations at risk of developing cancer. PMID:24193949

  6. Sensitivity to detect change and the correlation of clinical factors with the Hamilton Depression Rating Scale and the Beck Depression Inventory in depressed inpatients.

    PubMed

    Schneibel, Rebecca; Brakemeier, Eva-Lotta; Wilbertz, Gregor; Dykierek, Petra; Zobel, Ingo; Schramm, Elisabeth

    2012-06-30

    Discrepancies between scores on the Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI), as well as differences regarding their sensitivity to detect change, have been reported. This study investigates discrepancies and their potential prediction on the basis of demographic, personality, and clinical factors in depressed inpatients and analyzes the sensitivity to change. The HAMD and the BDI were administered to 105 inpatients with major depressive disorder randomized to 5 weeks of either interpersonal psychotherapy or clinical management. Personality was assessed with the NEO Five-Factor Inventory. Low extraversion and high neuroticism were associated with relatively higher endorsement of depressive symptoms on the BDI compared with the HAMD. The HAMD presented a greater reduction of symptom scores than the BDI. Patients with high BDI scores, high HAMD scores or both revealed the greatest change, possibly due to a statistical effect of regression to the mean. Restricted by sample size, analyses were not differentiated by treatment condition. Regression to the mean cannot be tested directly, but it might be considered as a possible explanation. The HAMD and the BDI should be regarded as two complementary rather than redundant or competing instruments as the discrepancy is associated with personality characteristics. Attributing large effect sizes solely to effective treatment and a sensitive measure may be misleading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model.

    PubMed

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-21

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.

  8. Numerical investigation on the Ångström exponent of black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Li, Ji; Liu, Chao; Yin, Yan; Kumar, K. Raghavendra

    2016-04-01

    Black carbon (BC) plays an important role on the global and regional climate, whereas there are significant uncertainties on its optical properties. Among various optical properties, the Ångström exponent (AE) indicates the spectral variation of the particle-optic interaction and is widely used to understand the aerosol properties. We consider the influence of BC geometry on its optical properties and assess the sensitivity of the AE to particle geometry and size distribution. The fractal aggregates with different fractal dimensions are used to represent realistic BC particles, and popular equivalent volume spherical and spheroidal models are also considered for comparison. Even if the fractal aggregates become highly compact and spherical, their optical properties are still significantly different from those of equivalent volume spheres or spheroids. Meanwhile, the Rayleigh-Debye-Gans approximation can hardly provide accurate results for all optical quantities of aggregates with different dimensions. The extinction Ångström exponent (EAE) and absorption Ångström exponent (AAE) are sensitive to both particle geometry and size distribution. With BC becoming more compact (from fractal aggregate to spheroid and to sphere), the AE becomes more sensitive to particle size distribution. The EAE and AAE of aggregates with different size distributions vary between 1.10-1.63 and 0.87-1.50, respectively, whereas those of the spheres or spheroids have wider ranges. Furthermore, the AE at smaller wavelengths (between 0.35 µm and 0.55 µm) is more sensitive to geometry and size distribution than that given by optical properties at larger wavelengths (between 0.55 µm and 0.88 µm).

  9. Performance of terahertz metamaterials as high-sensitivity sensor

    NASA Astrophysics Data System (ADS)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  10. Refractive index sensor based on lateral-offset of coreless silica interferometer

    NASA Astrophysics Data System (ADS)

    Baharin, Nur Faizzah; Azmi, Asrul Izam; Abdullah, Ahmad Sharmi; Mohd Noor, Muhammad Yusof

    2018-02-01

    A compact, cost-effective and high sensitivity fiber interferometer refractive index (RI) sensor based on symmetrical offset coreless silica fiber (CSF) configuration is proposed, optimized and demonstrated. The sensor is formed by splicing a section of CSF between two CSF sections in an offset manner. Thus, two distinct optical paths are created with large index difference, the first path through the connecting CSF sections and the second path is outside the CSF through the surrounding media. RI sensing is established from direct interaction of light with surrounding media, hence high sensitivity can be achieved with a relatively compact sensor length. In the experimental work, a 1.5 mm sensor demonstrates RI sensitivity of 750 nm/RIU for RI range between 1.33 and 1.345. With the main attributes of high sensitivity and compact size, the proposed sensor can be further developed for related applications including blood diagnosis, water quality control and food industries.

  11. Long-term reproducibility of relative sensitivity factors obtained with CAMECA Wf

    NASA Astrophysics Data System (ADS)

    Gui, D.; Xing, Z. X.; Huang, Y. H.; Mo, Z. Q.; Hua, Y. N.; Zhao, S. P.; Cha, L. Z.

    2008-12-01

    As the wafer size continues to increase and the feature size of the integrated circuits (IC) continues to shrink, process control of IC manufacturing becomes ever more important to reduce the cost of failures caused by the drift of processes or equipments. Characterization tools with high precision and reproducibility are required to capture any abnormality of the process. Although Secondary ion mass spectrometry (SIMS) has been widely used in dopant profile control, it was reported that magnetic sector SIMS, compared to quadrupole SIMS, has lower short-term repeatability and long-term reproducibility due to the high extraction field applied between sample and extraction lens. In this paper, we demonstrate that CAMECA Wf can deliver high long-term reproducibility because of its high-level automation and improved design of immersion lens. The relative standard deviation (R.S.D.) of the relative sensitivity factors (RSF) of three typical elements, i.e., boron (B), phosphorous (P) and nitrogen (N), over 3 years are 3.7%, 5.5% and 4.1%, respectively. The high reproducibility results have a practical implication that deviation can be estimated without testing the standards.

  12. Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.

    2018-03-01

    The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.

  13. [The construction of cell-penetrating peptide R8 and pH sensitive cleavable polyethylene glycols co-modified liposomes].

    PubMed

    Zhang, Li; Wang, Yang; Gao, Hui-le; He, Qin

    2015-06-01

    The purpose of the study is to construct R8 peptide (RRRRRRRR) and pH sensitive polyethylene glycols (PEG) co-modified liposomes (Cl-Lip) and utilize them in breast cancer treatment. The co-modified liposomes were prepared with soybean phospholipid, cholesterol, DSPE-PEG2K-R8 and PEG5K-Hz-PE (pH sensitive PEG). The size and zeta potential of Cl-Lip were also characterized. The in vitro experiment demonstrated that the Cl-Lip had high serum stability in 50% fetal bovine serum. The cellular uptake of Cl-Lip under different pre-incubated conditions was evaluated on 4T1 cells. And the endocytosis pathway, lysosome escape ability and tumor spheroid penetration ability were also evaluated. The results showed the particle size of the Cl-Lip was (110.4 ± 5.2) nm, PDI of the Cl-Lip was 0.207 ± 0.039 and zeta potential of the Cl-Lip was (-3.46 ± 0.05) mV. The cellular uptake of Cl-Lip on 4T1 cells was pH sensitive, as the cellular uptake of Cl-Lip pre-incubated in pH 6.0 was higher than that of pH 7.4 under each time point. The main endocytosis pathways of Cl-Lip under pH 6.0 were micropinocytosis and energy-dependent pathway. At the same time, the Cl-Lip with pre-incubation in pH 6.0 had high lysosome escape ability and high tumor spheroid penetration ability. All the above results demonstrated that the Cl-Lip we constructed had high pH sensitivity and is a promising drug delivery system.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less

  16. Breast cancer tumour growth modelling for studying the association of body size with tumour growth rate and symptomatic detection using case-control data.

    PubMed

    Abrahamsson, Linda; Czene, Kamila; Hall, Per; Humphreys, Keith

    2015-08-21

    A large body size is associated with larger breast cancer tumours at diagnosis. Standard regression models for tumour size at diagnosis are not sufficient for unravelling the mechanisms behind the association. Using Swedish case-control data, we identified 1352 postmenopausal women with incident invasive breast cancer diagnosed between 1993 and 1995. We used a novel continuous tumour growth model, which models tumour sizes at diagnosis through three submodels: for tumour growth, time to symptomatic detection, and screening sensitivity. Tumour size at other time points is thought of as a latent variable. We quantified the relationship between body size with tumour growth and time to symptomatic detection. High body mass index and large breast size are, respectively, significantly associated with fast tumour growth rate and delayed time to symptomatic detection (combined P value = 5.0 × 10(-5) and individual P values = 0.089 and 0.022). We also quantified the role of mammographic density in screening sensitivity. The times at which tumours will be symptomatically detected may vary substantially between women with different breast sizes. The proposed tumour growth model represents a novel and useful approach for quantifying the effects of breast cancer risk factors on tumour growth and detection.

  17. Grain size-sensitive viscoelastic relaxation and seismic properties of polycrystalline MgO

    NASA Astrophysics Data System (ADS)

    Barnhoorn, A.; Jackson, I.; Fitz Gerald, J. D.; Kishimoto, A.; Itatani, K.

    2016-07-01

    Torsional forced-oscillation experiments on a suite of synthetic MgO polycrystals, of high-purity and average grain sizes of 1-100 µm, reveal strongly viscoelastic behavior at temperatures of 800-1300°C and periods between 1 and 1000 s. The measured shear modulus and associated strain energy dissipation both display monotonic variations with oscillation period, temperature, and grain size. The data for the specimens of intermediate grain size have been fitted to a generalized Burgers creep function model that is also broadly consistent with the results for the most coarse-grained specimen. The mild grain size sensitivity for the relaxation time τL, defining the lower end of the anelastic absorption band, is consistent with the onset of elastically accommodated grain boundary sliding. The upper end of the anelastic absorption band, evident in the highest-temperature data for one specimen only, is associated with the Maxwell relaxation time τM marking the transition toward viscous behavior, conventionally ascribed a stronger grain size sensitivity. Similarly pronounced viscoelastic behavior was observed in complementary torsional microcreep tests, which confirm that the nonelastic strains are mainly recoverable, i.e., anelastic. With an estimated activation volume for the viscoelastic relaxation, the experimentally constrained Burgers model has been extrapolated to the conditions of pressure and temperature prevailing in the Earth's uppermost lower mantle. For a plausible grain size of 10 mm, the predicted dissipation Q-1 ranges from 10-3 to 10-2 for periods of 3-3000 s. Broad consistency with seismological observations suggests that the lower mantle ferropericlase phase might account for much of its observed attenuation.

  18. Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.

    1983-01-01

    The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.

  19. Masticatory and cervical muscle tenderness and pain sensitivity in a remote area in subjects with a temporomandibular disorder and neck disability.

    PubMed

    Silveira, Anelise; Armijo-Olivo, Susan; Gadotti, Inae C; Magee, David

    2014-01-01

    To compare the masticatory and cervical muscle tenderness and pain sensitivity in the hand (remote region) between patients with temporomandibular disorders (TMD) and healthy controls. Twenty female subjects were diagnosed with chronic TMD, and 20 were considered healthy. Subjects completed the Neck Disability Index and Limitations of Daily Functions in a TMD questionnaire. Tenderness of the masticatory and cervical muscles and pain sensitivity in the hand were measured using an algometer. Three-way mixed analysis of variance (ANOVA) evaluated differences in muscle tenderness between groups. One-way ANOVA compared pain sensitivity in the hand between groups. Effect sizes were assessed using Cohen guidelines. Significantly increased masticatory and cervical muscle tenderness and pain sensitivity in the hand were found in subjects with TMD when compared with healthy subjects. Moderate to high effect sizes showed the clinical relevance of the findings. The results of this study have highlighted the importance of assessing TMD patients not only in the craniofacial region but also in the neck and other parts of the body. Future studies should focus on testing the effectiveness of treatments addressing the neck and the pain sensitivity in the hand in patients with TMD.

  20. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  1. Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests

    PubMed Central

    Duncanson, L.; Rourke, O.; Dubayah, R.

    2015-01-01

    Accurate quantification of forest carbon stocks is required for constraining the global carbon cycle and its impacts on climate. The accuracies of forest biomass maps are inherently dependent on the accuracy of the field biomass estimates used to calibrate models, which are generated with allometric equations. Here, we provide a quantitative assessment of the sensitivity of allometric parameters to sample size in temperate forests, focusing on the allometric relationship between tree height and crown radius. We use LiDAR remote sensing to isolate between 10,000 to more than 1,000,000 tree height and crown radius measurements per site in six U.S. forests. We find that fitted allometric parameters are highly sensitive to sample size, producing systematic overestimates of height. We extend our analysis to biomass through the application of empirical relationships from the literature, and show that given the small sample sizes used in common allometric equations for biomass, the average site-level biomass bias is ~+70% with a standard deviation of 71%, ranging from −4% to +193%. These findings underscore the importance of increasing the sample sizes used for allometric equation generation. PMID:26598233

  2. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels.

    PubMed

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-06-17

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.

  3. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels

    PubMed Central

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-01-01

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072

  4. The effect of defect cluster size and interpolation on radiographic image quality

    NASA Astrophysics Data System (ADS)

    Töpfer, Karin; Yip, Kwok L.

    2011-03-01

    For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.

  5. SU-G-BRB-07: Developing a QA Procedure for Gated VMAT SABR Treatments Using 10 MV Beam in Flattening-Filter Free Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitsazzadeh, S; Wells, D; Mestrovic, A

    2016-06-15

    Purpose: To develop a QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: An interface was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside an ArcCheck diode array. The Quasar phantom controller used a patient specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. An amplitude-based RPM tracking system was specified to turn the beam on during the exhale phase of the breathing pattern. SABR plans were developed using Eclipse for liver PTVs ranging in sizemore » from 3-12 cm in diameter using a 2-arc VMAT technique. Dose was measured in the middle of the penumbra region, where the high dose gradient allowed for sensitive detection of any inaccuracies in gated dose delivery. The overall fidelity of the dose distribution was confirmed using ArcCheck. The sensitivity of the gating QA procedure was investigated with respect to the following four parameters: PTV size, duration of exhale, baseline drift, and gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns will be required to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less

  6. Reduced size first-order subsonic and supersonic aeroelastic modeling

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.

  7. High resolution laboratory grating-based x-ray phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.

  8. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    DOE PAGES

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  9. Adaptive interference cancel filter for evoked potential using high-order cumulants.

    PubMed

    Lin, Bor-Shyh; Lin, Bor-Shing; Chong, Fok-Ching; Lai, Feipei

    2004-01-01

    This paper is to present evoked potential (EP) processing using adaptive interference cancel (AIC) filter with second and high order cumulants. In conventional ensemble averaging method, people have to conduct repetitively experiments to record the required data. Recently, the use of AIC structure with second statistics in processing EP has proved more efficiency than traditional averaging method, but it is sensitive to both of the reference signal statistics and the choice of step size. Thus, we proposed higher order statistics-based AIC method to improve these disadvantages. This study was experimented in somatosensory EP corrupted with EEG. Gradient type algorithm is used in AIC method. Comparisons with AIC filter on second, third, fourth order statistics are also presented in this paper. We observed that AIC filter with third order statistics has better convergent performance for EP processing and is not sensitive to the selection of step size and reference input.

  10. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    NASA Astrophysics Data System (ADS)

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-11-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields.

  11. Place your bets: psychophysiological correlates of decision-making under risk.

    PubMed

    Studer, Bettina; Clark, Luke

    2011-06-01

    Emotions and their psychophysiological correlates are thought to play an important role in decision-making under risk. We used a novel gambling task to measure psychophysiological responses during selection of explicitly presented risky options and feedback processing. Active-choice trials, in which the participant had to select the size of bet, were compared to fixed-bet, no-choice trials. We further tested how the chances of winning and bet size affected choice behavior and psychophysiological arousal. Individual differences in impulsive and risk-taking traits were assessed. The behavioral results showed sensitivity to the choice requirement and to the chances of winning: Participants were faster to make a response on no-choice trials and when the chances of winning were high. In active-choice trials, electrodermal activity (EDA) increased with bet size during both selection and processing of losses. Cardiac responses were sensitive to choice uncertainty: Stronger selection-related heart rate (HR) decelerations were observed in trials with lower chances of winning, particularly on active-choice trials. Finally, betting behavior and psychophysiological responsiveness were moderately correlated with self-reported impulsivity-related traits. In conclusion, we demonstrate that psychophysiological arousal covaries with risk-sensitive decision-making outside of a learning context. Our results further highlight the differential sensitivities of EDA and HR to psychological features of the decision scenario.

  12. Hydrothermal growth of highly monodispersed TiO2 nanoparticles: Functional properties and dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Navaneethan, M.; Nithiananth, S.; Abinaya, R.; Harish, S.; Archana, J.; Sudha, L.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y.

    2017-10-01

    Monodispersed anatase TiO2 nanoparticles were synthesized by hydrothermal method using citric acid as a capping agent. The effect of citric acid and the growth time on the formation of TiO2, functional properties and dye-sensitized solar cell performances were investigated. X-ray diffraction pattern (XRD) and Raman spectroscopy results revealed that the TiO2 nanoparticles possess the anatase phase. Transmission electron microscopy (TEM) measurement revealed the formation of spherical nanoparticles with monodispersity in size and morphology. An average size of 14 nm was obtained for the growth period of 15 h. The maximum efficiency (η) of dye-sensitized solar cell was achieved for TiO2 nanoparticles grown for 15 h as 7.66% which was higher than that of commercial P25 TiO2 (5.23%) and uncapped nanoparticles (3.68%).

  13. Improving and Understanding Climate Models: Scale-Aware Parameterization of Cloud Water Inhomogeneity and Sensitivity of MJO Simulation to Physical Parameters in a Convection Scheme

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Microphysics and convection parameterizations are two key components in a climate model to simulate realistic climatology and variability of cloud distribution and the cycles of energy and water. When a model has varying grid size or simulations have to be run with different resolutions, scale-aware parameterization is desirable so that we do not have to tune model parameters tailored to a particular grid size. The subgrid variability of cloud hydrometers is known to impact microphysics processes in climate models and is found to highly depend on spatial scale. A scale- aware liquid cloud subgrid variability parameterization is derived and implemented in the Community Earth System Model (CESM) in this study using long-term radar-based ground measurements from the Atmospheric Radiation Measurement (ARM) program. When used in the default CESM1 with the finite-volume dynamic core where a constant liquid inhomogeneity parameter was assumed, the newly developed parameterization reduces the cloud inhomogeneity in high latitudes and increases it in low latitudes. This is due to both the smaller grid size in high latitudes, and larger grid size in low latitudes in the longitude-latitude grid setting of CESM as well as the variation of the stability of the atmosphere. The single column model and general circulation model (GCM) sensitivity experiments show that the new parameterization increases the cloud liquid water path in polar regions and decreases it in low latitudes. Current CESM1 simulation suffers from the bias of both the pacific double ITCZ precipitation and weak Madden-Julian oscillation (MJO). Previous studies show that convective parameterization with multiple plumes may have the capability to alleviate such biases in a more uniform and physical way. A multiple-plume mass flux convective parameterization is used in Community Atmospheric Model (CAM) to investigate the sensitivity of MJO simulations. We show that MJO simulation is sensitive to entrainment rate specification. We found that shallow plumes can generate and sustain the MJO propagation in the model.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xuenan; Zhang Yundong; Tian He

    We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less

  15. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parametersmore » and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.« less

  16. Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils

    NASA Astrophysics Data System (ADS)

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou

    2013-09-01

    High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.

  17. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. D.; Jogler, T.; Dumm, J.

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  18. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  19. Fines classification based on sensitivity to pore-fluid chemistry

    USGS Publications Warehouse

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  20. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography.

    PubMed

    Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja

    2016-01-01

    To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  1. Test–Retest Reproducibility of the Microperimeter MP3 With Fundus Image Tracking in Healthy Subjects and Patients With Macular Disease

    PubMed Central

    Palkovits, Stefan; Hirnschall, Nino; Georgiev, Stefan; Leisser, Christoph

    2018-01-01

    Purpose To evaluate the test–retest reproducibility of a novel microperimeter with fundus image tracking (MP3, Nidek Co, Japan) in healthy subjects and patients with macular disease. Methods Ten healthy subjects and 20 patients suffering from range of macular diseases were included. After training measurements, two additional microperimetry measurements were scheduled. Test–retest reproducibility was assessed for mean retinal sensitivity, pointwise sensitivity, and deep scotoma size using the coefficient of repeatability and Bland-Altman diagrams. In addition, in a subgroup of patients microperimetry was compared with conventional perimetry. Results Average differences in mean retinal sensitivity between the two study measurements were 0.26 ± 1.7 dB (median 0 dB; interquartile range [IQR] −1 to 1) for the healthy and 0.36 ± 2.5 dB (median 0 dB; IQR −1 to 2) for the macular patient group. Coefficients of repeatability for mean retinal sensitivity and pointwise retinal sensitivity were 1.2 and 3.3 dB for the healthy subjects and 1.6 and 5.0 dB for the macular disease patients, respectively. Absolute agreement in deep scotoma size between both study days was found in 79.9% of the test loci. Conclusion The microperimeter MP3 shows an adequate test–retest reproducibility for mean retinal sensitivity, pointwise retinal sensitivity, and deep scotoma size in healthy subjects and patients suffering from macular disease. Furthermore, reproducibility of microperimetry is higher than conventional perimetry. Translational Relevance Reproducibility is an important measure for each diagnostic device. Especially in a clinical setting high reproducibility set the basis to achieve reliable results using the specific device. Therefore, assessment of the reproducibility is of eminent importance to interpret the findings of future studies. PMID:29430338

  2. Test-Retest Reproducibility of the Microperimeter MP3 With Fundus Image Tracking in Healthy Subjects and Patients With Macular Disease.

    PubMed

    Palkovits, Stefan; Hirnschall, Nino; Georgiev, Stefan; Leisser, Christoph; Findl, Oliver

    2018-02-01

    To evaluate the test-retest reproducibility of a novel microperimeter with fundus image tracking (MP3, Nidek Co, Japan) in healthy subjects and patients with macular disease. Ten healthy subjects and 20 patients suffering from range of macular diseases were included. After training measurements, two additional microperimetry measurements were scheduled. Test-retest reproducibility was assessed for mean retinal sensitivity, pointwise sensitivity, and deep scotoma size using the coefficient of repeatability and Bland-Altman diagrams. In addition, in a subgroup of patients microperimetry was compared with conventional perimetry. Average differences in mean retinal sensitivity between the two study measurements were 0.26 ± 1.7 dB (median 0 dB; interquartile range [IQR] -1 to 1) for the healthy and 0.36 ± 2.5 dB (median 0 dB; IQR -1 to 2) for the macular patient group. Coefficients of repeatability for mean retinal sensitivity and pointwise retinal sensitivity were 1.2 and 3.3 dB for the healthy subjects and 1.6 and 5.0 dB for the macular disease patients, respectively. Absolute agreement in deep scotoma size between both study days was found in 79.9% of the test loci. The microperimeter MP3 shows an adequate test-retest reproducibility for mean retinal sensitivity, pointwise retinal sensitivity, and deep scotoma size in healthy subjects and patients suffering from macular disease. Furthermore, reproducibility of microperimetry is higher than conventional perimetry. Reproducibility is an important measure for each diagnostic device. Especially in a clinical setting high reproducibility set the basis to achieve reliable results using the specific device. Therefore, assessment of the reproducibility is of eminent importance to interpret the findings of future studies.

  3. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  4. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study

    PubMed Central

    Le Strat, Yann

    2017-01-01

    The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489

  5. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  6. Regional body fat distribution and metabolic profile in postmenopausal women.

    PubMed

    Piché, Marie-Eve; Lapointe, Annie; Weisnagel, S John; Corneau, Louise; Nadeau, André; Bergeron, Jean; Lemieux, Simone

    2008-08-01

    The aim of the study was to examine how body fat distribution variables were associated with metabolic parameters in a sample of 113 postmenopausal women not receiving hormone therapy (56.9 +/- 4.4 years, 28.4 +/- 5.1 kg/m(2)). Body fat distribution variables (visceral adipose tissue [AT], subcutaneous AT, and total midthigh AT) were measured using computed tomography; body fat mass was assessed by hydrostatic weighing; insulin sensitivity was determined with the euglycemic-hyperinsulinemic clamp; fasting plasma glucose (FPG) and 2-hour plasma glucose (2hPG) concentrations were measured by a 75-g oral glucose load; and (high-sensitivity) C-reactive protein (hs-CRP) was measured using a highly sensitive assay. After controlling for fat mass, visceral AT was positively associated with plasma triglyceride, hs-CRP, FPG, and 2hPG, and negatively associated with high-density lipoprotein cholesterol (HDL-C) and insulin sensitivity. Total midthigh AT was negatively associated with apolipoprotein B, FPG, and 2hPG, and positively associated with insulin sensitivity. Stepwise multiple regression analyses including abdominal visceral AT, subcutaneous AT and total midthigh AT as independent variables showed that abdominal visceral AT best predicted the variance in plasma triglyceride, HDL-C, low-density lipoprotein peak particle size, hs-CRP, FPG, 2hPG, and insulin sensitivity. Abdominal subcutaneous AT was a significant predictor of only insulin sensitivity, whereas total midthigh AT predicted HDL-C, low-density lipoprotein peak particle size, and apolipoprotein B. These multivariate analyses also indicated that total midthigh AT was favorably related to these outcomes, whereas abdominal visceral AT and subcutaneous AT were unfavorably related. These results confirmed that abdominal visceral fat is a critical correlate of metabolic parameters in postmenopausal women. In addition, a higher proportion of AT located in the total midthigh depot is associated with a favorable metabolic profile.

  7. On-Chip, Amplification-Free Quantification of Nucleic Acid for Point-of-Care Diagnosis

    NASA Astrophysics Data System (ADS)

    Yen, Tony Minghung

    This dissertation demonstrates three physical device concepts to overcome limitations in point-of-care quantification of nucleic acids. Enabling sensitive, high throughput nucleic acid quantification on a chip, outside of hospital and centralized laboratory setting, is crucial for improving pathogen detection and cancer diagnosis and prognosis. Among existing platforms, microarray have the advantages of being amplification free, low instrument cost, and high throughput, but are generally less sensitive compared to sequencing and PCR assays. To bridge this performance gap, this dissertation presents theoretical and experimental progress to develop a platform nucleic acid quantification technology that is drastically more sensitive than current microarrays while compatible with microarray architecture. The first device concept explores on-chip nucleic acid enrichment by natural evaporation of nucleic acid solution droplet. Using a micro-patterned super-hydrophobic black silicon array device, evaporative enrichment is coupled with nano-liter droplet self-assembly workflow to produce a 50 aM concentration sensitivity, 6 orders of dynamic range, and rapid hybridization time at under 5 minutes. The second device concept focuses on improving target copy number sensitivity, instead of concentration sensitivity. A comprehensive microarray physical model taking into account of molecular transport, electrostatic intermolecular interactions, and reaction kinetics is considered to guide device optimization. Device pattern size and target copy number are optimized based on model prediction to achieve maximal hybridization efficiency. At a 100-mum pattern size, a quantum leap in detection limit of 570 copies is achieved using black silicon array device with self-assembled pico-liter droplet workflow. Despite its merits, evaporative enrichment on black silicon device suffers from coffee-ring effect at 100-mum pattern size, and thus not compatible with clinical patient samples. The third device concept utilizes an integrated optomechanical laser system and a Cytop microarray device to reverse coffee-ring effect during evaporative enrichment at 100-mum pattern size. This method, named "laser-induced differential evaporation" is expected to enable 570 copies detection limit for clinical samples in near future. While the work is ongoing as of the writing of this dissertation, a clear research plan is in place to implement this method on microarray platform toward clinical sample testing for disease applications and future commercialization.

  8. Comparison between SAGE II and ISCCP high-level clouds. 1: Global and zonal mean cloud amounts

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.

  9. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain

    NASA Astrophysics Data System (ADS)

    Paul, D.; Biswas, R.

    2018-05-01

    We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).

  10. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Stimac, Robert M. (Inventor); Kaye, William J (Inventor)

    2017-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.

  11. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  12. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2015-07-01

    Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.

  13. Specific Features in Measuring Particle Size Distributions in Highly Disperse Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Zagaynov, V. A.; Vasyanovich, M. E.; Maksimenko, V. V.; Lushnikov, A. A.; Biryukov, Yu. G.; Agranovskii, I. E.

    2018-06-01

    The distribution of highly dispersed aerosols is studied. Particular attention is given to the diffusion dynamic approach, as it is the best way to determine particle size distribution. It shown that the problem can be divided into two steps: directly measuring particle penetration through diffusion batteries and solving the inverse problem (obtaining a size distribution from the measured penetrations). No reliable way of solving the so-called inverse problem is found, but it can be done by introducing a parametrized size distribution (i.e., a gamma distribution). The integral equation is therefore reduced to a system of nonlinear equations that can be solved by elementary mathematical means. Further development of the method requires an increase in sensitivity (i.e., measuring the dimensions of molecular clusters with radioactive sources, along with the activity of diffusion battery screens).

  14. CT colonography of colorectal polyps: a metaanalysis.

    PubMed

    Sosna, Jacob; Morrin, Martina M; Kruskal, Jonathan B; Lavin, Philip T; Rosen, Max P; Raptopoulos, Vassilios

    2003-12-01

    For proper evaluation of the accuracy of CT colonography, prospective multiinstitutional trials would be ideal. Until these trials are available, data can be collectively analyzed. The purpose of this study is to use metaanalysis to assess the reported accuracy of CT colonography compared with conventional colonoscopy for detecting colorectal polyps. Articles comparing CT colonography and conventional colonoscopy were identified, and a standardized form was used to extract relevant study data. Fisher's exact test and the Mantel-Haenszel test were used for pooling of data. A 95% confidence interval (CI) was selected to determine sensitivity and specificity, and the Kruskal-Wallis exact test was used to identify trends relating to polyp size. Meta-analysis methods were used to test strength of results. Comparisons were made for the percentage of polyps detected grouped by size (> or = 10 mm, 6-9 mm, < or = 5 mm) and the percentage of patients identified who had polyps of the same size. Fourteen studies fulfilled all the study inclusion criteria and gave a total of 1,324 patients and 1,411 polyps. The pooled per-patient sensitivity for polyps 10 mm or larger was (sensitivity [95% CI]) 0.88 (0.84-0.93), for polyps 6-9 mm it was 0.84 (0.80-0.89), and for polyps 5 mm or smaller it was 0.65 (0.57-0.73). The pooled per-polyp sensitivity for polyps 10 mm or larger was 0.81 (0.76-0.85), for polyps 6-9 mm it was 0.62 (0.58-0.67), and for polyps 5 mm or smaller it was 0.43 (0.39-0.47). Sensitivity for detection of polyps increased as the polyp size increased (p < 0.00005). The pooled overall specificity for detection of polyps larger than 10 mm was 0.95 (0.94-0.97). The specificity and sensitivity of CT colonography are high for polyps larger than 10 mm.

  15. Phase transition behavior of novel pH-sensitive polyaspartamide derivatives grafted with 1-(3-aminopropyl)imidazole.

    PubMed

    Seo, Kwangwon; Kim, Dukjoon

    2006-09-15

    New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole-g-polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes.

  16. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-07

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  17. Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites.

    PubMed

    Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H

    2016-09-21

    Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

  18. Highly sensitive beam steering with plasmonic antenna

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen

    2014-01-01

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits. PMID:25091405

  19. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE PAGES

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-04-22

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  20. Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-04-01

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized device can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). In addition, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.

  1. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  2. NEMA NU 2-2007 performance measurements of the Siemens Inveon™ preclinical small animal PET system

    PubMed Central

    Kemp, Brad J; Hruska, Carrie B; McFarland, Aaron R; Lenox, Mark W; Lowe, Val J

    2010-01-01

    National Electrical Manufacturers Association (NEMA) NU 2-2007 performance measurements were conducted on the Inveon™ preclinical small animal PET system developed by Siemens Medical Solutions. The scanner uses 1.51 × 1.51 × 10 mm LSO crystals grouped in 20 × 20 blocks; a tapered light guide couples the LSO crystals of a block to a position-sensitive photomultiplier tube. There are 80 rings with 320 crystals per ring and the ring diameter is 161 mm. The transaxial and axial fields of view (FOVs) are 100 and 127 mm, respectively. The scanner can be docked to a CT scanner; the performance characteristics of the CT component are not included herein. Performance measurements of spatial resolution, sensitivity, scatter fraction and count rate performance were obtained for different energy windows and coincidence timing window widths. For brevity, the results described here are for an energy window of 350–650 keV and a coincidence timing window of 3.43 ns. The spatial resolution at the center of the transaxial and axial FOVs was 1.56, 1.62 and 2.12 mm in the tangential, radial and axial directions, respectively, and the system sensitivity was 36.2 cps kBq−1 for a line source (7.2% for a point source). For mouse- and rat-sized phantoms, the scatter fraction was 5.7% and 14.6%, respectively. The peak noise equivalent count rate with a noisy randoms estimate was 1475 kcps at 130 MBq for the mouse-sized phantom and 583 kcps at 74 MBq for the rat-sized phantom. The performance measurements indicate that the Inveon™ PET scanner is a high-resolution tomograph with excellent sensitivity that is capable of imaging at a high count rate. PMID:19321924

  3. NEMA NU 2-2007 performance measurements of the Siemens Inveon™ preclinical small animal PET system

    NASA Astrophysics Data System (ADS)

    Kemp, Brad J.; Hruska, Carrie B.; McFarland, Aaron R.; Lenox, Mark W.; Lowe, Val J.

    2009-04-01

    National Electrical Manufacturers Association (NEMA) NU 2-2007 performance measurements were conducted on the Inveon™ preclinical small animal PET system developed by Siemens Medical Solutions. The scanner uses 1.51 × 1.51 × 10 mm LSO crystals grouped in 20 × 20 blocks; a tapered light guide couples the LSO crystals of a block to a position-sensitive photomultiplier tube. There are 80 rings with 320 crystals per ring and the ring diameter is 161 mm. The transaxial and axial fields of view (FOVs) are 100 and 127 mm, respectively. The scanner can be docked to a CT scanner; the performance characteristics of the CT component are not included herein. Performance measurements of spatial resolution, sensitivity, scatter fraction and count rate performance were obtained for different energy windows and coincidence timing window widths. For brevity, the results described here are for an energy window of 350-650 keV and a coincidence timing window of 3.43 ns. The spatial resolution at the center of the transaxial and axial FOVs was 1.56, 1.62 and 2.12 mm in the tangential, radial and axial directions, respectively, and the system sensitivity was 36.2 cps kBq-1 for a line source (7.2% for a point source). For mouse- and rat-sized phantoms, the scatter fraction was 5.7% and 14.6%, respectively. The peak noise equivalent count rate with a noisy randoms estimate was 1475 kcps at 130 MBq for the mouse-sized phantom and 583 kcps at 74 MBq for the rat-sized phantom. The performance measurements indicate that the Inveon™ PET scanner is a high-resolution tomograph with excellent sensitivity that is capable of imaging at a high count rate.

  4. Power and sensitivity of alternative fit indices in tests of measurement invariance.

    PubMed

    Meade, Adam W; Johnson, Emily C; Braddy, Phillip W

    2008-05-01

    Confirmatory factor analytic tests of measurement invariance (MI) based on the chi-square statistic are known to be highly sensitive to sample size. For this reason, G. W. Cheung and R. B. Rensvold (2002) recommended using alternative fit indices (AFIs) in MI investigations. In this article, the authors investigated the performance of AFIs with simulated data known to not be invariant. The results indicate that AFIs are much less sensitive to sample size and are more sensitive to a lack of invariance than chi-square-based tests of MI. The authors suggest reporting differences in comparative fit index (CFI) and R. P. McDonald's (1989) noncentrality index (NCI) to evaluate whether MI exists. Although a general value of change in CFI (.002) seemed to perform well in the analyses, condition specific change in McDonald's NCI values exhibited better performance than a single change in McDonald's NCI value. Tables of these values are provided as are recommendations for best practices in MI testing. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  5. Silicon nanowire sensor for DNA detection and sequencing: an ab initio simulation

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Li, Yan; Hodak, Miroslav; Xiao, Zhongcan; Bernholc, Jerry

    Electrical sensors able to detect DNA replication and determine its sequence would enable fast and relatively cheap diagnosis of gene-related vulnerabilities and cancers. At present, it is already possible to electrically monitor DNA replication events using a Klenow fragment of polymerase I attached to a carbon nanotube. Since devices based on Si nanowires would be much easier to produce in quantity, we examine theoretically the sensitivity of a Si nanowire/Klenow fragment for electrical detection of nucleotide addition. A highly parallel real-space multigrid code is used for DFT-based non-equilibrium Green's function calculations involving up to 16,000 atoms, employing highly-accurate variationally-optimized localized orbitals. We find that the open and closed Klenow fragment configurations, prior and during nucleotide addition, respectively, screen the Si nanowire differently and result in a detectable current difference. The sensitivity is the largest in the subthreshold regime while the absolute current difference is maximized in the turn-on state. The sensitivity decreases with an increase of the nanowire size, as expected, but the current difference between different enzymatic states is nearly independent on the nanowire size up to 800 Å2 cross section.

  6. Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau

    USGS Publications Warehouse

    Smith, F.A.; Betancourt, J.L.

    1998-01-01

    Temperature profoundly influences the physiology and life history characteristics of organisms, particularly in terms of body size. Because so many critical parameters scale with body mass, long-term temperature fluctuations can have dramatic impacts. We examined the response of a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), to temperature change from 20 000 yr BP to present, at five sites within the Colorado Plateau. Our investigations focused on the relationship between temperature, plant composition and abundance, and woodrat size. Body size was estimated by measuring fossil fecal pellets, a technique validated in earlier work. We found significant and highly covariable patterns in body mass over the five locations, suggesting that responses to temperature fluctuations during the late Quaternary have been very similar. Although woodrat mass and the occurrence of several plant species in the fossil record were significantly correlated, in virtually all instances changes in woodrat size preceded changes in vegetational composition. These results may be due to the greater sensitivity of woodrats to temperature, or to the shorter generation times of woodrats as compared to most plants. An alternative hypothesis is that winter temperatures increased before summer ones. Woodrats are highly sensitive to warmer winters, whereas little response would be expected from forest/woodland plants growing at their lower limits. Our work suggests that woodrat size is a precise paleothermometer, yielding information about temperature variation over relatively short-term temporal and regional scales.

  7. Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles.

    PubMed

    Lafond, Maxime; Watanabe, Akiko; Yoshizawa, Shin; Umemura, Shin-Ichiro; Tachibana, Katsuro

    2018-05-10

    Nanobubbles (NBs) are of high interest for ultrasound (US) imaging as contrast agents and therapy as cavitation nuclei. Because of their instability (Laplace pressure bubble catastrophe) and low sensitivity to US, reducing the size of commonly used microbubbles to submicron-size is not trivial. We introduce stabilized NBs in the 100-250-nm size range, manufactured by agitating human serum albumin and perfluoro-propane. These NBs were exposed to 3.34- and 5.39-MHz US, and their sensitivity to US was proven by detecting inertial cavitation. The cavitation-threshold information was used to run a numerical parametric study based on a modified Rayleigh-Plesset equation (with a Newtonian rheology model). The determined values of surface tension ranged from 0 N/m to 0.06 N/m. The corresponding values of dilatational viscosity ranged from 5.10 -10 Ns/m to 1.10 -9 Ns/m. These parameters were reported to be 0.6 N/m and 1.10 -8 Ns/m for the reference microbubble contrast agent. This result suggests the possibility of using albumin as a stabilizer for the nanobubbles that could be maintained in circulation and presenting satisfying US sensitivity, even in the 3-5-MHz range.

  8. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    PubMed

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohseni, Naimeh; Bahram, Morteza

    2018-03-01

    Herein, a rapid, sensitive and selective approach for the colorimetric detection of dopamine (DA) was developed utilizing unmodified gold nanoparticles (AuNPs). This assay relied upon the size-dependent aggregation behavior of DA and three other structurally similar catecholamines (CAs), offering highly specific and accurate detection of DA. By means of this study, we attempted to overcome the tedious procedures of surface premodifications and achieve selectivity through tuning the particle size of AuNPs. DA could induce the aggregation of the AuNPs via hydrogen-bonding interactions, resulting in a color change from pink to blue which can be monitored by spectrophotometry or even the naked-eye. The proposed colorimetric probe works over the 0.1 to 4 μM DA concentration range, with a lower detection limit (LOD) of 22 nM, which is much lower than the therapeutic lowest abnormal concentrations of DA in urine (0.57 μM) and blood (16 μM) samples. Furthermore, the selectivity and potential applicability of the developed method in spiked actual biological (human plasma and urine) specimens were investigated, suggesting that the present assay could satisfy the requirements for clinical diagnostics and biosensors.

  10. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    PubMed

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples.

  11. Design analysis of an MPI human functional brain scanner

    PubMed Central

    Mason, Erica E.; Cooley, Clarissa Z.; Cauley, Stephen F.; Griswold, Mark A.; Conolly, Steven M.; Wald, Lawrence L.

    2017-01-01

    MPI’s high sensitivity makes it a promising modality for imaging brain function. Functional contrast is proposed based on blood SPION concentration changes due to Cerebral Blood Volume (CBV) increases during activation, a mechanism utilized in fMRI studies. MPI offers the potential for a direct and more sensitive measure of SPION concentration, and thus CBV, than fMRI. As such, fMPI could surpass fMRI in sensitivity, enhancing the scientific and clinical value of functional imaging. As human-sized MPI systems have not been attempted, we assess the technical challenges of scaling MPI from rodent to human brain. We use a full-system MPI simulator to test arbitrary hardware designs and encoding practices, and we examine tradeoffs imposed by constraints that arise when scaling to human size as well as safety constraints (PNS and central nervous system stimulation) not considered in animal scanners, thereby estimating spatial resolutions and sensitivities achievable with current technology. Using a projection FFL MPI system, we examine coil hardware options and their implications for sensitivity and spatial resolution. We estimate that an fMPI brain scanner is feasible, although with reduced sensitivity (20×) and spatial resolution (5×) compared to existing rodent systems. Nonetheless, it retains sufficient sensitivity and spatial resolution to make it an attractive future instrument for studying the human brain; additional technical innovations can result in further improvements. PMID:28752130

  12. Crowdsourcing lung nodules detection and annotation

    NASA Astrophysics Data System (ADS)

    Boorboor, Saeed; Nadeem, Saad; Park, Ji Hwan; Baker, Kevin; Kaufman, Arie

    2018-03-01

    We present crowdsourcing as an additional modality to aid radiologists in the diagnosis of lung cancer from clinical chest computed tomography (CT) scans. More specifically, a complete work flow is introduced which can help maximize the sensitivity of lung nodule detection by utilizing the collective intelligence of the crowd. We combine the concept of overlapping thin-slab maximum intensity projections (TS-MIPs) and cine viewing to render short videos that can be outsourced as an annotation task to the crowd. These videos are generated by linearly interpolating overlapping TS-MIPs of CT slices through the depth of each quadrant of a patient's lung. The resultant videos are outsourced to an online community of non-expert users who, after a brief tutorial, annotate suspected nodules in these video segments. Using our crowdsourcing work flow, we achieved a lung nodule detection sensitivity of over 90% for 20 patient CT datasets (containing 178 lung nodules with sizes between 1-30mm), and only 47 false positives from a total of 1021 annotations on nodules of all sizes (96% sensitivity for nodules>4mm). These results show that crowdsourcing can be a robust and scalable modality to aid radiologists in screening for lung cancer, directly or in combination with computer-aided detection (CAD) algorithms. For CAD algorithms, the presented work flow can provide highly accurate training data to overcome the high false-positive rate (per scan) problem. We also provide, for the first time, analysis on nodule size and position which can help improve CAD algorithms.

  13. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  14. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.

  15. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  16. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    PubMed Central

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-01-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films. PMID:27090570

  17. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-04-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films.

  18. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    PubMed Central

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  19. A micron resolution optical scanner for characterization of silicon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, R. A.; Dugad, S. R., E-mail: dugad@cern.ch; Gopal, A. V.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fastmore » timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.« less

  20. Highly sensitive in-line microfluidic sensor based on microfiber-assisted Mach-Zehnder interferometer for glucose sensing

    NASA Astrophysics Data System (ADS)

    Xie, Nanjie; Zhang, Hao; Liu, Bo; Wu, Jixuan; Song, Binbin; Han, Tingting

    2017-11-01

    A highly sensitive microfluidic sensor based on a microfiber-assisted Mach-Zehnder interferometer (MAMZI) is proposed and experimentally demonstrated for the detection of low-concentration glucose solution. A segment of microfiber tapered from standard single-mode fiber (SMF) is spliced between two SMFs with pre-designed lateral offset to constitute the miniaturized MAMZI probe. The transmission spectral response to environmental refractive index variation has been experimentally investigated for glucose concentration ranges of 300 mg dL-1 to 3000 mg dL-1 and 0 to 270 mg dL-1 and the glucose concentration detection limit is 3 mg dL-1, and the experimentally observed transmission spectral responses are in accordance with our theoretical simulation results. Owing to its high sensitivity, non-enzymatic operation method, ease of fabrication and compact size, our proposed MAMZI for glucose sensing is anticipated to be employed in biomedical applications.

  1. Preparation and Characterization of Nano-CL-20 Explosive

    NASA Astrophysics Data System (ADS)

    Bayat, Yadollah; Zeynali, Vida

    2011-10-01

    Nano-CL-20 was prepared via precipitative crystallization by spraying a solution of CL-20 in a solvent (ethyl acetate) into a nonsolvent (isooctane). Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) were used to characterize the appearance and the size of the particles. The results revealed that nano-CL-20 particles have the shape of spheres or ellipsoids with an average size of 95 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. Impact sensitivity of nanosize CL-20 was decreased in comparison to micrometer-size CL-20.

  2. Quantum-dot-sensitized solar cells.

    PubMed

    Rühle, Sven; Shalom, Menny; Zaban, Arie

    2010-08-02

    Quantum-dot-sensitized solar cells (QDSCs) are a promising low-cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low-cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid-state hole conductors are borrowed from standard dye-sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono- and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy-level alignment to increase the light to electric power conversion efficiency.

  3. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    PubMed

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  4. Application of environmental sensitivity theories in personalized prevention for youth substance abuse: a transdisciplinary translational perspective.

    PubMed

    Thibodeau, Eric L; August, Gerald J; Cicchetti, Dante; Symons, Frank J

    2016-03-01

    Preventive interventions that target high-risk youth, via one-size-fits-all approaches, have demonstrated modest effects in reducing rates of substance use. Recently, substance use researchers have recommended personalized intervention strategies. Central to these approaches is matching preventatives to characteristics of an individual that have been shown to predict outcomes. One compelling body of literature on person × environment interactions is that of environmental sensitivity theories, including differential susceptibility theory and vantage sensitivity. Recent experimental evidence has demonstrated that environmental sensitivity (ES) factors moderate substance abuse outcomes. We propose that ES factors may augment current personalization strategies such as matching based on risk factors/severity of problem behaviors (risk severity (RS)). Specifically, individuals most sensitive to environmental influence may be those most responsive to intervention in general and thus need only a brief-type or lower-intensity program to show gains, while those least sensitive may require more comprehensive or intensive programming for optimal responsiveness. We provide an example from ongoing research to illustrate how ES factors can be incorporated into prevention trials aimed at high-risk adolescents.

  5. High-performance liquid chromatographic method for the determination of dansyl-polyamines

    Treesearch

    Subhash C. Minocha; Rakesh Minocha; Cheryl A. Robie

    1990-01-01

    This paper describes a fast reliable, and a sensitive technique for the separation and quantification of dansylated polyamines by high-performance liquid chromatography. Using a small 33 x 4.6 mm I.D., 3 ?m particle size, C18 reversed-phase cartridge column and a linear gradient of acetonitrile-heptanesulfonate (10 mM, pH 3.4...

  6. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  7. Metal oxide nanostructures and their gas sensing properties: a review.

    PubMed

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  8. The effects of dielectric decrement and finite ion size on differential capacitance of electrolytically gated graphene

    NASA Astrophysics Data System (ADS)

    Daniels, Lindsey; Scott, Matthew; Mišković, Z. L.

    2018-06-01

    We analyze the effects of dielectric decrement and finite ion size in an aqueous electrolyte on the capacitance of a graphene electrode, and make comparisons with the effects of dielectric saturation combined with finite ion size. We first derive conditions for the cross-over from a camel-shaped to a bell-shaped capacitance of the diffuse layer. We show next that the total capacitance is dominated by a V-shaped quantum capacitance of graphene at low potentials. A broad peak develops in the total capacitance at high potentials, which is sensitive to the ion size with dielectric saturation, but is stable with dielectric decrement.

  9. The Size Frequency Distribution of Small Main-Belt Asteroids

    NASA Technical Reports Server (NTRS)

    Burt, Brian J.; Trilling, David E.; Hines, Dean C.; Stapelfeldt, Karl R.; Rebull, Luisa M.; Fuentes, Cesar I.; Hulsebus, Alan

    2012-01-01

    The asteroid size distribution informs us about the formation and composition of the Solar System. We build on our previous work in which we harvest serendipitously observed data of the Taurus region and measure the brightness and size distributions of Main-belt asteroids. This is accomplished with the highly sensitive MIPS 24 micron channel. We expect to catalog 104 asteroids, giving us a statistically significant data set. Results from this investigation will allow us to characterize the total population of small, Main-belt asteroids. Here we will present new results on the completeness of our study; on the presence of size distribution variations with inclination and radial distance in the belt; and early result on other archival fields.

  10. A sensitive assay using a native protein substrate for screening HIV-1 maturation inhibitors targeting the protease cleavage site between the matrix and capsid.

    PubMed

    Lee, Sook-Kyung; Cheng, Nancy; Hull-Ryde, Emily; Potempa, Marc; Schiffer, Celia A; Janzen, William; Swanstrom, Ronald

    2013-07-23

    The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. By limiting the size of CA and increasing the size of MA (with an N-terminal GST fusion), we were able to measure significant differences in polarization values as a function of HIV-1 protease cleavage. The sensitivity of the assay was tested in the presence of increasing amounts of an HIV-1 protease inhibitor, which resulted in a gradual decrease in the fluorescence polarization values demonstrating that the assay is sensitive in discerning changes in protease processing. The high-throughput screening assay validation in 384-well plates showed that the assay is reproducible and robust with an average Z' value of 0.79 and average coefficient of variation values of <3%. The robustness and reproducibility of the assay were further validated using the LOPAC(1280) compound library, demonstrating that the assay provides a sensitive high-throughput screening platform that can be used with large compound libraries for identifying novel maturation inhibitors targeting the MA/CA site of the HIV-1 Gag polyprotein.

  11. Tiny Grains Give Huge Gains: Nanocrystal–Based Signal Amplification for Biomolecule Detection

    PubMed Central

    Tong, Sheng; Ren, Binbin; Zheng, Zhilan; Shen, Han; Bao, Gang

    2013-01-01

    Nanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis. Further, the rich library of chromogenic reactions allows implementation of this scheme in various assay formats, as demonstrated by the iron oxide nanoparticle linked immunosorbent assay (ILISA) and blotting assay developed in this study. Our results indicate that, owing to the inherent simplicity, high sensitivity and repeatability, the nanocrystal based amplification scheme can significantly improve biomolecule quantification in both laboratory research and clinical diagnostics. This novel method adds a new dimension to current nanoparticle-based bioassays. PMID:23659350

  12. Characterisation and Modification of Thermally Stable High Explosives for Laser Flyer Applications

    NASA Astrophysics Data System (ADS)

    Parker, A.; Claridge, R. P.; Proud, W. G.; Johnson, N. A.

    2007-12-01

    Laser initiation offers improved weapon survivability, versatility and greater Insensitive Munitions (IM) compliance. Detonators based on laser-driven flyers are less vulnerable to electrical initiation and can be based on insensitive secondary explosives. Additionally, this technology will offer advantages in terms of improved flexibility and reliability. Hexanitrostilbene (HNS) and nonanitro-m-terphenyl (NONA) were selected for investigation at QinetiQ as their increased thermal stability over conventional explosives makes them ideal candidates for use in insensitive munition compliant applications. The response of these materials to short duration high-amplitude shock impulses provided by exploding foil initiators (EFI), the electrical equivalent of a laser-driven flyer system, was investigated. Preparation techniques including sonication and the incorporation of additives were used to sensitize the materials to flyer impact, yet maintain their insensitivity to external hazards. Sonication significantly reduced the particle size of both HNS and NONA. The reduced-size explosives exhibited increased sensitivity to EFI impact than the starting materials.

  13. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    PubMed

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  14. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.

    PubMed

    Gogoi, Priya; Sepehri, Saedeh; Chow, Will; Handique, Kalyan; Wang, Yixin

    2017-01-01

    Molecular analysis of circulating tumor cells (CTCs) is hindered by low sensitivity and high level of background leukocytes of currently available CTC enrichment technologies. We have developed a novel device to enrich and retrieve CTCs from blood samples by using a microfluidic chip. The Celsee PREP100 device captures CTCs with high sensitivity and allows the captured CTCs to be retrieved for molecular analysis. It uses the microfluidic chip which has approximately 56,320 capture chambers. Based on differences in cell size and deformability, each chamber ensures that small blood escape while larger CTCs of varying sizes are trapped and isolated in the chambers. In this report, we used the Celsee PREP100 to capture cancer cells spiked into normal donor blood samples. We were able to show that the device can capture as low as 10 cells with high reproducibility. The captured CTCs were retrieved from the microfluidic chip. The cell recovery rate of this back-flow procedure is 100% and the level of remaining background leukocytes is very low (about 300-400 cells). RNA from the retrieved cells are extracted and converted to cDNA, and gene expression analysis of selected cancer markers can be carried out by using RT-PCR assays. The sensitive and easy-to-use Celsee PREP100 system represents a promising technology for capturing and molecular characterization of CTCs.

  15. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Ananthoju, Balakrishna; Nair, Vishnu; Mitra, Arijit; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2018-06-01

    A high sensitive glucose sensing characteristic has been realized in carbon nano-onions (CNOs). The CNOs of mean size 30 nm were synthesized by an energy-efficient, simple and inexpensive combustion technique. These as-synthesized CNOs could be employed as an electrochemical sensor by covalently immobilizing the glucose oxidase enzyme on them via carbodiimide chemistry. The sensitivity achieved by such a sensor is 26.5 μA mM-1 cm-2 with a linear response in the range of 1-10 mM glucose. Further to improve the catalytic activity of the CNOs and also to make them enzyme free, platinum nanoparticles of average size 2.5 nm are decorated on CNOs. This sensor fabricated using Pt-decorated CNOs (Pt@CNOs) nanostructure has shown an enhanced sensitivity of 21.6 μA mM-1 cm-2 with an extended linear response in the range of 2-28 mM glucose. Through these attempts we demonstrate CNOs as a versatile biosensing platform.

  16. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    PubMed Central

    Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.

    2016-01-01

    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy. PMID:27666316

  17. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure.

    PubMed

    Wang, Ming; Zhang, Kai; Dai, Xin-Xin; Li, Yin; Guo, Jiang; Liu, Hu; Li, Gen-Hui; Tan, Yan-Jun; Zeng, Jian-Bing; Guo, Zhanhu

    2017-08-10

    Formation of highly conductive networks is essential for achieving flexible conductive polymer composites (CPCs) with high force sensitivity and high electrical conductivity. In this study, self-segregated structures were constructed in polydimethylsiloxane/multi-wall carbon nanotube (PDMS/MWCNT) nanocomposites, which then exhibited high piezoresistive sensitivity and low percolation threshold without sacrificing their mechanical properties. First, PDMS was cured and pulverized into 40-60 mesh-sized particles (with the size range of 250-425 μm) as an optimum self-segregated phase to improve the subsequent electrical conductivity. Then, the uncured PDMS/MWCNT base together with the curing agent was mixed with the abovementioned PDMS particles, serving as the segregated phase. Finally, the mixture was cured again to form the PDMS/MWCNT nanocomposites with self-segregated structures. The morphological evaluation indicated that MWCNTs were located in the second cured three-dimensional (3D) continuous PDMS phase, resulting in an ultralow percolation threshold of 0.003 vol% MWCNTs. The nanocomposites with self-segregated structures with 0.2 vol% MWCNTs achieved a high electrical conductivity of 0.003 S m -1 , whereas only 4.87 × 10 -10 S m -1 was achieved for the conventional samples with 0.2 vol% MWCNTs. The gauge factor GF of the self-segregated samples was 7.4-fold that of the conventional samples at 30% compression strain. Furthermore, the self-segregated samples also showed higher compression modulus and strength as compared to the conventional samples. These enhanced properties were attributed to the construction of 3D self-segregated structures, concentrated distribution of MWCNTs, and strong interfacial interaction between the segregated phase and the continuous phase with chemical bonds formed during the second curing process. These self-segregated structures provide a new insight into the fabrication of elastomers with high electrical conductivity and piezoresistive sensitivity for flexible force-sensitive materials.

  18. Quantifying alluvial fan sensitivity to climate in Death Valley, California, from field observations and numerical models

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Armitage, John; D'Arcy, Mitch; Watkins, Stephen

    2017-04-01

    A quantitative understanding of landscape sensitivity to climate change remains a key challenge in the Earth Sciences. The stream-flow deposits of coupled catchment-fan systems offer one way to decode past changes in external boundary conditions as they comprise simple, closed systems that can be represented effectively by numerical models. Here we combine the collection and analysis of grain size data on well-dated alluvial fan surfaces in Death Valley, USA, with numerical modelling to address the extent to which sediment routing systems record high-frequency, high-magnitude climate change. We compile a new database of Holocene and Late-Pleistocene grain size trends from 11 alluvial fans in Death Valley, capturing high-resolution grain size data ranging from the Recent to 100 kyr in age. We hypothesise the observed changes in average surface grain size and fining rate over time are a record of landscape response to glacial-interglacial climatic forcing. With this data we are in a unique position to test the predictions of landscape evolution models and evaluate the extent to which climate change has influenced the volume and calibre of sediment deposited on alluvial fans. To gain insight into our field data and study area, we employ an appropriately-scaled catchment-fan model that calculates an eroded volumetric sediment budget to be deposited in a subsiding basin according to mass balance where grain size trends are predicted by a self-similarity fining model. We use the model to compare predicted trends in alluvial fan stratigraphy as a function of boundary condition change for a range of model parameters and input grain size distributions. Subsequently, we perturb our model with a plausible glacial-interglacial magnitude precipitation change to estimate the requisite sediment flux needed to generate observed field grain size trends in Death Valley. Modelled fluxes are then compared with independent measurements of sediment supply over time. Our results constitute one of the first attempts to combine the detailed collection of alluvial fan grain size data in time and space with coupled catchment-fan models, affording us the means to evaluate how well field and model data can be reconciled for simple sediment routing systems.

  19. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  20. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, James P.

    1997-01-01

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.

  1. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, J.P.

    1997-07-29

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.

  2. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  3. Effects of normalization on quantitative traits in association test

    PubMed Central

    2009-01-01

    Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414

  4. A palm-sized high-sensitivity near-infrared fluorescence imager for laparotomy surgery.

    PubMed

    Dorval, Paul; Mangeret, Norman; Guillermet, Stephanie; Atallah, Ihab; Righini, Christian; Barabino, Gabriele; Coll, Jean-Luc; Rizo, Philippe; Poulet, Patrick

    2016-01-01

    In laparotomy surgery guided by near-infrared fluorescence imaging, the access to the field of operation is limited by the illumination and/or the imaging field. The side of cavities or organs such as the liver or the heart cannot be examined with the systems available on the market, which are too large and too heavy. In this article, we describe and evaluate a palm sized probe, whose properties, weight, size and sensitivity are adapted for guiding laparotomy surgery. Different experiments have been performed to determine its main characteristics, both on the illumination and imaging sides. The device has been tested for fluorescent molecular probe imaging in preclinical procedures, to prove its ability to be used in cancer nodule detection during surgery. This system is now CE certified for clinical procedures and Indocyanine Green imaging has been performed during clinical investigations: lymphedema and surgical resection of liver metastases of colorectal cancers. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Endotracheal tube leak pressure and tracheal lumen size in swine.

    PubMed

    Finholt, D A; Audenaert, S M; Stirt, J A; Marcella, K L; Frierson, H F; Suddarth, L T; Raphaely, R C

    1986-06-01

    Endotracheal tube "leak" is often estimated in children to judge the fit of uncuffed endotracheal tubes within the trachea. Twenty-five swine were intubated with uncuffed tracheal tubes to determine whether a more sensitive measurement of leaks could be devised and whether leak pressure estimates fit between tracheal tube and trachea. We compared leak pressure measurement using a stethoscope and aneroid manometer with a technique using a microphone, pressure transducer, and recorder, and found no differences between the two methods. The tracheas were then removed and slides prepared of tracheal cross-sectional specimens. Regression analysis revealed a linear relationship between tracheal lumen size and tracheal tube size for both low leak pressure (y = -0.4 + 0.79x, r = 0.88, P less than 0.05) and high leak pressure (y = -2.9 + 0.71x, r = 0.92, P less than 0.05) groups. We conclude that leak testing with a stethoscope and aneroid manometer is sensitive and accurate, and that tracheal tube leak pressure accurately portrays fit between tube and trachea.

  6. Spatial variability of summer Florida precipitation and its impact on microwave radiometer rainfall-measurement systems

    NASA Technical Reports Server (NTRS)

    Turner, B. J.; Austin, G. L.

    1993-01-01

    Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.

  7. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  8. Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform

    PubMed Central

    Tobing, Landobasa Y. M.; Tjahjana, Liliana; Zhang, Dao Hua; Zhang, Qing; Xiong, Qihua

    2013-01-01

    Metamaterials provide a good platform for biochemical sensing due to its strong field localization at nanoscale. In this work, we show that electric and magnetic resonant modes in split-ring-resonator (SRR) can be efficiently excited under unpolarized light illumination when the SRRs are arranged in fourfold rotationally symmetric lattice configuration. The fabrication and characterization of deep subwavelength (~λ/15) gold-based SRR structures with resonator size as small as ~ 60 nm are reported with magnetic resonances in Vis-NIR spectrum range. The feasibility for sensing is demonstrated with refractive index sensitivity as high as ~ 636 nm/RIU. PMID:23942416

  9. The accuracy of burn diagnosis codes in health administrative data: A validation study.

    PubMed

    Mason, Stephanie A; Nathens, Avery B; Byrne, James P; Fowler, Rob; Gonzalez, Alejandro; Karanicolas, Paul J; Moineddin, Rahim; Jeschke, Marc G

    2017-03-01

    Health administrative databases may provide rich sources of data for the study of outcomes following burn. We aimed to determine the accuracy of International Classification of Diseases diagnoses codes for burn in a population-based administrative database. Data from a regional burn center's clinical registry of patients admitted between 2006-2013 were linked to administrative databases. Burn total body surface area (TBSA), depth, mechanism, and inhalation injury were compared between the registry and administrative records. The sensitivity, specificity, and positive and negative predictive values were determined, and coding agreement was assessed with the kappa statistic. 1215 burn center patients were linked to administrative records. TBSA codes were highly sensitive and specific for ≥10 and ≥20% TBSA (89/93% sensitive and 95/97% specific), with excellent agreement (κ, 0.85/κ, 0.88). Codes were weakly sensitive (68%) in identifying ≥10% TBSA full-thickness burn, though highly specific (86%) with moderate agreement (κ, 0.46). Codes for inhalation injury had limited sensitivity (43%) but high specificity (99%) with moderate agreement (κ, 0.54). Burn mechanism had excellent coding agreement (κ, 0.84). Administrative data diagnosis codes accurately identify burn by burn size and mechanism, while identification of inhalation injury or full-thickness burns is less sensitive but highly specific. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  10. An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Wu, Ying; Zou, Qingze; Su, Chanmin

    2008-07-01

    In this paper, an integrated approach to achieve high-speed atomic force microscope (AFM) imaging of large-size samples is proposed, which combines the enhanced inversion-based iterative control technique to drive the piezotube actuator control for lateral x-y axis positioning with the use of a dual-stage piezoactuator for vertical z-axis positioning. High-speed, large-size AFM imaging is challenging because in high-speed lateral scanning of the AFM imaging at large size, large positioning error of the AFM probe relative to the sample can be generated due to the adverse effects—the nonlinear hysteresis and the vibrational dynamics of the piezotube actuator. In addition, vertical precision positioning of the AFM probe is even more challenging (than the lateral scanning) because the desired trajectory (i.e., the sample topography profile) is unknown in general, and the probe positioning is also effected by and sensitive to the probe-sample interaction. The main contribution of this article is the development of an integrated approach that combines advanced control algorithm with an advanced hardware platform. The proposed approach is demonstrated in experiments by imaging a large-size (50μm ) calibration sample at high-speed (50Hz scan rate).

  11. NV-CMOS HD camera for day/night imaging

    NASA Astrophysics Data System (ADS)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  12. Controlling adhesive behavior during recycling

    Treesearch

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  13. Channel microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry:  transport-limited currents.

    PubMed

    Alden, J A; Feldman, M A; Hill, E; Prieto, F; Oyama, M; Coles, B A; Compton, R G; Dobson, P J; Leigh, P A

    1998-05-01

    A channel electrode array, with electrodes ranging in size from the millimeter to the submicrometer scale, is used for the amperometric interrogation of mechanistically complex electrode processes. In this way, the transport-limited current, measured as a function of both electrode size and electrolyte flow rate (convection), is shown to provide a highly sensitive probe of mechanism and kinetics. The application of "two-dimensional voltammetry" to diverse electrode processes, including E, ECE, ECEE, EC', and DISP2 reactions, is reported.

  14. Restricting the high-temperature growth of nanocrystalline tin oxide

    NASA Astrophysics Data System (ADS)

    Savin, S.; Chadwick, A. V.

    2003-01-01

    The sensitivity of tin oxide is dependent on various factors, one of which is the grain size. Three methods have been investigated with the aim of stabilising the grain size in the nanometer range, namely; (i) encapsulation within a silica matrix, (ii) coating the crystallites with hexamethyldisilazane and (iii) pinning the grain boundaries with a second metal oxide nanocrystal. The resulting materials have been characterised by X-ray powder diffraction (XRPD), Extended X-ray absorption fine structure (EXAFS) and conductivity measurements.

  15. Disposition of feedwater nozzle UT indications in a BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshnoff, S.D.; Orski, M.A.

    A technical logic is developed, which justifies the disposition of feedwater nozzle ultrasonic testing (UT) indications in order to return to operation without visual inspection of the vessel inside surface. Present regulatory guidance is to inspect the inside surface from the inside if a reportable indication is found. A highly sensitive, tomographic UT technique, developed by Kraftwerk Union, is used to detect and size machined notches in the blend radius and bore regions of a full-sized feedwater nozzle mock-up.

  16. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods.

    PubMed

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-07-02

    We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.

  17. Absolute auditory thresholds in three Old World monkey species (Cercopithecus aethiops, C. neglectus, Macaca fuscata) and humans (Homo sapiens).

    PubMed

    Owren, M J; Hopp, S L; Sinnott, J M; Petersen, M R

    1988-06-01

    We investigated the absolute auditory sensitivities of three monkey species (Cercopithecus aethiops, C. neglectus, and Macaca fuscata) and humans (Homo sapiens). Results indicated that species-typical variation exists in these primates. Vervets, which have the smallest interaural distance of the species that we tested, exhibited the greatest high-frequency sensitivity. This result is consistent with Masterton, Heffner, and Ravizza's (1969) observations that head size and high-frequency acuity are inversely correlated in mammals. Vervets were also the most sensitive in the middle frequency range. Furthermore, we found that de Brazza's monkeys, though they produce a specialized, low-pitched boom call, did not show the enhanced low-frequency sensitivity that Brown and Waser (1984) showed for blue monkeys (C. mitis), a species with a similar sound. This discrepancy may be related to differences in the acoustics of the respective habitats of these animals or in the way their boom calls are used. The acuity of Japanese monkeys was found to closely resemble that of rhesus macaques (M. mulatta) that were tested in previous studies. Finally, humans tested in the same apparatus exhibited normative sensitivities. These subjects responded more readily to low frequencies than did the monkeys but rapidly became less sensitive in the high ranges.

  18. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    PubMed Central

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-01-01

    We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications. PMID:28671600

  19. Detection of NMR signals with a radio-frequency atomic magnetometer.

    PubMed

    Savukov, I M; Seltzer, S J; Romalis, M V

    2007-04-01

    We demonstrate detection of proton NMR signals with a radio-frequency (rf) atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2 using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.

  20. Resistive Plate Chambers with Gd-coated electrodes as thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Iaselli, G.; Mongelli, T.; Paticchio, V.; Ranieri, A.; Trentadue, R.

    2003-12-01

    Resistive Plate Chambers (RPCs) are wide spread, cheap, easy-to-build and large size detectors, used mainly to reveal ionizing particles in high energy experiments. Here a tecnique, consisting in coating the inner surface of the bakelite electrodes with a mixture of linseed oil and Gd2O3 will be reported; this allows to make RPCs sensitive also to thermal neutrons, making them suitable to be employed for industrial, medical or de-ming applications. This new type, position sensitive gas detector can be operated at atmospheric pressure, is lightweighted, has low γ-ray sensitivity, and is easy to handle even when large areas are to be covered.

  1. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    PubMed

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability analysis. Finally, we recommend SCI and RCS, as these methods showed highest reliability to detect long-term growth trends. © 2014 John Wiley & Sons Ltd.

  2. The influence of model resolution on ozone in industrial volatile organic compound plumes.

    PubMed

    Henderson, Barron H; Jeffries, Harvey E; Kim, Byeong-Uk; Vizuete, William G

    2010-09-01

    Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the authors suggest a need for quantitative metrics for horizontal grid resolution in future model guidance.

  3. K3Na(SO4)2 : Eu nanoparticles for high dose of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Sahare, P. D.; Ranjan, Ranju; Salah, Numan; Lochab, S. P.

    2007-02-01

    K3Na(SO4)2 : Eu nanocrystalline powder was synthesized by the chemical co-precipitation method. The x-ray diffraction pattern of the nanomaterials shows a hexagonal structure for its crystals having grain size of ~28 nm. Transmission electron microscopy revealed that the K3Na(SO4)2 : Eu nanoparticles are single crystals with almost a uniform shape and size. Thermoluminescence (TL) was taken after irradiating the samples at various exposures of γ-rays from a 60Co source. A prominent TL glow peak is observed at 423 K along with three small peaks/shoulders at around 382, 460 and 509 K. The observed TL sensitivity of the prepared nanocrystalline powder is around 4 times more than that of LiF : Mg,Ti (TLD-100) phosphor. The 423 K peak of the nanomaterial phosphor eventually shows a near linear response with exposures increasing up to very high values (as high as 70 kGy), where all the other TLD phosphors saturate. This property along with its other desired properties such as high sensitivity, relatively simple glow curve structure and low fading makes the nanocrystalline phosphor a suitable dosimeter to estimate low as well as high exposures of γ-rays. TL analysis using the glow curve deconvolution technique was also done for determining different trapping parameters.

  4. Plasma etched surface scanning inspection recipe creation based on bidirectional reflectance distribution function and polystyrene latex spheres

    NASA Astrophysics Data System (ADS)

    Saldana, Tiffany; McGarvey, Steve; Ayres, Steve

    2014-04-01

    The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.

  5. The demographic consequences of growing older and bigger in oyster populations.

    PubMed

    Moore, Jacob L; Lipcius, Romuald N; Puckett, Brandon; Schreiber, Sebastian J

    2016-10-01

    Structured population models, particularly size- or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age- and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age- and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age- and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (>175 mm shell length) and small (<75 mm shell length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age- and size-structure into modeling frameworks when using population models to inform restoration and management decisions. © 2016 by the Ecological Society of America.

  6. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography

    PubMed Central

    Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja

    2016-01-01

    Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931

  7. Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.

    PubMed

    Ippolito, A; Todeschini, R; Vighi, M

    2012-03-01

    Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.

  8. Chemical fluxes and sensitivity to acidification of two high elevation catchments in southern Wyoming

    Treesearch

    J. O. Reuss; F. A. Vertucci; R. C. Musselman; R. A. Sommerfeld

    1995-01-01

    Hydrological and chemical fluxes were examined for East and West Glacier Lakes and their adjacent high-elevation (3200-3700 m) catchments in the Snowy Range of southern Wyoming. Both lakes are approximately 3 ha, but the East Glacier catchment (29 ha) is about half the size of West Glacier. Bedrock is primarily quartzite that has been heavily fractured and crossed with...

  9. Iron, manganese and phosphorus partitioning during high flow events: impacts of land cover and seasonality

    NASA Astrophysics Data System (ADS)

    Schroth, A. W.

    2015-12-01

    Metals and phosphorous are essential micro and macronutrients in aquatic ecosystems, and redox sensitive colloidal and particulate metal (oxy)hydroxide phases can be particularly reactive carriers of solid phase P, as well as other nutrients and/or pollutants in riverine chemical loads. High flow events driven by storms and/or snow or glacial melt often dominate the annual load of such constituents, yet remain poorly understood from a biogeochemical perspective. Our research examines the biogeochemical nature of riverine metal and P loads during targeted high flow events to determine to what extent, and under what environmental conditions, are the concentration and biogeochemical composition of riverine loads of P, Fe, and Mn disproportionately high and relatively reactive v. inert. We present a suite of biogeochemical data derived from water and suspended sediment samples that were collected during these events in multiple catchments and over different seasons within the hydrologic year. We examine the size partitioning (particulate, colloidal, 'truly dissolved') of riverine Fe, Mn, and P during events in glaciated, boreal-forested, and agriculturalized catchments of Vermont and Alaska. Suspended sediment loads are also characterized by relative redox sensitivity to examine the potential reactivity of Fe, Mn, and P in sediment transported during particular events. We demonstrate that metal and P concentration, size partitioning, and redox sensitivity differs both seasonally and by land cover, which is due to different source environments and flow paths that are preferentially activated during high discharge. The conceptual model herein developed is critical to understanding the biogeochemical nature of event-based riverine loads, and how this could evolve with changing frequency and severity of high flow events or land cover associated with climate change and landscape management.

  10. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.

    PubMed

    Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice

    2015-07-10

    Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. Copyright © 2015, American Association for the Advancement of Science.

  11. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    NASA Astrophysics Data System (ADS)

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  12. [Experimental analysis of some determinants of inductive reasoning].

    PubMed

    Ono, K

    1989-02-01

    Three experiments were conducted from a behavioral perspective to investigate the determinants of inductive reasoning and to compare some methodological differences. The dependent variable used in these experiments was the threshold of confident response (TCR), which was defined as "the minimal sample size required to establish generalization from instances." Experiment 1 examined the effects of population size on inductive reasoning, and the results from 35 college students showed that the TCR varied in proportion to the logarithm of population size. In Experiment 2, 30 subjects showed distinct sensitivity to both prior probability and base-rate. The results from 70 subjects who participated in Experiment 3 showed that the TCR was affected by its consequences (risk condition), and especially, that humans were sensitive to a loss situation. These results demonstrate the sensitivity of humans to statistical variables in inductive reasoning. Furthermore, methodological comparison indicated that the experimentally observed values of TCR were close to, but not as precise as the optimal values predicted by Bayes' model. On the other hand, the subjective TCR estimated by subjects was highly discrepant from the observed TCR. These findings suggest that various aspects of inductive reasoning can be fruitfully investigated not only from subjective estimations such as probability likelihood but also from an objective behavioral perspective.

  13. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-04-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.

  14. Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.

    PubMed

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-12

    Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

  15. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors

    PubMed Central

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-01

    Complementary metal–oxide–semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322

  16. Enhancement of Energy Conversion Efficiency for Dye Sensitized Solar Cell Using Zinc Oxide Photoanode

    NASA Astrophysics Data System (ADS)

    Jamalullail, N.; Smohamad, I.; Nnorizan, M.; Mahmed, N.

    2018-06-01

    Dye sensitized solar cell (DSSC) is a third generation solar cell that is well known for its low cost, simple fabrication process and promised reasonable energy conversion efficiency. Basic structure of DSSC is composed of photoanode, dye sensitizer, electrolyte that is sandwiched together in between two transparent conductive oxide (TCO) glasses. Each of the components in the DSSC contributes important role that affect the energy conversion efficiency. In this research, the commonly used titanium dioxide (TiO2) photoanode has previously reported to have high recombination rate and low electron mobility which caused efficiency loss had been compared with the zinc oxide (ZnO) photoanode with high electron mobility (155 cm2V-1s-1). Both of these photoanodes had been deposited through doctor blade technique. The electrical performance of the laboratory based DSSCs were tested using solar cell simulator and demonstrated that ZnO is a better photoanode compared to TiO2 with the energy conversion efficiency of 0.34% and 0.29% respectively. Nanorods shape morphology was observed in ZnO photoanode with average particle size of 41.60 nm and average crystallite size of 19.13 nm. This research proved that the energy conversion efficiency of conventional TiO2 based photoanode can be improved using ZnO material.

  17. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography.

    PubMed

    Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C

    2007-09-21

    A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.

  18. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers

    NASA Astrophysics Data System (ADS)

    Spaethe, Johannes; Brockmann, Axel; Halbig, Christine; Tautz, Jürgen

    2007-09-01

    The eusocial bumblebees exhibit pronounced size variation among workers of the same colony. Differently sized workers engage in different tasks (alloethism); large individuals are found to have a higher probability to leave the colony and search for food, whereas small workers tend to stay inside the nest and attend to nest duties. We investigated the effect of size variation on morphology and physiology of the peripheral olfactory system and the behavioral response thresholds to odors in workers of Bombus terrestris. Number and density of olfactory sensilla on the antennae correlate significantly with worker size. Consistent with these morphological changes, we found that antennal sensitivity to odors increases with body size. Antennae of large individuals show higher electroantennogram responses to a given odor concentration than those of smaller nestmates. This finding indicates that large antennae exhibit an increased capability to catch odor molecules and thus are more sensitive to odors than small antennae. We confirmed this prediction in a dual choice behavioral experiment showing that large workers indeed are able to respond correctly to much lower odor concentrations than small workers. Learning performance in these experiments did not differ between small and large bumblebees. Our results clearly show that, in the social bumblebees, variation in olfactory sensilla number due to size differences among workers strongly affects individual odor sensitivity. We speculate that superior odor sensitivity of large workers has favored size-related division of labor in bumblebee colonies.

  19. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Wingo, J.; Mai, T. T. T.; Nguyen, X. P.; Huong, N. T.; Mukherjee, P.; Srikanth, H.; Phan, M. H.

    2014-05-01

    We report on a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with a nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to superparamagnetic (Fe3O4) nanoparticles. Fe3O4 nanoparticles (mean size, ˜10 nm) were first coated with Alginate, and Curcumin was then tagged to the nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the Fe3O4 nanoparticles to which Curcumin was tagged. A high capacity of the MX-based biosensor in quantitative analysis of Curcumin-loaded Fe3O4 nanoparticles was achieved in the range of 0-50 ng/ml, beyond which the detection sensitivity of the sensor remained unchanged. The detection sensitivity of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems.

  20. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations: Cloud Microphysics over Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenhua; Sui, Chung-Hsiung; Fan, Jiwen

    Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolutionmore » of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.« less

  1. Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Lei; Huang, Youju; Wang, Jingyun; Rong, Yun; Lai, Weihua; Zhang, Jiawei; Chen, Tao

    2015-05-19

    Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 10(3) colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields.

  2. Species-specific responses to landscape fragmentation: implications for management strategies

    PubMed Central

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-01-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925

  3. Evolution of eye size and shape in primates.

    PubMed

    Ross, Callum F; Kirk, E Christopher

    2007-03-01

    Strepsirrhine and haplorhine primates exhibit highly derived features of the visual system that distinguish them from most other mammals. Comparative data link the evolution of these visual specializations to the sequential acquisition of nocturnal visual predation in the primate stem lineage and diurnal visual predation in the anthropoid stem lineage. However, it is unclear to what extent these shifts in primate visual ecology were accompanied by changes in eye size and shape. Here we investigate the evolution of primate eye morphology using a comparative study of a large sample of mammalian eyes. Our analysis shows that primates differ from other mammals in having large eyes relative to body size and that anthropoids exhibit unusually small corneas relative to eye size and body size. The large eyes of basal primates probably evolved to improve visual acuity while maintaining high sensitivity in a nocturnal context. The reduced corneal sizes of anthropoids reflect reductions in the size of the dioptric apparatus as a means of increasing posterior nodal distance to improve visual acuity. These data support the conclusion that the origin of anthropoids was associated with a change in eye shape to improve visual acuity in the context of a diurnal predatory habitus.

  4. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the ultrasound by modulating the induced temperature. Later, two approaches were adopted to modify the USF design to improve the resolution of the conventional USF imaging technique. The first approach aims to improve the axial resolution of conventional USF technique, which involves changing the USF system to adopt a dual-HIFU transducer arrangement (in which the transducers are 90 degree with respect to each other) for use as the heating source. The overlapped region of the two crossed foci (OR-TCF) of the dual-HIFU transducer module is expected to have small thermal size along both lateral and axial directions; thus, it could improve the axial resolution of the USF imaging technique. The second approach aims to demonstrate the improvement of resolution via a single-element HIFU transducer with a high frequency (15 MHz). The high frequency of the ultrasound transducer would have smaller acoustic lateral and axial size and should therefore have smaller thermal size. Thus, both approaches should be able to reduce the focal region of heating and thereby improve the resolution of the USF imaging. Results show that the driving power and exposure time of the HIFU transducer significantly influence the ultrasound-induced temperature focal size (UTFS). Interestingly, a nonlinear acoustic effect was observed at certain variations of the ultrasound exposure power while satisfying the thermal confinement within UTFS. This has been shown to reduce UTFS beyond the acoustic diffraction limit, while the ultrasound-induced thermal energy, which is confined within the focal volume, can induce a desired peak-temperature increase of a few degrees. On other hand, after encoding the HIFU exposure and therefore the detected USF signal with a modulation frequency, the SNR (sensitivity) and full width at half maximum (FWHM) along the lateral direction of the USF image was calculated to be 114 and 0.95 mm for a micro-tube with an inner diameter of 0.31 mm (ID), respectively. In comparison, they are 95 and 1.1 mm when using a non-modulated conventional USF imaging technique. In the case of improving the axial resolution of USF imaging for a similar target size, the dual-HIFU USF design was able to achieve 1.07 and 1.5 mm along lateral (x ) and axial (z) directions, respectively. Adopting the second approach of using single 15 MHz HIFU transducer for USF imaging, the axial resolution was calculated to be 0.67+/-0.02 mm and 1.71+/-0.24 mm along lateral (x) and axial (z) directions, respectively. Thus, high-resolution ultrasound-switchable fluorescence with good sensitivity can be designed for biomedical applications.

  5. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography.

    PubMed

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-01-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  6. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-12-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  7. An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.

    PubMed

    Hu, Yating; Xu, Yong

    2012-01-01

    This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.

  8. Simulation study of electric-guided delivery of 0.4µm monodisperse and polydisperse aerosols to the ostiomeatal complex.

    PubMed

    Xi, Jinxiang; Yuan, Jiayao Eddie; Si, Xiuhua April

    2016-05-01

    Despite the high prevalence of rhinosinusitis, current inhalation therapy shows limited efficacy due to extremely low drug delivery efficiency to the paranasal sinuses. Novel intranasal delivery systems are needed to enhance targeted delivery to the sinus with therapeutic dosages. An optimization framework for intranasal drug delivery was developed to target polydisperse charged aerosols to the ostiomeatal complex (OMC) with electric guidance. The delivery efficiency of a group of charged aerosols recently reported in the literature was numerically assessed and optimized in an anatomically accurate nose-sinus model. Key design variables included particle charge number, particle size and distribution, electrode strength, and inhalation velocity. Both monodisperse and polydisperse aerosol profiles were considered. Results showed that the OMC delivery efficiency was highly sensitive to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric-guidance and point drug release, focused deposition with significantly enhanced dosage in the OMC can be achieved. For 0.4 µm charged aerosols, an OMC delivery efficiency of 51.6% was predicted for monodisperse aerosols and 34.4% for polydisperse aerosols. This difference suggested that the aerosol profile exerted a notable effect on intranasal deliveries. Sensitivity analysis indicated that the OMC deposition fraction was highly sensitive to the charge and size of particles and was less sensitive to the inhalation velocity considered in this study. Experimental studies are needed to validate the numerically optimized designs. Further studies are warranted to investigate the targeted OMC delivery with both electric and acoustics controls, the latter of which has the potential to further deliver the drug particles into the sinus cavity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Thermoelectric properties of pressure-sintered Si(0.8)Ge(0.2) thermoelectric alloys

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Laskow, William; Hanson, Jack O.; Van Der Beck, Roland R.; Gorsuch, Paul D.

    1991-01-01

    The thermoelectric properties of 28 sintered Si(0.8)Ge(0.2) alloys, heavily doped with either B or P and prepared from powders with median particle sizes ranging from about 1 to over 100 microns, have been determined from 300 to 1300 K. The thermal conductivity decreases with decreasing particle size; however, the figure of merit is not significantly increased due to a compensating reduction in the electrical conductivity. The thermoelectric figure of merit is in good agreement with results of Dismukes et al. (1964) on similarly doped alloys prepared by zone-leveling techniques. The electrical and thermal conductivity are found to be sensitive to preparation procedure while the Seebeck coefficient and figure of merit are much less sensitive. The high-temperature electrical properties are consistent with charge carrier scattering by acoustic or optical phonons.

  10. Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats

    NASA Technical Reports Server (NTRS)

    Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew

    2016-01-01

    The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.

  11. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.

  12. Functional changes at the preferred retinal locus in subjects with bilateral central vision loss.

    PubMed

    Krishnan, Arun Kumar; Bedell, Harold E

    2018-01-01

    Subjects with bilateral central vision loss (CVL) use a retinal region called the preferred retinal locus (PRL) for performing various visual tasks. We probed the fixation PRL in individuals with bilateral macular disease, including age-related macular degeneration (AMD) and Stargardt disease (STGD), for localized sensitivity deficits. Three letter words at the critical print size were presented in the NIDEK MP-1 microperimeter to determine the fixation PRL and its radial retinal eccentricity from the residual fovea in 29 subjects with bilateral CVL. Fixation stability was defined as the median bivariate contour ellipse area (BCEA) from 3 fixation assessments. A standard 10-2 grid (68 locations, 2° apart) was used to determine central retinal sensitivity for Goldmann size II test spots. Baseline and follow-up supra-threshold screening of the fixation PRL for localized sensitivity deficits was performed using high density (0.2° or 0.3° apart) 0 dB Goldmann size II test spots. Custom MATLAB code and a dual bootstrapping algorithm were used to register test-spot locations from the baseline and follow-up tests. Locations where the 0 dB test spots were not seen on either test were labeled as micro-scotomas (MSs). Median BCEA correlated poorly with the radial eccentricity of the fixation PRL. Mean (±SD) sensitivity around the PRL from 10-2 testing was 4.93 ± 4.73 dB. The average percentage of MSs was similar for patients with AMD (25.4%), STGD (20.3%), and other etiologies of CVL (27.1%). The fixation PRL in subjects with bilateral CVL frequently includes local regions of sensitivity loss.

  13. FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    PubMed Central

    Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.

    2011-01-01

    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes. PMID:22102829

  14. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

    PubMed Central

    de Koning, A. P. Jason; Gu, Wanjun; Castoe, Todd A.; Batzer, Mark A.; Pollock, David D.

    2011-01-01

    Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed. PMID:22144907

  15. Measurement of the Earth tides with a MEMS gravimeter.

    PubMed

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  16. Lowering of acoustic droplet vaporization threshold via aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shifang; Shi, Aiwei; Xu, Shanshan; Du, Xuan; Wang, Xin; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi

    2017-12-01

    Acoustically sensitive emulsion nanodroplets composed of perfluorocarbon have shown great potential for advanced medical diagnosis and therapy but are limited by the required high acoustic droplet vaporization (ADV) threshold for clinical applications. This study investigates the use of an ultrasonic standing wave to lower the ADV threshold while maintaining the generated bubble size in the required size range, ensuring the generation of inertial cavitation and corresponding physical effects. The results showed that disperse nanodroplets were manipulated to form micron-sized aggregations, and the required ADV threshold was significantly lowered, while a similar size range of the microbubbles generated by disperse nanodroplets was maintained. The threshold could be further regulated by adjusting the aggregation size via controlling the concentration of the disperse nanodroplets. Furthermore, the internal pressures in the aggregations with different sizes were calculated to determine their ADV thresholds theoretically, which were shown to be in good agreement with the experimental results.

  17. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  18. Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring Contrast Agent Size Distribution: In Vivo Studies

    PubMed Central

    Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.

    2010-01-01

    Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606

  19. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert; Mukasyan, Alexander; Son, Steven

    2011-06-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 at%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones occur in shear bands formed during the impact event.

  20. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert V.; Mukasyan, Alexander S.; Son, Steven

    2012-03-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 mol%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones shear bands formed during the impact event are observed.

  1. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li, E-mail: lil@cust.edu.cn, E-mail: wangz@cust.edu.cn, E-mail: kq-peng@bnu.edu.cn; Zhang, Ziang; Yu, Miao

    2015-09-28

    Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arraysmore » with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ{sub 0} = 1064 nm. The minimal feature size is only several nanometers (sub λ{sub 0}/100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser.« less

  2. Effect of size and dimensional tolerance of reverse total shoulder arthroplasty on wear: An in-silico study.

    PubMed

    Mattei, Lorenza; Di Puccio, Francesca; Joyce, Thomas J; Ciulli, Enrico

    2016-08-01

    Although huge research efforts have been devoted to wear analysis of ultra-high molecular weight polyethylene (UHMWPE) in hip and knee implants, shoulder prostheses have been studied only marginally. Recently, the authors presented a numerical wear model of reverse total shoulder arthroplasties (RTSAs), and its application for estimating the wear coefficient k from experimental data according to different wear laws. In this study, such model and k expressions are exploited to investigate the sensitivity of UHMWPE wear to implant size and dimensional tolerance. A set of 10 different geometries was analysed, considering nominal diameters in the range 36-42mm, available on the market, and a cup dimensional tolerance of +0.2, -0.0mm (resulting in a diametrical clearance ranging between 0.04-0.24mm), estimated from measurements on RTSAs. Since the most reliable wear law and wear coefficient k for UHMWPE are still controversial in the literature, both the Archard law (AR) and the wear law of UHMWPE (PE), as well as four different k expressions were considered, carrying out a total of 40 simulations. Results showed that the wear volume increases with the implant size and decreases with the dimensional tolerance for both the wear laws. Interestingly, different trends were obtained for the maximum wear depth vs. clearance: the best performing implants should have a high conformity according to the AR law but low conformity for the PE law. However, according to both laws, wear is highly affected by both implant size and dimensional tolerance, although it is much more sensitive to the latter, with up to a twofold variation of wear predicted. Indeed, dimensional tolerance directly alters the clearance, and therefore the lubrication and contact pressure distribution in the implant. Rather surprisingly the role of dimensional tolerance has been completely disregarded in the literature, as well as in the standards. Furthermore, this study notes some important issues for future work, such as the validation of wear laws and predictive wear models and the sensitivity of k to implant geometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ovarian control of nectar collection in the honey bee (Apis mellifera).

    PubMed

    Siegel, Adam J; Freedman, Colin; Page, Robert E

    2012-01-01

    Honey bees are a model system for the study of division of labor. Worker bees demonstrate a foraging division of labor (DOL) by biasing collection towards carbohydrates (nectar) or protein (pollen). The Reproductive ground-plan hypothesis of Amdam et al. proposes that foraging DOL is regulated by the networks that controlled foraging behavior during the reproductive life cycle of honey bee ancestors. Here we test a proposed mechanism through which the ovary of the facultatively sterile worker impacts foraging bias. The proposed mechanism suggests that the ovary has a regulatory effect on sucrose sensitivity, and sucrose sensitivity impacts nectar loading. We tested this mechanism by measuring worker ovary size (ovariole number), sucrose sensitivity, and sucrose solution load size collected from a rate-controlled artificial feeder. We found a significant interaction between ovariole number and sucrose sensitivity on sucrose solution load size when using low concentration nectar. This supports our proposed mechanism. As nectar and pollen loading are not independent, a mechanism impacting nectar load size would also impact pollen load size.

  4. Thickness-dependently enhanced photodetection performance of vertically grown SnS2 nanoflakes with large size and high production.

    PubMed

    Jia, Xiansheng; Tang, Chengchun; Pan, Ruhao; Long, Yun-Ze; Gu, Changzhi; Li, Junjie

    2018-05-10

    Photodetection based on Two-dimensional (2D) SnS2 has attracted a growing interest due to its superiority in response rate and responsivity, but high-quality growth and high performance photodetecting of 2D SnS2still face great challenges. Here, high-quality SnS2 nanoflakes with large-size and high-production are vertically grown on Si substrate by a modified CVD method, having an average size of 30 m with different thicknesses. Then a single SnS2 nanoflake-based phototransistor was fabricated to obtain a high current on/off ratio of 107 and excellent performances in photodetection, including fast response rates, low dark current, high responsivity and detectivity. Specifically, the SnS2 nanoflakes show the thickness-dependent photodetection capability and the highest responsivity of 354.4 A W-1 is obtained at the average thickness of 100.5 nm. A sensitized process using HfO2 nanolayer can further enhance the responsivity up to 1922 A W-1. Our work provides an efficient path to select SnS2 crystal samples with the optimal thickness as promising candidates for high-performance optoelectronic applications.

  5. Stable Fe nanomagnets encapsulated inside vertically-aligned carbon nanotubes.

    PubMed

    Bondino, Federica; Magnano, Elena; Ciancio, Regina; Castellarin Cudia, Carla; Barla, Alessandro; Carlino, Elvio; Yakhou-Harris, Flora; Rupesinghe, Nalin; Cepek, Cinzia

    2017-12-06

    Well-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy. Our surface-sensitive measurements combined with the specific morphology of the studied VACNTs allow us to pinpoint the contribution of the surface oxidized or hydroxidized iron catalysts present at the VACNT-substrate interface.

  6. ZnO nanoparticles based fiber optic gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimman, S.; Sivacoumar, R.; Alex, Z. C.

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction and scanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia and ethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in lowmore » ppm level and acetone in high ppm level.« less

  7. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    PubMed

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  8. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  9. Photon theory hypothesis about photon tunneling microscope's subwavelength resolution

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu

    1995-09-01

    The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.

  10. Multiple response optimisation of processing and formulation parameters of pH sensitive sustained release pellets of capecitabine for targeting colon.

    PubMed

    Pandey, Sonia; Swamy, S M Vijayendra; Gupta, Arti; Koli, Akshay; Patel, Swagat; Maulvi, Furqan; Vyas, Bhavin

    2018-04-29

    To optimise the Eudragit/Surelease ® -coated pH-sensitive pellets for controlled and target drug delivery to the colon tissue and to avoid frequent high dosing and associated side effects which restrict its use in the colorectal-cancer therapy. The pellets were prepared using extrusion-spheronisation technique. Box-Behnken and 3 2 full factorial designs were applied to optimise the process parameters [extruder sieve size, spheroniser-speed, and spheroniser-time] and the coating levels [%w/v of Eudragit S100/Eudragit-L100 and Surelease ® ], respectively, to achieve the smooth optimised size pellets with sustained drug delivery without prior drug release in upper gastrointestinal tract (GIT). The design proposed the optimised batch by selecting independent variables at; extruder sieve size (X 1  = 1 mm), spheroniser speed (X 2  = 900 revolutions per minute, rpm), and spheroniser time (X 3  = 15 min) to achieve pellet size of 0.96 mm, aspect ratio of 0.98, and roundness 97.42%. The 16%w/v coating strength of Surelease ® and 13%w/v coating strength of Eudragit showed pH-dependent sustained release up to 22.35 h (t 99% ). The organ distribution study showed the absence of the drug in the upper part of GIT tissue and the presence of high level of capecitabine in the caecum and colon tissue. Thus, the presence of Eudragit coat prevent the release of drug in stomach and the inner Surelease ® coat showed sustained drug release in the colon tissue. The study demonstrates the potential of optimised Eudragit/Surelease ® -coated capecitabine-pellets for effective colon-targeted delivery system to avoid frequent high dosing and associated systemic side effects of drug.

  11. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    NASA Astrophysics Data System (ADS)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with Alloy 718 when considering high-strength conditions despite the absence of intergranular δ phase.

  12. Accounting for treatment by center interaction in sample size determinations and the use of surrogate outcomes in the pessary for the prevention of preterm birth trial: a simulation study.

    PubMed

    Willan, Andrew R

    2016-07-05

    The Pessary for the Prevention of Preterm Birth Study (PS3) is an international, multicenter, randomized clinical trial designed to examine the effectiveness of the Arabin pessary in preventing preterm birth in pregnant women with a short cervix. During the design of the study two methodological issues regarding power and sample size were raised. Since treatment in the Standard Arm will vary between centers, it is anticipated that so too will the probability of preterm birth in that arm. This will likely result in a treatment by center interaction, and the issue of how this will affect the sample size requirements was raised. The sample size requirements to examine the effect of the pessary on the baby's clinical outcome was prohibitively high, so the second issue is how best to examine the effect on clinical outcome. The approaches taken to address these issues are presented. Simulation and sensitivity analysis were used to address the sample size issue. The probability of preterm birth in the Standard Arm was assumed to vary between centers following a Beta distribution with a mean of 0.3 and a coefficient of variation of 0.3. To address the second issue a Bayesian decision model is proposed that combines the information regarding the between-treatment difference in the probability of preterm birth from PS3 with the data from the Multiple Courses of Antenatal Corticosteroids for Preterm Birth Study that relate preterm birth and perinatal mortality/morbidity. The approach provides a between-treatment comparison with respect to the probability of a bad clinical outcome. The performance of the approach was assessed using simulation and sensitivity analysis. Accounting for a possible treatment by center interaction increased the sample size from 540 to 700 patients per arm for the base case. The sample size requirements increase with the coefficient of variation and decrease with the number of centers. Under the same assumptions used for determining the sample size requirements, the simulated mean probability that pessary reduces the risk of perinatal mortality/morbidity is 0.98. The simulated mean decreased with coefficient of variation and increased with the number of clinical sites. Employing simulation and sensitivity analysis is a useful approach for determining sample size requirements while accounting for the additional uncertainty due to a treatment by center interaction. Using a surrogate outcome in conjunction with a Bayesian decision model is an efficient way to compare important clinical outcomes in a randomized clinical trial in situations where the direct approach requires a prohibitively high sample size.

  13. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors.

    PubMed

    Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg

    2012-07-01

    Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.

  14. Persistent oscillations and backward bifurcation in a malaria model with varying human and mosquito populations: implications for control.

    PubMed

    Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A

    2015-06-01

    We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes.

  15. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity

    NASA Astrophysics Data System (ADS)

    Monteiro, Fernando; Ghosh, Sumita; Fine, Adam Getzels; Moore, David C.

    2017-12-01

    We demonstrate optical levitation of SiO2 spheres with masses ranging from 0.1 to 30 ng. In high vacuum, we observe that the measured acceleration sensitivity improves for larger masses and obtain a sensitivity of 0.4 ×10-6g /√{Hz } for a 12-ng sphere, more than an order of magnitude better than previously reported for optically levitated masses. In addition, these techniques permit long integration times and a mean acceleration of (-0.7 ±2.4 [stat] ±0.2 [syst] ) ×10-9g is measured in 1.4 ×104 s. Spheres larger than 10 ng are found to lose mass in high vacuum where heating due to absorption of the trapping laser dominates radiative cooling. This absorption constrains the maximum size of spheres that can be levitated and allows a measurement of the absorption of the trapping light for the commercially available spheres tested here. Spheres consisting of material with lower absorption may allow larger objects to be optically levitated in high vacuum.

  16. 6.5% efficient perovskite quantum-dot-sensitized solar cell.

    PubMed

    Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu

    2011-10-05

    Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.

  17. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles.

    PubMed

    Ikeda, Ryo; Gu, Jianguo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.

  18. HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham

    2013-01-01

    Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.

  19. Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap.

    PubMed

    Mojarad, Nassiredin; Krishnan, Madhavi

    2012-06-24

    Measuring the size and charge of objects suspended in solution, such as dispersions of colloids or macromolecules, is a significant challenge. Measurements based on light scattering are inherently biased to larger entities, such as aggregates in the sample, because the intensity of light scattered by a small object scales as the sixth power of its size. Techniques that rely on the collective migration of species in response to external fields (electric or hydrodynamic, for example) are beset with difficulties including low accuracy and dispersion-limited resolution. Here, we show that the size and charge of single nanoscale objects can be directly measured with high throughput by analysing their thermal motion in an array of electrostatic traps. The approach, which is analogous to Millikan's oil drop experiment, could in future be used to detect molecular binding events with high sensitivity or carry out dynamic single-charge resolved measurements at the solid/liquid interface.

  20. Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity

    NASA Astrophysics Data System (ADS)

    Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik

    2016-09-01

    Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.

  1. Ultra high-performance liquid chromatography of porphyrins in clinical materials: column and mobile phase selection and optimisation.

    PubMed

    Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L

    2012-06-01

    Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 µm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 µm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 µm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 µm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 µm average particle size materials for clinical sample analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Attention biases in preoccupation with body image: An ERP study of the role of social comparison and automaticity when processing body size.

    PubMed

    Uusberg, Helen; Peet, Krista; Uusberg, Andero; Akkermann, Kirsti

    2018-03-17

    Appearance-related attention biases are thought to contribute to body image disturbances. We investigated how preoccupation with body image is associated with attention biases to body size, focusing on the role of social comparison processes and automaticity. Thirty-six women varying on self-reported preoccupation compared their actual body size to size-modified images of either themselves or a figure-matched peer. Amplification of earlier (N170, P2) and later (P3, LPP) ERP components recorded under low vs. high concurrent working memory load were analyzed. Women with high preoccupation exhibited an earlier bias to larger bodies of both self and peer. During later processing stages, they exhibited a stronger bias to enlarged as well as reduced self-images and a lack of sensitivity to size-modifications of the peer-image. Working memory load did not affect these biases systematically. Current findings suggest that preoccupation with body image involves an earlier attention bias to weight increase cues and later over-engagement with own figure. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Film bulk acoustic resonators (FBARs) as biosensors: A review.

    PubMed

    Zhang, Yi; Luo, Jikui; Flewitt, Andrew J; Cai, Zhiqiang; Zhao, Xiubo

    2018-09-30

    Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement.

    PubMed

    Xu, Ben; Yang, Yi; Jia, Zhenbao; Wang, D N

    2017-06-26

    A compact and high sensitivity sensor with a fiber-tip structure is proposed and demonstrated for simultaneously liquid refractive index (RI) and temperature sensing. The device is fabricated by inserting a tiny segment of capillary tube between single-mode fibers (SMFs) to form two cascaded Fabry-Perot interferometers (FPIs). The theoretical and experimental results demonstrate that the ambient liquid RI and temperature can be simultaneously determined by the intensity and shift of the resonant wavelength in the reflection spectrum. Our proposed device has the highest RI sensitivity of ~216.37 dB/RIU at the RI value of 1.30; a high spatial resolution owing to its compact size (with dimension <400 μm) makes it promising for high precision bio/chemical sensing applications.

  5. Prototyping hexagonal light concentrators using high-reflectance specular films for the Large-Sized Telescopes of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Okumura, A.; Dang, T. V.; Ono, S.; Tanaka, S.; Hayashida, M.; Hinton, J.; Katagiri, H.; Noda, K.; Teshima, M.; Yamamoto, T.; Yoshida, T.

    2017-12-01

    We have developed a prototype hexagonal light concentrator for the Large-Sized Telescopes of the Cherenkov Telescope Array. To maximize the photodetection efficiency of the focal-plane camera pixels for atmospheric Cherenkov photons and to lower the energy threshold, a specular film with a very high reflectance of 92-99% has been developed to cover the inner surfaces of the light concentrators. The prototype has a relative anode sensitivity (which can be roughly regarded as collection efficiency) of about 95 to 105% at the most important angles of incidence. The design, simulation, production procedure, and performance measurements of the light-concentrator prototype are reported.

  6. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated double sampler; a digitally controlled variable gain amplifier and a 16-bit A/D converter which can help improve the data quality. And the acquired digital signals are transmitted into the computer via USB 2.0 data port. Our spectrometer with SHINERS technology can acquire the Raman spectrum signals efficiently in long time integration and weak signal environment, and the size of our system is well controlled for portable application.

  7. Evaluation of simulated tropical convective updraft hydrometeor properties using aircraft observations

    NASA Astrophysics Data System (ADS)

    Stanford, McKenna W.

    The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions, and vertical velocity (w) in high ice water content regions of tropical mesoscale convective systems (MCSs). These observations are used to evaluate deep convective updraft properties in high-resolution nested Weather Research and Forecasting (WRF) simulations of observed MCSs. Because simulated hydrometeor properties are highly sensitive to the parameterization of microphysics, three commonly used microphysical parameterizations are tested, including two bulk schemes (Thompson and Morrison) and one bin scheme (Fast Spectral Bin Microphysics). A commonly documented bias in cloud-resolving simulations is the exaggeration of simulated radar reflectivities aloft in tropical MCSs. This may result from overly strong convective updrafts that loft excessive condensate mass and from simplified approximations of hydrometeor size distributions, properties, species separation, and microphysical processes. The degree to which the reflectivity bias is a separate function of convective dynamics, condensate mass, and hydrometeor size has yet to be addressed. This research untangles these components by comparing simulated and observed relationships between w, TWC, and hydrometer size as a function of temperature. All microphysics schemes produce median mass diameters that are generally larger than observed for temperatures between -10 °C and -40 °C and TWC > 1 g m-3. Observations produce a prominent mode in the composite mass size distribution around 300 microm, but under most conditions, all schemes shift the distribution mode to larger sizes. Despite a much greater number of samples, all simulations fail to reproduce observed high TWC or high w conditions between -20 °C and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes. Increasing model resolution and employing explicit cloud droplet nucleation decrease the size bias, but not nearly enough to reproduce observations. Because simulated particle sizes are too large across all schemes when controlling for temperature, w, and TWC, this bias is hypothesized to partly result from errors in parameterized microphysical processes in addition to overly simplified hydrometeor properties such as mass-size relationships and particle size distribution parameters.

  8. Experiment on search for neutron-antineutron oscillations using a projected UCN source at the WWR-M reactor

    NASA Astrophysics Data System (ADS)

    Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.

    2017-01-01

    We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.

  9. Measurements of carbon-14 with cavity ring-down spectroscopy

    DOE PAGES

    McCartt, A. D.; Ognibene, T.; Bench, G.; ...

    2015-06-13

    Accelerator Mass Spectrometry (AMS) is the most sensitive method for quantitation of 14C in biological samples. This technology has been used in a variety of low dose, human health related studies over the last 20 years when very high sensitivity was needed. AMS helped pioneer these scientific methods, but its expensive facilities and requirements for highly trained technical staff have limited their proliferation. Quantification of 14C by cavity ring-down spectroscopy (CRDS) offers an approach that eliminates many of the shortcomings of an accelerator-based system and would supplement the use of AMS in biomedical research. Our initial prototype, using a non-idealmore » wavelength laser and under suboptimal experimental conditions, has a 3.5-modern, 1-σ precision for detection of milligram-sized, carbon-14-elevated samples. Furthermore, these results demonstrate proof of principle and provided a starting point for the development of a spectrometer capable of biologically relevant sensitivities.« less

  10. Measuring hypopharyngeal gland acinus size in honey bee (Apis mellifera) nurse workers

    USDA-ARS?s Scientific Manuscript database

    The nurse worker honey bee hypopharyngeal glands produce the protein fraction of worker and royal jelly fed to developing larvae and queens. These paired glands that are located in the head of the bee are highly sensitive to the quantity and quality of pollen and pollen substitutes that the nurse be...

  11. Thermoluminescence and the shock and reheating history of meteorites. III - The shergottites

    NASA Technical Reports Server (NTRS)

    Hasan, F. A.; Haq, M.; Sears, D. W. G.

    1986-01-01

    Thermoluminescence (TL) measurements on Shergotty, ALHA 77005, Zagami, and EETA 79001 (lithology A) have been used to obtain further information on the shock history of these meteorites. The level of TL sensitivity in the shergottites varied by a factor of 10, but was always low, probably reflecting the amount of crystalline material in the maskelynite. There are trends in the TL peak temperature, peak width, and TL sensitivity which are believed to be associated with different proportions of feldspar in high- and low-temperature forms. This interpretation is consistent with the observed changes induced in the TL properties by annealing shergottites at 400-900 C. It is suggested that the observed trends were produced during postshock crystallization at a variety of cooling rates, the increasing order of cooling rate being EETA 79001, Zagami, ALHA 77005, and Shergotty, and that there is high-temperature feldspar present in all the samples. This implies a postshock temperature above 600 C, and a small (less than 10 m) size of the ejecta. Current theories are well able to explain how objects of this size could have been ejected from Mars.

  12. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.

    PubMed

    Zhu, Lijuan; Wang, Dali; Wei, Xuan; Zhu, Xinyuan; Li, Jianqi; Tu, Chunlai; Su, Yue; Wu, Jieli; Zhu, Bangshang; Yan, Deyue

    2013-08-10

    A multifunctional pH-sensitive superparamagnetic iron-oxide (SPIO) nanocomposite system was developed for simultaneous tumor magnetic resonance imaging (MRI) and therapy. Small-size SPIO nanoparticles were chemically bonded with antitumor drug doxorubicin (DOX) and biocompatible poly(ethylene glycol) (PEG) through pH-sensitive acylhydrazone linkages, resulting in the formation of SPIO nanocomposites with magnetic targeting and pH-sensitive properties. These DOX-conjugated SPIO nanocomposites exhibited not only good stability in aqueous solution but also high saturation magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating their magnetic targeting property. Comparing to free DOX, the DOX-conjugated SPIO nanocomposites showed better antitumor effect under magnetic field. At the same time, the relaxivity value of these SPIO nanocomposites was higher than 146s(-1)mM(-1) Fe, leading to ~4 times enhancement compared to that of free SPIO nanoparticles. As a negative contrast agent, these SPIO nanocomposites illustrated high resolution in MRI diagnosis of tumor-bearing mice. All of these results confirm that these pH-sensitive SPIO nanocomposites are promising hybrid materials for synergistic MRI diagnosis and tumor therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Studies of the Effects of Control Bandwidth and Dark-Hole Size on the HCIT Contrast Performance

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatha; Cady, Eric

    2015-01-01

    We have carried out both theoretical and experimental studies of the sensitivity of dark hole contrast to the control bandwidth and dark-hole dimensions in high-contrast broadband stellar coronagraphy. We have evaluated the performance of DM actuator solutions in the presence of occulting mask defects using one to five 2% -wide bands spanning a 10% bandpass. We have also investigated the dependence of the HCIT contrast performance on the size of dark -hole area including large dark holes formed at the Nyquist limit of the DM.

  14. Studies of the effects of control bandwidth and dark-hole size on the HCIT contrast performance

    NASA Astrophysics Data System (ADS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham; Cady, Eric

    2015-09-01

    We have carried out both theoretical and experimental studies of the sensitivity of dark hole contrast to the control bandwidth and dark-hole dimensions in high-contrast broadband stellar coronagraphy. We have evaluated the performance of DM actuator solutions in the presence of occulting mask defects using one to five 2%-wide bands spanning a 10% bandpass. We have also investigated the dependence of the HCIT contrast performance on the size of dark-hole area including large dark holes formed at the Nyquist limit of the DM.

  15. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  16. Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis

    PubMed Central

    Ponnath, Abhilash

    2010-01-01

    Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca2+-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca2+-dependent feedback: [Ca2+]internal increases with excitation, activating a Ca2+-dependent after-hyperpolarizing current. We propose that Ca2+ removal rate and the size of the after-hyperpolarizing current can determine ON1’s temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca2+-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca2+ removal can affect amplitude modulation sensitivity is computationally validated. PMID:20559640

  17. Environmental impacts of dredging and other sediment disturbances on corals: a review.

    PubMed

    Erftemeijer, Paul L A; Riegl, Bernhard; Hoeksema, Bert W; Todd, Peter A

    2012-09-01

    A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10 mg L(-1) in pristine offshore reef areas to >100 mg L(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000 mg L(-1) while others show mortality after exposure (weeks) to concentrations as low as 30 mg L(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6 weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10 mg cm(-2) d(-1) to >400 mg cm(-2) d(-1). The durations that corals can survive high sedimentation rates range from <24 h for sensitive species to a few weeks (>4 weeks of high sedimentation or >14 days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    PubMed

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by photoabsorption in the high-Z shielding material. For the ionization chambers and the diamond detector, the electron fluence spectra were found to be similar to that in water, for both field sizes. In contrast, electron spectra in the silicon diodes were much higher than that in water for both field sizes. The estimated perturbations of the fluence spectra for the silicon diodes were 11-21% for the large fields and 14-27% for the small fields. These perturbations are related to the atomic number, density and mean excitation energy (I-value) of silicon, as well as to the influence of the "extracameral"' components surrounding the detector sensitive volume. For most detectors the fluence perturbation was also found to increase when the field size was decreased, in consistency with the increased small-field effects observed for the smallest field sizes. The present work improves the understanding of small-field effects by relating output correction factors to spectral fluence perturbations in small field detectors. It is shown that the main reasons for the well-known small-field effects in silicon diodes are the high-Z and density of the "extracameral" detector components and the high I-value of silicon relative to that of water and diamond. Compared to these parameters, the density and atomic number of the radiation sensitive volume material play a less significant role. © 2016 American Association of Physicists in Medicine.

  19. Trityl radicals in perfluorocarbon emulsions as stable, sensitive, and biocompatible oximetry probes.

    PubMed

    Dhimitruka, Ilirian; Alzarie, Yasmin Alsayed; Hemann, Craig; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    EPR oximetry with the use of trityl radicals can enable sensitive O 2 measurement in biological cells and tissues. However, in vitro cellular and in vivo biological applications are limited by rapid trityl probe degradation or biological clearance and the need to enhance probe O 2 sensitivity. We synthesized novel perfluorocarbon (PFC) emulsions, ∼200nm droplet size, containing esterified perchlorinated triphenyl methyl (PTM) radicals dispersed in physiological aqueous buffers. These formulations exhibit excellent EPR signal stability, over 20-fold greater than free PTM probes, with high oxygen sensitivity ∼17mG/mmHg enabling pO 2 measurement in aqueous solutions or cell suspensions with sensitivity >0.5mmHg. Thus, PFC-PTM probes hold great promise to enable combined O 2 delivery and sensing as needed to restore or enhance tissue oxygenation in disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Resonant mode controllers for launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Schreiner, Ken E.; Roth, Mary Ellen

    1992-01-01

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  1. Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Basu, Silva; Li, Zhiming; Pradeep, K. G.; Raabe, Dierk

    2018-05-01

    Dual-phase high-entropy alloys (DP-HEAs) with transformation induced plasticity (TRIP) have an excellent strength-ductility combination. To reveal their strain-rate sensitivity and hence further understand the corresponding deformation mechanisms, we investigated the tensile behavior and microstructural evolution of a typical TRIP-DP-HEA (Fe50Mn30Co10Cr10, at. %) under different strain rates (i.e., 5 × 10-3 s-1, 1 × 10-3 s-1, 5 × 10-4 s-1 and 1 × 10-4 s-1) at room temperature. The strain rate range was confined to this regime in order to apply the digital image correlation technique for probing the local strain evolution during tensile deformation at high resolution and to correlate it to the microstructure evolution. Grain size effects of the face-centered cubic (FCC) matrix and the volume fractions of the hexagonal-close packed (HCP) phase prior to deformation were also considered. The results show that within the explored strain rate regime the TRIP-DP-HEA has a fairly low strain rate sensitivity parameter within the range from 0.004 to 0.04, which is significantly lower than that of DP and TRIP steels. Samples with varying grain sizes (e.g., 2.8 μm and 38 μm) and starting HCP phase fractions (e.g., 25% and 72%) at different strain rates show similar deformation mechanisms, i.e., dislocation plasticity and strain-induced transformation from the FCC matrix to the HCP phase. The low strain rate sensitivity is attributed to the observed dominant displacive transformation mechanism. Also, the coarse-grained alloy samples with a very high starting HCP phase fraction ( 72%) prior to deformation show very good ductility with a total elongation of 60%, suggesting that both, the initial and the transformed HCP phase in the TRIP-DP-HEA are ductile and deform further via dislocation slip at the different strain rates which were probed.

  2. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  3. Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas

    2012-01-01

    An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.

  4. U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Gowri, A.; Sai, V. V. R.

    2017-05-01

    This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.

  5. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Krishna

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. Tomore » address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10B) and enriched lithium ( 6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.« less

  6. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.

    PubMed

    Kim, Jae-Yup; Kang, Soon Hyung; Kim, Hyun Sik; Sung, Yung-Eun

    2010-02-16

    Highly ordered mesoporous Al(2)O(3)/TiO(2) was prepared by sol-gel reaction and evaporation-induced self-assembly (EISA) for use in dye-sensitized solar cells. The prepared materials had two-dimensional, hexagonal pore structures with anatase crystalline phases. The average pore size of mesoporous Al(2)O(3)/TiO(2) remained uniform and in the range of 6.33-6.58 nm while the Brunauer-Emmett-Teller (BET) surface area varied from 181 to 212 m(2)/g with increasing the content of Al(2)O(3). The incorporation of Al content retarded crystallite growth, thereby decreasing crystallite size while simultaneously improving the uniformity of pore size and volume. The thin Al(2)O(3) layer was located mostly on the mesopore surface, as confirmed by X-ray photoelectron spectroscopy (XPS). The Al(2)O(3) coating on the mesoporous TiO(2) film contributes to the essential energy barrier which blocks the charge recombination process in dye-sensitized solar cells. Mesoporous Al(2)O(3)/TiO(2) (1 mol % Al(2)O(3)) exhibited enhanced power conversion efficiency (V(oc) = 0.74 V, J(sc) = 15.31 mA/cm(2), fill factor = 57%, efficiency = 6.50%) compared to pure mesoporous TiO(2) (V(oc) = 0.72 V, J(sc) = 16.03 mA/cm(2), fill factor = 51%, efficiency = 5.88%). Therefore, the power conversion efficiency was improved by approximately 10.5%. In particular, the increase in V(oc) and fill factor resulted from the inhibition of charge recombination and the improvement of pore structure.

  7. In monkeys making value-based decisions, amygdala neurons are sensitive to cue value as distinct from cue salience.

    PubMed

    Leathers, Marvin L; Olson, Carl R

    2017-04-01

    Neurons in the lateral intraparietal (LIP) area of macaque monkey parietal cortex respond to cues predicting rewards and penalties of variable size in a manner that depends on the motivational salience of the predicted outcome (strong for both large reward and large penalty) rather than on its value (positive for large reward and negative for large penalty). This finding suggests that LIP mediates the capture of attention by salient events and does not encode value in the service of value-based decision making. It leaves open the question whether neurons elsewhere in the brain encode value in the identical task. To resolve this issue, we recorded neuronal activity in the amygdala in the context of the task employed in the LIP study. We found that responses to reward-predicting cues were similar between areas, with the majority of reward-sensitive neurons responding more strongly to cues that predicted large reward than to those that predicted small reward. Responses to penalty-predicting cues were, however, markedly different. In the amygdala, unlike LIP, few neurons were sensitive to penalty size, few penalty-sensitive neurons favored large over small penalty, and the dependence of firing rate on penalty size was negatively correlated with its dependence on reward size. These results indicate that amygdala neurons encoded cue value under circumstances in which LIP neurons exhibited sensitivity to motivational salience. However, the representation of negative value, as reflected in sensitivity to penalty size, was weaker than the representation of positive value, as reflected in sensitivity to reward size. NEW & NOTEWORTHY This is the first study to characterize amygdala neuronal responses to cues predicting rewards and penalties of variable size in monkeys making value-based choices. Manipulating reward and penalty size allowed distinguishing activity dependent on motivational salience from activity dependent on value. This approach revealed in a previous study that neurons of the lateral intraparietal (LIP) area encode motivational salience. Here, it reveals that amygdala neurons encode value. The results establish a sharp functional distinction between the two areas. Copyright © 2017 the American Physiological Society.

  8. Different patterns of puberty effect in neural oscillation to negative stimuli: sex differences.

    PubMed

    Yuan, Jiajin; Ju, Enxia; Yang, Jiemin; Chen, Xuhai; Li, Hong

    2014-12-01

    The present study investigated the impact of puberty on sex differences in neural sensitivity to negative stimuli. Event-related oscillation technique was used. Because girls are more vulnerable to affective disturbances than boys during adolescence, it was hypothesized that puberty exerts different influences on neural sensitivity to negative stimuli in boys and girls. EEGs were recorded for highly negative (HN), mildly negative (MN) and neutral pictures, when boys and girls distinct in pubertal status performed a non-emotional distracting task. No emotion effect and its interaction with sex and puberty were observed in response latencies. However, puberty influenced the gamma-band oscillation effect for negative stimuli differently for boys and girls: Pre-pubertal boys showed a significant emotion effect for HN stimuli, whose size was decreased in pubertal boys. By contrast, there was a significant emotion effect for HN stimuli in pubertal girls but not in pre-pubertal girls. On the other hand, the size of the emotion effect for HN stimuli was similar for pre-pubertal boys and girls; while this effect was significantly more pronounced in pubertal girls compared to pubertal boys. Additionally, the size of the emotion effect in gamma oscillations decreased as a function of pubertal development during both HN and MN stimulation in boys. For girls, the emotion effect in gamma oscillations increased with pubertal development during HN stimulation. Thus, puberty is associated with reduced neural sensitivity in boys but increased sensitivity in girls, in reaction to negative stimuli. The implications of these results for the psychopathology during adolescence were discussed.

  9. Further studies on the new high sensitive CaSO4:Dy thermostimulated luminescence phosphor.

    PubMed

    Lakshmanan, A R; Tomita, A

    2002-01-01

    CaSO4:Dy phosphor prepared by a new recipe (denoted as N) is nearly 50% more sensitive than the presently used one (denoted as P). N consists of needle shaped crystals while P is mostly quadrilateral. In P most of the grains in as-grown condition are >75 microm in size while in N most of the grains are <75 microm. While the sensitivity of P increases with grain size, an exactly opposite trend is seen with N since higher sized grains (>105 microm) in N are agglomerates of particles and hence are opaque. The detection threshold of N (14.4 microGy) is nearly 4 times lower than that of P (54.2 microGy). The major glow peak(s) in both the phosphors occur in the 460-490 K (187-217 degrees C) region. But the low temperature peak near 390 K (117 degrees C) is very prominent in P while its presence is insignificant in N. The post-irradiation storage stability of N at approximately 30 degrees C was tested up to a period of 25 d and found to be better than that of P. The emission spectra of P and N are characteristic of Dy3+. In P, the 480 nm to 570 nm emission intensity ratio varies slightly with glow peak temperature, unlike that of N. The Dy concentration quenching effect in N is less serious than that in P. The intrinsic UV sensitivity of N is nearly a factor of 20 times lower than that of P.

  10. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  11. Associations of insulin resistance, inflammation and liver synthetic function with very low-density lipoprotein: The Cardiovascular Health Study.

    PubMed

    Jiang, Z Gordon; de Boer, Ian H; Mackey, Rachel H; Jensen, Majken K; Lai, Michelle; Robson, Simon C; Tracy, Russell; Kuller, Lewis H; Mukamal, Kenneth J

    2016-03-01

    Production of very low-density lipoprotein (VLDL) is increased in states of metabolic syndrome, leading to hypertriglyceridemia. However, metabolic syndrome is often associated with non-alcoholic fatty liver disease, which leads to liver fibrosis and inflammation that may decrease VLDL production. In this study, we aim to determine the interactive impact on VLDL profiles from insulin resistance, impairment in liver synthetic function and inflammation. We examined cross-sectional associations of insulin sensitivity, inflammation, and liver synthetic function with VLDL particle (VLDL-P) concentration and size among 1,850 older adults in the Cardiovascular Health Study. Indices for high insulin sensitivity and low liver synthetic function were associated with lower concentrations of VLDL-P. In addition, insulin resistance preferentially increased concentration of large VLDL and was associated with mean VLDL size. Indices for inflammation however demonstrated a nonlinear relationship with both VLDL-P concentration and VLDL size. When mutually adjusted, one standard deviation (SD) increment in Matsuda index and C-reactive protein (CRP) were associated with 4.9 nmol/L (-8.2 to -1.5, p=0.005) and 6.3 nmol/L (-11.0 to -1.6, p=0.009) lower VLDL-P concentration respectively. In contrast, one-SD increment in factor VII, a marker for liver synthetic function, was associated with 16.9 nmol/L (12.6-21.2, p<0.001) higher VLDL-P concentration. Furthermore, a one-SD increment in the Matsuda index was associated with 1.1 nm (-2.0 to -0.3, p=0.006) smaller mean VLDL size, whereas CRP and factor VII were not associated with VLDL size. Insulin sensitivity, inflammation and markers for liver synthetic function differentially impact VLDL-P concentration and VLDL size. These results underscore the complex effects of insulin resistance and its complications on VLDL production. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The quality of geological information derivable from high resolution reflectance spectra - Results for mafic silicates

    NASA Technical Reports Server (NTRS)

    Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.

    1987-01-01

    High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).

  13. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    PubMed

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  14. Self-assessment of genital anatomy and sexual function within a Belgian, Dutch-speaking female population: a validation study.

    PubMed

    Bronselaer, Guy; Callens, Nina; De Sutter, Petra; De Cuypere, Griet; T'Sjoen, Guy; Cools, Martine; Hoebeke, Piet

    2013-12-01

    Data on self-perceived genital anatomy and sensitivity should be part of the long-term follow-up of genitoplasty procedures. However, no normative data, based on a large sample, exist to date. Validation of the Self-Assessment of Genital Anatomy and Sexual Function, Female version (SAGAS-F) questionnaire within a Belgian, Dutch-speaking female population. Seven hundred forty-nine women with no history of genital surgery (aged 18-69 years, median 25 years) completed an Internet-based survey of whom 21 women underwent a gynecological examination as to correlate self-reported genital sensitivity assessed in an experimental setting. The SAGAS-F enables women to rate the sexual pleasure, discomfort, intensity of orgasm, and effort required for achieving orgasm in specified areas around the clitoris and within the vagina, as well as genital appearance. The latter was similarly evaluated by an experienced gynecologist, and women were asked to functionally rate the anatomical areas pointed out with a vaginal swab. Sexual pleasure and orgasm were strongest, and effort to attain orgasm and discomfort was lowest when stimulating the clitoris and sides of the clitoris (P < 0.05). Vaginal sensitivity increased with increasing vaginal depth, but overall orgasmic sensitivity was lower as compared with the clitoris. Functional scores on the SAGAS-F and during gynecological examination corresponded highly on most anatomical areas (P < 0.05). Gynecologist's ratings corresponded highly with the women's ratings for vaginal size (90%) but not for clitoral size (48%). Replication of the original pilot study results support the validity of the questionnaire. The SAGAS-F discriminates reasonably well between various genital areas in terms of erotic sensitivity. The clitoris itself appeared to be the most sensitive, consistent with maximum nerve density in this area. Surgery to the clitoris could disrupt neurological pathways and compromise erotic sensation and pleasure. © 2013 International Society for Sexual Medicine.

  15. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  16. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  17. System performance and modeling of a bioaerosol detection lidar sensor utilizing polarization diversity

    NASA Astrophysics Data System (ADS)

    Glennon, John J.; Nichols, Terry; Gatt, Phillip; Baynard, Tahllee; Marquardt, John H.; Vanderbeek, Richard G.

    2009-05-01

    The weaponization and dissemination of biological warfare agents (BWA) constitute a high threat to civilians and military personnel. An aerosol release, disseminated from a single point, can directly affect large areas and many people in a short time. Because of this threat real-time standoff detection of BWAs is a key requirement for national and military security. BWAs are a general class of material that can refer to spores, bacteria, toxins, or viruses. These bioaerosols have a tremendous size, shape, and chemical diversity that, at present, are not well characterized [1]. Lockheed Martin Coherent Technologies (LMCT) has developed a standoff lidar sensor with high sensitivity and robust discrimination capabilities with a size and ruggedness that is appropriate for military use. This technology utilizes multiwavelength backscatter polarization diversity to discriminate between biological threats and naturally occurring interferents such as dust, smoke, and pollen. The optical design and hardware selection of the system has been driven by performance modeling leading to an understanding of measured system sensitivity. Here we briefly discuss the challenges of standoff bioaerosol discrimination and the approach used by LMCT to overcome these challenges. We review the radiometric calculations involved in modeling direct-detection of a distributed aerosol target and methods for accurately estimating wavelength dependent plume backscatter coefficients. Key model parameters and their validation are discussed and outlined. Metrics for sensor sensitivity are defined, modeled, and compared directly to data taken at Dugway Proving Ground, UT in 2008. Sensor sensitivity is modeled to predict performance changes between day and night operation and in various challenging environmental conditions.

  18. Platinum Nanocatalyst Amplification: Redefining the Gold Standard for Lateral Flow Immunoassays with Ultrabroad Dynamic Range

    PubMed Central

    2017-01-01

    Paper-based lateral flow immunoassays (LFIAs) are one of the most widely used point-of-care (PoC) devices; however, their application in early disease diagnostics is often limited due to insufficient sensitivity for the requisite sample sizes and the short time frames of PoC testing. To address this, we developed a serum-stable, nanoparticle catalyst-labeled LFIA with a sensitivity surpassing that of both current commercial and published sensitivities for paper-based detection of p24, one of the earliest and most conserved biomarkers of HIV. We report the synthesis and characterization of porous platinum core–shell nanocatalysts (PtNCs), which show high catalytic activity when exposed to complex human blood serum samples. We explored the application of antibody-functionalized PtNCs with strategically and orthogonally modified nanobodies with high affinity and specificity toward p24 and established the key larger nanoparticle size regimes needed for efficient amplification and performance in LFIA. Harnessing the catalytic amplification of PtNCs enabled naked-eye detection of p24 spiked into sera in the low femtomolar range (ca. 0.8 pg·mL–1) and the detection of acute-phase HIV in clinical human plasma samples in under 20 min. This provides a versatile absorbance-based and rapid LFIA with sensitivity capable of significantly reducing the HIV acute phase detection window. This diagnostic may be readily adapted for detection of other biomolecules as an ultrasensitive screening tool for infectious and noncommunicable diseases and can be capitalized upon in PoC settings for early disease detection. PMID:29215864

  19. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    PubMed

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  20. Application of low-energy scanning transmission electron microscopy for the study of Pt-nanoparticle uptake in human colon carcinoma cells.

    PubMed

    Blank, Holger; Schneider, Reinhard; Gerthsen, Dagmar; Gehrke, Helge; Jarolim, Katharina; Marko, Doris

    2014-06-01

    High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) in a scanning electron microscope facilitates the acquisition of images with high chemical sensitivity and high resolution. HAADF STEM at low electron energies is particularly suited to image nanoparticles (NPs) in thin cell sections which are not subjected to poststaining procedures as demonstrated by comparison with bright-field TEM. High membrane contrast is achieved and distinction of NPs with different chemical composition is possible at first sight. Low-energy HAADF STEM was applied to systematically study the uptake of Pt-NPs with a broad size distribution in HT29 colon carcinoma cells as a function of incubation time and incubation temperature. The cellular dose was quantified, that is, the amount and number density of NPs taken up by the cells, as well as the particle-size distribution. The results show a strong dependence of the amount of incubated NPs on the exposure time which can be understood by considering size-dependent diffusion and gravitational settling of the NPs in the cell culture medium.

  1. Design of An Improved Miniature Ion Neutral Mass Spectrometer for NASA Applications

    NASA Technical Reports Server (NTRS)

    Swaminathan, Viji K.; Alig, Roger C.

    1997-01-01

    The ion optics of NASA's Ion Neutral Mass Spectrometer (INMS) sensor was simulated with three dimensional models of the open source, the quadrupole deflector, the exit lens system and the quadrupole mass analyzer to design more compact models with lower weight. Comparison of calculated transmission with experimental results shows good agreement. Transmission analyses with varying geometrical parameters and voltages throw light on possible ways of reducing the size of the sensor. Trajectories of ions of mass 1-99 amu were simulated to analyze and optimize transmission. Analysis of open source transmission with varying angle of attack shows that the angular acceptance can be considerably increased by programming the voltages on the ion trap/ collimator. Analysis of transmission sensitivity to voltages and misalignments of the quadrupole deflector rods indicate that increased transmission is possible with a geometrically asymmetrical deflector and a deflector can be designed with much lower sensitivities of transmission. Bringing the disks closer together can decrease the size of the quadrupole deflector and also increase transmission. The exit lens system can be redesigned to be smaller by eliminating at least one electrode entirely without loss of transmission. Ceramic materials were investigated to find suitable candidates for use in the construction of lighter weight mass spectrometer. A high-sensitivity, high-resolution portable gas chromatograph mass spectrometer with a mass range of 2-700 amu has been built and will be commercialized in Phase 3.

  2. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-24

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL 'opens' to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  3. Electrophoretic build-up of multi nanoparticle array for a highly sensitive immunoassay

    PubMed Central

    Han, Jin-Hee; Kim, Hee-Joo; Sudheendra, L.; Hass, Elizabeth A.; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2012-01-01

    One of the challenges in shrinking immunoassays to smaller sizes is to immobilize the biological molecules to nanometer-scaled spots. To overcome this complication, we have employed a particle-based immunoassay to create a nanostructured platform with a regular array of sensing elements. The technique makes use of an electrophoretic particle entrapment system (EPES) to immobilize nanoparticles that are coated with biological reagents into wells using a very small trapping potential. To provide useful information for controlling the trapping force and optimal design of the nanoarray, electrophoretic trapping of a nanoparticle was modeled numerically. The trapping efficiency, defined as the fraction of wells occupied by a single particle, was 91%. The performance of the array was demonstrated with a competitive immunoassay for a small molecule analyte, 3-phenoxybenzoic acid (214.2 g mole−1). The limit of detection determined with a basic fluorescence microscope was 0.006 μg l−1 (30 pM); this represented a sixteen-fold improvement in sensitivity compared to a standard 96-well plate-based ELISA; the improvement was attributed to the small size of the sample volume and the presence of light diffraction among factors unique to this structure. The EPES/nanoarray system promises to offer a new standard in applications that require portable, point-of-care and real-time monitoring with high sensitivity. PMID:23021853

  4. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-01

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL ‘opens’ to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  5. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    PubMed Central

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-01-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings. PMID:27113330

  6. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    PubMed

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65-88%), compared to the sensitivity (91-100%) of the new molecular diagnostic workflow. Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited.

  7. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    DOE PAGES

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; ...

    2016-01-28

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Pt n (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptmore » n (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt 13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt 13 by a temperature increase up to 400 K leading to ethylidyne formation. As a result, control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.« less

  8. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    PubMed Central

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi

    2016-01-01

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8–15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptn (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity. PMID:26817713

  9. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi

    2016-01-01

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation-dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptn (n>=10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.

  10. Ovarian Control of Nectar Collection in the Honey Bee (Apis mellifera)

    PubMed Central

    Siegel, Adam J.; Freedman, Colin; Page, Robert E.

    2012-01-01

    Honey bees are a model system for the study of division of labor. Worker bees demonstrate a foraging division of labor (DOL) by biasing collection towards carbohydrates (nectar) or protein (pollen). The Reproductive ground-plan hypothesis of Amdam et al. proposes that foraging DOL is regulated by the networks that controlled foraging behavior during the reproductive life cycle of honey bee ancestors. Here we test a proposed mechanism through which the ovary of the facultatively sterile worker impacts foraging bias. The proposed mechanism suggests that the ovary has a regulatory effect on sucrose sensitivity, and sucrose sensitivity impacts nectar loading. We tested this mechanism by measuring worker ovary size (ovariole number), sucrose sensitivity, and sucrose solution load size collected from a rate-controlled artificial feeder. We found a significant interaction between ovariole number and sucrose sensitivity on sucrose solution load size when using low concentration nectar. This supports our proposed mechanism. As nectar and pollen loading are not independent, a mechanism impacting nectar load size would also impact pollen load size. PMID:22558073

  11. Ultrasonically controlled particle size distribution of explosives: a safe method.

    PubMed

    Patil, Mohan Narayan; Gore, G M; Pandit, Aniruddha B

    2008-03-01

    Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process.

  12. Predictors of malignancy in intraductal papillary mucinous neoplasm of the pancreas: analysis of 310 pancreatic resection patients at multiple high-volume centers.

    PubMed

    Shimizu, Yasuhiro; Yamaue, Hiroki; Maguchi, Hiroyuki; Yamao, Kenji; Hirono, Seiko; Osanai, Manabu; Hijioka, Susumu; Hosoda, Waki; Nakamura, Yasushi; Shinohara, Toshiya; Yanagisawa, Akio

    2013-07-01

    The present study was a retrospective investigation of predictors of malignancy in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. The subjects were 310 patients who underwent pancreatic resection at 3 high-volume centers. Preoperative laboratory and imaging findings were analyzed in logistic regression analyses. Endoscopic ultrasonography measurements were essential for the size of mural nodules, and a central review was conducted for pathological diagnosis. Pathological diagnosis was benign IPMN in 150 cases and malignant in 160 (noninvasive carcinoma, n = 100; invasive, n = 60). In multivariate analysis, size of mural nodules, diameter of main pancreatic duct, and cyst size of branch pancreatic duct were independent predictors of malignancy, and areas under the receiver operating characteristic curve for these 3 factors were 0.798, 0.643, and 0.601, respectively. With 7 mm taken as the cutoff value for the size of mural nodules, the diagnosis of malignant IPMN had sensitivity of 74.3% and specificity of 72.7%. Carcinoma without nodules was present in 15 patients (15/160 [9.4%]). The size of mural nodules measured with endoscopic ultrasonography showed high predictive ability. However, about 10% of carcinoma patients did not have nodules, and the handling of the diagnosis in such cases is a problem for the future.

  13. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    NASA Technical Reports Server (NTRS)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  14. Synthesis of MSnO{sub 3} (M = Ba, Sr) nanoparticles by reverse micelle method and particle size distribution analysis by whole powder pattern modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R.

    2012-09-15

    Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powdermore » pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.« less

  15. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    NASA Astrophysics Data System (ADS)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  16. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    PubMed Central

    Tehrani, Farshad; Bavarian, Behzad

    2016-01-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706

  17. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM-4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  18. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  19. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  20. Chemical release from single-PMMA microparticles monitored by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus

    2011-03-01

    Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.

  1. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    PubMed

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  2. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  3. Sensitivity analysis of heliostat aiming strategies and receiver size on annual thermal production of a molten salt external receiver

    NASA Astrophysics Data System (ADS)

    Servert, Jorge; González, Ana; Gil, Javier; López, Diego; Funes, Jose Felix; Jurado, Alfonso

    2017-06-01

    Even though receiver size and aiming strategy are to be jointly analyzed to optimize the thermal energy that can be extracted from a solar tower receiver, customarily, they have been studied as separated problems. The main reason is the high-level of detail required to define aiming strategies, which are often simplified in annual simulation models. Aiming strategies are usually focused on obtaining a homogeneous heat flux on the central receiver, with the goal to minimize the maximum heat flux value that may lead to damaging it. Some recent studies have addressed the effect of different aiming strategies on different receiver types, but they have only focused on the optical efficiency. The receiver size is also an additional parameter that has to be considered: larger receiver sizes provide a larger aiming surface and a reduction on spillage losses, but require higher investment while penalizing the thermal performance of the receiver due to the greater external convection losses. The present paper presents a sensitivity analysis of both factors for a predefined solar field at a fixed location, using a central receiver and molten salts as HTF. The analysis includes the design point values and annual energy outputs comparing the effect on the optical performance (measured using a spillage factor) and thermal energy production.

  4. Effect of Copper Oxide Nanoparticles as a barrier for Efficiency Improvement in ZnO Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Sonthila, A.; Ruankham, P.; Choopun, S.; Wongratanaphisan, D.; Phadungdhitidhada, S.; Gardchareon, A.

    2017-09-01

    CuO nanoparticles (CuO NPs) were used as a barrier layer in ZnO dye-sensitized solar cells (DSSCs) to obtain high power conversion efficiency. The barrier layer was investigated in terms of the size of CuO NPs by varying power of pulsed Nd:YAG (1064 nm) laser ablation. Morphological and optical properties of CuO NPs were characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry (UV-vis) and dynamic light scattering (DLS). It was found that the CuO NPs are rather spherical in shape with diameter in between 20 - 132 nm. In addition, the energy gap of CuO decreases with the increase of CuO NPs size. The power conversion efficiency of ZnO DSSCs was measured under illumination of simulated sunlight obtained from a solar simulator with the radiant power of 100 mW/cm2. The results showed that the ZnO DSSC with the CuO NPs with size of 37 nm exhibits the optimum power conversion efficiency of 1.01% which is higher than that of one without CuO NPs. Moreover, the power conversion efficiency of the ZnO DSSCs decreases with the increase of CuO NPs size.

  5. Dual axis operation of a micromachined rate gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneau, T.; Pisano, A.P.; Smith, J.

    Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance bettermore » than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.« less

  6. Quantum gyroscope based on Berry phase of spins in diamond

    NASA Astrophysics Data System (ADS)

    Song, Xuerui; Wang, Liujun; Diao, Wenting; Duan, Chongdi

    2018-02-01

    Gyroscope is the crucial sensor of the inertial navigation system, there is always high demand to improve the sensitivity and reduce the size of the gyroscopes. Using the NV center electronic spin and nuclear spin qubits in diamond, we introduce the research of new types of quantum gyroscopes based on the Berry phase shifts of the spin states during the rotation of the sensor systems. Compared with the performance of the traditional MEMS gyroscope, the sensitivity of the new types of quantum gyroscopes was highly improved and the spatial resolution was reduced to nano-scale. With the help of micro-manufacturing technology in the semiconductor industry, the quantum gyroscopes introduced here can be further integrated into chip-scale sensors.

  7. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    PubMed Central

    Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.; Sanders, Melinda; Harvey, Sara; Gore, John C.; Yankeelov, Thomas E.

    2015-01-01

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm)3 and (0.6 mm)3. In images acquired at 7 T with voxel sizes of (0.2 mm)3–(0.4 mm)3, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm)3–(0.6 mm)3, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance. PMID:25735297

  8. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragmentsmore » within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm){sup 3}–(0.6 mm){sup 3}, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance.« less

  9. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.

    PubMed

    Liu, Ye; Wang, D N; Chen, W P

    2016-12-02

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  10. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  11. NEAR-REAL TIME, HIGHLY SENSITIVE AND SELECTIVE FIELD DEPLOYABLE BIOSENSOR FOR CYANOTOXINS AND CYANOBACTERIA USING BOTH ANTIBODIES AND DNA-SIGNATURES

    EPA Science Inventory

    The overall goal of the proposed research is to develop piezoelectric-excited millimeter-sized cantilever sensors (PEMC) for cyanotoxins in source, finished and system waters that measures in a field-deployable format and rapidly in 15 minutes so that cyanotoxin(s) hazard a...

  12. Avoiding Conflicts of Interest: A Guide for School Board Members and Superintendents

    ERIC Educational Resources Information Center

    Washington State School Directors' Association (NJ1), 2007

    2007-01-01

    Nearly every legislative session in the last decade has changed state law in a way that requires school board members and superintendents to be more highly sensitized to conflict of interest issues, regardless of the size of their district. Prior state law simply forbade most opportunities for financial conflicts of interest, especially those…

  13. Gas Scintillation Proportional Counters for High-Energy X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2003-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a balloon-borne hard-x-ray telescope is under development at the Marshall Space Flight Center. These detectors have an active area of approx. 20 sq cm, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approx. 500 microns. The detector s energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Full details of the instrument and its performance will be provided.

  14. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    PubMed

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  15. Tension fracture of laminates for transport fuselage. Part 1: Material screening

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Avery, W. B.; Ilcewicz, L. B.; Poe, C. C., Jr.; Harris, C. E.

    1992-01-01

    Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Applications of composites to fuselage structures require a database and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity; (2) evaluate composite failure criteria; and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in major load bearing plies. Parameters for conventional fracture criteria were found to increase with crack length for the smallest notch sizes studied. Most material and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Traitional methods of correcting for specimen finite width were found to be lacking. Results indicate that a range of notch sizes must be tested to determine notch sensitivity. Data for a single small notch size (0.25 in. diameter) was found to give no indication of the sensitivity of a particular material and laminate layup to larger notch sizes.

  16. Apparatus for measuring a sorbate dispersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Updike, O. L. (Inventor)

    1977-01-01

    A sensitive, miniature apparatus was designed for measuring low concentrations of a sorbate dispersed in a fluid stream. The device consists of an elongated body having a surface capable of sorbing an amount of the sorbate proportional to the concentration in the fluid stream and propagating acoustic energy along its length. The acoustic energy is converted to an electrical output signal corresponding to the concentration of sorbate in the fluid stream. The device can be designed to exhibit high sensitivity to extremely small amounts of sorbate dispersed in a fluid stream and to exhibit low sensitivity to large amounts of sorbate. Another advantage is that the apparatus may be formed in a microminiature size and at a low cost using bath microfabrication technology.

  17. SnO2 quantum dots with rapid butane detection at lower ppm-level

    NASA Astrophysics Data System (ADS)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  18. Sensitive gas analysis system on a microchip and application for on-site monitoring of NH3 in a clean room.

    PubMed

    Hiki, Shinichiro; Mawatari, Kazuma; Aota, Arata; Saito, Maki; Kitamori, Takehiko

    2011-06-15

    A portable, highly sensitive, and continuous ammonia gas monitoring system was developed with a microfluidic chip. The system consists of a main unit, a gas pumping unit, and a computer which serves as an operation console. The size of the system is 45 cm width × 30 cm depth × 30 cm height, and the portable system was realized. A highly efficient and stable extraction method was developed by utilizing an annular gas/liquid laminar flow. In addition, a stable gas/liquid separation method with a PTFE membrane was developed by arranging a fluidic network in three dimensions to achieve almost zero dead volume at the gas/liquid extraction part. The extraction rate was almost 100% with a liquid flow rate of 3.5 μL/min and a gas flow rate of 100 mL/min (contact time of ~15 ms), and the concentration factor was 200 times by calculating the NH(3) concentration (w/w unit) in the gas and liquid phases. Stable phase separation and detection was sustained for more than 3 weeks in an automated operation, which was sufficient for the monitoring application. The lower limit of detection calculated based on a signal-to-noise ratio of 3 was 84 ppt, which showed good detectability for NH(3) analysis. We believe that our system is a very powerful tool for gas analysis due to the advantages of portable size, high sensitivity, and continuous monitoring, and it is particularly useful in the semiconductor field.

  19. Synthesis and LPG sensing properties of nano-sized cadmium oxide.

    PubMed

    Waghulade, R B; Patil, P P; Pasricha, Renu

    2007-04-30

    This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.

  20. Sensitivity of the simulation of tropical cyclone size to microphysics schemes

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-09-01

    The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes-Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)-are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

  1. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    PubMed Central

    Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel

    2014-01-01

    A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771

  2. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were obtained using spICP-MS. The use of this methodology confirms that the observed minimum detectable sizes are consistent with the calculated Dmin values. Overall, this work identifies the elements and nanoparticles to which current spICP-MS approaches can be applied, in order to enable quantification of very small nanoparticles at low concentrations in aqueous media.

  3. A multi-reader in vitro study using porcine kidneys to determine the impact of integrated circuit detectors and iterative reconstruction on the detection accuracy, size measurement, and radiation dose for small (<4 mm) renal stones.

    PubMed

    Wells, Michael L; Froemming, Adam T; Kawashima, Akira; Vrtiska, Terri J; Kim, Bohyun; Hartman, Robert P; Holmes, David R; Carter, Rickey E; Bartley, Adam C; Leng, Shuai; McCollough, Cynthia H; Fletcher, Joel G

    2017-08-01

    Background Detection of small renal calculi has benefitted from recent advances in computed tomography (CT) scanner design. Information regarding observer performance when using state-of-the-art CT scanners for this application is needed. Purpose To assess observer performance and the impact of radiation dose for detection and size measurement of <4 mm renal stones using CT with integrated circuit detectors and iterative reconstruction. Material and Methods Twenty-nine <4 mm calcium oxalate stones were randomly placed in 20 porcine kidneys in an anthropomorphic phantom. Four radiologists used a workstation to record each calculus detection and size. JAFROC Figure of Merit (FOM), sensitivity, false positive detections, and calculus size were calculated. Results Mean calculus size was 2.2 ± 0.7 mm. The CTDI vol values corresponding to the automatic exposure control settings of 160, 80, 40, 25, and 10 Quality Reference mAs (QRM) were 15.2, 7.9, 4.2, 2.7, and 1.3 mGy, respectively. JAFROC FOM was ≥ 0.97 at ≥ 80 QRM, ≥ 0.89 at ≥ 25 QRM, and was inferior to routine dose (160 QRM) at 10 QRM (0.72, P < 0.05). Per-calculus sensitivity remained ≥ 85% for every reader at ≥ 25 QRM. Mean total false positive detections per reader were ≤ 3 at ≥ 80 QRM, but increased substantially for two readers ( ≥ 12) at ≤ 40 QRM. Measured calculus size significantly decreased at ≤ 25 QRM ( P ≤ 0.01). Conclusion Using low dose renal CT with iterative reconstruction and ≥ 25 QRM results in high sensitivity, but false positive detections increase for some readers at very low dose levels (≤ 40 QRM). At very low doses with iterative reconstruction, measured calculus size will artifactually decrease.

  4. Interaction of aberrations, diffraction, and quantal fluctuations determine the impact of pupil size on visual quality.

    PubMed

    Xu, Renfeng; Wang, Huachun; Thibos, Larry N; Bradley, Arthur

    2017-04-01

    Our purpose is to develop a computational approach that jointly assesses the impact of stimulus luminance and pupil size on visual quality. We compared traditional optical measures of image quality and those that incorporate the impact of retinal illuminance dependent neural contrast sensitivity. Visually weighted image quality was calculated for a presbyopic model eye with representative levels of chromatic and monochromatic aberrations as pupil diameter was varied from 7 to 1 mm, stimulus luminance varied from 2000 to 0.1  cd/m2, and defocus varied from 0 to -2 diopters. The model included the effects of quantal fluctuations on neural contrast sensitivity. We tested the model's predictions for five cycles per degree gratings by measuring contrast sensitivity at 5  cyc/deg. Unlike the traditional Strehl ratio and the visually weighted area under the modulation transfer function, the visual Strehl ratio derived from the optical transfer function was able to capture the combined impact of optics and quantal noise on visual quality. In a well-focused eye, provided retinal illuminance is held constant as pupil size varies, visual image quality scales approximately as the square root of illuminance because of quantum fluctuations, but optimum pupil size is essentially independent of retinal illuminance and quantum fluctuations. Conversely, when stimulus luminance is held constant (and therefore illuminance varies with pupil size), optimum pupil size increases as luminance decreases, thereby compensating partially for increased quantum fluctuations. However, in the presence of -1 and -2 diopters of defocus and at high photopic levels where Weber's law operates, optical aberrations and diffraction dominate image quality and pupil optimization. Similar behavior was observed in human observers viewing sinusoidal gratings. Optimum pupil size increases as stimulus luminance drops for the well-focused eye, and the benefits of small pupils for improving defocused image quality remain throughout the photopic and mesopic ranges. However, restricting pupils to <2  mm will cause significant reductions in the best focus vision at low photopic and mesopic luminances.

  5. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  6. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    1998-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  7. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    DOE PAGES

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; ...

    2018-01-11

    Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less

  8. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Hadimani, Ravi L.

    2018-05-01

    Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the Gd5Si4 phase, and the ferromagnetic transition temperature of Gd5Si4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.

  9. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.

    Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less

  10. Battery energy storage sizing when time of use pricing is applied.

    PubMed

    Carpinelli, Guido; Khormali, Shahab; Mottola, Fabio; Proto, Daniela

    2014-01-01

    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.

  11. Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    PubMed Central

    Khormali, Shahab

    2014-01-01

    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs. PMID:25295309

  12. Grain size-sensitive creep in ice II

    USGS Publications Warehouse

    Kubo, T.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2006-01-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  13. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-03

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  14. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  15. A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang

    2017-07-01

    Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.

  16. Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance.

    PubMed

    Nery, J; Goudez, R; Biourge, V; Tournier, C; Leray, V; Martin, L; Thorin, C; Nguyen, P; Dumon, H

    2012-08-01

    Low-consistency, high-moisture feces have been observed in large dogs (Canis lupus familiaris), compared with small dogs, and particularly in sensitive breeds (e.g., German Shepherd dogs). The aim of this work was to determine if greater colonic protein fermentation is responsible for poorer fecal quality in large sensitive dogs. Twenty-seven bitches were allotted to 4 groups based on size and digestive sensitivity: small, medium, large tolerant, and large sensitive. Five experimental diets varying in protein source [highly digestible wheat gluten (WG) vs. medium digestible poultry meal (PM), and protein concentration from 21.4 to 21.6 (LP) to 38.2 to 39.2% CP (HP)] were tested. Diets were fed for 14 d and followed by a 12-d transition period. Digestive fermentation by-products were investigated in fresh stools [ammonia, phenol, indole, and short chain fatty acids including acetate, propionate, and butyrate (C2 to C4 SCFA), branched-chain fatty acids (BCFA), and valerate] and in urine (phenol and indole). Bacterial populations in feces were identified. The PM diets resulted in greater fecal concentrations of ammonia, BCFA, valerate, indole, and C2 to C4 SCFA than WG diets (P = 0.002, P < 0.001, P = 0.039, P = 0.003, and P = 0.012, respectively). Greater concentrations of ammonia, BCFA, and valerate were found in the feces of dogs fed HP compared with LP diets (P < 0.001, P < 0.001, and P = 0.012, respectively). The concentrations of ammonia, valerate, phenol, and indole in feces of large sensitive dogs were greater (P < 0.001, P < 0.001, P = 0.002, and P = 0.019, respectively) compared with the other groups. The Enterococcus populations were greater in feces of dogs fed with PMHP rather than WGLP diets (P = 0.006). Urinary phenol and indole excretion was greater when dogs were fed PM than WG diets (P < 0.001 and P = 0.038, respectively) and HP than LP diets (P = 0.001 and P = 0.087, respectively). Large sensitive dogs were prone to excrete a greater quantity of phenol in urine (P < 0.001). A diet formulated with highly digestible protein, such as WG, led to reduced concentrations of protein-based fermentation products in feces together with improved fecal quality in dogs, especially in large sensitive ones. Poor fecal quality in large sensitive dogs could be partly related to the pattern of protein fermentation in the hindgut.

  17. Accuracy of ultrasound versus computed tomography urogram in detecting urinary tract calculi.

    PubMed

    Salinawati, B; Hing, E Y; Fam, X I; Zulfiqar, M A

    2015-08-01

    To determine the (i) sensitivity and specificity of ultrasound (USG) in the detection of urinary tract calculi, (ii) size of renal calculi detected on USG, and (iii) size of renal calculi not seen on USG but detected on computed tomography urogram (CTU). A total of 201 patients' USG and CTU were compared retrospectively for the presence of calculi. Sensitivity, specificity, accuracy, positive predictive value and negative predictive value of USG were calculated with CTU as the gold standard. From the 201 sets of data collected, 59 calculi were detected on both USG and CTU. The sensitivity and specificity of renal calculi detection on USG were 53% and 85% respectively. The mean size of the renal calculus detected on USG was 7.6 mm ± 4.1 mm and the mean size of the renal calculus not visualised on USG but detected on CTU was 4 mm ± 2.4 mm. The sensitivity and specificity of ureteric calculi detection on USG were 12% and 97% respectively. The sensitivity and specificity of urinary bladder calculi detection on USG were 20% and 100% respectively. This study showed that the accuracy of US in detecting renal, ureteric and urinary bladder calculi were 67%, 80% and 98% respectively.

  18. Time-reversal optical tomography: detecting and locating extended targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.

    2012-03-01

    Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.

  19. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  20. Rasch fit statistics and sample size considerations for polytomous data.

    PubMed

    Smith, Adam B; Rush, Robert; Fallowfield, Lesley J; Velikova, Galina; Sharpe, Michael

    2008-05-29

    Previous research on educational data has demonstrated that Rasch fit statistics (mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously scored rating data, although little is known about this relationship for polytomous data. These statistics help inform researchers about how well items fit to a unidimensional latent trait, and are an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health research the purpose of this study was therefore to explore the relationship between fit statistics and sample size for polytomous data. Data were collated from a heterogeneous sample of cancer patients (n = 4072) who had completed both the Patient Health Questionnaire - 9 and the Hospital Anxiety and Depression Scale. Ten samples were drawn with replacement for each of eight sample sizes (n = 25 to n = 3200). The Rating and Partial Credit Models were applied and the mean square and t-fit statistics (infit/outfit) derived for each model. The results demonstrated that t-statistics were highly sensitive to sample size, whereas mean square statistics remained relatively stable for polytomous data. It was concluded that mean square statistics were relatively independent of sample size for polytomous data and that misfit to the model could be identified using published recommended ranges.

  1. Rasch fit statistics and sample size considerations for polytomous data

    PubMed Central

    Smith, Adam B; Rush, Robert; Fallowfield, Lesley J; Velikova, Galina; Sharpe, Michael

    2008-01-01

    Background Previous research on educational data has demonstrated that Rasch fit statistics (mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously scored rating data, although little is known about this relationship for polytomous data. These statistics help inform researchers about how well items fit to a unidimensional latent trait, and are an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health research the purpose of this study was therefore to explore the relationship between fit statistics and sample size for polytomous data. Methods Data were collated from a heterogeneous sample of cancer patients (n = 4072) who had completed both the Patient Health Questionnaire – 9 and the Hospital Anxiety and Depression Scale. Ten samples were drawn with replacement for each of eight sample sizes (n = 25 to n = 3200). The Rating and Partial Credit Models were applied and the mean square and t-fit statistics (infit/outfit) derived for each model. Results The results demonstrated that t-statistics were highly sensitive to sample size, whereas mean square statistics remained relatively stable for polytomous data. Conclusion It was concluded that mean square statistics were relatively independent of sample size for polytomous data and that misfit to the model could be identified using published recommended ranges. PMID:18510722

  2. Dark-field imaging in coronary atherosclerosis.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias

    2017-09-01

    Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rethinking Trade-Driven Extinction Risk in Marine and Terrestrial Megafauna.

    PubMed

    McClenachan, Loren; Cooper, Andrew B; Dulvy, Nicholas K

    2016-06-20

    Large animals hunted for the high value of their parts (e.g., elephant ivory and shark fins) are at risk of extinction due to both intensive international trade pressure and intrinsic biological sensitivity. However, the relative role of trade, particularly in non-perishable products, and biological factors in driving extinction risk is not well understood [1-4]. Here we identify a taxonomically diverse group of >100 marine and terrestrial megafauna targeted for international luxury markets; estimate their value across three points of sale; test relationships among extinction risk, high value, and body size; and quantify the effects of two mitigating factors: poaching fines and geographic range size. We find that body size is the principal driver of risk for lower value species, but that this biological pattern is eliminated above a value threshold, meaning that the most valuable species face a high extinction risk regardless of size. For example, once mean product values exceed US$12,557 kg(-1), body size no longer drives risk. Total value scales with size for marine animals more strongly than for terrestrial animals, incentivizing the hunting of large marine individuals and species. Poaching fines currently have little effect on extinction risk; fines would need to be increased 10- to 100-fold to be effective. Large geographic ranges reduce risk for terrestrial, but not marine, species, whose ranges are ten times greater. Our results underscore both the evolutionary and ecosystem consequences of targeting large marine animals and the need to geographically scale up and prioritize conservation of high-value marine species to avoid extinction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparison of Quantitative Wall Motion Analysis and Strain For Detection Of Coronary Stenosis With Three-Dimensional Dobutamine Stress Echocardiography

    PubMed Central

    Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.

    2015-01-01

    Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588

  5. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    NASA Technical Reports Server (NTRS)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west side of the domain. The displacement error was significantly reduced after the domain size from the western model boundary was decreased. Study results demonstrate the capability and need of a high-resolution mesoscale modeling framework for simulating the complex interactions that contribute to the formation of tropical cyclones over the Bay of Bengal region

  6. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    PubMed

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  7. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals

    PubMed Central

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-01

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs. PMID:26758941

  8. Intramyocellular Lipid Droplet Size Rather Than Total Lipid Content is Related to Insulin Sensitivity After 8 Weeks of Overfeeding.

    PubMed

    Covington, Jeffrey D; Johannsen, Darcy L; Coen, Paul M; Burk, David H; Obanda, Diana N; Ebenezer, Philip J; Tam, Charmaine S; Goodpaster, Bret H; Ravussin, Eric; Bajpeyi, Sudip

    2017-12-01

    Intramyocellular lipid (IMCL) is inversely related to insulin sensitivity in sedentary populations, yet no prospective studies in humans have examined IMCL accumulation with overfeeding. Twenty-nine males were overfed a high-fat diet (140% caloric intake, 44% from fat) for 8 weeks. Measures of IMCL, whole-body fat oxidation from a 24-hour metabolic chamber, muscle protein extracts, and muscle ceramide measures were obtained before and after the intervention. Eight weeks of overfeeding did not increase overall IMCL. The content of smaller lipid droplets peripherally located in the myofiber decreased, while increases in larger droplets correlated inversely with glucose disposal rate. Overfeeding resulted in inhibition of Akt activity, which correlated with the reductions in smaller, peripherally located lipid droplets and drastic increases in ceramide content. Additionally, peripherally located lipid droplets were associated with more efficient lipid oxidation. Finally, participants who maintained a greater number of smaller, peripherally located lipid droplets displayed a better resistance to weight gain with overfeeding. These results show that lipid droplet size and location rather than mere IMCL content are important to understanding insulin sensitivity. © 2017 The Obesity Society.

  9. Sensitivity to Uncertainty in Asteroid Impact Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mathias, D.; Wheeler, L.; Prabhu, D. K.; Aftosmis, M.; Dotson, J.; Robertson, D. K.

    2015-12-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center is developing a physics-based impact risk model for probabilistically assessing threats from potential asteroid impacts on Earth. The model integrates probabilistic sampling of asteroid parameter ranges with physics-based analyses of entry, breakup, and impact to estimate damage areas and casualties from various impact scenarios. Assessing these threats is a highly coupled, dynamic problem involving significant uncertainties in the range of expected asteroid characteristics, how those characteristics may affect the level of damage, and the fidelity of various modeling approaches and assumptions. The presented model is used to explore the sensitivity of impact risk estimates to these uncertainties in order to gain insight into what additional data or modeling refinements are most important for producing effective, meaningful risk assessments. In the extreme cases of very small or very large impacts, the results are generally insensitive to many of the characterization and modeling assumptions. However, the nature of the sensitivity can change across moderate-sized impacts. Results will focus on the value of additional information in this critical, mid-size range, and how this additional data can support more robust mitigation decisions.

  10. Larger trees suffer most during drought in forests worldwide

    USGS Publications Warehouse

    Bennett, Amy C.; McDowell, Nathan G.; Allen, Craig D.; Anderson-Teixeira, Kristina J.

    2015-01-01

    The frequency of severe droughts is increasing in many regions around the world as a result of climate change. Droughts alter the structure and function of forests. Site- and region-specific studies suggest that large trees, which play keystone roles in forests and can be disproportionately important to ecosystem carbon storage and hydrology, exhibit greater sensitivity to drought than small trees. Here, we synthesize data on tree growth and mortality collected during 40 drought events in forests worldwide to see whether this size-dependent sensitivity to drought holds more widely. We find that droughts consistently had a more detrimental impact on the growth and mortality rates of larger trees. Moreover, drought-related mortality increased with tree size in 65% of the droughts examined, especially when community-wide mortality was high or when bark beetles were present. The more pronounced drought sensitivity of larger trees could be underpinned by greater inherent vulnerability to hydraulic stress, the higher radiation and evaporative demand experienced by exposed crowns, and the tendency for bark beetles to preferentially attack larger trees. We suggest that future droughts will have a more detrimental impact on the growth and mortality of larger trees, potentially exacerbating feedbacks to climate change.

  11. Disclosure of sensitive behaviors across self-administered survey modes: a meta-analysis.

    PubMed

    Gnambs, Timo; Kaspar, Kai

    2015-12-01

    In surveys, individuals tend to misreport behaviors that are in contrast to prevalent social norms or regulations. Several design features of the survey procedure have been suggested to counteract this problem; particularly, computerized surveys are supposed to elicit more truthful responding. This assumption was tested in a meta-analysis of survey experiments reporting 460 effect sizes (total N =125,672). Self-reported prevalence rates of several sensitive behaviors for which motivated misreporting has been frequently observed were compared across self-administered paper-and-pencil versus computerized surveys. The results revealed that computerized surveys led to significantly more reporting of socially undesirable behaviors than comparable surveys administered on paper. This effect was strongest for highly sensitive behaviors and surveys administered individually to respondents. Moderator analyses did not identify interviewer effects or benefits of audio-enhanced computer surveys. The meta-analysis highlighted the advantages of computerized survey modes for the assessment of sensitive topics.

  12. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction.

    PubMed

    Turner, Andrew J; Katz, Richard F; Behn, Mark D

    2015-03-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise. The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis.

  13. Electron paramagnetic resonance of several lunar rock samples

    NASA Technical Reports Server (NTRS)

    Marov, P. N.; Dubrov, Y. N.; Yermakov, A. N.

    1974-01-01

    The results are presented of investigating lunar rock samples returned by the Luna 16 automatic station, using electron paramagnetic resonance (EPR). The EPR technique makes it possible to detect paramagnetic centers and investigate their nature, with high sensitivity. Regolith (finely dispersed material) and five particles from it, 0.3 mm in size, consisting mostly of olivine, were investigated with EPR.

  14. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  15. Another Look at the Demand for Higher Education: Measuring the Price Sensitivity of the Decision to Apply to College.

    ERIC Educational Resources Information Center

    Savoca, Elizabeth

    1990-01-01

    Using data from National Longitudinal Survey of the High School Class of 1972, this paper presents estimates of the price elasticity of the decision to apply to college. Calculations incorporating this price effect into earlier enrollment elasticity estimates suggest that true elasticity may be double the size reported in the literature. Includes…

  16. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  17. Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A.

    PubMed

    Myndrul, Valerii; Viter, Roman; Savchuk, Maryna; Shpyrka, Nelya; Erts, Donats; Jevdokimovs, Daniels; Silamiķelis, Viesturs; Smyntyna, Valentyn; Ramanavicius, Arunas; Iatsunskyi, Igor

    2018-04-15

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A (OTA) has been developed. This immunosensor was based on porous silicon (PSi) and modified by antibodies against OTA (anti-OTA). PSi layer was fabricated by metal-assisted chemical etching (MACE) procedure. Main structural parameters (pore size, layer thickness, morphology and nanograins size) and composition of PSi were investigated by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. PL-spectroscopy of PSi was performed at room temperature and showed a wide emission band centered at 680 ± 20nm. Protein A was covalently immobilized on the surface of PSi, which in next steps was modified by anti-OTA and BSA in this way a anti-OTA/Protein-A/PSi structure sensitive towards OTA was designed. The anti-OTA/Protein-A/PSi-based immunosensors were tested in a wide range of OTA concentrations from 0.001 upto 100ng/ml. Interaction of OTA with anti-OTA/Protein-A/PSi surface resulted in the quenching of photoluminescence in comparison to bare PSi. The limit of detection (LOD) and the sensitivity range of anti-OTA/Protein-A/PSi immunosensors were estimated. Association constant and Gibbs free energy for the interaction of anti-OTA/Protein-A/PSi with OTA were calculated and analyzed using the interaction isotherms. Response time of the anti-OTA/Protein-A/PSi-based immunosensor toward OTA was in the range of 500-700s. These findings are very promising for the development of highly sensitive, and potentially portable immunosensors suitable for fast determination of OTA in food and beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sensitivity of the DANSS detector to short range neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Danilov, Mikhail; DANSS Collaboration

    2016-04-01

    DANSS is a highly segmented 1 m3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7 m to 12.2 m from the reactor core. PMTs and SiPMs collect about 30 photo electrons per MeV distributed approximately equally between two types of the readout. Light collection non-uniformity across and along the strip is about ±13% from maximum to minimum. The resulting energy resolution is modest, σ / E = 15% at 5 MeV. This leads to a smearing of the oscillation pattern comparable with the smearing due to the large size of the reactor core. Nevertheless because of the large counting rate (˜10000/day), small background (< 1%) and good control of systematic uncertainties due to frequent changes of positions, the DANSS is quite sensitive to reactor antineutrino oscillations to hypothetical sterile neutrinos with a mass in eV ballpark suggested recently to explain a so-called reactor anomaly. DANSS will have an elaborated calibration system. The high granularity of the detector allows calibration of every strip with about 40 thousand cosmic muons every day. The expected systematic effects do not reduce much the sensitivity region. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (4% of DANSS), it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector.

  19. Thermite combustion enhancement resulting from biomodal luminum distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less

  20. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery

    PubMed Central

    Thanh Noi, Phan; Kappas, Martin

    2017-01-01

    In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km2 within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets. PMID:29271909

  1. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery.

    PubMed

    Thanh Noi, Phan; Kappas, Martin

    2017-12-22

    In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km² within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets.

  2. Effects of turbine cooling assumptions on performance and sizing of high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Senick, Paul F.

    1992-01-01

    The analytical study presented examines the effects of varying turbine cooling assumptions on the performance of a high speed civil transport propulsion system as well as the sizing sensitivity of this aircraft to these performance variations. The propulsion concept employed in this study was a two spool, variable cycle engine with a sea level thrust of 55,000 lbf. The aircraft used for this study was a 250 passenger vehicle with a cruise Mach number of 2.4 and 5000 nautical mile range. The differences in turbine cooling assumptions were represented by varying the amount of high pressure compressor bleed air used to cool the turbines. It was found that as this cooling amount increased, engine size and weight increased, but specific fuel consumption (SFC) decreased at takeoff and climb only. Because most time is spent at cruise, the SFC advantage of the higher bleed engines seen during subsonic flight was minimized and the lower bleed, lighter engines led to the lowest takeoff gross weight vehicles. Finally, the change in aircraft takeoff gross weight versus turbine cooling level is presented.

  3. Nanofiber Based Optical Sensors for Oxygen Determination

    NASA Astrophysics Data System (ADS)

    Xue, Ruipeng

    Oxygen sensors based on luminescent quenching of nanofibers were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition metal complexes are embedded into a polymer 'core' while a synthetic biocompatible polymer provides a protective 'shell.' Various matrix polymers and luminescent probes were studied in terms of their sensitivity, linear calibration, reversibility, response time, stability and probe-matrix interactions. Due to the small size and high surface area of these nanofibers, all samples showed rapid response and a highly linear response to oxygen. The sensitivity and photostability of the sensors were controlled by the identity of both the probe molecule and the polymer matrix. Such nanofiber sensor forms are particularly suitable in biological applications due to the fact that they do not consume oxygen, are biocompatible and biomimetic and can be easily incorporated into cell culture. Applications of these fibers in cancer cell research, wound healing, breath analysis and waste water treatment were explored.

  4. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

    PubMed Central

    McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379

  5. Shape control of Co3O4 micro-structures for high-performance gas sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Qu; Zeng, Wen

    2018-01-01

    Recently, spinel cobalt oxide (Co3O4) structure has been widely investigated due to its excellent sensitivity towards various noxious gases and good response/recovery speed at low concentration. In this work, we designed and synthesized two kinds of different Co3O4 micro-structure (cube and octahedron) with a similar size. After fabricating them into gas sensors, we found that the crystal plane structure of Co3O4 has an important effect on its gas sensing performance. Furthermore, the {111} planes of Co3O4may be more sensitive than {100} planes to various testing gases. Co3O4 octahedrons micro-structure exhibits an excellent sensitivity (about 12.6), good response/recovery speed and cycling stability (no decline even after 2 days) under 50 ppm ethanol gases at working temperature of 200 °C. As such, thisCo3O4 octahedrons micro-structure is a promising candidate for a high-performance gas sensing material.

  6. Optical fiber strain sensor for application in intelligent intruder detection systems

    NASA Astrophysics Data System (ADS)

    Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz

    2017-10-01

    Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.

  7. Rapid, Sensitive Detection of Botulinum Toxin on a Flexible Microfluidics Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Marvin G.; Dockendorff, Brian P.; Feldhaus, Michael J.

    2004-10-30

    In this paper we will describe how high affinity reagents and a sensor configuration enabling rapid mass transport can be combined for rapid, sensitive biodetection. The system that we have developed includes a renewable surface immunoassay, which involves on-column detection of a fluorescently labeled secondary antibody in a sandwich immunoassay. Yeast display and directed molecular evolution were used to create high affinity antibodies to the botulinum toxin heavy chain receptor binding domain, AR1 and 3D12. A rotating rod renewable surface microcolumn was used to form a microliter-sized column containing beads functionalized with the capture antibody (AR1). The column was perfusedmore » with sample, wash solutions, and a fluorescently labeled secondary antibody (3D12) while the on-column fluorescence was monitored. Detection was accomplished in less than 5 minutes, with a total processing time of about 10 minutes. On-column detection of botulinum toxin was more sensitive and much faster than flow cytometry analysis on microbeads using the same reagents.« less

  8. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  9. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    PubMed

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  10. [Long-term outcome analysis of subjective and objective parameters after breast reduction in 159 cases: Patients judge differently from plastic surgeons].

    PubMed

    Osinga, Rik; Babst, Doris; Bodmer, Elvira S; Link, Bjoern C; Fritsche, Elmar; Hug, Urs

    2017-12-01

    This work assessed both subjective and objective postoperative parameters after breast reduction surgery and compared between patients and plastic surgeons. After an average postoperative observation period of 6.7 ± 2.7 (2 - 13) years, 159 out of 259 patients (61 %) were examined. The mean age at the time of surgery was 37 ± 14 (15 - 74) years. The postoperative anatomy of the breast and other anthropometric parameters were measured in cm with the patient in an upright position. The visual analogue scale (VAS) values for symmetry, size, shape, type of scar and overall satisfaction both from the patient's and from four plastic surgeons' perspectives were assessed and compared. Patients rated the postoperative result significantly better than surgeons. Good subjective ratings by patients for shape, symmetry and sensitivity correlated with high scores for overall assessment. Shape had the strongest influence on overall satisfaction (regression coefficient 0.357; p < 0.001), followed by symmetry (regression coefficient 0.239; p < 0.001) and sensitivity (regression coefficient 0.109; p = 0.040) of the breast. The better the subjective rating for symmetry by the patient, the smaller the measured difference of the jugulum-mamillary distance between left and right (regression coefficient -0.773; p = 0.002) and the smaller the difference in height of the lowest part of the breast between left and right (regression coefficient -0.465; p = 0.035). There was no significant correlation between age, weight, height, BMI, resected weight of the breast, postoperative breast size or type of scar with overall satisfaction. After breast reduction surgery, long-term outcome is rated significantly better by patients than by plastic surgeons. Good subjective ratings by patients for shape, symmetry and sensitivity correlated with high scores for overall assessment. Shape had the strongest influence on overall satisfaction, followed by symmetry and sensitivity of the breast. Postoperative size of the breast, resection weight, type of scar, age or BMI was not of significant influence. Symmetry was the only assessed subjective parameter of this study that could be objectified by postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.

  11. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-08-24

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  12. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  13. A highly sensitive underwater video system for use in turbid aquaculture ponds

    NASA Astrophysics Data System (ADS)

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-08-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  14. A highly sensitive underwater video system for use in turbid aquaculture ponds

    PubMed Central

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  15. Novel Gas Sensor Arrays Based on High-Q SAM-Modified Piezotransduced Single-Crystal Silicon Bulk Acoustic Resonators

    PubMed Central

    Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin

    2017-01-01

    This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation. PMID:28672852

  16. Novel Gas Sensor Arrays Based on High-Q SAM-Modified Piezotransduced Single-Crystal Silicon Bulk Acoustic Resonators.

    PubMed

    Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin

    2017-06-26

    This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation.

  17. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NASA Astrophysics Data System (ADS)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  18. MicroRNA-triggered, cascaded and catalytic self-assembly of functional ``DNAzyme ferris wheel'' nanostructures for highly sensitive colorimetric detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjiao; Liang, Wenbin; Li, Xin; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2015-05-01

    The construction of DNA nanostructures with various sizes and shapes has significantly advanced during the past three decades, yet the application of these DNA nanostructures for solving real problems is still in the early stage. On the basis of microRNA-triggered, catalytic self-assembly formation of the functional ``DNAzyme ferris wheel'' nanostructures, we show here a new signal amplification platform for highly sensitive, label-free and non-enzyme colorimetric detection of a small number of human prostate cancer cells. The microRNA (miR-141), which is catalytically recycled and reused, triggers isothermal self-assembly of a pre-designed, G-quadruplex sequence containing hairpin DNAs into ``DNAzyme ferris wheel''-like nanostructures (in association with hemin) with horseradish peroxidase mimicking activity. These DNAzyme nanostructures catalyze an intensified color transition of the probe solution for highly sensitive detection of miR-141 down to 0.5 pM with the naked eye, and the monitoring of as low as 283 human prostate cancer cells can also, theoretically, be achieved in a colorimetric approach. The work demonstrated here thus offers new opportunities for the construction of functional DNA nanostructures and for the application of these DNA nanostructures as an effective signal amplification means in the sensitive detection of nucleic acid biomarkers.

  19. Large grain instruction and phonological awareness skill influence rime sensitivity, processing speed, and early decoding skill in adult L2 learners

    PubMed Central

    Brennan, Christine; Booth, James R.

    2016-01-01

    Linguistic knowledge, cognitive ability, and instruction influence how adults acquire a second orthography yet it remains unclear how different forms of instruction influence grain size sensitivity and subsequent decoding skill and speed. Thirty-seven monolingual, literate English-speaking adults were trained on a novel artificial orthography given initial instruction that directed attention to either large or small grain size units (i.e., words or letters). We examined how initial instruction influenced processing speed (i.e., reaction time (RT)) and sensitivity to different orthographic grain sizes (i.e., rimes and letters). Directing attention to large grain size units during initial instruction resulted in higher accuracy for rimes, whereas directing attention to smaller grain size units resulted in slower RTs across all measures. Additionally, phonological awareness skill modulated early learning effects, compensating for the limitations of the initial instruction provided. Collectively, these findings suggest that when adults are learning to read a second orthography, consideration should be given to how initial instruction directs attention to different grain sizes and inherent phonological awareness ability. PMID:27829705

  20. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy.

    PubMed

    Chen, Sung-Liang; Xie, Zhixing; Carson, Paul L; Wang, Xueding; Guo, L Jay

    2011-10-15

    We recently proposed photoacoustic correlation spectroscopy (PACS) and demonstrated a proof-of-concept experiment. Here we use the technique for in vivo flow speed measurement in capillaries in a chick embryo model. The photoacoustic microscopy system is used to render high spatial resolution and high sensitivity, enabling sufficient signals from single red blood cells. The probe beam size is calibrated by a blood-mimicking phantom. The results indicate the feasibility of using PACS to study flow speeds in capillaries.

  1. Applications of nanopipettes in bionanotechnology.

    PubMed

    Ying, Liming

    2009-08-01

    At present, technical hurdles remain in probing biochemical processes in living cells and organisms at nanometre spatial resolution, millisecond time resolution and with high specificity and single-molecule sensitivity. Owing to its unique shape, size and electrical properties, the nanopipette has been used to obtain high-resolution topographic images of live cells under physiological conditions, and to create nanoscale features by controlled delivery of biomolecules. In the present paper, I discuss recent progress in the development of a family of new methods for nanosensing and nanomanipulation using nanopipettes.

  2. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  3. Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.

    2005-01-01

    The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution infrared data under ice cloudy con&tion. The error analysis shows that the uncertainty of the retrieved optical thickness and effective particle size has a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud'temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding e m r in the uncertainty of optical thickness is within 5-2096, depending on the value of cloud optical thickness. The applicability of the technique is demonstrated using the aircraft-based High- resolution Interferometer Sounder (HIS) data from the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) in 1996 and the First ISCCP Regional Experiment - Arctic Clouds Experiment (FIRE-ACE) in 1998.

  4. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery.

    PubMed

    Zhou, Zilan; Badkas, Apurva; Stevenson, Max; Lee, Joo-Youp; Leung, Yuet-Kin

    2015-06-20

    A dual functional nano-scaled drug carrier, comprising of a targeting ligand and pH sensitivity, has been made in order to increase the specificity and efficacy of the drug delivery system. The nanoparticles are made of a tri-block copolymer, poly(d,l lactide-co-glycolide) (PLGA)-b-poly(l-histidine) (PHis)-b-polyethylene glycol (PEG), via nano-precipitation. To provide the nanoparticle feature of endolysosomal escape and pH sensitivity, poly(l-histidine) was chosen as a proton sponge polymer. Herceptin, which specifically binds to HER2 antigen, was conjugated to the nanoparticles through click chemistry. The nanoparticles were characterized via dynamic light scattering (DLS) and transmission electron microscopy (TEM). Both methods showed the sizes of about 100nm with a uniform size distribution. The pH sensitivity was assessed by drug releases and size changes at different pH conditions. As pH decreased from 7.4 to 5.2, the drug release rate accelerated and the size significantly increased. During in vitro tests against human breast cancer cell lines, MCF-7 and SK-BR-3 showed significantly increased uptake for Herceptin-conjugated nanoparticles, as compared to non-targeted nanoparticles. Herceptin-conjugated pH-sensitive nanoparticles showed the highest therapeutic effect, and thus validated the efficacy of a combined approach of pH sensitivity and active targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  6. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE PAGES

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  7. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, L.; Bolotnikov, A. E.; Camarda, G. S.; De Geronimo, G.; Fried, J.; Gul, R.; Hodges, D.; Hossain, A.; Ünlü, K.; Vernon, E.; Yang, G.; James, R. B.

    2018-03-01

    We evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enabling use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 μm (650 nm) to scan over a selected 3 × 3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.

  8. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE PAGES

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-12-18

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  9. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  10. A comparison of the sensitivity, specificity, and molecular weight accuracy of three different commercially available Hyaluronan ELISA-like assays.

    PubMed

    Haserodt, Sarah; Aytekin, Metin; Dweik, Raed A

    2011-02-01

    Hyaluronan (HA) is a glycosaminoglycan found in the extracellular matrix and ranges from several thousand to millions of daltons in size. HA has importance in various pathological conditions and is known to be elevated in several diseases. Three commonly used, commercially available HA enzyme-linked immunosorbent assay (ELISA)-like assays (from Corgenix, Echelon and R&D) were compared on the basis of accuracy, sample variability and ability to measure a range of HA sizes. The Corgenix HA ELISA-like assay displayed the lowest intra-assay variability [coefficient of variation (CV) = 11.7 ± 3.6%], followed by R&D (CV = 12.3 ± 4.6%) and Echelon (CV = 18.9 ± 9.2%). Interassay variability was also lowest for the Corgenix assay (CV = 6.0%), intermediate for the Echelon assay (9.5%) and highest for the R&D assay (CV = 34.1%). The high interassay variability seen for the R&D assay may have been due to the effect of dilution, since the dilution-independent interassay variability was 15.5%. The concentration of the standard HA was overestimated by the Echelon assay by 85% and underestimated by the R&D and Corgenix assays by 34 and 32%, respectively. The Echelon HA ELISA-like assay was the most effective at measuring all sizes of HA tested (2 MDa and 132, 66 and 6.4 kDa), whereas the Corgenix and R&D assays were unable to detect 6.4 kDa HA. These findings suggest that the Echelon HA ELISA-like assay is better suited for size-sensitive HA measurements but has a relatively high variability. The Corgenix and R&D HA ELISA-like assays have low variability and high accuracy but are not suitable for detecting low-molecular-weight HA.

  11. The Sensitivity and Specificity of Loop-Mediated Isothermal Amplification (LAMP) Assay for Tuberculosis Diagnosis in Adults with Chronic Cough in Malawi.

    PubMed

    Nliwasa, Marriott; MacPherson, Peter; Chisala, Palesa; Kamdolozi, Mercy; Khundi, McEwen; Kaswaswa, Kruger; Mwapasa, Mphatso; Msefula, Chisomo; Sohn, Hojoon; Flach, Clare; Corbett, Elizabeth L

    2016-01-01

    Current tuberculosis diagnostics lack sensitivity, and are expensive. Highly accurate, rapid and cheaper diagnostic tests are required for point of care use in low resource settings with high HIV prevalence. To investigate the sensitivity and specificity, and cost of loop-mediated isothermal amplification (LAMP) assay for tuberculosis diagnosis in adults with chronic cough compared to Xpert® MTB/RIF, fluorescence smear microscopy. Between October 2013 and March 2014, consecutive adults at a primary care clinic were screened for cough, offered HIV testing and assessed for tuberculosis using LAMP, Xpert® MTB/RIF and fluorescence smear microscopy. Sensitivity and specificity (with culture as reference standard), and costs were estimated. Of 273 adults recruited, 44.3% (121/273) were HIV-positive and 19.4% (53/273) had bacteriogically confirmed tuberculosis. The sensitivity of LAMP compared to culture was 65.0% (95% CI: 48.3% to 79.4%) with 100% (95% CI: 98.0% to 100%) specificity. The sensitivity of Xpert® MTB/RIF (77.5%, 95% CI: 61.5% to 89.2%) was similar to that of LAMP, p = 0.132. The sensitivity of concentrated fluorescence smear microscopy with routine double reading (87.5%, 95% CI: 73.2% to 95.8%) was higher than that of LAMP, p = 0.020. All three tests had high specificity. The lowest cost per test of LAMP was at batch size of 14 samples (US$ 9.98); this was lower than Xpert® MTB/RIF (US$ 13.38) but higher than fluorescence smear microscopy (US$ 0.65). The sensitivity of LAMP was similar to Xpert® MTB/RIF but lower than fluorescence smear microscopy; all three tests had high specificity. These findings support the Malawi policy that recommends a combination of fluorescence smear microscopy and Xpert® MTB/RIF prioritised for people living with HIV, already found to be smear-negative, or being considered for retreatment of tuberculosis.

  12. The Sensitivity and Specificity of Loop-Mediated Isothermal Amplification (LAMP) Assay for Tuberculosis Diagnosis in Adults with Chronic Cough in Malawi

    PubMed Central

    Nliwasa, Marriott; MacPherson, Peter; Chisala, Palesa; Kamdolozi, Mercy; Khundi, McEwen; Kaswaswa, Kruger; Mwapasa, Mphatso; Msefula, Chisomo; Sohn, Hojoon; Flach, Clare; Corbett, Elizabeth L.

    2016-01-01

    Background Current tuberculosis diagnostics lack sensitivity, and are expensive. Highly accurate, rapid and cheaper diagnostic tests are required for point of care use in low resource settings with high HIV prevalence. Objective To investigate the sensitivity and specificity, and cost of loop-mediated isothermal amplification (LAMP) assay for tuberculosis diagnosis in adults with chronic cough compared to Xpert® MTB/RIF, fluorescence smear microscopy. Methods Between October 2013 and March 2014, consecutive adults at a primary care clinic were screened for cough, offered HIV testing and assessed for tuberculosis using LAMP, Xpert® MTB/RIF and fluorescence smear microscopy. Sensitivity and specificity (with culture as reference standard), and costs were estimated. Results Of 273 adults recruited, 44.3% (121/273) were HIV-positive and 19.4% (53/273) had bacteriogically confirmed tuberculosis. The sensitivity of LAMP compared to culture was 65.0% (95% CI: 48.3% to 79.4%) with 100% (95% CI: 98.0% to 100%) specificity. The sensitivity of Xpert® MTB/RIF (77.5%, 95% CI: 61.5% to 89.2%) was similar to that of LAMP, p = 0.132. The sensitivity of concentrated fluorescence smear microscopy with routine double reading (87.5%, 95% CI: 73.2% to 95.8%) was higher than that of LAMP, p = 0.020. All three tests had high specificity. The lowest cost per test of LAMP was at batch size of 14 samples (US$ 9.98); this was lower than Xpert® MTB/RIF (US$ 13.38) but higher than fluorescence smear microscopy (US$ 0.65). Conclusion The sensitivity of LAMP was similar to Xpert® MTB/RIF but lower than fluorescence smear microscopy; all three tests had high specificity. These findings support the Malawi policy that recommends a combination of fluorescence smear microscopy and Xpert® MTB/RIF prioritised for people living with HIV, already found to be smear-negative, or being considered for retreatment of tuberculosis. PMID:27171380

  13. A pain in the bud? Implications of cross-modal sensitivity for pain experience.

    PubMed

    Perkins, Monica; de Bruyne, Marien; Giummarra, Melita J

    2016-11-01

    There is growing evidence that enhanced sensitivity to painful clinical procedures and chronic pain are related to greater sensitivity to other sensory inputs, such as bitter taste. We examined cross-modal sensitivities in two studies. Study 1 assessed associations between bitter taste sensitivity, pain tolerance, and fear of pain in 48 healthy young adults. Participants were classified as non-tasters, tasters and super-tasters using a bitter taste test (6-n-propythiouracil; PROP). The latter group had significantly higher fear of pain (Fear of Pain Questionnaire) than tasters (p=.036, effect size r = .48). There was only a trend for an association between bitter taste intensity ratings and intensity of pain at the point of pain tolerance in a cold pressor test (p=.04). In Study 2, 40 healthy young adults completed the Adolescent/Adult Sensory Profile before rating intensity and unpleasantness of innocuous (33 °C), moderate (41 °C), and high intensity (44 °C) thermal pain stimulations. The sensory-sensitivity subscale was positively correlated with both intensity and unpleasantness ratings. Canonical correlation showed that only sensitivity to audition and touch (not taste/smell) were associated with intensity of moderate and high (not innocuous) thermal stimuli. Together these findings suggest that there are cross-modal associations predominantly between sensitivity to exteroceptive inputs (i.e., taste, touch, sound) and the affective dimensions of pain, including noxious heat and intolerable cold pain, in healthy adults. These cross-modal sensitivities may arise due to greater psychological aversion to salient sensations, or from shared neural circuitry for processing disparate sensory modalities.

  14. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout.

    PubMed

    Caselli, Federica; Bisegna, Paolo

    2017-10-01

    The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. NanoLuc: A Small Luciferase is Brightening up the Field of Bioluminescence

    PubMed Central

    Cai, Weibo

    2016-01-01

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a non-ideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a non-biased manner, allowing the audience to adopt their own views of this novel system. PMID:27045664

  16. 131I activity quantification of gamma camera planar images.

    PubMed

    Barquero, Raquel; Garcia, Hugo P; Incio, Monica G; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-07

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131 I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq -1 ) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0 . The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131 I in air. Values of G and S for two GC systems-Philips Skylight and Siemens e-cam-are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq -1 to 35 cps MBq -1 , and from 6 cps MBq -1 to 29 cps MBq -1 , respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  17. 131I activity quantification of gamma camera planar images

    NASA Astrophysics Data System (ADS)

    Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-01

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  18. Size-sensitive sorting of microparticles through control of flow geometry

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Jalikop, Shreyas V.; Hilgenfeldt, Sascha

    2011-07-01

    We demonstrate a general concept of flow manipulation in microfluidic environments, based on controlling the shape and position of flow domains in order to force switching and sorting of microparticles without moving parts or changes in design geometry. Using microbubble acoustic streaming, we show that regulation of the relative strength of streaming and a superimposed Poiseuille flow allows for size-selective trapping and releasing of particles, with particle size sensitivity much greater than what is imposed by the length scales of microfabrication. A simple criterion allows for quantitative tuning of microfluidic devices for switching and sorting of particles of desired size.

  19. Construction of the Mandarin version of the International Prostate Symptom Score inventory in assessing lower urinary tract symptoms in a Malaysian population.

    PubMed

    Quek, Kia Fatt; Chua, Chong Beng; Razack, Azad Hassan; Low, Wah Yun; Loh, Chit Sin

    2005-01-01

    The purpose of the present study was to validate the Mandarin version of the International Prostate Symptom Score (Mand-IPSS) in a Malaysian population. The validity and reliability were studied in patients with lower urinary tract symptoms (LUTS; benign prostatic hyperplasia [BPH] group) and without LUTS (control group). Test-retest methodology was used to assess the reliability while Cronbach alpha was used to assess the internal consistency. Sensitivity to change was used to express the effect size index in the preintervention versus post-intervention score in patients with LUTS who underwent transurethral resection of the prostate. For the control group and BPH group, the internal consistency was excellent and a high degree of internal consistency was observed for all seven items (Cronbach alpha = 0.86-0.98 and 0.90-0.98, respectively). Test-retest correlation coefficients for all items were highly significant. Intraclass correlation coefficient (ICC) was high for the control (ICC = 0.93-0.99) and BPH group (ICC = 0.91-0.99). The sensitivity and specificity showed a high degree of sensitivity and specificity to the effects of treatment. A high degree of significance between baseline and post-treatment scores was observed across all seven items in the BPH group but not in the control group. The Mand-IPSS is a suitable, reliable, valid and sensitive instrument to measure clinical change in the Malaysian population.

  20. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    PubMed

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%). Electronic supplementary information (ESI) available: Experimental details, XRD, SEM-EDS, UV-vis spectra and photovoltaic parameters of devices. See DOI: 10.1039/c3nr05705d

  2. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    PubMed Central

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65–88%), compared to the sensitivity (91–100%) of the new molecular diagnostic workflow. Conclusions/Significance Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited. PMID:28915255

  3. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng

    2011-11-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  4. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.

    PubMed

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-03-21

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).

  5. [Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].

    PubMed

    Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun

    2016-03-01

    Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

  6. a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance

    NASA Astrophysics Data System (ADS)

    Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua

    The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.

  7. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    NASA Astrophysics Data System (ADS)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  8. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    NASA Astrophysics Data System (ADS)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  9. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less

  10. Magnetic resonance imaging is more sensitive than radiographs in detecting change in size of erosions in rheumatoid arthritis.

    PubMed

    Chen, Timothy S; Crues, John V; Ali, Muhammad; Troum, Orrin M

    2006-10-01

    To evaluate the technological performance of magnetic resonance imaging (MRI) with respect to projection radiography by determining the incidence of changes in the size of individual bone lesions in inflammatory arthritis, using serial high-resolution in-office MRI over short time intervals (8 months average followup), and by comparing the sensitivity of 3-view projection radiography with in-office MRI for detecting changes in size and number of individual erosions. MR examinations of the wrists and second and third metacarpophalangeal joints were performed using a portable in-office MR system in a total of 405 patients with inflammatory arthritis, from one rheumatologist's practice, who were undergoing aggressive disease modifying antirheumatic drug therapy. Of the patients, 156 were imaged at least twice, allowing evaluation of 246 followup examinations (mean followup interval of 8 months over a 2-year period). Baseline and followup plain radiographs were obtained in 165 patient intervals. Patients refused radiographic examination on 81 followup visits. MRI demonstrated no detectable changes in 124 of the 246 (50%) followup MRI examinations. An increase in the size or number of erosions was demonstrated in 74 (30%) examinations, a decrease in the size or number of erosions in 36 (15%), and both increases and decreases in erosions were seen in 11 (4%). In the 165 studies with followup radiographic comparisons, only one examination (0.8%) showed an erosion not seen on the prior examination and one (0.8%) showed an increase in a previously noted erosion. We showed that high-resolution in-office MRI with an average followup of 8 months detects changes in bony disease in 50% of compliant patients during aggressive treatment for inflammatory arthritis in a single rheumatologist's office practice. Plain radiography is insensitive for detecting changes in bone erosions for this patient population in this time frame.

  11. Nuclear size measurement for distinguishing urothelial carcinomas from reactive urothelium on tissue sections.

    PubMed

    Poropatich, Kate; Yang, Jason C; Goyal, Rajen; Parini, Vamsi; Yang, Ximing J

    2016-06-30

    Pathological diagnosis of urothelial carcinoma (UC) is primarily based on cytological atypia. It has previously been shown that high-grade (HG) UC, particularly UC in situ cells (CIS), can be over five times the size of a lymphocyte. However, this has not been demonstrated in comparison to reactive urothelium. The objective of this study was to empirically compare the difference in nuclear size of UC cells with reactive urothelial cells. Using CellSens imaging software, we measured urothelial nuclear length (l) and width (w) on digital images of H&E sections. The area (a) of a nucleus was calculated based on the oval shape of most urothelial cells. Lymphocytes were measured to calculate normalized urothelial linear and area ratios. A total of 1085 urothelial cell nuclei from 60 cases were measured from reactive urothelium, low grade (LG) UC, HG UC and CIS. CIS nuclei were found to have an a 2.75 times larger than reactive nuclei (p < 0.001). A nuclear size cut-off of 11 um for l and 7 um for w was found to be sensitive [98.09 % (95 % CI: 95.60-99.38 %) and 89.31 % (95 % CI: 83.6-91.82 %) for l and w, respectively] and specific [92.60 % (95 % CI: 87.13-95.82 %) and 85.71 % (95 % CI: 79.49-90.63 %) for l and w, respectively] for distinguishing CIS from reactive atypia. Nuclear morphometry can be used to differentiate CIS from reactive atypia. A l over 11 um and a w over 7 um and is highly sensitive and specific for CIS compared to reactive urothelium. This difference in nuclear size may be used as a tool for differentiating the flat urothelial lesions from reactive urothelium in daily practice.

  12. Dislocation creep accommodated Grain Boundary Sliding: A high strain rate/low temperature deformation mechanism in calcite ultramylonites

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard

    2014-05-01

    Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain size sensitive creep, in a deformation mechanism map for calcite.

  13. Racial and ethnic differences in experimental pain sensitivity: systematic review and meta-analysis.

    PubMed

    Kim, Hee Jun; Yang, Gee Su; Greenspan, Joel D; Downton, Katherine D; Griffith, Kathleen A; Renn, Cynthia L; Johantgen, Meg; Dorsey, Susan G

    2017-02-01

    Our objective was to describe the racial and ethnic differences in experimental pain sensitivity. Four databases (PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and PsycINFO) were searched for studies examining racial/ethnic differences in experimental pain sensitivity. Thermal-heat, cold-pressor, pressure, ischemic, mechanical cutaneous, electrical, and chemical experimental pain modalities were assessed. Risk of bias was assessed using the Agency for Healthcare Research and Quality guideline. Meta-analysis was used to calculate standardized mean differences (SMDs) by pain sensitivity measures. Studies comparing African Americans (AAs) and non-Hispanic whites (NHWs) were included for meta-analyses because of high heterogeneity in other racial/ethnic group comparisons. Statistical heterogeneity was assessed by subgroup analyses by sex, sample size, sample characteristics, and pain modalities. A total of 41 studies met the review criteria. Overall, AAs, Asians, and Hispanics had higher pain sensitivity compared with NHWs, particularly lower pain tolerance, higher pain ratings, and greater temporal summation of pain. Meta-analyses revealed that AAs had lower pain tolerance (SMD: -0.90, 95% confidence intervals [CIs]: -1.10 to -0.70) and higher pain ratings (SMD: 0.50, 95% CI: 0.30-0.69) but no significant differences in pain threshold (SMD: -0.06, 95% CI: -0.23 to 0.10) compared with NHWs. Estimates did not vary by pain modalities, nor by other demographic factors; however, SMDs were significantly different based on the sample size. Racial/ethnic differences in experimental pain sensitivity were more pronounced with suprathreshold than with threshold stimuli, which is important in clinical pain treatment. Additional studies examining mechanisms to explain such differences in pain tolerance and pain ratings are needed.

  14. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into amore » bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.« less

  15. Global Sensitivity Analysis with Small Sample Sizes: Ordinary Least Squares Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Liu, Wei; Sivaramakrishnan, Raghu

    2016-12-21

    A new version of global sensitivity analysis is developed in this paper. This new version coupled with tools from statistics, machine learning, and optimization can devise small sample sizes that allow for the accurate ordering of sensitivity coefficients for the first 10-30 most sensitive chemical reactions in complex chemical-kinetic mechanisms, and is particularly useful for studying the chemistry in realistic devices. A key part of the paper is calibration of these small samples. Because these small sample sizes are developed for use in realistic combustion devices, the calibration is done over the ranges of conditions in such devices, with amore » test case being the operating conditions of a compression ignition engine studied earlier. Compression ignition engines operate under low-temperature combustion conditions with quite complicated chemistry making this calibration difficult, leading to the possibility of false positives and false negatives in the ordering of the reactions. So an important aspect of the paper is showing how to handle the trade-off between false positives and false negatives using ideas from the multiobjective optimization literature. The combination of the new global sensitivity method and the calibration are sample sizes a factor of approximately 10 times smaller than were available with our previous algorithm.« less

  16. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  17. Gene flow analysis method, the D-statistic, is robust in a wide parameter space.

    PubMed

    Zheng, Yichen; Janke, Axel

    2018-01-08

    We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.

  18. Performance of Gas Scintillation Proportional Counter Array for High-Energy X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2004-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a High Energy X-Ray Observatory (HERO) is developed at the Marshall Space Flight Center. The array is consisted from eight GSPCs and is a part of balloon born payload scheduled to flight in May 2004. These detectors have an active area of approximately 20 square centimeters, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approximately 500 microns. The detector's energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Results of the on-earth detector calibration will be presented and in-flight detector performance will be provided, as available.

  19. Electro-optical design of a long slit streak tube

    NASA Astrophysics Data System (ADS)

    Tian, Liping; Tian, Jinshou; Wen, Wenlong; Chen, Ping; Wang, Xing; Hui, Dandan; Wang, Junfeng

    2017-11-01

    A small size and long slit streak tube with high spatial resolution was designed and optimized. Curved photocathode and screen were adopted to increase the photocathode working area and spatial resolution. High physical temporal resolution obtained by using a slit accelerating electrode. Deflection sensitivity of the streak tube was improved by adopting two-folded deflection plates. The simulations indicate that the photocathode effective working area can reach 30mm × 5mm. The static spatial resolution is higher than 40lp/mm and 12lp/mm along scanning and slit directions respectively while the physical temporal resolution is higher than 60ps. The magnification is 0.75 and 0.77 in scanning and slit directions. And also, the deflection sensitivity is as high as 37mm/kV. The external dimension of the streak tube are only ∅74mm×231mm. Thus, it can be applied to laser imaging radar system for large field of view and high range precision detection.

  20. Improved Fiber-Optic-Coupled Pressure And Vibration Sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1994-01-01

    Improved fiber-optic coupler enables use of single optical fiber to carry light to and from sensor head. Eliminates problem of alignment of multiple fibers in sensor head and simplifies calibration by making performance both more predictable and more stable. Sensitivities increased, sizes reduced. Provides increased margin for design of compact sensor heads not required to contain amplifier circuits and withstand high operating temperatures.

  1. Uncertainty in Damage Detection, Dynamic Propagation and Just-in-Time Networks

    DTIC Science & Technology

    2015-08-03

    estimated parameter uncertainty in dynamic data sets; high order compact finite difference schemes for Helmholtz equations with discontinuous wave numbers...delay differential equations with a Gamma distributed delay. We found that with the same population size the histogram plots for the solution to the...schemes for Helmholtz equations with discontinuous wave numbers across interfaces. • We carried out numerical sensitivity analysis with respect to

  2. Uniwavelength lidar sensitivity to spherical aerosol microphysical properties for the interpretation of Lagrangian stratospheric observations

    NASA Astrophysics Data System (ADS)

    Jumelet, Julien; David, Christine; Bekki, Slimane; Keckhut, Philippe

    2009-01-01

    The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532 nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same moving air parcel may provide some meaningful size information. Within the ORACLE-O3 IPY project, the coordination of several ground-based lidars and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) space-borne lidar is planned during measurement campaigns called MATCH-PSC (Polar Stratospheric Clouds). While probing the same moving air masses, the evolution of the measured backscatter coefficient (BC) should reflect the variation of particles microphysical properties. A sensitivity study of 532 nm lidar particle backscatter to variations of particles size distribution parameters is carried out. For simplicity, the particles are assumed to be spherical (liquid) particles and the size distribution is represented with a unimodal log-normal distribution. Each of the four microphysical parameters (i.e. log-normal size distribution parameters, refractive index) are analysed separately, while the three others are remained set to constant reference values. Overall, the BC behaviour is not affected by the initial values taken as references. The total concentration (N0) is the parameter to which BC is least sensitive, whereas it is most sensitive to the refractive index (m). A 2% variation of m induces a 15% variation of the lidar BC, while the uncertainty on the BC retrieval can also reach 15%. This result underlines the importance of having both an accurate lidar inversion method and a good knowledge of the temperature for size distribution retrieval techniques. The standard deviation ([sigma]) is the second parameter to which BC is most sensitive to. Yet, the impact of m and [sigma] on BC variations is limited by the realistic range of their variations. The mean radius (rm) of the size distribution is thus the key parameter for BC, as it can vary several-fold. BC is most sensitive to the presence of large particles. The sensitivity of BC to rm and [sigma] variations increases when the initial size distributions are characterized by low rm and large [sigma]. This makes lidar more suitable to detect particles growing on background aerosols than on volcanic aerosols.

  3. Simulation of the influence of aerosol particles on Stokes parameters of polarized skylight

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, Z. Q.; Wendisch, M.

    2014-03-01

    Microphysical properties and chemical compositions of aerosol particles determine polarized radiance distribution in the atmosphere. In this paper, the influences of different aerosol properties (particle size, shape, real and imaginary parts of refractive index) on Stokes parameters of polarized skylight in the solar principal and almucantar planes are studied by using vector radiative transfer simulations. The results show high sensitivity of the normalized Stokes parameters due to fine particle size, shape and real part of refractive index of aerosols. It is possible to utilize the strength variations at the peak positions of the normalized Stokes parameters in the principal and almucantar planes to identify aerosol types.

  4. Extreme sensitivity of magnetic properties on the synthesis routes in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.

    2016-05-06

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polycrystalline samples have been prepared using different synthesis routes. X-ray Diffraction (XRD) confirms that the samples are of single phase with R-3c space group. The surface morphology and particle size has been observed using Field Emission Scanning Electron Microscopy (FESEM). Magnetic measurement shows that the magnetization in the materials are affected by low crystallite size which destroys the spin ordering due to strain at grain boundaries and this also leads to reduction in magnetization as well as high coercivity in the material.

  5. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS creep, and we relate the continuous strain hardening to this process. A dynamic grain growth model involving an increase in cellular defect fraction seems best applicable to the grain growth observed in this study. We suggest that the employment of this model to fine-grained olivine rocks can further improve our understanding of the microstructural evolution of this material and related rheological behaviour.

  6. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Yang, Liu; Yuan, Yusheng; Pan, Shuang; Yang, Jidong; Yan, Jingjing; Zhang, Hui; Sun, Qianqian; Hu, Xiaoli

    2018-01-01

    In this work, a simple and facile hydrothermal method for synthesis of water-soluble carbon dots (CDs) with malic acid and urea, and were then employed as a high-performance fluorescent probe for selective and sensitive determination of chlorogenic acid (CGA) based on inner filter effect. The as-synthesized CDs was systematically characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy disperse spectroscopy (EDS), UV-vis absorption spectroscopy, spectrofluorophotometry, and the results indicated that the sizes of CDs were mainly distributed in the range of 1.0 nm-3.0 nm with an average diameter of 2.1 nm. More significantly, the as-prepared CDs possessed remarkable selectivity and sensitivity towards CGA with the linear range of 0.15 μmol L- 1-60 μmol L- 1 and the detection limit for CGA was 45 nmol L- 1 (3σ/k). The practical applications of CDs for detection of CGA have already been successfully demonstrated in Honeysuckle. This sensitive, selective method has a great application prospect in the pharmaceutical and biological analysis field owing to its simplicity and rapidity for the detection of CGA.

  7. Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors

    NASA Astrophysics Data System (ADS)

    Shinde, Pritamkumar V.; Xia, Qi Xun; Ghule, Balaji G.; Shinde, Nanasaheb M.; Seonghee, Jeong; Kim, Kwang Ho; Mane, Rajaram S.

    2018-06-01

    The interesting and multifunctional properties of alpha-manganese dioxide (α-MnO2) are considered to be highly sensitive and selective to nitrogen dioxide (NO2) chemresistive gas sensors. The α-MnO2 mesoporous interlocked micro-cubes composed of several interconnected nanocrystals synthesized by a facile and low-cost hydrothermal method on soda-lime glass substrate are envisaged as selective and sensitive NO2 gas sensors. Phase-purity and surface area with pore-size distribution are initially screened. The three-dimensional α-MnO2 mesoporous-cube-based gas sensors tested for NO2 gas from room-temperature (27 °C) to 250 °C have demonstrated 33% response for 100 ppm NO2 levels at 150 °C. The response and recovery time values of the α-MnO2 sensor are found to be 26 s and recovery 91 s, respectively, with high selectivity, good sensitivity, and considerable chemical and environmental stabilities, confirming the gas sensor applications potentiality of α-MnO2 morphology which is a combination of interlocked mesoporous micro-cubes and well-connected nanocrystals.

  8. Disentangling the effects of novelty, valence and trait anxiety in the bed nucleus of the stria terminalis, amygdala and hippocampus with high resolution 7T fMRI.

    PubMed

    Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L

    2017-08-01

    The hippocampus and amygdala exhibit sensitivity to stimulus novelty that is reduced in participants with inhibited temperament, which is related to trait anxiety. Although the bed nucleus of the stria terminalis (BNST) is highly connected to the amygdala and is implicated in anxiety, whether the BNST responds to novelty remains unstudied, as well as how trait anxiety may modulate this response. Additionally how novelty, stimulus negativity and trait anxiety interact to affect activity in these areas is also unclear. To address these questions, we presented participants with novel and repeated, fearful and neutral faces, while measuring brain activity via fMRI, and also assessed participants' self-reported trait anxiety. As the small size of the BNST makes assessing its activity at typical fMRI resolution difficult, we employed high resolution 7 Tesla scanning. Our results replicate findings of novelty sensitivity that is independent of valence in the hippocampus. Our results also provide novel evidence for a BNST novelty response toward neutral, but not fearful faces. We also found that the novelty response in the hippocampus and BNST was blunted in participants with high trait anxiety. Additionally, we found left amygdala sensitivity to stimulus negativity that was blunted for high trait anxiety participants. These findings extend past research on the response to novel stimuli in the hippocampus and amygdala at high resolution, and are the first to demonstrate trait anxiety modulated novelty sensitivity in the BNST that is dependent on stimulus valence. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less

  10. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    NASA Astrophysics Data System (ADS)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  11. Effect of gold nanoparticle size and coating on labeling monocytes for CT tracking

    PubMed Central

    Chhour, Peter; Kim, Johoon; Benardo, Barbara; Tovar, Alfredo; Mian, Shaameen; Litt, Harold I.; Ferrari, Victor A.; Cormode, David P.

    2017-01-01

    With advances in cell therapies, interest in cell tracking techniques to monitor the migration, localization and viability of these cells continues to grow. X-ray computed tomography (CT) is a cornerstone of medical imaging but has been limited in cell tracking applications due to its low sensitivity towards contrast media. In this study, we investigate the role of size and surface functionality of gold nanoparticles for monocyte uptake to optimize the labeling of these cells for tracking in CT. We synthesized gold nanoparticles (AuNP) that range from 15 to 150 nm in diameter and examined several capping ligands, generating 44 distinct AuNP formulations. In vitro cytotoxicity and uptake experiments were performed with the RAW 264.7 monocyte cell line. The majority of formulations at each size were found to be biocompatible, with only certain 150 nm PEG functionalized particles reducing viability at high concentrations. High uptake of AuNP was found using small capping ligands with distal carboxylic acids (11-MUA and 16-MHA). Similar uptake values were found with intermediate sizes (50 and 75 nm) of AuNP when coated with 2000 MW poly(ethylene-glycol) carboxylic acid ligands (PCOOH). Low uptake values were observed with 15, 25, 100, and 150 nm PCOOH AuNP, revealing interplay between size and surface functionality. TEM and CT performed on cells revealed similar patterns of high gold uptake for 50 nm PCOOH and 75 nm PCOOH AuNP. These results demonstrate that highly negatively charged carboxylic acid coatings for AuNP provide the greatest internalization of AuNP in monocytes, with a complex dependency on size. PMID:28095688

  12. Usefulness of High-Frequency Ultrasound in the Classification of Histologic Subtypes of Primary Basal Cell Carcinoma.

    PubMed

    Hernández-Ibáñez, C; Blazquez-Sánchez, N; Aguilar-Bernier, M; Fúnez-Liébana, R; Rivas-Ruiz, F; de Troya-Martín, M

    Incisional biopsy may not always provide a correct classification of histologic subtypes of basal cell carcinoma (BCC). High-frequency ultrasound (HFUS) imaging of the skin is useful for the diagnosis and management of this tumor. The main aim of this study was to compare the diagnostic value of HFUS compared with punch biopsy for the correct classification of histologic subtypes of primary BCC. We also analyzed the influence of tumor size and histologic subtype (single subtype vs. mixed) on the diagnostic yield of HFUS and punch biopsy. Retrospective observational study of primary BCCs treated by the Dermatology Department of Hospital Costa del Sol in Marbella, Spain, between october 2013 and may 2014. Surgical excision was preceded by HFUS imaging (Dermascan C © , 20-MHz linear probe) and a punch biopsy in all cases. We compared the overall diagnostic yield and accuracy (sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) of HFUS and punch biopsy against the gold standard (excisional biopsy with serial sections) for overall and subgroup results. We studied 156 cases. The overall diagnostic yield was 73.7% for HFUS (sensitivity, 74.5%; specificity, 73%) and 79.9% for punch biopsy (sensitivity, 76%; specificity, 82%). In the subgroup analyses, HFUS had a PPV of 93.3% for superficial BCC (vs. 92% for punch biopsy). In the analysis by tumor size, HFUS achieved an overall diagnostic yield of 70.4% for tumors measuring 40mm 2 or less and 77.3% for larger tumors; the NPV was 82% in both size groups. Punch biopsy performed better in the diagnosis of small lesions (overall diagnostic yield of 86.4% for lesions ≤40mm 2 vs. 72.6% for lesions >40mm 2 ). HFUS imaging was particularly useful for ruling out infiltrating BCCs, diagnosing simple, superficial BCCs, and correctly classifying BCCs larger than 40mm 2 . Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores

    NASA Astrophysics Data System (ADS)

    Guo, D.; Keating-Bitonti, C.; Payne, J.

    2014-12-01

    Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.

  14. The effect of pre-tectonic reaction and annealing extent on behaviour during subsequent deformation: Insights from paired shear zones in the lower crust of Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Piazolo, Sandra; Daczko, Nathan R.; Smith, James R.; Evans, Lynn

    2015-04-01

    The effect of pre-tectonic reaction and annealing extent on the rheology of lower crustal rocks during a subsequent deformation event was studied using field and detailed microstructural analyses combined with numerical simulations to examine. In the studied rocks (Pembroke granulite, South Island, New Zealand) granulite facies two-pyroxene-pargasite orthogneiss partially to completely reacted to garnet bearing granulite either side of felsic dykes. The metamorphic reaction not only changed the abundance of phases but also their shape and grain size distribution. The reaction is most advanced close to the dykes, whereas further away the reaction is incomplete. As a consequence, grain size and the abundance of the rheologically hard phase garnet decreases away from the felsic dykes. Aspect ratios of mafic clusters which may include garnet decrease from high in the host, to near equidimensional close to the dyke. Post-reaction deformation localized in those areas that experienced minor to moderate reaction extent producing two spaced "paired" shear zones within the garnet-bearing reaction zone at either side of the felsic dykes. Our study shows how rock flow properties are governed by the pre-deformation history of a rock in terms of reaction and coupled annealing extent. If the grain size is sufficiently reduced by metamorphic reaction, deformation localizes in the partially finer grained rock domains, where deformation dominantly occurs by grain size sensitive deformation flow. Even if the reaction produces a nominally stronger phase (e.g. garnet) than the reactants, a local switch in dominant deformation behaviour from a grain size insensitive to a grain size sensitive in reaction induced fine-grained portions of the rock may occur and result in significant strain localization.

  15. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.

    PubMed

    Sakamoto, S; Kiger, W S; Harling, O K

    1999-09-01

    Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.

  16. Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band.

    PubMed

    Dultsev, F N; Kolosovsky, E A

    2011-02-14

    A new method based on the use of quartz crystal microbalance (QCM) as an active sensing element is developed, optimized and tested in a model system to measure the rupture force and deduce size distribution of nanoparticles. As suggested by model predictions, the QCM is shaped as a strip. The ratio of rupture signals at the second and the third harmonics versus the geometric position of a body on QCM surface is investigated theoretically. Recommendations concerning the use of the method for measuring the nanoparticle size distribution are presented. It is shown experimentally for an ensemble of test particles with a characteristic size within 20-30 nm that the proposed method allows one to determine particle size distribution. On the basis of the position and value of the measured rupture signal, a histogram of particle size distribution and percentage of each size fraction were determined. The main merits of the bond-rupture method are its rapid response, simplicity and the ability to discriminate between specific and non-specific interactions. The method is highly sensitive with respect to mass (the sensitivity is generally dependent on the chemical nature of receptor and analyte and may reach 8×10(-14) g mm(-2)) and applicable to measuring rupture forces either for weak bonds, for example hydrogen bonds, or for strong covalent bonds (10(-11)-10(-9) N). This procedure may become a good alternative for the existing methods, such as AFM or optical methods of determining biological objects, and win a broad range of applications both in laboratory research and in biosensing for various purposes. Possible applications include medicine, diagnostics, environmental or agricultural monitoring. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Rheology of ice I at low stress and elevated confining pressure

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    Triaxial compression testing of pure, polycrystalline water ice I at conditions relevant to planetary interiors and near-surface environments (differential stresses 0.45 to 10 MPa, temperatures 200 to 250 K, confining pressure 50 MPa) reveals that a complex variety of rheologies and grain structures may exist for ice and that rheology of ice appears to depend strongly on the grain structures. The creep of polycrystalline ice I with average grain size of 0.25 mm and larger is consistent with previously published dislocation creep laws, which are now extended to strain rates as low as 2 ?? 10-8s-1. When ice I is reduced to very fine and uniform grain size by rapid pressure release from the ice II stability field, the rheology changes dramatically. At 200 and 220 K the rheology matches the grain-size-sensitive rheology measured by Goldsby and Kohlstedt [1997, this issue] at 1 atm. This finding dispels concerns that the Goldsby and Kohlstedt results were influenced by mechanisms such as microfracturing and cavitation, processes not expected to operate at elevated pressures in planetary interiors. At 233 K and above, grain growth causes the fine-grained ice to become more creep resistant. Scanning electron microscopy investigation of some of these deformed samples shows that grains have markedly coarsened and the strain hardening can be modeled by normal grain growth and the Goldsby and Kohlstedt rheology. Several samples also displayed very heterogeneous grain sizes and high aspect ratio grain shapes. Grain-size-sensitive creep and dislocation creep coincidentally contribute roughly equal amounts of strain rate at conditions of stress, temperature, and grain size that are typical of terrestrial and planetary settings, so modeling ice dynamics in these settings must include both mechanisms. Copyright 2001 by the American Geophysical Union.

  18. Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres.

    PubMed

    Banerjee, Arindam; Ghosh, Joydeep

    2004-05-01

    Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.

  19. ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.

    2016-12-01

    In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.

  20. Nanosphere Templating Through Controlled Evaporation: A High Throughput Method For Building SERS Substrates

    NASA Astrophysics Data System (ADS)

    Alexander, Kristen; Hampton, Meredith; Lopez, Rene; Desimone, Joseph

    2009-03-01

    When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.

  1. Nanosphere Templating Through Controlled Evaporation: A High Throughput Method For Building SERS Substrates

    NASA Astrophysics Data System (ADS)

    Alexander, Kristen; Lopez, Rene; Hampton, Meredith; Desimone, Joseph

    2008-10-01

    When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.

  2. High throughput secondary electron imaging of organic residues on a graphene surface

    NASA Astrophysics Data System (ADS)

    Zhou, Yangbo; O'Connell, Robert; Maguire, Pierce; Zhang, Hongzhou

    2014-11-01

    Surface organic residues inhibit the extraordinary electronic properties of graphene, hindering the development of graphene electronics. However, fundamental understanding of the residue morphology is still absent due to a lack of high-throughput and high-resolution surface characterization methods. Here, we demonstrate that secondary electron (SE) imaging in the scanning electron microscope (SEM) and helium ion microscope (HIM) can provide sub-nanometer information of a graphene surface and reveal the morphology of surface contaminants. Nanoscale polymethyl methacrylate (PMMA) residues are visible in the SE imaging, but their contrast, i.e. the apparent lateral dimension, varies with the imaging conditions. We have demonstrated a quantitative approach to readily obtain the physical size of the surface features regardless of the contrast variation. The fidelity of SE imaging is ultimately determined by the probe size of the primary beam. HIM is thus evaluated to be a superior SE imaging technique in terms of surface sensitivity and image fidelity. A highly efficient method to reveal the residues on a graphene surface has therefore been established.

  3. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Sawakuchi, A. O.; Jain, M.; Mineli, T. D.; Nogueira, L.; Bertassoli, D. J.; Häggi, C.; Sawakuchi, H. O.; Pupim, F. N.; Grohmann, C. H.; Chiessi, C. M.; Zabel, M.; Mulitza, S.; Mazoca, C. E. M.; Cunha, D. F.

    2018-06-01

    The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajós and Xingu Rivers show more sensitive quartz than Solimões and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate ξ = 0.04 mmyr-1), while low sensitivity quartz occurs in less stable Andean terrains (ξ = 0.24 mmyr-1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.

  4. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.

    PubMed

    Chaurey, Vasudha; Rohani, Ali; Su, Yi-Hsuan; Liao, Kuo-Tang; Chou, Chia-Fu; Swami, Nathan S

    2013-04-01

    Selective trapping of nanoscale bioparticles (size <100 nm) is significant for the separation and high-sensitivity detection of biomarkers. Dielectrophoresis is capable of highly selective trapping of bioparticles based on their characteristic frequency response. However, the trapping forces fall steeply with particle size, especially within physiological media of high-conductivity where the trapping can be dissipated by electrothermal (ET) flow due to localized Joule heating. Herein, we investigate the influence of device scaling within the electrodeless insulator dielectrophoresis geometry through the application of highly constricted channels of successively smaller channel depth, on the net balance of dielectrophoretic trapping force versus ET drag force on bioparticles. While higher degrees of constriction enable dielectrophoretic trapping of successively smaller bioparticles within a short time, the ETflow due to enhanced Joule heating within media of high conductivity can cause a significant dissipation of bioparticle trapping. This dissipative drag force can be reduced through lowering the depth of the highly constricted channels to submicron sizes, which substantially reduces the degree of Joule heating, thereby enhancing the range of voltages and media conductivities that can be applied toward rapid dielectrophoretic concentration enrichment of silica nanoparticles (∼50 nm) and streptavidin protein biomolecules (∼5 nm). We envision the application of these methodologies toward nanofabrication, optofluidics, biomarker discovery, and early disease diagnostics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sensitivity to prediction error in reach adaptation

    PubMed Central

    Haith, Adrian M.; Harran, Michelle D.; Shadmehr, Reza

    2012-01-01

    It has been proposed that the brain predicts the sensory consequences of a movement and compares it to the actual sensory feedback. When the two differ, an error signal is formed, driving adaptation. How does an error in one trial alter performance in the subsequent trial? Here we show that the sensitivity to error is not constant but declines as a function of error magnitude. That is, one learns relatively less from large errors compared with small errors. We performed an experiment in which humans made reaching movements and randomly experienced an error in both their visual and proprioceptive feedback. Proprioceptive errors were created with force fields, and visual errors were formed by perturbing the cursor trajectory to create a visual error that was smaller, the same size, or larger than the proprioceptive error. We measured single-trial adaptation and calculated sensitivity to error, i.e., the ratio of the trial-to-trial change in motor commands to error size. We found that for both sensory modalities sensitivity decreased with increasing error size. A reanalysis of a number of previously published psychophysical results also exhibited this feature. Finally, we asked how the brain might encode sensitivity to error. We reanalyzed previously published probabilities of cerebellar complex spikes (CSs) and found that this probability declined with increasing error size. From this we posit that a CS may be representative of the sensitivity to error, and not error itself, a hypothesis that may explain conflicting reports about CSs and their relationship to error. PMID:22773782

  6. Visual context processing deficits in schizophrenia: effects of deafness and disorganization.

    PubMed

    Horton, Heather K; Silverstein, Steven M

    2011-07-01

    Visual illusions allow for strong tests of perceptual functioning. Perceptual impairments can produce superior task performance on certain tasks (i.e., more veridical perception), thereby avoiding generalized deficit confounds while tapping mechanisms that are largely outside of conscious control. Using a task based on the Ebbinghaus illusion, a perceptual phenomenon where the perceived size of a central target object is affected by the size of surrounding inducers, we tested hypotheses related to visual integration in deaf (n = 31) and hearing (n = 34) patients with schizophrenia. In past studies, psychiatrically healthy samples displayed increased visual integration relative to schizophrenia samples and thus were less able to correctly judge target sizes. Deafness, and especially the use of sign language, leads to heightened sensitivity to peripheral visual cues and increased sensitivity to visual context. Therefore, relative to hearing subjects, deaf subjects were expected to display increased context sensitivity (ie, a more normal illusion effect as evidenced by a decreased ability to correctly judge central target sizes). Confirming the hypothesis, deaf signers were significantly more sensitive to the illusion than nonsigning hearing patients. Moreover, an earlier age of sign language acquisition, higher levels of linguistic ability, and shorter illness duration were significantly related to increased context sensitivity. As predicted, disorganization was associated with reduced context sensitivity for all subjects. The primary implications of these data are that perceptual organization impairment in schizophrenia is plastic and that it is related to a broader failure in coordinating cognitive activity.

  7. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    NASA Astrophysics Data System (ADS)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  8. Usefulness of manufactured tomato extracts in the diagnosis of tomato sensitization: Comparison with the prick-prick method

    PubMed Central

    Ferrer, Ángel; Huertas, Ángel J; Larramendi, Carlos H; García-Abujeta, Jose L; Bartra, Joan; Lavín, Jose R; Andreu, Carmen; Pagán, Juan A; López-Matas, María A; Fernández-Caldas, Enrique; Carnés, Jerónimo

    2008-01-01

    Background Commercial available skin prick test with fruits can be negative in sensitized or allergic patients due to a reduction in biological activity during the manufacturing process. Prick-prick tests with fresh foods are often preferred, but they are a non-standardized procedure. The usefulness of freeze-dried extracts of Canary Islands tomatoes, comparing the wheal sizes induced by prick test with the prick-prick method in the diagnosis of tomato sensitization has been analyzed. The objective of the study was to assess the potential diagnostic of freeze-dried extracts of Canary Islands tomatoes, comparing the wheal sizes induced by prick test with the prick-prick method. Methods Two groups of patients were analyzed: Group I: 26 individuals reporting clinical symptoms induced by tomato contact or ingestion. Group II: 71 control individuals with no symptoms induced by tomato: 12 of them were previously skin prick test positive to a tomato extract, 39 were atopic and 20 were non-atopic. All individuals underwent prick-prick with fresh ripe peel Canary tomatoes and skin prick tested with freeze-dried peel and pulp extracts obtained from peel and pulp of Canary tomatoes at 10 mg/ml. Wheal sizes and prick test positivity (≥ 7 mm2) were compared between groups. Results In group I, 21 (81%) out of 26 patients were prick-prick positive. Twenty patients (77%) had positive skin prick test to peel extracts and 12 (46%) to pulp extracts. Prick-prick induced a mean wheal size of 43.81 ± 40.19 mm2 compared with 44.25 ± 36.68 mm2 induced by the peel extract (Not significant), and 17.79 ± 9.39 mm2 induced by the pulp extract (p < 0.01). In group II, 13 (18%) out of 71 control patients were prick-prick positive. Twelve patients (all of them previously positive to peel extract) had positive skin prick test to peel and 3 to pulp. Prick-prick induced a mean wheal size of 28.88 ± 13.12 mm2 compared with 33.17 ± 17.55 mm2 induced by peel extract (Not significant), and 13.33 ± 4.80 mm2 induced by pulp extract (p < 0.05 with peel extract and prick-prick). Conclusion Canary peel tomato extract seems to be as efficient as prick-prick tests with ripe tomatoes to diagnose patients sensitized to tomato. The wheal sizes induced by prick-prick and peel extracts were very similar and showed a high correlation coefficient. PMID:18184431

  9. Fabrication and characterization of monolithic piezoresistive high-g three-axis accelerometer

    NASA Astrophysics Data System (ADS)

    Jung, Han-Il; Kwon, Dae-Sung; Kim, Jongbaeg

    2017-12-01

    We report piezoresistive high-g three-axis accelerometer with a single proof mass suspended by thin eight beams. This eight-beam design allows load-sharing at high-g preventing structural breakage, as well as the symmetric arrangement of piezoresistors. The device chip size is 1.4 mm × 1.4 mm × 0.51 mm. Experimental results show that the sensitivity in X-, Y- and Z-axes are 0.2433, 0.1308 and 0.3068 mV/g/V under 5 V applied and the resolutions are 24.2, 29.9 and 25.4 g, respectively.

  10. Asymmetric flow field flow fractionation for the characterization of globule size distribution in complex formulations: A cyclosporine ophthalmic emulsion case.

    PubMed

    Qu, Haiou; Wang, Jiang; Wu, Yong; Zheng, Jiwen; Krishnaiah, Yellela S R; Absar, Mohammad; Choi, Stephanie; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming

    2018-03-01

    Commonly used characterization techniques such as cryogenic-transmission electron microscopy (cryo-TEM) and batch-mode dynamic light scattering (DLS) are either time consuming or unable to offer high resolution to discern the poly-dispersity of complex drug products like cyclosporine ophthalmic emulsions. Here, a size-based separation and characterization method for globule size distribution using an asymmetric flow field flow fractionation (AF4) is reported for comparative assessment of cyclosporine ophthalmic emulsion drug products (model formulation) with a wide size span and poly-dispersity. Cyclosporine emulsion formulations that are qualitatively (Q1) and quantitatively (Q2) the same as Restasis® were prepared in house with varying manufacturing processes and analyzed using the optimized AF4 method. Based on our results, the commercially available cyclosporine ophthalmic emulsion has a globule size span from 30 nm to a few hundred nanometers with majority smaller than 100 nm. The results with in-house formulations demonstrated the sensitivity of AF4 in determining the differences in the globule size distribution caused by the changes to the manufacturing process. It is concluded that the optimized AF4 is a potential analytical technique for comprehensive understanding of the microstructure and assessment of complex emulsion drug products with high poly-dispersity. Published by Elsevier B.V.

  11. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  12. Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.

    2014-12-01

    Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.

  13. Proposal for a Universal Particle Detector Experiment

    NASA Technical Reports Server (NTRS)

    Lesho, J. C.; Cain, R. P; Uy, O. M.

    1993-01-01

    The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.

  14. Proposal for a universal particle detector experiment

    NASA Astrophysics Data System (ADS)

    Lesho, J. C.; Cain, R. P.; Uy, O. M.

    The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.

  15. Feasibility study for combination of field-flow fractionation (FFF)-based separation of size-coded particle probes with amplified surface enhanced Raman scattering (SERS) tagging for simultaneous detection of multiple miRNAs.

    PubMed

    Shin, Kayeong; Choi, Jaeyeong; Kim, Yeoju; Lee, Yoonjeong; Kim, Joohoon; Lee, Seungho; Chung, Hoeil

    2018-06-29

    We propose a new analytical scheme in which field-flow fractionation (FFF)-based separation of target-specific polystyrene (PS) particle probes of different sizes are incorporated with amplified surface-enhanced Raman scattering (SERS) tagging for the simultaneous and sensitive detection of multiple microRNAs (miRNAs). For multiplexed detection, PS particles of three different diameters (15, 10, 5 μm) were used for the size-coding, and a probe single stranded DNA (ssDNA) complementary to a target miRNA was conjugated on an intended PS particle. After binding of a target miRNA on PS probe, polyadenylation reaction was executed to generate a long tail composed of adenine (A) serving as a binding site to thymine (T) conjugated Au nanoparticles (T-AuNPs) to increase SERS intensity. The three size-coded PS probes bound with T-AuNPs were then separated in a FFF channel. With the observation of extinction-based fractograms, separation of three size-coded PS probes was clearly confirmed, thereby enabling of measuring three miRNAs simultaneously. Raman intensities of FFF fractions collected at the peak maximum of 15, 10 and 5 μm PS probes varied fairy quantitatively with the change of miRNA concentrations, and the reproducibility of measurement was acceptable. The proposed method is potentially useful for simultaneous detection of multiple miRNAs with high sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  17. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy

    PubMed Central

    Li, Chuang; Cordovilla, Francisco; Jagdheesh, R.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi. PMID:29393916

  18. Highly sensitive protein detection using a plasmonic field effect transistor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shokri-Kojori, Hossein; Ji, Yiwen; Han, Xu; Paik, Younghun; Braunschweig, Adam; Kim, Sung Jin

    2016-03-01

    Localized surface Plasmon Resonance (LSPR) is a nanoscale phenomenon which presents strong resonance associated with noble metal nanostructures. This plasmon resonance based technology enables highly sensitive detection for chemical and biological applications. Recently, we have developed a plasmon field effect transistor (FET) that enables direct plasmonic-to-electric signal conversion with signal amplification. The plasmon FET consists of back-gated field effect transistor incorporated with gold nanoparticles on top of the FET channel. The gold nanostructures are physically separated from transistor electrodes and can be functionalized for a specific biological application. In this presentation, we report a successful demonstration of a model system to detect Con A proteins using Carbohydrate linkers as a capture molecule. The plasmon FET detected a very low concentration of Con A (0.006 mg/L) while it offers a wide dynamic range of 0.006-50 mg/L. In this demonstration, we used two-color light sources instead of a bulky spectrometer to achieve high sensitivity and wide dynamic range. The details of two-color based differential measurement method will be discussed. This novel protein-based sensor has several advantages such as extremely small size for point-of-care system, multiplexing capability, no need of complex optical geometry.

  19. Graphene enhanced optical fiber SPR sensor for liquid concentration measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Li, Xuegang; Cheng, TongLei; Li, Shuguang; An, Guowen

    2018-07-01

    A high sensitivity optical fiber Surface Plasmon Resonance (SPR) sensor which based on coreless optical fiber, silver film and graphene, has been designed and implemented for liquid concentration detection. In this paper, Graphene is firstly verified that it can be used to enhance the evanescent field of traditional optical fiber and thus increasing sensitivity in experiment. The sensitivity of proposed sensor is 6.417 nm/%, which is higher than that of the traditional optical fiber SPR sensor according to the comparative experiments. In addition, the proposed sensor is extremely easy to make and the silver film could be protected from oxidation and damage due to the existence of graphene. Moreover, the sensor has pretty small size, immunity to electromagnetic interference, quick response speed and thus can suitable a variety of severe environments and real-time measurement.

  20. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu; Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433

    2016-06-13

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2–5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90–300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collectionmore » efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.« less

Top