Density-Dependent Effects on Group Size Are Sex-Specific in a Gregarious Ungulate
Vander Wal, Eric; van Beest, Floris M.; Brook, Ryan K.
2013-01-01
Density dependence can have marked effects on social behaviors such as group size. We tested whether changes in population density of a large herbivore (elk, Cervus canadensis) affected sex-specific group size and whether the response was density- or frequency-dependent. We quantified the probability and strength of changes in group sizes and dispersion as population density changed for each sex. We used group size data from a population of elk in Manitoba, Canada, that was experimentally reduced from 1.20 to 0.67 elk/km2 between 2002 and 2009. Our results indicated that functional responses of group size to population density are sex-specific. Females showed a positive density-dependent response in group size at population densities ≥0.70 elk/km2 and we found evidence for a minimum group size at population density ≤0.70 elk/km2. Changes in male group size were also density-dependent; however, the strength of the relationship was lower than for females. Density dependence in male group size was predominantly a result of fusion of solitary males into larger groups, rather than fusion among existing groups. Our study revealed that density affects group size of a large herbivore differently between males and females, which has important implications for the benefits e.g., alleviating predation risk, and costs of social behaviors e.g., competition for resources and mates, and intra-specific pathogen transmission. PMID:23326502
Schrader, Matthew; Travis, Joseph
2012-01-01
Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection. PMID:22957156
Influence of Population Density on Offspring Number and Size in Burying Beetles
ERIC Educational Resources Information Center
Rauter, Claudia M.
2010-01-01
This laboratory exercise investigates the influence of population density on offspring number and size in burying beetles. Students test the theoretical predictions that brood size declines and offspring size increases when competition over resources becomes stronger with increasing population density. Students design the experiment, collect and…
Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment
NASA Astrophysics Data System (ADS)
Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.
2016-01-01
We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar
2016-04-27
Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).
Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.
2014-01-01
Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.
Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.
2014-01-01
Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354
Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M
2014-01-01
Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.
Predation and nutrients drive population declines in breeding waders.
Møller, Anders Pape; Thorup, Ole; Laursen, Karsten
2018-04-20
Allee effects are defined as a decline in per capita fitness at low population density. We hypothesized that predation reduces population size of breeding waders and thereby the efficiency of predator deterrence, while total nitrogen through its effects on primary and secondary productivity increases population size. Therefore, nest predation could have negative consequences for population size because nest failure generally results in breeding dispersal and hence reduced local population density. To test these predictions, we recorded nest predation in five species of waders for 4,745 nests during 1987-2015 at the nature reserve Tipperne, Denmark. Predation rates were generally negatively related to conspecific and heterospecific population density, but positively related to overall population density of the entire wader community. Nest predation and population density were related to ground water level, management (grazing and mowing), and nutrients. High nest predation with a time lag of one year resulted in low overall breeding population density, while high nutrient levels resulted in higher population density. These two factors accounted for 86% of the variance in population size, presumably due to effects of nest predation on emigration, while nutrient levels increased the level of vegetation cover and the abundance of food in the surrounding brackish water. These findings are consistent with the hypothesis that predation may reduce population density through negative density dependence, while total nitrogen at adjacent shallow water may increase population size. Nest predation rates were reduced by high ground water level in March, grazing by cattle and mowing that affected access to and susceptibility of nests to predators. These effects can be managed to benefit breeding waders. © 2018 by the Ecological Society of America.
Lankau, Richard A; Strauss, Sharon Y
2011-01-01
Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Metabolism drives distribution and abundance in extremophile fish
McHugh, Peter A.; Glover, Chris N.; McIntosh, Angus R.
2017-01-01
Differences in population density between species of varying size are frequently attributed to metabolic rates which are assumed to scale with body size with a slope of 0.75. This assumption is often criticised on the grounds that 0.75 scaling of metabolic rate with body size is not universal and can vary significantly depending on species and life-history. However, few studies have investigated how interspecific variation in metabolic scaling relationships affects population density in different sized species. Here we predict inter-specific differences in metabolism from niche requirements, thereby allowing metabolic predictions of species distribution and abundance at fine spatial scales. Due to the differences in energetic efficiency required along harsh-benign gradients, an extremophile fish (brown mudfish, Neochanna apoda) living in harsh environments had slower metabolism, and thus higher population densities, compared to a fish species (banded kōkopu, Galaxias fasciatus) in physiologically more benign habitats. Interspecific differences in the intercepts for the relationship between body and density disappeared when species mass-specific metabolic rates, rather than body sizes, were used to predict density, implying population energy use was equivalent between mudfish and kōkopu. Nevertheless, despite significant interspecific differences in the slope of the metabolic scaling relationships, mudfish and kōkopu had a common slope for the relationship between body size and population density. These results support underlying logic of energetic equivalence between different size species implicit in metabolic theory. However, the precise slope of metabolic scaling relationships, which is the subject of much debate, may not be a reliable indicator of population density as expected under metabolic theory. PMID:29176819
Effective Ice Particle Densities for Cold Anvil Cirrus
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica
2002-01-01
This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.
Gupta, Manan; Joshi, Amitabh; Vidya, T N C
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.
Joshi, Amitabh; Vidya, T. N. C.
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735
Population-regulating processes during the adult phase in flatfish
NASA Astrophysics Data System (ADS)
Rijnsdorp, A. D.
Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population abundance. The effect of a density-dependent decrease in size-specific fecundity seems to play a minor role, although this role may become important at extremely high levels of population abundance.
Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F
2018-02-07
A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.
Effects of host-plant population size and plant sex on a specialist leaf-miner
NASA Astrophysics Data System (ADS)
Bañuelos, María-José; Kollmann, Johannes
2011-03-01
Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.
White, Richard S A; McHugh, Peter A; McIntosh, Angus R
2016-10-01
Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark-recapture study involving 830 N. apoda individuals during a one-in-seventy-year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long-held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change. © 2016 John Wiley & Sons Ltd.
Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik
2017-01-01
Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes
Kamler, Jan F; Gray, Melissa M; Oh, Annie; Macdonald, David W
2013-01-01
We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyads in the low-density population. Home-range overlap of neighboring female dyads was significantly greater in the high compared to low-density population, whereas overlap within other dyads was similar between populations. Amount of home-range overlap between neighbors was positively correlated with genetic relatedness for all dyad-site combinations, except for female and male dyads in the low-density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high-density population, and overall exhibited a male-biased dispersal pattern. Our results indicated that genetic structure within populations of bat-eared foxes was sex-biased, and was interrelated to density and group sizes, as well as sex-biases in philopatry and dispersal distances. We conclude that a combination of male-biased dispersal rates, adult dispersals, and sex-biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae. PMID:24101981
Density effect on great tit (Parus major) clutch size intensifies in a polluted environment.
Eeva, Tapio; Lehikoinen, Esa
2013-12-01
Long-term data on a great tit (Parus major) population breeding in a metal-polluted zone around a copper-nickel smelter indicate that, against expectations, the clutch size of this species is decreasing even though metal emissions in the area have decreased considerably over the past two decades. Here, we document long-term population-level changes in the clutch size of P. major and explore if changes in population density, population numbers of competing species, timing of breeding, breeding habitat, or female age distribution can explain decreasing clutch sizes. Clutch size of P. major decreased by one egg in the polluted zone during the past 21 years, while there was no significant change in clutch size in the unpolluted reference zone over this time period. Density of P. major nests was similar in both environments but increased threefold during the study period in both areas (from 0.8 to 2.4 nest/ha). In the polluted zone, clutch size has decreased as a response to a considerable increase in population density, while a corresponding density change in the unpolluted zone did not have such an effect. The other factors studied did not explain the clutch size trend. Fledgling numbers in the polluted environment have been relatively low since the beginning of the study period, and they do not show a corresponding decrease to that noted for the clutch size over the same time period. Our study shows that responses of commonly measured life-history parameters to anthropogenic pollution depend on the structure of the breeding population. Interactions between pollution and intrinsic population characters should therefore be taken into account in environmental studies.
Weiner, J; Kinsman, S; Williams, S
1998-11-01
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
Influences of population size and density on birthplace effects.
Hancock, David J; Coutinho, Patrícia; Côté, Jean; Mesquita, Isabel
2018-01-01
Contextual influences on talent development (e.g., birthplace effects) have become a topic of interest for sport scientists. Birthplace effects occur when being born in a certain city size leads to participation or performance advantages, typically for those born in smaller or mid-sized cities. The purpose of this study was to investigate birthplace effects in Portuguese volleyball players by analysing city size, as well as population density - an important but infrequently used variable. Participants included 4062 volleyball players (M age = 33), 53.2% of whom were men. Using Portuguese national census data from 1981, we compared participants (within each sex) across five population categories. In addition, we used ANOVAs to study expertise and population density. Results indicated that men and women athletes born in districts of 200,000-399,999 were 2.4 times more likely to attain elite volleyball status, while all other districts decreased the odds of expert development. For men, being born in high-density areas resulted in less chance of achieving expertise, whereas there were no differences for women. The results suggest that athletes' infrastructure and social structure play an important role in talent development, and that these structures are influenced by total population and population density, respectively.
Ruane, Lauren G.; Rotzin, Andrew T.; Congleton, Philip H.
2014-01-01
Background and Aims Natural variation in fruit and seed set may be explained by factors that affect the composition of pollen grains on stigmas. Self-incompatible species require compatible outcross pollen grains to produce seeds. The siring success of outcross pollen grains, however, can be hindered if self (or other incompatible) pollen grains co-occur on stigmas. This study identifies factors that determine fruit set in Phlox hirsuta, a self-sterile endangered species that is prone to self-pollination, and its associated fitness costs. Methods Multiple linear regressions were used to identify factors that explain variation in percentage fruit set within three of the five known populations of this endangered species. Florivorous beetle density, petal colour, floral display size, local conspecific density and pre-dispersal seed predation were quantified and their effects on the ability of flowers to produce fruits were assessed. Key Results In all three populations, percentage fruit set decreased as florivorous beetle density increased and as floral display size increased. The effect of floral display size on fruit set, however, often depended on the density of nearby conspecific plants. High local conspecific densities offset – even reversed – the negative effects of floral display size on percentage fruit set. Seed predation by mammals decreased fruit set in one population. Conclusions The results indicate that seed production in P. hirsuta can be maximized by selectively augmenting populations in areas containing isolated large plants, by reducing the population sizes of florivorous beetles and by excluding mammals that consume unripe fruits. PMID:24557879
Critical patch size generated by Allee effect in gypsy moth, Lymantria dispar (L.)
E. Vercken; A.M. Kramer; P.C. Tobin; J.M. Drake
2011-01-01
Allee effects are important dynamical mechanisms in small-density populations in which per capita population growth rate increases with density. When positive density dependence is sufficiently severe (a 'strong' Allee effect), a critical density arises below which populations do not persist. For spatially distributed populations subject to dispersal, theory...
Effect of high density on the short term Calomys musculinus spacing behaviour: A fencing experiment
NASA Astrophysics Data System (ADS)
Sommaro, Lucía V.; Steinmann, Andrea R.; Chiappero, Marina B.; Priotto, José W.
2010-05-01
We studied the short term spacing behavioural responses of corn mice ( Calomys musculinus) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2007 breeding season. The goal of this research was to test the hypothesis that spacing behaviour only operates among C. musculinus adult females. We estimated 207 home ranges to study: 1) the home range size and the overlap degree of adult males and females in relation to population density; 2) the settlement distances of juveniles to the centre of activity of their mothers and the home range overlap proportion between them and their mothers in relation to population density. We found that home range size and overlap degree in C. musculinus adults were determined by sex and density. At high population density males had significant smaller and more exclusive home ranges, and this might reflect induced territoriality derived from social restrictions. Female home range sizes remained similar irrespective of population density, and they kept exclusive home ranges in both control and experimental enclosures. Thus, females maintained their territories independent of the population density values. The settlement distances of juveniles from their mothers and the overlap proportion between them and their mothers were independent of population density. We conclude that spacing behaviour only operates among C. musculinus adult females and it could have a role in regulating population abundances limiting the number of females that acquire breeding spaces.
Abrams, Peter A
2009-09-01
Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.
Bender, L.C.; Weisenberger, M.E.
2005-01-01
Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert bighorn sheep was zero when total annual precipitation was <28.2 cm.
Effects of population reduction on white-tailed deer home-range dynamics
Crimmins, Shawn M.; Edwards, John W.; Campbell, Tyler A; Ford, W. Mark; Keyser, Patrick D.; Miller, Brad F.; Miller, Karl V.
2015-01-01
Management strategies designed to reduce the negative impacts of overabundant Odocoileus virginianus (White-tailed Deer) populations on forest regeneration may be influenced by changes in both population density and timber harvest. However, there is conflicting evidence as to how such changes in per capita resource availability influence home-range patterns. We compared home-range patterns of 33 female White-tailed Deer from a low-density population at a site with abundant browse to patterns of a sample of >100 females prior to a 75% reduction in population density and a doubling in timber harvest area. Home-range and core-area sizes were approximately 3 times larger than were found prior to population decline and timber harvest increase, consistent with predictions related to intraspecific competition. We also observed greater site fidelity than previously exhibited, although this may be an artifact of increased home-range sizes. Our results support previous research suggesting that White-tailed Deer home-range size is inversely related to population density and is driven, in part, by intraspecific competition for resources. Relationships among population density, resource availability, and home-range patterns among female White-tailed Deer appear to be complex and context specific.
Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi
2017-01-01
The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757
Putz, Christina M; Schmid, Christoph; Reisch, Christoph
2015-09-01
The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.
Allee effect: the story behind the stabilization or extinction of microbial ecosystem.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-03-01
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
Evolution of complex density-dependent dispersal strategies.
Parvinen, Kalle; Seppänen, Anne; Nagy, John D
2012-11-01
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, "triple-threshold" strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.
Wong, Sarah N P; Sicotte, Pascale
2006-05-01
The Boabeng-Fiema Monkey Sanctuary (BFMS) is inhabited by a growing population of Ursine colobus (Colobus vellerosus), a species that is listed as vulnerable. Smaller, degraded forest fragments that surround the BFMS also contain C. vellerosus and may provide an important habitat for the monkeys. Our objectives were to 1) determine the current population size and density of C. vellerosus at BFMS and in five surrounding fragments, 2) examine the differences in demographics between the fragments and BFMS, and 3) determine whether a relationship exists between population density and fragment size and isolation distance from BFMS. The census was a complete count and was conducted for 1 month (July 2003) by S.W. and trained research assistants. Seven census routes were walked simultaneously on 13 days. The 2003 population estimate of C. vellerosus at BFMS was 217-241 individuals (15 groups), a slight increase from the 2000 census. Numbers in the fragments (58-62, six groups) have remained stable since 1997, when the only other census of these fragments was conducted. Mean group size did not differ between the fragments and BFMS. Larger fragments had larger numbers of colobus, but there was no relationship between fragment size and colobus density. Isolation distance had no effect on population density. Our data suggest that colobus probably travel between fragments. Conservation efforts should focus on treating the small forests and their connecting areas as a single conservation unit. 2005 Wiley-Liss, Inc.
Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.
2009-01-01
Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both environmental covariates and the seal abundance estimates that were developed here. An improved understanding of why vital rates change with changing population abundance will only come as we develop a better understanding of the processes affecting marine food resources in the Southern Ocean.
Density-dependence as a size-independent regulatory mechanism.
de Vladar, Harold P
2006-01-21
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.
Brennan, Angela K.; Cross, Paul C.; Higgs, Megan D.; Edwards, W. Henry; Scurlock, Brandon M.; Creel, Scott
2014-01-01
Understanding how animal density is related to pathogen transmission is important to develop effective disease control strategies, but requires measuring density at a scale relevant to transmission. However, this is not straightforward or well-studied among large mammals with group sizes that range several orders of magnitude or aggregation patterns that vary across space and time. To address this issue, we examined spatial variation in elk (Cervus canadensis) aggregation patterns and brucellosis across 10 regions in the Greater Yellowstone Area where previous studies suggest the disease may be increasing. We hypothesized that rates of increasing brucellosis would be better related to the frequency of large groups than mean group size or population density, but we examined whether other measures of density would also explain rising seroprevalence. To do this, we measured wintering elk density and group size across multiple spatial and temporal scales from monthly aerial surveys. We used Bayesian hierarchical models and 20 years of serologic data to estimate rates of increase in brucellosis within the 10 regions, and to examine the linear relationships between these estimated rates of increase and multiple measures of aggregation. Brucellosis seroprevalence increased over time in eight regions (one region showed an estimated increase from 0.015 in 1991 to 0.26 in 2011), and these rates of increase were positively related to all measures of aggregation. The relationships were weaker when the analysis was restricted to areas where brucellosis was present for at least two years, potentially because aggregation was related to disease-establishment within a population. Our findings suggest that (1) group size did not explain brucellosis increases any better than population density and (2) some elk populations may have high densities with small groups or lower densities with large groups, but brucellosis is likely to increase in either scenario. In this case, any one control method such as reducing population density or group size may not be sufficient to reduce transmission. This study highlights the importance of examining the density-transmission relationship at multiple scales and across populations before broadly applying disease control strategies.
A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size
Betini, Gustavo S; McAdam, Andrew G; Griswold, Cortland K; Norris, D Ryan
2017-01-01
Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles. DOI: http://dx.doi.org/10.7554/eLife.18770.001 PMID:28164780
Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B
2016-10-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Maltas, Jeff; Brumm, Peter; Wood, Kevin B.
2016-01-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095
Johnson, Tamara L; Symonds, Matthew R E; Elgar, Mark A
2017-11-15
Developmental plasticity provides individuals with a distinct advantage when the reproductive environment changes dramatically. Variation in population density, in particular, can have profound effects on male reproductive success. Females may be easier to locate in dense populations, but there may be a greater risk of sperm competition. Thus, males should invest in traits that enhance fertilization success over traits that enhance mate location. Conversely, males in less dense populations should invest more in structures that will facilitate mate location. In Lepidoptera, this may result in the development of larger antennae to increase the likelihood of detecting female sex pheromones, and larger wings to fly more efficiently. We explored the effects of larval density on adult morphology in the gum-leaf skeletonizer moth, Uraba lugens , by manipulating both the number of larvae and the size of the rearing container. This experimental arrangement allowed us to reveal the cues used by larvae to assess whether absolute number or density influences adult responses. Male investment in testes size depended on the number of individuals, while male investment in wings and antennae depended upon larval density. By contrast, the size of female antennae and wings were influenced by an interaction of larval number and container size. This study demonstrates that male larvae are sensitive to cues that may reveal adult population density, and adjust investment in traits associated with fertilization success and mate detection accordingly. © 2017 The Author(s).
Energetic and ecological constraints on population density of reef fishes.
Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P
2016-01-27
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).
Energetic and ecological constraints on population density of reef fishes
Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.
2016-01-01
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611
Density-dependent home-range size revealed by spatially explicit capture–recapture
Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.
2016-01-01
The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.
Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik
2017-10-31
We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.
Density estimates of monarch butterflies overwintering in central Mexico
Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031
Density estimates of monarch butterflies overwintering in central Mexico
Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred
2013-01-01
Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230
Optimal control of Atlantic population Canada geese
Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.
2007-01-01
Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.
Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species
Nolet, Bart A; Bauer, Silke; Feige, Nicole; Kokorev, Yakov I; Popov, Igor Yu; Ebbinge, Barwolt S
2013-01-01
1. The huge changes in population sizes of Arctic-nesting geese offer a great opportunity to study population limitation in migratory animals. In geese, population limitation seems to have shifted from wintering to summering grounds. There, in the Arctic, climate is rapidly changing, and this may impact reproductive performance, and perhaps population size of geese, both directly (e.g. by changes in snow melt) or indirectly (e.g. by changes in trophic interactions). 2. Dark-bellied brent geese (Branta bernicla bernicla L.) increased 20-fold since the 1950s. Its reproduction fluctuates strongly in concert with the 3-year lemming cycle. An earlier analysis, covering the growth period until 1988, did not find evidence for density dependence, but thereafter the population levelled off and even decreased. The question is whether this is caused by changes in lemming cycles, population density or other factors like carry-over effects. 3. Breeding success was derived from proportions of juveniles. We used an information-theoretical approach to investigate which environmental factors best explained the variation in breeding success over nearly 50 years (1960–2008). We subsequently combined GLM predictions of breeding success with published survival estimates to project the population trajectory since 1991 (year of maximum population size). In this way, we separated the effects of lemming abundance and population density on population development. 4. Breeding success was mainly dependent on lemming abundance, the onset of spring at the breeding grounds, and the population size of brent goose. No evidence was found for carry-over effects (i.e. effects of conditions at main spring staging site). Negative density dependence was operating at a population size above c. 200 000 individuals, but the levelling off of the population could be explained by faltering lemming cycles alone. 5. Lemmings have long been known to affect population productivity of Arctic-nesting migratory birds and, more recently, possibly population dynamics of resident bird species, but this is the first evidence for effects of lemming abundance on population size of a migratory bird species. Why lemming cycles are faltering in the last two decades is unclear, but this may be associated with changes in winter climate at Taimyr Peninsula (Siberia). PMID:23419215
Nolet, Bart A; Bauer, Silke; Feige, Nicole; Kokorev, Yakov I; Popov, Igor Yu; Ebbinge, Barwolt S
2013-07-01
The huge changes in population sizes of Arctic-nesting geese offer a great opportunity to study population limitation in migratory animals. In geese, population limitation seems to have shifted from wintering to summering grounds. There, in the Arctic, climate is rapidly changing, and this may impact reproductive performance, and perhaps population size of geese, both directly (e.g. by changes in snow melt) or indirectly (e.g. by changes in trophic interactions). Dark-bellied brent geese (Branta bernicla bernicla L.) increased 20-fold since the 1950s. Its reproduction fluctuates strongly in concert with the 3-year lemming cycle. An earlier analysis, covering the growth period until 1988, did not find evidence for density dependence, but thereafter the population levelled off and even decreased. The question is whether this is caused by changes in lemming cycles, population density or other factors like carry-over effects. Breeding success was derived from proportions of juveniles. We used an information-theoretical approach to investigate which environmental factors best explained the variation in breeding success over nearly 50 years (1960-2008). We subsequently combined GLM predictions of breeding success with published survival estimates to project the population trajectory since 1991 (year of maximum population size). In this way, we separated the effects of lemming abundance and population density on population development. Breeding success was mainly dependent on lemming abundance, the onset of spring at the breeding grounds, and the population size of brent goose. No evidence was found for carry-over effects (i.e. effects of conditions at main spring staging site). Negative density dependence was operating at a population size above c. 200 000 individuals, but the levelling off of the population could be explained by faltering lemming cycles alone. Lemmings have long been known to affect population productivity of Arctic-nesting migratory birds and, more recently, possibly population dynamics of resident bird species, but this is the first evidence for effects of lemming abundance on population size of a migratory bird species. Why lemming cycles are faltering in the last two decades is unclear, but this may be associated with changes in winter climate at Taimyr Peninsula (Siberia). © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
DENSITY-DEPENDENT EVOLUTION OF LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER.
Bierbaum, Todd J; Mueller, Laurence D; Ayala, Francisco J
1989-03-01
Populations of Drosophila melanogaster were maintained for 36 generations in r- and K-selected environments in order to test the life-history predictions of theories on density-dependent selection. In the r-selection environment, populations were reduced to low densities by density-independent adult mortality, whereas populations in the K-selection environment were maintained at their carrying capacity. Some of the experimental results support the predictions or r- and K-selection theory; relative to the r-selected populations, the K-selected populations evolved an increased larval-to-adult viability, larger body size, and longer development time at high larval densities. Mueller and Ayala (1981) found that K-selected populations also have a higher rate of population growth at high densities. Other predictions of the thoery are contradicted by the lack of differences between the r and K populations in adult longevity and fecundity and a slower rate of development for r-selected individuals at low densities. The differences between selected populations in larval survivorship, larval-to-adult development time, and adult body size are strongly dependent on larval density, and there is a significant interaction between populations and larval density for each trait. This manifests an inadequacy of the theory on r- and K-selection, which does not take into account such interactions between genotypes and environments. We describe mechanisms that may explain the evolution of preadult life-history traits in our experiment and discuss the need for changes in theories of density-dependent selection. © 1989 The Society for the Study of Evolution.
Unnsteinsdottir, E R; Hersteinsson, P; Pálsson, S; Angerbjörn, A
2016-08-01
In territorial species, observed density dependence is often manifest in lowered reproductive output at high population density where individuals have fewer resources or are forced to inhabit low-quality territories. The Arctic fox (Vulpes lagopus) in Iceland is territorial throughout the year and feeds mostly on birds, since lemmings are absent from the country. Thus, the population does not exhibit short-term population cycles that are evident in most of the species' geographical range. The population has, however, gone through a major long-term fluctuation in population size. Because of the stability in hunting effort and reliable hunting records since 1958, the total number of adult foxes killed annually can be used as an index of population size (N t ). An index of carrying capacity (K) from population growth data for five separate time blocks during 1958-2007 revealed considerable variation in K and allowed a novel definition of population density in terms of K, or N t /K. Correlation analysis suggested that the reproductive rate was largely determined by the proportion of territorial foxes in the population. Variation in litter size and cub mortality was, on the other hand, related to climatic variation. Thus, Arctic foxes in Iceland engage in typical contest competition but can adapt their territory sizes in response to both temporal and spatial variation in carrying capacity, resulting in surprisingly little variation in litter size.
Damuth, John
2007-05-01
Across a wide array of animal species, mean population densities decline with species body mass such that the rate of energy use of local populations is approximately independent of body size. This "energetic equivalence" is particularly evident when ecological population densities are plotted across several or more orders of magnitude in body mass and is supported by a considerable body of evidence. Nevertheless, interpretation of the data has remained controversial, largely because of the difficulty of explaining the origin and maintenance of such a size-abundance relationship in terms of purely ecological processes. Here I describe results of a simulation model suggesting that an extremely simple mechanism operating over evolutionary time can explain the major features of the empirical data. The model specifies only the size scaling of metabolism and a process where randomly chosen species evolve to take resource energy from other species. This process of energy exchange among particular species is distinct from a random walk of species abundances and creates a situation in which species populations using relatively low amounts of energy at any body size have an elevated extinction risk. Selective extinction of such species rapidly drives size-abundance allometry in faunas toward approximate energetic equivalence and maintains it there.
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Assessment and Mapping of Forest Parcel Sizes
Brett J. Butler; Susan L. King
2005-01-01
A method for analyzing and mapping forest parcel sizes in the Northeastern United States is presented. A decision tree model was created that predicts forest parcel size from spatially explicit predictor variables: population density, State, percentage forest land cover, and road density. The model correctly predicted parcel size for 60 percent of the observations in a...
Modelling interactions of toxicants and density dependence in wildlife populations
Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.
2013-01-01
1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to toxicant impacts until a critical threshold is crossed. In our study population, toxicant-induced changes were observed in the equilibrium number of nonbreeding rather than breeding birds, suggesting that monitoring efforts including both life stages are needed to timely detect population declines. Further, by combining quantitative exposure–response relationships with a wildlife demographic model, we provided a method to quantify critical toxicant thresholds for wildlife population persistence.
The evolutionary and behavioral modification of consumer responses to environmental change.
Abrams, Peter A
2014-02-21
How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.
How can we model selectively neutral density dependence in evolutionary games.
Argasinski, Krzysztof; Kozłowski, Jan
2008-03-01
The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.
Pärn, Henrik; Ringsby, Thor Harald; Jensen, Henrik; Sæther, Bernt-Erik
2012-01-01
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process. PMID:21613299
Density-associated recruitment mediates coral population dynamics on a coral reef
NASA Astrophysics Data System (ADS)
Bramanti, Lorenzo; Edmunds, Peter J.
2016-06-01
Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.
Green, David S.; Levi, Taal
2018-01-01
Pacific martens (Martes caurina humboldtensis) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to influence land-use decisions on public and private lands, but no estimates of population size, density, or viability of remnant marten populations are available for evaluating their conservation status. We used GPS and VHF telemetry and spatial mark-resight to estimate home ranges, density, and population size of Pacific martens in the Oregon Dunes National Recreation Area, central coast Oregon, USA. We then estimated population viability at differing levels of human-caused mortality (e.g., vehicle mortality). Marten home ranges were small on average (females = 0.8 km2, males 1.5 km2) and density (1.13 martens/1 km2) was the highest reported for North American populations (M. caurina, M. americana). We estimated 71 adult martens (95% CRI [41–87]) across two subpopulations separated by a large barrier (Umpqua River). Using population viability analysis, extinction risk for a subpopulation of 30 martens, approximately the size of the subpopulation south of the Umpqua River, ranged from 32% to 99% with two or three annual human-caused mortalities within 30 years. Absent population expansion, limiting human-caused mortalities will likely have the greatest conservation impact. PMID:29637018
Naturalization of plant populations: the role of cultivation and population size and density.
Minton, Mark S; Mack, Richard N
2010-10-01
Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.
NASA Astrophysics Data System (ADS)
Pfau, Jens; Kirley, Michael; Kashima, Yoshihisa
2013-01-01
We introduce a variant of the Axelrod model of cultural dissemination in which agents change their physical locations, social links, and cultures. Numerical simulations are used to investigate the evolution of social network communities and the cultural diversity within and between these communities. An analysis of the simulation results shows that an initial peak in the cultural diversity within network communities is evident before agents segregate into a final configuration of culturally homogeneous communities. Larger long-range interaction probabilities facilitate the initial emergence of culturally diverse network communities, which leads to a more pronounced initial peak in cultural diversity within communities. At equilibrium, the number of communities, and hence cultures, increases when the initial cultural diversity increases. However, the number of communities decreases when the lattice size or population density increases. A phase transition between two regimes of initial cultural diversity is evident. For initial diversities below a critical value, a single network community and culture emerges that dominates the population. For initial diversities above the critical value, multiple culturally homogeneous communities emerge. The critical value of initial diversity at which this transition occurs increases with increasing lattice size and population density and generally with increasing absolute population size. We conclude that larger initial diversities promote cultural heterogenization, while larger lattice sizes, population densities, and in fact absolute population sizes promote homogenization.
Poot, Hanneke; ter Maat, Andries; Trost, Lisa; Schwabl, Ingrid; Jansen, René F; Gahr, Manfred
2012-02-01
Zebra Finches (Taeniopygia guttata) are highly social and monogamous birds that display relatively low levels of aggression and coordinate group life mainly by means of vocal communication. In the wild, small groups may congregate to larger flocks of up to 150-350 birds. Little is known, however, about possible effects of population density on development in captivity. Investigating density effects on physiology and behaviour might be helpful in identifying optimal group size, in order to optimise Zebra Finch wellbeing. A direct effect of population density on development and reproduction was found: birds in lower density conditions produced significantly more and larger (body mass, tarsus length) surviving offspring than birds in high density conditions. Furthermore, offspring in low density aviaries produced slightly longer song motifs and more different syllables than their tutors, whereas offspring in high density aviaries produced shorter motifs and a smaller or similar number of different syllables than their tutors. Aggression levels within the populations were low throughout the experiment, but the number of aggressive interactions was significantly higher in high density aviaries. Baseline corticosterone levels did not differ significantly between high- and low density aviaries for either adult or offspring birds. On day 15 post hatching, brood size and baseline corticosterone levels were positively correlated. On days 60 and 100 post hatching this correlation was no longer present. The results of this study prove that population density affects various aspects of Zebra Finch development, with birds living in low population density conditions having an advantage over those living under higher population density conditions. Copyright © 2011 Elsevier Inc. All rights reserved.
Peel, Joanne R; Mandujano, María del Carmen
2014-12-01
The queen conch Strombus gigas represents one of the most important fishery resources of the Caribbean but heavy fishing pressure has led to the depletion of stocks throughout the region, causing the inclusion of this species into CITES Appendix II and IUCN's Red-List. In Mexico, the queen conch is managed through a minimum fishing size of 200 mm shell length and a fishing quota which usually represents 50% of the adult biomass. The objectives of this study were to determine the intrinsic population growth rate of the queen conch population of Xel-Ha, Quintana Roo, Mexico, and to assess the effects of a regulated fishing impact, simulating the extraction of 50% adult biomass on the population density. We used three different minimum size criteria to demonstrate the effects of minimum catch size on the population density and discuss biological implications. Demographic data was obtained through capture-mark-recapture sampling, collecting all animals encountered during three hours, by three divers, at four different sampling sites of the Xel-Ha inlet. The conch population was sampled each month between 2005 and 2006, and bimonthly between 2006 and 2011, tagging a total of 8,292 animals. Shell length and lip thickness were determined for each individual. The average shell length for conch with formed lip in Xel-Ha was 209.39 ± 14.18 mm and the median 210 mm. Half of the sampled conch with lip ranged between 200 mm and 219 mm shell length. Assuming that the presence of the lip is an indicator for sexual maturity, it can be concluded that many animals may form their lip at greater shell lengths than 200 mm and ought to be considered immature. Estimation of relative adult abundance and densities varied greatly depending on the criteria employed for adult classification. When using a minimum fishing size of 200 mm shell length, between 26.2% and up to 54.8% of the population qualified as adults, which represented a simulated fishing impact of almost one third of the population. When conch extraction was simulated using a classification criteria based on lip thickness, it had a much smaller impact on the population density. We concluded that the best management strategy for S. gigas is a minimum fishing size based on a lip thickness, since it has lower impact on the population density, and given that selective fishing pressure based on size may lead to the appearance of small adult individuals with reduced fecundity. Furthermore, based on the reproductive biology and the results of the simulated fishing, we suggest a minimum lip thickness of ≥ 15 mm, which ensures the protection of reproductive stages, reduces the risk of overfishing, leading to non-viable density reduction.
Managing the Cayo Santiago rhesus macaque population: The role of density.
Hernandez-Pacheco, Raisa; Delgado, Diana L; Rawlins, Richard G; Kessler, Matthew J; Ruiz-Lambides, Angelina V; Maldonado, Elizabeth; Sabat, Alberto M
2016-01-01
Cayo Santiago is the oldest continuously operating free-ranging rhesus monkey colony in the world. Population control of this colony has historically been carried out by periodic live capture and removal of animals. However, the effect of such a strategy on the size, growth rate, age structure, and sex ratio of the population has not been analyzed. This study reviews past removal data and uses a population projection model to simulate the effects of different removal schemes based on Cayo Santiago demographic data from 2000-2012. The model incorporates negative density-dependence in female fertility, as well as male and female survival rates, to determine the population-level effects of selective removal by age and sex. Modeling revealed that removal of sexually immature individuals has negligible effects on the population dynamics explaining why with an initial population of 1309 in 2000 and annual removals of immature monkeys a mean annual population growth rate of 12% and a final population size of ∼1,435 individuals by 2012 (∼0.009 animal/m(2) ) was observed. With no removals, the population is expected to exhibit dampened oscillations until reaching equilibrium at ∼1,690 individuals (∼0.0111 animal/m(2) ) in 2,100. In contrast, removal of adult females (≥4 yrs) would significantly reduce the population size, but would also promote an increase in population growth rate due to density feedback. A maximum annual production of 275 births is expected when 550 adult females are present in the population. Sensitivity analyses showed that removing females, in contrast to controlling their fertility through invasive treatments would contribute the most to changes in population growth rate. Given the density compensation on fertility, stabilizing the population would require removing ∼80% of the current population of adult females. This study highlights the importance of addressing the population-level density effects, as well as sensitivity analyses, to optimize management strategies. © 2016 Wiley Periodicals, Inc.
Indermaur, Lukas; Schmidt, Benedikt R; Tockner, Klement; Schaub, Michael
2010-07-01
Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.
Soutullo, Alvaro; Limiñana, Rubén; Urios, Vicente; Surroca, Martín; A Gill, Jennifer
2006-09-01
Expanding populations offer an opportunity to uncover the processes driving spatial variation in distribution and abundance. Individual settlement decisions will be influenced by the availability and relative quality of patches, and by how these respond to changes in conspecific density. For example, conspecific presence can alter patch suitability through reductions in resource availability or territorial exclusion, leading to buffer effect patterns of disproportionate population expansion into poorer quality areas. However, conspecific presence can also enhance patch suitability through Allee effect processes, such as transmission of information about resources or improved predator detection and deterrence. Here, we explore the factors underlying the settlement pattern of a growing population of Montagu's harriers (Circus pygargus) in Spain. The population increased exponentially between 1981 and 2001, but stabilised between 2001 and 2004. This population increase occurred alongside a remarkable spatial expansion, with novel site use occurring prior to maximum densities in occupied sites being reached. However, no temporal trends in fecundity were observed and, within sites, average fecundity did not decline with increasing density. Across the population, variance in productivity did increase with population size, suggesting a complex pattern of density-dependent costs and benefits. We suggest that both Allee and buffer effects are operating in this system, with the benefits of conspecific presence counteracting density-dependent declines in resource availability or quality.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
Natal movement in juvenile Atlantic salmon: a body size-dependent strategy?
Sigurd Einum; Anders G. Finstad; Grethe Robertsen; Keith H. Nislow; Simon McKelvey; John D. Armstrong
2012-01-01
If competitive ability depends on body size, then the optimal natal movement from areas of high local population density can also be predicted to be size-dependent. Specifically, small, competitively-inferior individuals would be expected to benefit most from moving to areas of lower local density. Here we evaluate whether individual variation in natal movement...
Taylor's law and body size in exploited marine ecosystems.
Cohen, Joel E; Plank, Michael J; Law, Richard
2012-12-01
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.
Taylor's law and body size in exploited marine ecosystems
Cohen, Joel E; Plank, Michael J; Law, Richard
2012-01-01
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught. PMID:23301181
Cala, Yuself R; Navarrete, Alberto de Jesús; Ocaña, Frank A; Rivera, José Oliva
2013-12-01
The pink conch Eustrombus gigas is an important fisheries resource. At the regional level in the Caribbean, over-exploitation and habitat destruction have caused a decrease in the abundance of this resource. In order to provide necessary information for the species management in Mexico, this work aimed to analyze the total density, adult density, size structure and reproductive behavior of pink conch population at Banco Chinchorro during 2009-2010. Data from three seasons were obtained (rainy, dry and cold fronts periods) in three areas: Norte (North), Centro (Center) and Sur (South). The organisms were separated into two groups: (a) the criteria based upon legal harvest in Mexico: legal size conchs (siphonal length > 200 mm) and illegal size conchs (siphonal length < 200 mm), and (b) the criteria based upon sexual maturity using the 15 mm lip thickness standard: lip < 15 mm as juvenile conch and lip > or = 15 mm as adult conch. Copulation, spawning, egg masses and aggregations were evaluated as reproductive evidences. The highest total density was observed during the dry season with 384ind./ha, and the lowest during the rainy season with 127ind./ha. The highest density was reported at Sur (385ind./ha) and the lowest at Norte (198ind./ ha). The highest adult density was observed during the rainy season (8.33ind./ha), and the lowest occurred in the dry season (6.1 ind./ha). Adult density values were 5.55, 7.05 and 8.33ind./ha for Centro, Sur and Norte areas, respectively. Adult densities were lower than the threshold needed for reproduction, and 42% of the population may be vulnerable to fishing, as they had the minimum size for catch (Lsi 200 mm). Furthermore, only 2.2% of the population reached a Gl > 15 mm as sexual maturity indicator. During the study period, only six evidences of reproductive activity were observed. The smaller densities reported at Banco Chinchorro may cause reproduction events to be almost absent which in turn is sufficient evidence to show that the Allee Effect is acting on the queen conch population and there is an urgent need of fishery closure. Three important points were proposed for management of queen conch at Banco Chinchorro: total closure of fishing, systematic assessment of the conch population and the implementation of conch fishing refuge.
2012-01-01
of exploiting a wide range of habitats, reported population parameters such as density and survival vary widely indicating variation in habitat quality...more strongly influenced by the “riskiness” of the habitat than by resource availability [8]. Swift fox population parameters in different landscapes...we explored the effects of landscape heterogeneity on population parameters likely to reflect habitat quality, such as population density, home range
Density dependence in a recovering osprey population: demographic and behavioural processes.
Bretagnolle, V; Mougeot, F; Thibault, J-C
2008-09-01
1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.
Levitan, Don R; Edmunds, Peter J; Levitan, Keeha E
2014-05-01
A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983-1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95-99% throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983-2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983-1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
... size of individual pocket gophers and density of pocket gopher populations (Patton and Brylski 1987, p...-100). Pocket gopher population density is likely to be primarily regulated through intraspecific... the density of wells within that range (Keinath 2009, pp. 12-13). This potential risk is based on...
High population density enhances recruitment and survival of a harvested coral reef fish.
Wormald, Clare L; Steele, Mark A; Forrester, Graham E
2013-03-01
A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.
Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations
Laver, Rebecca J.; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S.
2012-01-01
Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species. PMID:23028983
Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish
NASA Astrophysics Data System (ADS)
Hart, M. K.; Svoboda, A.; Mancilla Cortez, D.
2011-06-01
Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.
Aeby, Greta S.; Williams, Gareth J.; Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Angel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.
2011-01-01
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.
Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Ángel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.
2011-01-01
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment. PMID:21365011
NASA Astrophysics Data System (ADS)
Bennett, B.
2016-02-01
Many fisheries are threatened due to overfishing, changing climate, and anthropogenic activities. Benthic marine organisms can be especially vulnerable to these pressures because of their inability to flee, and some of these organisms comprise the most threatened fisheries. Providing predictive tools to managers is key to reestablishing populations and sustainability in threatened or crashed fisheries. Here we examine the demographics of Cellana spp., culturally and culinarily important intertidal shellfishes in Hawai'i, in populations that are naturally recruitment limited and those that are recruitment saturated. We focus on variation in two demographic parameters: population density and size class frequency. From 2009 to 2015, yearly transect surveys were conducted on four isolated and uninhabited islands within the Papahānaumokuākea Marine National Monument (PMNM), a massive marine protected area. Two islands exhibit classic signs of recruitment limitation with several absent intertidal species and low population densities while two larger islands have a relative abundance of species and high population densities. The population density of C. exarata in the recruitment-saturated populations exhibit much higher variability, than in the recruitment-limited populations, that is driven by a massive recruitment peak in May-June. An inverted age pyramid characterized the recruitment-limited populations, which display a more stable adult-dominated population. The recruitment-saturated populations were characterized by a traditional age pyramid, which exhibit a less stable juvenile-dominated population. These results are being used to model and predict population dynamics in the intensely harvested populations of the main Hawaiian Islands for the purposes of management decision-making.
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Patrick C. Tobin; Ksenia S. Onufrieva; Kevin W. Thorpe
2012-01-01
The successful establishment of non-native species in new areas can be affected by many factors including the initial size of the founder population. Populations comprised of fewer individuals tend to be subject to stochastic forces and Allee effects (positive-density dependence), which can challenge the ability of small founder populations to establish in a new area....
Bordehore, Cesar; Fuentes, Verónica L; Segarra, Jose G; Acevedo, Melisa; Canepa, Antonio; Raventós, Josep
2015-01-01
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a "demographic inverse problem" and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
Márquez, E J; Saldamando-Benjumea, C I
2013-09-01
Habitat change in Rhodnius spp may represent an environmental challenge for the development of the species, particularly when feeding frequency and population density vary in nature. To estimate the effect of these variables in stability on development, the degree of directional asymmetry (DA) and fluctuating asymmetry (FA) in the wing size and shape of R. prolixus and R. robustus-like were measured under laboratory controlled conditions. DA and FA in wing size and shape were significant in both species, but their variation patterns showed both inter-specific and sexual dimorphic differences in FA of wing size and shape induced by nutrition stress. These results suggest different abilities of the genotypes and sexes of two sylvatic and domestic genotypes of Rhodnius to buffer these stress conditions. However, both species showed non-significant differences in the levels of FA between treatments that simulated sylvan vs domestic conditions, indicating that the developmental noise did not explain the variation in wing size and shape found in previous studies. Thus, this result confirm that the variation in wing size and shape in response to treatments constitute a plastic response of these genotypes to population density and feeding frequency.
Ability of matrix models to explain the past and predict the future of plant populations.
McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.
2013-01-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.
Ability of matrix models to explain the past and predict the future of plant populations.
Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S
2013-10-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.
Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius
Dunstan, Andrew; Bradshaw, Corey J. A.; Marshall, Justin
2011-01-01
The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6–77.4 km−2) dominated by males (83∶17 male∶female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide. PMID:21347360
Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat
NASA Astrophysics Data System (ADS)
Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano
2010-11-01
In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.
Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics
Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan
2014-01-01
Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704
Pospahala, Richard S.; Anderson, David R.; Henny, Charles J.
1974-01-01
This report, the second in a series on a comprehensive analysis of mallard population data, provides information on mallard breeding habitat, the size and distribution of breeding populations, and indices to production. The information in this report is primarily the result of large-scale aerial surveys conducted during May and July, 1955-73. The history of the conflict in resource utilization between agriculturalists and wildlife conservation interests in the primary waterfowl breeding grounds is reviewed. The numbers of ponds present during the breeding season and the midsummer period and the effects of precipitation and temperature on the number of ponds present are analyzed in detail. No significant cycles in precipitation were detected and it appears that precipitation is primarily influenced by substantial seasonal and random components. Annual estimates (1955-73) of the number of mallards in surveyed and unsurveyed breeding areas provided estimates of the size and geographic distribution of breeding mallards in North America. The estimated size of the mallard breeding population in North America has ranged from a high of 14.4 million in 1958 to a low of 7.1 million in 1965. Generally, the mallard breeding population began to decline after the 1958 peak until 1962, and remained below 10 million birds until 1970. The decline and subsequent low level of the mallard population between 1959 and 1969 .generally coincided with a period of poor habitat conditions on the major breeding grounds. The density of mallards was highest in the Prairie-Parkland Area with an average of nearly 19.2 birds per square mile. The proportion of the continental mallard breeding population in the Prairie-Parkland Area ranged from 30% in 1962 to a high of 600/0 in 1956. The geographic distribution of breeding mallards throughout North America was significantly related to the number of May ponds in the Prairie-Parkland Area. Estimates of midsummer habitat conditions and indices to production from the July Production Survey were studied in detail. Several indices relating to production showed marked declines from west to east in the Prairie-Parkland Area, these are: (1) density of breeding mallards (per square mile and per May pond), (2) brood density (per square mile and per July pond), (3) average brood size (all species combined), and (4) brood survival from class II to class III. An index to late nesting and renesting efforts was highest during years when midsummer water conditions were good. Production rates of many ducks breeding in North America appear to be regulated by both density-dependent and density-independent factors. Spacing of birds in the Prairie-Parkland Area appeared to be a key factor in the density-dependent regulation of the population. The spacing mechanism, in conjunction with habitat conditions, influenced some birds to overfly the primary breeding grounds into less favorable habitats to the north and northwest where the production rate may be suppressed. The production rate of waterfowl in the Prairie Parkland Area seems to be independent of density (after emigration has taken place) because the production index appears to be a linear function of the number of breeding birds in the area. Similarly, the production rate of waterfowl in northern Saskatchewan and northern Manitoba appeared to be independent of density. Production indices in these northern areas appear to be a linear function of the size of the breeding population. Thus, the density and distribution of breeding ducks is probably regulated through a spacing mechanism that is at least partially dependent on measurable environmental factors. The result is a density-dependent process operating to ultimately effect the production and production rate of breeding ducks on a continent-wide basis. Continental production, and therefore the size of the fall population, is probably partially regulated by the number of birds that are distributed north and northwest into environments less favorable for successful reproduction. Thus, spacing of the birds in the Prairie-Parkland Area and the movement of a fraction of the birds out of the prime breeding areas may be key factors in the density-dependent regulation of the total mallard population.
High-density marker imputation accuracy in sixteen French cattle breeds.
Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal
2013-09-03
Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations.
High-density marker imputation accuracy in sixteen French cattle breeds
2013-01-01
Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. Conclusion In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations. PMID:24004563
NASA Astrophysics Data System (ADS)
Fujita, Kazuhiko; Otomaru, Maki; Lopati, Paeniu; Hosono, Takashi; Kayanne, Hajime
2016-03-01
Carbonate production by large benthic foraminifers is sometimes comparable to that of corals and coralline algae, and contributes to sedimentation on reef islands and beaches in the tropical Pacific. Population dynamic data, such as population density and size structure (size-frequency distribution), are vital for an accurate estimation of shell production of foraminifers. However, previous production estimates in tropical environments were based on a limited sampling period with no consideration of seasonality. In addition, no comparisons were made of various estimation methods to determine more accurate estimates. Here we present the annual gross shell production rate of Baculogypsina sphaerulata, estimated based on population dynamics studied over a 2-yr period on an ocean reef flat of Funafuti Atoll (Tuvalu, tropical South Pacific). The population density of B. sphaerulata increased from January to March, when northwest winds predominated and the study site was on the leeward side of reef islands, compared to other seasons when southeast trade winds predominated and the study site was on the windward side. This result suggested that wind-driven flows controlled the population density at the study site. The B. sphaerulata population had a relatively stationary size-frequency distribution throughout the study period, indicating no definite intensive reproductive period in the tropical population. Four methods were applied to estimate the annual gross shell production rates of B. sphaerulata. The production rates estimated by three of the four methods (using monthly biomass, life tables and growth increment rates) were in the order of hundreds of g CaCO3 m-2 yr-1 or cm-3 m-2 yr-1, and the simple method using turnover rates overestimated the values. This study suggests that seasonal surveys should be undertaken of population density and size structure as these can produce more accurate estimates of shell productivity of large benthic foraminifers.
Yoshikura, Hiroshi
2016-01-01
A stable relation was found between number of HIV/AIDS patients (P) and population size (N) and between HIV/AIDS incidence (I) and population density (D). The relation could be expressed as P = kN(m) or I = hD(n), where k, h, m, and n are constants. For "AIDS"/"AIDS diagnosis", the constant m was 1.5 for Japan and 1.3 for the United States of America (USA); n was 0.38 for both Japan and the USA. These observations indicated that larger population sizes related to disproportionately larger numbers of HIV/AIDS patients, and denser populations had disproportionately higher incidences of HIV/AIDS. Considering the wide geo-demographic difference between the two countries, it was striking that the same equations with constants within a narrow range were applicable to both Japan and the USA. Modes of HIV transmission appeared to be variable among prefectures in Japan. Homosexual transmission was suggested as being more predominant in more populated prefectures.
Peromyscus ranges at high and low population densities
Stickel, L.F.
1960-01-01
Live-trapping studies at the Patuxent Wildlife Research Center, Maryland, showed that the ranges of wood mice were larger when the population density was lower and smaller when the population density was higher. When the population density was about 1.3 male mice per acre in June 1954, the average distance recorded between traps after four or more captures was 258 feet. When the population density was about 4.1 male mice per acre in June 1957, the average distance was 119 feet. Differences were statistically significant. Females were so scarce at the low that comparisons could not be made for them. Examples from the literature also show that home range of a species may vary with population density. Other examples show that the range may vary with habitat, breeding condition and food supply. These variations in range size reduce the reliability of censuses in which relative methods are used: Lines of traps sample the population of a larger area when ranges are large than they do when ranges are small. Direct comparisons therefore will err in some degree. Error may be introduced also when line-trap data are transformed to per acre figures on the basis of home-range estimates made by area-trapping at another place or time. Variation in range size also can make it necessary to change area-trapping plans, for larger quadrants are needed when ranges are larger. It my be necessary to set traps closer together when ranges are small than when ranges are large.
Population status of chimpanzees in the Masito-Ugalla Ecosystem, Tanzania.
Piel, Alex K; Cohen, Naomi; Kamenya, Shadrack; Ndimuligo, Sood A; Pintea, Lilian; Stewart, Fiona A
2015-10-01
More than 75 percent of Tanzania's chimpanzees live at low densities on land outside national parks. Chimpanzees are one of the key conservation targets in the region and long-term monitoring of these populations is essential for assessing the overall status of ecosystem health and the success of implemented conservation strategies. We aimed to assess change in chimpanzee density within the Masito-Ugalla Ecosystem (MUE) by comparing results of re-walking the same line transects in 2007 and 2014. We further used published remote sensing data derived from Landsat satellites to assess forest cover change within a 5 km buffer of these transects over that same period. We detected no statistically significant decline in chimpanzee density across the surveyed areas of MUE between 2007 and 2014, although the overall mean density of chimpanzees declined from 0.09 individuals/km(2) in 2007 to 0.05 individuals/km(2) in 2014. Whether this change is biologically meaningful cannot be determined due to small sample sizes and large, entirely overlapping error margins. It is therefore possible that the MUE chimpanzee population has been stable over this period and indeed in some areas (Issa Valley, Mkanga, Kamkulu) even showed an increase in chimpanzee density. Variation in chimpanzee habitat preference for ranging or nesting could explain variation in density at some of the survey sites between 2007 and 2014. We also found a relationship between increasing habitat loss and lower mean chimpanzee density. Future surveys will need to ensure a larger sample size, broader geographic effort, and random survey design, to more precisely determine trends in MUE chimpanzee density and population size over time. © 2015 Wiley Periodicals, Inc.
Pafilis, Panayiotis; Meiri, Shai; Foufopoulos, Johannes; Valakos, Efstratios
2009-09-01
Resource availability, competition, and predation commonly drive body size evolution. We assess the impact of high food availability and the consequent increased intraspecific competition, as expressed by tail injuries and cannibalism, on body size in Skyros wall lizards (Podarcis gaigeae). Lizard populations on islets surrounding Skyros (Aegean Sea) all have fewer predators and competitors than on Skyros but differ in the numbers of nesting seabirds. We predicted the following: (1) the presence of breeding seabirds (providing nutrients) will increase lizard population densities; (2) dense lizard populations will experience stronger intraspecific competition; and (3) such aggression, will be associated with larger average body size. We found a positive correlation between seabird and lizard densities. Cannibalism and tail injuries were considerably higher in dense populations. Increases in cannibalism and tail loss were associated with large body sizes. Adult cannibalism on juveniles may select for rapid growth, fuelled by high food abundance, setting thus the stage for the evolution of gigantism.
A stochastic-field description of finite-size spiking neural networks
Longtin, André
2017-01-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447
Gergs, André; Preuss, Thomas G.; Palmqvist, Annemette
2014-01-01
Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross-level testing of different hypotheses, we explored how well the sub-models fit individual level data and also how well they predict population dynamics under different conditions of resource availability. Only operating resource-related and crowding-related hypotheses together enabled accurate model predictions of D. magna population dynamics and size structure. Whereas this study showed that various mechanisms might play a role in the negative feedback between population density and individual life history, it also indicated that different density levels might instigate the onset of the different mechanisms. This study provides an example of how the integration of dynamic energy budget theory and individual-based modelling can facilitate the exploration of mechanisms behind the regulation of population size. Such understanding is important for assessment, management and the conservation of populations and thereby biodiversity in ecosystems. PMID:24626228
Castilla, Antonio R.; Pope, Nathaniel; Jha, Shalene
2016-01-01
Background and Aims Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. Methods We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Key Results Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. Conclusions This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. PMID:26602288
Castilla, Antonio R; Pope, Nathaniel; Jha, Shalene
2016-02-01
Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Recent reports of global declines in pollinator species imply an urgent need to assess native pollinator population sizes and density dependent benefits for linked plants. Here, we estimated effective population sizes (Ne) of four native bumblebee species, Bombus balteatus, B. flavifrons, B. bifariu...
Differing Mechanisms Underlie Sexual Size-Dimorphism in Two Populations of a Sex-Changing Fish
McCormick, Mark I.; Ryen, Christopher A.; Munday, Philip L.; Walker, Stefan P. W.
2010-01-01
Variability in the density of groups within a patchy environment lead to differences in interaction rates, growth dynamics and social organization. In protogynous hermaphrodites there are hypothesised trade-offs among sex-specific growth, reproductive output and mortality. When differences in density lead to changes to social organization the link between growth and the timing of sex-change is predicted to change. The present study explores this prediction by comparing the social organisation and sex-specific growth of two populations of a protogynous tropical wrasse, Halichoeres miniatus, which differ in density. At a low density population a strict harem structure was found, where males maintained a tight monopoly of access and spawning rights to females. In contrast, at a high density population a loosely organised system prevailed, where females could move throughout multiple male territories. Otolith microstructure revealed the species to be annual and deposit an otolith check associated with sex-change. Growth trajectories suggested that individuals that later became males in both populations underwent a growth acceleration at sex-change. Moreover, in the high density population, individuals that later became males were those individuals that had the largest otolith size at hatching and consistently deposited larger increments throughout early larval, juvenile and female life. This study demonstrates that previous growth history and growth rate changes associated with sex change can be responsible for the sexual dimorphism typically found in sex-changing species, and that the relative importance of these may be socially constrained. PMID:20485547
Harrow, Sally A.; Ravindran, Velmurugu; Butler, Ruth C.; Marshall, John W.; Tannock, Gerald W.
2007-01-01
A real-time quantitative PCR assay targeting a 16S-23S intergenic spacer region sequence was devised to measure the sizes of populations of Lactobacillus salivarius present in ileal digesta collected from broiler chickens. This species has been associated with deconjugation of bile salts in the small bowel and reduced broiler productivity. The assay was tested as a means of monitoring the sizes of L. salivarius populations from broilers fed diets with different compositions, maintained at different stocking densities, or given the antimicrobial drugs bacitracin and monensin in the feed. Stocking densities did not influence the numbers of L. salivarius cells in the ileum. A diet containing meat and bone meal reduced the size of the L. salivarius population relative to that of chickens given the control diet, as did administration of bacitracin and monensin in the feed. These changes in the target bacterial population were associated with improved broiler weight gain. PMID:17890342
The Role of Individual Traits and Environmental Factors for Diet Composition of Sheep
Mysterud, Atle; Austrheim, Gunnar
2016-01-01
Large herbivore consumption of forage is known to affect vegetation composition and thereby ecosystem functions. It is thus important to understand how diet composition arises as a mixture of individual variation in preferences and environmental drivers of availability, but few studies have quantified both. Based on 10 years of data on diet composition by aid of microhistological analysis for sheep kept at high and low population density, we analysed how both individual traits (sex, age, body mass, litter size) linked to preference and environmental variation (density, climate proxies) linked to forage availability affected proportional intake of herbs (high quality/low availability) and Avenella flexuosa (lower quality/high availability). Environmental factors affecting current forage availability such as population density and seasonal and annual variation in diet had the most marked impact on diet composition. Previous environment of sheep (switch between high and low population density) had no impact on diet, suggesting a comparably minor role of learning for density dependent diet selection. For individual traits, only the difference between lambs and ewes affected proportion of A. flexuosa, while body mass better predicted proportion of herbs in diet. Neither sex, body mass, litter size, ewe age nor mass of ewe affected diet composition of lambs, and there was no effect of age, body mass or litter size on diet composition of ewes. Our study highlights that diet composition arises from a combination of preferences being predicted by lamb and ewes’ age and/or body mass differences, and the immediate environment in terms of population density and proxies for vegetation development. PMID:26731411
Quantifying the Variation in the Effective Population Size Within a Genome
Gossmann, Toni I.; Woolfit, Megan; Eyre-Walker, Adam
2011-01-01
The effective population size (Ne) is one of the most fundamental parameters in population genetics. It is thought to vary across the genome as a consequence of differences in the rate of recombination and the density of selected sites due to the processes of genetic hitchhiking and background selection. Although it is known that there is intragenomic variation in the effective population size in some species, it is not known whether this is widespread or how much variation in the effective population size there is. Here, we test whether the effective population size varies across the genome, between protein-coding genes, in 10 eukaryotic species by considering whether there is significant variation in neutral diversity, taking into account differences in the mutation rate between loci by using the divergence between species. In most species we find significant evidence of variation. We investigate whether the variation in Ne is correlated to recombination rate and the density of selected sites in four species, for which these data are available. We find that Ne is positively correlated to recombination rate in one species, Drosophila melanogaster, and negatively correlated to a measure of the density of selected sites in two others, humans and Arabidopsis thaliana. However, much of the variation remains unexplained. We use a hierarchical Bayesian analysis to quantify the amount of variation in the effective population size and show that it is quite modest in all species—most genes have an Ne that is within a few fold of all other genes. Nonetheless we show that this modest variation in Ne is sufficient to cause significant differences in the efficiency of natural selection across the genome, by demonstrating that the ratio of the number of nonsynonymous to synonymous polymorphisms is significantly correlated to synonymous diversity and estimates of Ne, even taking into account the obvious nonindependence between these measures. PMID:21954163
Size Dependence of S-bonding on (111) Facets of Cu Nanoclusters
Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.; ...
2016-04-21
We demonstrate a strong damped oscillatory size dependence of the adsorption energy for sulfur on the (111) facets of tetrahedral Cu nanoclusters up to sizes of ~300 atoms. This behavior reflects quantum size effects. Consistent results are obtained from density functional theory analyses utilizing either atomic orbital or plane-wave bases and using the same Perdew–Burke–Ernzerhof functional. Behavior is interpreted via molecular orbitals (MO), density of states (DOS), and crystal orbital Hamilton population (COHP) analyses.
Density-Dependent Growth in Invasive Lionfish (Pterois volitans)
Benkwitt, Cassandra E.
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604
Density-dependent growth in invasive Lionfish (Pterois volitans).
Benkwitt, Cassandra E
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
Early signs of recovery of Acropora palmata in St. John, US Virgin Islands
Muller, E.M.; Rogers, Caroline S.; van Woesik, R.
2014-01-01
Since the 1980s, diseases have caused significant declines in the population of the threatened Caribbean coral Acropora palmata. Yet it is largely unknown whether the population densities have recovered from these declines and whether there have been any recent shifts in size-frequency distributions toward large colonies. It is also unknown whether colony size influences the risk of disease infection, the most common stressor affecting this species. To address these unknowns, we examined A. palmata colonies at ten sites around St. John, US Virgin Islands, in 2004 and 2010. The prevalence of white-pox disease was highly variable among sites, ranging from 0 to 53 %, and this disease preferentially targeted large colonies. We found that colony density did not significantly change over the 6-year period, although six out of ten sites showed higher densities through time. The size-frequency distributions of coral colonies at all sites were positively skewed in both 2004 and 2010, however, most sites showed a temporal shift toward more large-sized colonies. This increase in large-sized colonies occurred despite the presence of white-pox disease, a severe bleaching event, and several storms. This study provides evidence of slow recovery of the A. palmata population around St. John despite the persistence of several stressors.
The Socioecology of Territory Size and a "Work-Around" Hypothesis for the Adoption of Farming
Freeman, Jacob
2016-01-01
This paper combines theory from ecology and anthropology to investigate variation in the territory sizes of subsistence oriented agricultural societies. The results indicate that population and the dependence of individuals within a society on “wild” foods partly determine the territory sizes of agricultural societies. In contrast, the productivity of an agroecosystem is not an important determinant of territory size. A comparison of the population-territory size scaling dynamics of agricultural societies and human foragers indicates that foragers and farmers face the same constraints on their ability to expand their territory and intensify their use of resources within a territory. However, the higher density of food in an agroecosystem allows farmers, on average, to live at much higher population densities than human foragers. These macroecological patterns are consistent with a “work-around hypothesis” for the adoption of farming. This hypothesis is that as residential groups of foragers increase in size, farming can sometimes better reduce the tension between an individual’s autonomy over resources and the need for social groups to function to provide public goods like defense and information. PMID:27391955
Turcotte, Martin M; Reznick, David N; Daniel Hare, J
2013-05-01
An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.
Loi, Barbara; Guala, Ivan; Pires da Silva, Rodrigo; Brundu, Gianni; Baroli, Maura; Farina, Simone
2017-01-01
In Sardinia, as in other regions of the Mediterranean Sea, sustainable fisheries of the sea urchin Paracentrotus lividus have become a necessity. At harvesting sites, the systematic removal of large individuals (diameter ≥ 50 mm) seriously compromises the biological and ecological functions of sea urchin populations. Specifically, in this study, we compared the reproductive potential of the populations from Mediterranean coastal areas which have different levels of sea urchin fishing pressure. The areas were located at Su Pallosu Bay, where pressure is high and Tavolara-Punta Coda Cavallo, a marine protected area where sea urchin harvesting is low. Reproductive potential was estimated by calculating the gonadosomatic index (GSI) from June 2013 to May 2014 both for individuals of commercial size (diameter without spines, TD ≥ 50 mm) and the undersized ones with gonads (30 ≤ TD < 40 mm and 40 ≤ TD < 50 mm). Gamete output was calculated for the commercial-size class and the undersized individuals with fertile gonads (40 ≤ TD < 50 mm) in relation to their natural density (gamete output per m 2 ). The reproductive potential of populations was slightly different at the beginning of the sampling period but it progressed at different rates with an early spring spawning event in the high-pressure zone and two gamete depositions in early and late spring in the low-pressure zone. For each fertile size class, GSI values changed significantly during the year of our study and between the two zones. Although the multiple spawning events determined a two-fold higher total gamete output of population (popTGO) in the low-pressure zone, the population mean gamete output (popMGO) was similar in the two zones. In the high-pressure zone, the commercial-sized individuals represented approximatively 5% of the population, with almost all the individuals smaller than 60 mm producing an amount of gametes nearly three times lower than the undersized ones. Conversely, the high density of the undersized individuals released a similar amount of gametes to the commercial-size class in the low-pressure zone. Overall, the lack of the commercial-size class in the high-pressure zone does not seem to be very alarming for the self-supporting capacity of the population, and the reproductive potential contribution seems to depend more on the total density of fertile sea urchins than on their size. However, since population survival in the high-pressure zone is supported by the high density of undersized sea urchins between 30 and 50 mm, management measures should be addressed to maintain these sizes and to shed light on the source of the larval supply.
Guala, Ivan; Pires da Silva, Rodrigo; Brundu, Gianni; Baroli, Maura; Farina, Simone
2017-01-01
Background In Sardinia, as in other regions of the Mediterranean Sea, sustainable fisheries of the sea urchin Paracentrotus lividus have become a necessity. At harvesting sites, the systematic removal of large individuals (diameter ≥ 50 mm) seriously compromises the biological and ecological functions of sea urchin populations. Specifically, in this study, we compared the reproductive potential of the populations from Mediterranean coastal areas which have different levels of sea urchin fishing pressure. The areas were located at Su Pallosu Bay, where pressure is high and Tavolara-Punta Coda Cavallo, a marine protected area where sea urchin harvesting is low. Methods Reproductive potential was estimated by calculating the gonadosomatic index (GSI) from June 2013 to May 2014 both for individuals of commercial size (diameter without spines, TD ≥ 50 mm) and the undersized ones with gonads (30 ≤ TD < 40 mm and 40 ≤ TD < 50 mm). Gamete output was calculated for the commercial-size class and the undersized individuals with fertile gonads (40 ≤ TD < 50 mm) in relation to their natural density (gamete output per m2). Results The reproductive potential of populations was slightly different at the beginning of the sampling period but it progressed at different rates with an early spring spawning event in the high-pressure zone and two gamete depositions in early and late spring in the low-pressure zone. For each fertile size class, GSI values changed significantly during the year of our study and between the two zones. Although the multiple spawning events determined a two-fold higher total gamete output of population (popTGO) in the low-pressure zone, the population mean gamete output (popMGO) was similar in the two zones. In the high-pressure zone, the commercial-sized individuals represented approximatively 5% of the population, with almost all the individuals smaller than 60 mm producing an amount of gametes nearly three times lower than the undersized ones. Conversely, the high density of the undersized individuals released a similar amount of gametes to the commercial-size class in the low-pressure zone. Discussion Overall, the lack of the commercial-size class in the high-pressure zone does not seem to be very alarming for the self-supporting capacity of the population, and the reproductive potential contribution seems to depend more on the total density of fertile sea urchins than on their size. However, since population survival in the high-pressure zone is supported by the high density of undersized sea urchins between 30 and 50 mm, management measures should be addressed to maintain these sizes and to shed light on the source of the larval supply. PMID:28289567
NASA Astrophysics Data System (ADS)
Henríquez, Paula; Donoso, Denise S.; Grez, Audrey A.
2009-11-01
Habitat fragmentation results in new environmental conditions that may stress resident populations. Such stress may be reflected in demographical or morphological changes in the individuals inhabiting those landscapes. This study evaluates the effects of fragmentation of the Maulino forest on population density, sex ratio, body size, and fluctuating asymmetry (FA) of the endemic carabid Ceroglossus chilensis. Individuals of C. chilensis were collected during 2006 in five locations at Los Queules National Reserve (continuous forest), in five forest fragments and in five areas of surrounding pine plantations (matrix). In each location, once a season, 40 pitfall traps (20 in the centre, 20 in the edge), were opened for 72 h. Population density of C. chilensis was higher in the small fragments than in the pine matrix, with intermediate densities in the continuous forest; sex ratio did not differ significantly from 1:1 in the three habitats. Individuals from the centre of fragments were smaller than those from the centre of continuous forest, and FA did not vary significantly among habitats. These results suggest that small forest fragments maintain dense populations of C. chilensis and therefore they must be considered in conservation strategies. Although the decrease of the body size suggests that small remnants should be connected by managing the structure of the surrounding matrix, facilitating the dispersion of this carabid across the landscape and avoiding possible antagonistic interactions inside small fragments.
Eccard, Jana A; Rödel, Heiko G
2011-09-01
A number of short-lived, iteroparous animal species have small broods in the early breeding season and larger broods in later breeding season. Brood size affects not only offspring size, but as recent results suggest, may also affect offspring's temperament, hormonal status, and aggression as adults. Most populations of short-lived, iteroparous mammals fluctuate predictably over the season, with low densities in winter, increasing densities in summer and a population peak in late summer followed by a population breakdown. If animals live only through parts of the season, possibly such differences in density and hence also in social environments among seasons require different personality types to increase individual fitness. We present data on behavior of European rabbits from a field enclosure study. These data clearly show that aggressiveness is higher in young from smaller litters than in young from larger litters, and smaller litters are usually born during the early breeding season. Moreover, our data suggest that behavioral types of the young rabbits are stable over time, at least during their subadult life. We suggest, that changes in mean litter size over the course of the breeding season may not only be a product of mothers' age or food availability, but may also have an adaptive function by preparing offspring characteristics for adulthood in a social environment undergoing predictable density changes within the season. Copyright © 2011 Wiley Periodicals, Inc.
Adaptive harvest management for the Svalbard population of pink-footed geese: 2015 progress summary
Johnson, Fred A.; Madsen, Jesper
2015-01-01
This document describes progress to date on the development of an adaptive harvest management strategy for maintaining the Svalbard population of pink‐footed geese (Anser brachyrhynchus) near their agreed target level (60,000) by providing for sustainable harvests in Norway and Denmark. This report provides an assessment of the most recent monitoring information (1991-2014) and its implications for the harvest management strategy, and it is an update of an initial assessment for 2013-2015 (see http://pinkfootedgoose.aewa.info/). By combining varying hypotheses about survival and reproduction, a suite of nine models have been developed that represent a wide range of possibilities concerning the extent to which demographic rates are density dependent or independent. Current updated model weights suggest little evidence for density-dependent survival and reproduction, suggesting that the population may have recently experienced a release from density-dependent mechanisms, corresponding to the period of most rapid growth in population size. The optimal harvest strategy for the 2013–2015 hunting seasons prescribed a harvest quota of 15,000 per year. The harvest in the 2014 hunting season was 14,991, compared to 11,081 in 2013, mostly due to an increase in harvest in Denmark during January 2015. The percentage of young in the fall of 2014 was 10.3%, which is lower than average. The observed population size of 59,000 in May 2015 was much lower than expected. For the 2015 hunting season, observed population size and temperature days suggest that an emergency closure should be considered. In the event a harvest of 15,000 is maintained, predicted population size in May 2016 is 51,700 (95% CL: 41,600-64,300), based on observed TempDays = 9 in May 2015 and the most recent model weights. On the other hand, if the season were closed this year, we would expect a population size of 66,700 (95% CL: 53,600-82,900) in May 2016. A total harvest of 6,700 would be expected to result in a 2016 population size at goal (i.e., 60,000).
Ellison, Aaron M.; Jackson, Scott
2015-01-01
Herpetologists and conservation biologists frequently use convenient and cost-effective, but less accurate, abundance indices (e.g., number of individuals collected under artificial cover boards or during natural objects surveys) in lieu of more accurate, but costly and destructive, population size estimators to detect and monitor size, state, and trends of amphibian populations. Although there are advantages and disadvantages to each approach, reliable use of abundance indices requires that they be calibrated with accurate population estimators. Such calibrations, however, are rare. The red back salamander, Plethodon cinereus, is an ecologically useful indicator species of forest dynamics, and accurate calibration of indices of salamander abundance could increase the reliability of abundance indices used in monitoring programs. We calibrated abundance indices derived from surveys of P. cinereus under artificial cover boards or natural objects with a more accurate estimator of their population size in a New England forest. Average densities/m2 and capture probabilities of P. cinereus under natural objects or cover boards in independent, replicate sites at the Harvard Forest (Petersham, Massachusetts, USA) were similar in stands dominated by Tsuga canadensis (eastern hemlock) and deciduous hardwood species (predominantly Quercus rubra [red oak] and Acer rubrum [red maple]). The abundance index based on salamanders surveyed under natural objects was significantly associated with density estimates of P. cinereus derived from depletion (removal) surveys, but underestimated true density by 50%. In contrast, the abundance index based on cover-board surveys overestimated true density by a factor of 8 and the association between the cover-board index and the density estimates was not statistically significant. We conclude that when calibrated and used appropriately, some abundance indices may provide cost-effective and reliable measures of P. cinereus abundance that could be used in conservation assessments and long-term monitoring at Harvard Forest and other northeastern USA forests. PMID:26020008
Weckerly, F.; McFarland, K.; Ricca, M.; Meyer, K.
2004-01-01
Intersexual social segregation at small spatial scales is prevalent in ruminants that are sexually dimorphic in body size. Explaining social segregation, however, from hypotheses of how intersexual size differences affects the foraging process of males and females has had mixed results. We studied whether body size influences on forage behavior, intersexual social incompatibility or both might influence social segregation in a population of Roosevelt elk (Cervus elaphus roosevelt) that declined 40% over 5 y. Most males and females in the population occurred in the same forage patches, meadows, but occupied different parts of meadows and most groups were overwhelming comprised of one sex. The extent of segregation varied slightly with changing elk density. Cropping rate, our surrogate of forage ingestion, of males in mixed-sex groups differed from males in male-only groups at high, but not low, elk density. In a prior study of intersexual social interactions it was shown that females avoided groups containing ???6 males. Therefore, we predicted that females should avoid parts of meadows where groups of males ???6 were prevalent. Across the 5 y of study this prediction held because ???5% of all females were found in parts of meadows where median aggregation sizes of males were ???6. Social segregation was coupled to body size influences on forage ingestion at high density and social incompatibility was coupled to social segregation regardless of elk density.
The eco-evolutionary responses of a generalist consumer to resource competition.
Abrams, Peter A
2012-10-01
This article explores the combined evolutionary and ecological responses of resource uptake abilities in a generalist consumer to exploitative competition for one resource using a simple 2-resource model. It compares the sizes of ecologically and evolutionarily caused changes in population densities in cases where the original consumer has a strong or a weak trade-off in its abilities to consume the two resources. The analysis also compares the responses of the original species to competition when the competitor's population size is or is not limited by the shared resource. Although divergence in resource use traits in the resident generalist consumer is expected under all scenarios when resources are substitutable, the changes in population densities of the resources and resident consumer frequently differ between scenarios. The population of the original consumer often decreases as a result of its own adaptive divergence, and this decrease is often much greater than the initial ecological decrease. If the evolving consumer has a strong trade-off, the overlapped resource increases in equilibrium population density in response to being consumed by a generalist competitor. Some of these predictions differ qualitatively in alternative scenarios involving sustained variation in population densities or nutritionally essential resources. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Leonardsson, Kjell
1994-02-01
Possible mechanisms for differences in population densities and dynamics were investigated in the amphipod Monoporeia affinis at two deep sites in the northern Bothnian Sea. The two sites were sampled yearly for 10 years. Average sizes, growth and mortality of the different age-classes were estimated from the cohort structure of the two populations. Laboratory experiments also investigated the ability of the common predatory isopod Saduria entomon to cause densitydependent (DD) mortality of the prey M. affinis. At site A, 43 m depth, the average density of M. affinis was twice as high as at site B, 81 m depth. The fluctuations in density were asynchronous between the two sites. Recruitment and subadult sizes of Monoporeia affinis were density dependent at both sites. The main functional difference between the two populations seemed to be the DD mortality of the 1 + cohort that occurred only at the low-density site B. A corresponding DD mortality was found in the predation experiments at densities of 1 + m. affinis corresponding to those found at site B. The potential importance of the predator was also indicated by a significant negative correlation between the biomass of S. entomon and the rate of change in M. affinis density in the field. The similarities in the abiotic factors between the two sites suggested that differences in carrying capacity should be small. The results could be explained by the predation regulation hypothesis for the low-density population at site B, while at site A M. affinis seemed to be regulated by intra-specific competition and limited by predation. It is suggested that in this simple predator-prey system there is potential for the existence of alternative equilibria.
Body downsizing caused by non-consumptive social stress severely depresses population growth rate
Edeline, Eric; Haugen, Thrond O.; Weltzien, Finn-Arne; Claessen, David; Winfield, Ian J.; Stenseth, Nils Chr.; Vøllestad, L. Asbjørn
2010-01-01
Chronic social stress diverts energy away from growth, reproduction and immunity, and is thus a potential driver of population dynamics. However, the effects of social stress on demographic density dependence remain largely overlooked in ecological theory. Here we combine behavioural experiments, physiology and population modelling to show in a top predator (pike Esox lucius) that social stress alone may be a primary driver of demographic density dependence. Doubling pike density in experimental ponds under controlled prey availability did not significantly change prey intake by pike (i.e. did not significantly change interference or exploitative competition), but induced a neuroendocrine stress response reflecting a size-dependent dominance hierarchy, depressed pike energetic status and lowered pike body growth rate by 23 per cent. Assuming fixed size-dependent survival and fecundity functions parameterized for the Windermere (UK) pike population, stress-induced smaller body size shifts age-specific survival rates and lowers age-specific fecundity, which in Leslie matrices projects into reduced population rate of increase (λ) by 37–56%. Our models also predict that social stress flattens elasticity profiles of λ to age-specific survival and fecundity, thus making population persistence more dependent on old individuals. Our results suggest that accounting for non-consumptive social stress from competitors and predators is necessary to accurately understand, predict and manage food-web dynamics. PMID:19923130
Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin
2013-01-01
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984-1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.
Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando
2014-01-01
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510
Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E; Colchero, Fernando
2014-01-01
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation.
Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco.
Marino, Andrea; Baldi, Ricardo
2014-01-01
For large herbivores, predation-risk, habitat structure and population density are often reported as major determinants of group size variation within and between species. However, whether the underlying causes of these relationships imply an ecological adaptation or are the result of a purely mechanistic process in which fusion and fragmentation events only depend on the rate of group meeting, is still under debate. The aim of this study was to model guanaco family and bachelor group sizes in contrasting ecological settings in order to test hypotheses regarding the adaptive significance of group-size variation. We surveyed guanaco group sizes within three wildlife reserves located in eastern Patagonia where guanacos occupy a mosaic of grasslands and shrublands. Two of these reserves have been free from predators for decades while in the third, pumas often prey on guanacos. All locations have experienced important changes in guanaco abundance throughout the study offering the opportunity to test for density effects. We found that bachelor group size increased with increasing density, as expected by the mechanistic approach, but was independent of habitat structure or predation risk. In contrast, the smaller and territorial family groups were larger in the predator-exposed than in the predator-free locations, and were larger in open grasslands than in shrublands. However, the influence of population density on these social units was very weak. Therefore, family group data supported the adaptive significance of group-size variation but did not support the mechanistic idea. Yet, the magnitude of the effects was small and between-population variation in family group size after controlling for habitat and predation was negligible, suggesting that plasticity of these social units is considerably low. Our results showed that different social units might respond differentially to local ecological conditions, supporting two contrasting hypotheses in a single species, and highlight the importance of taking into account the proximate interests and constraints to which group members may be exposed to when deriving predictions about group-size variation.
Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crone, E.E.
1995-11-08
The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.
Estimating snow leopard population abundance using photography and capture-recapture techniques
Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.
2006-01-01
Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.
1989-10-01
77 5.1.2 Models of environmental and density- dependent recruitment ................................................ 80 5.2 Other Population...juvenile Dungeness crabs and flatfish ........................................ 17 Figure 1.6. Seasonal change in bottom temperature and bottom salinity ...to 2+ ............. 120 Figure 6.14. Size dependence of relative size increments per molt (expressed as a fraction of premolt size), as obtained from
NASA Astrophysics Data System (ADS)
Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl
2017-03-01
Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.
Lewis, Jesse S; Logan, Kenneth A; Alldredge, Mat W; Bailey, Larissa L; VandeWoude, Sue; Crooks, Kevin R
2015-10-01
Urbanization is a primary driver of landscape conversion, with far-reaching effects on landscape pattern and process, particularly related to the population characteristics of animals. Urbanization can alter animal movement and habitat quality, both of which can influence population abundance and persistence. We evaluated three important population characteristics (population density, site occupancy, and species detection probability) of a medium-sized and a large carnivore across varying levels of urbanization. Specifically, we studied bobcat and puma populations across wildland, exurban development, and wildland-urban interface (WUI) sampling grids to test hypotheses evaluating how urbanization affects wild felid populations and their prey. Exurban development appeared to have a greater impact on felid populations than did habitat adjacent to a major urban area (i.e., WUI); estimates of population density for both bobcats and pumas were lower in areas of exurban development compared to wildland areas, whereas population density was similar between WUI and wildland habitat. Bobcats and pumas were less likely to be detected in habitat as the amount of human disturbance associated with residential development increased at a site, which was potentially related to reduced habitat quality resulting from urbanization. However, occupancy of both felids was similar between grids in both study areas, indicating that this population metric was less sensitive than density. At the scale of the sampling grid, detection probability for bobcats in urbanized habitat was greater than in wildland areas, potentially due to restrictive movement corridors and funneling of animal movements in landscapes influenced by urbanization. Occupancy of important felid prey (cottontail rabbits and mule deer) was similar across levels of urbanization, although elk occupancy was lower in urbanized areas. Our study indicates that the conservation of medium- and large-sized felids associated with urbanization likely will be most successful if large areas of wildland habitat are maintained, even in close proximity to urban areas, and wildland habitat is not converted to low-density residential development.
Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin
2014-01-01
The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities. PMID:25083351
Jourdan, Jonas; Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin
2014-01-01
The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J
2014-09-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size
Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.
Gaoue, Orou G; Kouagou, M'Mouyohoun; Natta, Armand K; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.
Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem
Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.
2016-01-01
The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study demonstrate the need for comprehensive management designed to support CYE population growth and increased connectivity and gene flow with other populations.
Honig, Aaron; Supan, John; LaPeyre, Megan K.
2015-01-01
Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and promoting productivity. As such, changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences. Recruitment, growth, mortality, population size structure and density of the gulf coast ribbed mussel, Geukensia granosissima, were examined across a salinity gradient in southeastern Louisiana. Data were collected along 100-m transects at interior and edge marsh plots located at duplicate sites in upper (salinity ~4 psu), central (salinity ~8 psu) and lower (salinity ~15 psu) Barataria Bay, Louisiana, U.S.A. Growth, mortality and recruitment were measured in established plots from April through November 2012. Mussel densities were greatest within the middle bay (salinity ~8) regardless of flooding regime, but strongly associated with highest stem densities of Juncus roemerianus vegetation. Mussel recruitment, growth, size and survival were significantly higher at mid and high salinity marsh edge sites as compared to all interior marsh and low salinity sites. The observed patterns of density, growth and mortality in Barataria Bay may reflect detrital food resource availability, host vegetation community distribution along the salinity gradient, salinity tolerance of the mussel, and reduced predation at higher salinity edge sites.
A log-linear model approach to estimation of population size using the line-transect sampling method
Anderson, D.R.; Burnham, K.P.; Crain, B.R.
1978-01-01
The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.
Flea (Siphonaptera) species richness in the Great Basin Desert and island biogeography theory.
Bossard, Robert L
2014-06-01
Numbers of flea (Siphonaptera) species (flea species richness) on individual mammals should be higher on large mammals, mammals with dense populations, and mammals with large geographic ranges, if mammals are islands for fleas. I tested the first two predictions with regressions of H. J. Egoscue's trapping data on flea species richness collected from individual mammals against mammal size and population density from the literature. Mammal size and population density did not correlate with flea species richness. Mammal geographic range did, in earlier studies. The intermediate-sized (31 g), moderately dense (0.004 individuals/m(2)) Peromyscus truei (Shufeldt) had the highest richness with eight flea species on one individual. Overall, island biogeography theory does not describe the distribution of flea species on mammals in the Great Basin Desert, based on H. J. Egoscue's collections. Alternatively, epidemiological or metapopulation theories may explain flea species richness. © 2014 The Society for Vector Ecology.
San-Jose, Luis M; Peñalver-Alcázar, Miguel; Huyghe, Katleen; Breedveld, Merel C; Fitze, Patrick S
2016-12-01
Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.
Social structural consequences of population growth.
Adams, R E
1981-01-01
Estimates from archaeological data of the numbers in the elite classes, nonelite occupational specialists, density of population, city size, and size of political units in the ancient Maya civilization suggest that there was a quantum shift in rate of development in the Early Classic period, associated with intensification of agriculture, and that the social structure approximated to a generalized feudal pattern.
Prigge, Vanessa; Melchinger, Albrecht E; Dhillon, Baldev S; Frisch, Matthias
2009-06-01
Expenses for marker assays are the major costs in marker-assisted backcrossing programs for the transfer of target genes from a donor into the genetic background of a recipient genotype. Our objectives were to (1) investigate the effect of employing sequentially increasing marker densities over backcross generations on the recurrent parent genome (RPG) recovery and the number of marker data points (MDP) required, and (2) determine optimum designs for attaining RPG thresholds of 93-98% with a minimum number of MDP. We simulated the introgression of one dominant target gene for genome models of sugar beet (Beta vulgaris L.) and maize (Zea mays L.) with varying marker distances of 5-80 cM and population sizes of 30-250 plants across BC(1) to BC(3) generations. Employing less dense maps in early backcross generations resulted in savings of over 50% in the number of required MDP compared with using a constant set of markers and was accompanied only by small reductions in the attained RPG values. The optimum designs were characterized by increasing marker densities and increasing population sizes in advanced generations for both genome models. We conclude that increasing simultaneously the marker density and the population size from early to advanced backcross generations results in gene introgression with a minimum number of required MDP.
Code of Federal Regulations, 2010 CFR
2010-01-01
... poverty, unemployment, and population loss; or (B) Population size, density, and dispersion. Activities... OTS, based on the year-to-year change in the average of the Consumer Price Index for Urban Wage...
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Mangen, M-J J; Nielen, M; Burrell, A M
2002-12-18
We examined the importance of pig-population density in the area of an outbreak of classical swine fever (CSF) for the spread of the infection and the choice of control measures. A spatial, stochastic, dynamic epidemiological simulation model linked to a sector-level market-and-trade model for The Netherlands were used. Outbreaks in sparsely and densely populated areas were compared under four different control strategies and with two alternative trade assumptions. The obligatory control strategy required by current EU legislation was predicted to be enough to eradicate an epidemic starting in an area with sparse pig population. By contrast, additional control measures would be necessary if the outbreak began in an area with high pig density. The economic consequences of using preventive slaughter rather than emergency vaccination as an additional control measure depended strongly on the reactions of trading partners. Reducing the number of animal movements significantly reduced the size and length of epidemics in areas with high pig density. The phenomenon of carrier piglets was included in the model with realistic probabilities of infection by this route, but it made a negligible contribution to the spread of the infection.
Boersen, Mark R.; Clark, Joseph D.; King, Tim L.
2003-01-01
The Recovery Plan for the federally threatened Louisiana black bear (Ursus americanus luteolus) mandates that remnant populations be estimated and monitored. In 1999 we obtained genetic material with barbed-wire hair traps to estimate bear population size and genetic diversity at the 329-km2 Tensas River Tract, Louisiana. We constructed and monitored 122 hair traps, which produced 1,939 hair samples. Of those, we randomly selected 116 subsamples for genetic analysis and used up to 12 microsatellite DNA markers to obtain multilocus genotypes for 58 individuals. We used Program CAPTURE to compute estimates of population size using multiple mark-recapture models. The area of study was almost entirely circumscribed by agricultural land, thus the population was geographically closed. Also, study-area boundaries were biologically discreet, enabling us to accurately estimate population density. Using model Chao Mh to account for possible effects of individual heterogeneity in capture probabilities, we estimated the population size to be 119 (SE=29.4) bears, or 0.36 bears/km2. We were forced to examine a substantial number of loci to differentiate between some individuals because of low genetic variation. Despite the probable introduction of genes from Minnesota bears in the 1960s, the isolated population at Tensas exhibited characteristics consistent with inbreeding and genetic drift. Consequently, the effective population size at Tensas may be as few as 32, which warrants continued monitoring or possibly genetic augmentation.
Fatty Acids Modulate Excitability in Guinea-Pig Hippocampal Slices
1991-01-01
141-147. 32. Taube J. S. and Schwartzkroin P . A . (1988) M .- hanisms of long-term potentiation: a current-source density analysis. J. Neurosci. 8, 1645...pyrami- given volley size to elicit a synaptic potential, while dale to record the resultant population postsynaptic poten- stearic acid (100 p M) and...population spike amplitude (0) and population PSP size ( A ) with exposure to 250 p M capric acid in a representative experiment. Synaptic potentials
Lozano-Cortés, Diego F; Berumen, Michael L
2016-04-30
Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes
Carl, Leon M.; McGuiness, Fiona
2006-01-01
This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.
Borges, Carla D G; Hawkins, Stephen J; Crowe, Tasman P; Doncaster, C Patrick
2016-01-01
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L 50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L 50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0-15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.
NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carollo, C. M.; Bschorr, T. J.; Lilly, S. J.
2013-08-20
We use the large COSMOS sample of galaxies to study in an internally self-consistent way the change in the number densities of quenched early-type galaxies (Q-ETGs) of a given size over the redshift interval 0.2 < z < 1 in order to study the claimed size evolution of these galaxies. In a stellar mass bin at 10{sup 10.5} < M{sub galaxy} < 10{sup 11} M{sub Sun }, we see no change in the number density of compact Q-ETGs over this redshift range, while in a higher mass bin at >10{sup 11} M{sub Sun }, where we would expect merging tomore » be more significant, we find a small decrease, by {approx}30%. In both mass bins, the increase of the median sizes of Q-ETGs with time is primarily caused by the addition to the size function of larger and more diffuse Q-ETGs. At all masses, compact Q-ETGs become systematically redder toward later epochs, with a (U - V) color difference which is consistent with a passive evolution of their stellar populations, indicating that they are a stable population that does not appreciably evolve in size. We find furthermore, at all epochs, that the larger Q-ETGs (at least in the lower mass bin) have average rest-frame colors that are systematically bluer than those of the more compact Q-ETGs, suggesting that the former are indeed younger than the latter. The idea that new, large, Q-ETGs are responsible for the observed growth in the median size of the population at a given mass is also supported by analysis of the sizes and number of the star-forming galaxies that are expected to be the progenitors of the new Q-ETGs over the same period. In the low mass bin, the new Q-ETGs appear to have {approx}30% smaller half-light radii than their star-forming progenitors. This is likely due to the fading of their disks after they cease star formation. Comparison with higher redshifts shows that the median size of newly quenched galaxies roughly scales, at constant mass, as (1 + z){sup -1}. We conclude that the dominant cause of the size evolution seen in the Q-ETG population is that the average sizes and thus stellar densities of individual Q-ETGs roughly scale with the average density of the universe at the time when they were quenched, and that subsequent size changes in individual objects, through merging or other processes, are of secondary importance, especially at masses below 10{sup 11} M{sub Sun}.« less
Population control in symbiotic corals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falkowski, P.G.; Dubinsky, Z.; Muscatine, L.
1993-10-01
Stability in symbiotic association requires control of population growth between symbionts. The population density of zooxanthellae per unit surface area of most symbiotic corals is remarkably consistant. How is the population density of zooxanthellae maintained and what happens to the symbiotic association if the balance between algae and host is perturbed. The answers to these question, examined in this paper, provide a framework for understanding how the size of the component populations is controlled in symbiotic associations. The topic areas covered include the following: carbon economy in a symbiotic coral; effects of nutrient enrichment; the chemostat model of population control;more » the effects of exposure to ammonium levels. Ammonium ions and organic materials are the factors which maintain the density of zooxanthellae. 32 refs., 5 figs.« less
Jesenšek, Dušan; Crivelli, Alain J.
2018-01-01
We develop a general framework that combines long-term tag–recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004–2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event. PMID:29657746
Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J
2018-03-01
We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.
Xue, Dong-Xiu; Zhang, Tao; Liu, Jin-Xian
2016-03-21
Polyandry is a common mating strategy in animals, with potential for sexual selection to continue post-copulation through sperm competition and/or cryptic female choice. Few studies have investigated the influences of population density on polyandry and sperm usage, and paternity distribution in successive broods of marine invertebrates. The marine gastropod Rapana venosa is ideal for investigating how population density influences the frequency of polyandry and elucidating patterns of sperm usage. Two different population density (12 ind/m(3) and 36 ind/m(3)) treatments with two replications were set to observe reproductive behaviors. Five microsatellite markers were used to identify the frequency of multiple paternity and determine paternal contributions to progeny arrays in 120 egg masses. All of the mean mating frequency, mean number of sires and mean egg-laying frequency were higher at high population density treatment relative to low population density treatment, indicating population density is an important factor affecting polyandry. The last sperm donors achieved high proportions of paternity in 74.77% of egg masses, which supported the "last male sperm precedence" hypothesis. In addition, high variance in reproductive success among R. venosa males were detected, which might have an important influence on effective population size.
Xue, Dong-Xiu; Zhang, Tao; Liu, Jin-Xian
2016-01-01
Polyandry is a common mating strategy in animals, with potential for sexual selection to continue post-copulation through sperm competition and/or cryptic female choice. Few studies have investigated the influences of population density on polyandry and sperm usage, and paternity distribution in successive broods of marine invertebrates. The marine gastropod Rapana venosa is ideal for investigating how population density influences the frequency of polyandry and elucidating patterns of sperm usage. Two different population density (12 ind/m3 and 36 ind/m3) treatments with two replications were set to observe reproductive behaviors. Five microsatellite markers were used to identify the frequency of multiple paternity and determine paternal contributions to progeny arrays in 120 egg masses. All of the mean mating frequency, mean number of sires and mean egg-laying frequency were higher at high population density treatment relative to low population density treatment, indicating population density is an important factor affecting polyandry. The last sperm donors achieved high proportions of paternity in 74.77% of egg masses, which supported the “last male sperm precedence” hypothesis. In addition, high variance in reproductive success among R. venosa males were detected, which might have an important influence on effective population size. PMID:26996441
Linking vital rates to invasiveness of a perennial herb.
Ramula, Satu
2014-04-01
Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.
Pujol, B; McKey, D
2006-01-01
The effects of competition on the genetic composition of natural populations are not well understood. We combined demography and molecular genetics to study how intraspecific competition affects microevolution in cohorts of volunteer plants of cassava (Manihot esculenta) originating from seeds in slash-and-burn fields of Palikur Amerindians in French Guiana. In this clonally propagated crop, genotypic diversity is enhanced by the incorporation of volunteer plants into farmers' stocks of clonal propagules. Mortality of volunteer plants was density-dependent. Furthermore, the size asymmetry of intraspecific competition increased with local clustering of plants. Size of plants was correlated with their multilocus heterozygosity, and stronger size-dependence of survival in clusters of plants, compared with solitary plants, increased the magnitude of inbreeding depression when competition was severe. The density-dependence of inbreeding depression of volunteer plants helps explain the high heterozygosity of volunteers that survive to harvest time and thus become candidates for clonal propagation. This effect could help favour the maintenance of sex in this 'vegetatively' propagated crop plant.
Haglund, Justin M.; Isermann, Daniel A.; Sass, Greg G.
2016-01-01
Implementing harvest regulations to eliminate or substantially reduce (≥90%) the exploitation of Walleyes Sander vitreus in recreational fisheries may increase population size structure, but these measures also could reduce angler effort because many Walleye anglers are harvest oriented. We analyzed data collected during 1995–2015 to determine whether Walleye population and fishery metrics in Escanaba Lake, Wisconsin, changed after a minimum TL limit of 71 cm with a one-fish daily bag limit was implemented in 2003. This change eliminated the legal harvest of Walleyes after several decades during which annual exploitation averaged 34%. We detected a significant increase in the loge density of adult females after the regulation change, but the loge density of all adults and adult males did not differ between periods. Mean TL of adult males was significantly greater after the regulation change, but the mean TL of females and the proportional size distribution of preferred-length fish (≥51 cm TL) were similar between periods. Sex-specific mean TLs at age 5 did not differ between periods. Loge density of age-0 Walleyes did not change after 2003, but variation in age-0 density was lower. Total angler effort and the effort for anglers targeting Walleyes were significantly lower (35% and 60% declines, respectively) after the regulation change, whereas catch rates for both angler categories did not differ between periods. Our results suggest that implementing highly restrictive regulations that greatly reduce or eliminate legal harvest will not always increase angler catch rates and population size structure. Highly restrictive regulations may also deter anglers from using a fishery when many other fisheries are available. Our findings are useful for fishery managers who may work with anglers holding the belief that lower exploitation is a potential remedy for low Walleye size structure, even when density and growth suggest that there is limited potential for improvement.
Schaub, Michael; Jakober, Hans; Stauber, Wolfgang
2013-08-01
A mechanistic understanding of the dynamics of populations requires knowledge about the variation of the underlying demographic rates and about the reasons for their variability. In geographically open populations, immigration is often necessary to prevent declines, but little is known about whether immigration can contribute to its regulation. We studied the dynamics of a Red-backed Shrike population (Lanius collurio) over 36 years in Germany with a Bayesian integrated population model. We estimated mean and temporal variability of population sizes, productivity, apparent survival, and immigration. We assessed how strongly the demographic rates were correlated with population growth to understand the demographic reasons of population change and how strongly the demographic rates were correlated with population size to identify possible density-dependent mechanisms. The shrike population varied between 35 and 74 breeding pairs but did not show a significant trend in population size over time (growth rate 1.002 +/- 0.001 [mean +/- SD]). Apparent survival of females (juveniles 0.06 +/- 0.01; adults 0.37 +/- 0.03) was lower than that of males (juveniles 0.10 +/- 0.01; adults 0.44 +/- 0.02). Immigration rates were substantial and higher in females (0.56 +/- 0.02) than in males (0.43 +/- 0.02), and average productivity was 2.76 +/- 0.14. Without immigration, the Red-backed Shrike population would have declined strongly. Immigration was the strongest driver for the number of females while local recruitment was the most important driver for the number of males. Immigration of both sexes and productivity, but not local recruitment and survival, were subject to density dependence. Density-dependent productivity was not effectively regulating the local population but may have contributed to regulate shrike populations at larger spatial scales. These findings suggest that immigration is not only an important component to prevent a geographically open population from decline, but that it can also contribute to its regulation.
Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T
2017-03-01
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.
Effect of population density on reproduction in Microtus fortis under laboratory conditions.
Han, Qunhua; Zhang, Meiwen; Guo, Cong; Shen, Guo; Wang, Yong; Li, Bo; Xu, Zhenggang
2014-06-01
Between December 2011 and March 2012, the reproductive characteristics of Microtus fortis reared in the laboratory at different population densities were assessed. In all, 258 male and female voles were randomly divided into 4 groups and reared at densities of 2, 4, 6, and 8 animals per cage (sex ratio: 1:1). The results showed that the pregnancy rate (χ2 = 21.671, df = 3, P < 0.001) and first farrowing interval (F = 12.355, df = 3, P < 0.001) were significantly different among the different population density groups, but the mean litter size (mean ± SD) was not (F = 2.669, df = 3, P > 0.05). In particular, the reproductive index and sex hormone levels showed a significant difference among the different density groups studied.
Prey Selection of Scandinavian Wolves: Single Large or Several Small?
Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter
2016-01-01
Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.
Prey Selection of Scandinavian Wolves: Single Large or Several Small?
Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter
2016-01-01
Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.
2014-01-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603
Oizumi, Ryo; Kuniya, Toshikazu; Enatsu, Yoichi
2016-01-01
Despite the fact that density effects and individual differences in life history are considered to be important for evolution, these factors lead to several difficulties in understanding the evolution of life history, especially when population sizes reach the carrying capacity. r/K selection theory explains what types of life strategies evolve in the presence of density effects and individual differences. However, the relationship between the life schedules of individuals and population size is still unclear, even if the theory can classify life strategies appropriately. To address this issue, we propose a few equations on adaptive life strategies in r/K selection where density effects are absent or present. The equations detail not only the adaptive life history but also the population dynamics. Furthermore, the equations can incorporate temporal individual differences, which are referred to as internal stochasticity. Our framework reveals that maximizing density effects is an evolutionarily stable strategy related to the carrying capacity. A significant consequence of our analysis is that adaptive strategies in both selections maximize an identical function, providing both population growth rate and carrying capacity. We apply our method to an optimal foraging problem in a semelparous species model and demonstrate that the adaptive strategy yields a lower intrinsic growth rate as well as a lower basic reproductive number than those obtained with other strategies. This study proposes that the diversity of life strategies arises due to the effects of density and internal stochasticity.
Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes
Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.
2012-01-01
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.
Effects of landscape and patch-level attributes on regional population persistence
Habitat patch size and isolation are often described as the key habitat variables influencing population dynamics. Yet habitat quality may also play an important role in influencing the regional persistence of spatially structured populations as the value or density of resources ...
Climatic and density influences on recruitment in an irruptive population of Roosevelt elk
Starns, Heath D.; Ricca, Mark A.; Duarte, Adam; Weckerly, Floyd W.
2014-01-01
Current paradigms of ungulate population ecology recognize that density-dependent and independent mechanisms are not always mutually exclusive. Long-term data sets are necessary to assess the relative strength of each mechanism, especially when populations display irruptive dynamics. Using an 18-year time series of population abundances of Roosevelt elk (Cervus elaphus roosevelti) inhabiting Redwood National Park in northwestern California we assessed the influence of population size and climatic variation on elk recruitment and whether irruptive dynamics occurred. An information-theoretic model selection analysis indicated that abundance lagged 2 years and neither climatic factors nor a mix of abundance and climatic factors influenced elk recruitment. However, density-dependent recruitment differed between when the population was declining and when the population increased and then stabilized at an abundance lower than at the start of the decline. The population displayed irruptive dynamics.
Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia
Sparklin, B.D.; Mitchell, M.S.; Hanson, L.B.; Jolley, D.B.; Ditchkoff, S.S.
2009-01-01
We examined home range behavior of female feral pigs (Sus scrofa) in a heavily hunted population on Fort Benning Military Reservation in west-central Georgia, USA. We used Global Positioning System location data from 24 individuals representing 18 sounders (i.e., F social groups) combined with markrecapture and camera-trap data to evaluate evidence of territorial behavior at the individual and sounder levels. Through a manipulative experiment, we examined evidence for an inverse relationship between population density and home range size that would be expected for territorial animals. Pigs from the same sounder had extensive home range overlap and did not have exclusive core areas. Sounders had nearly exclusive home ranges and had completely exclusive core areas, suggesting that female feral pigs on Fort Benning were territorial at the sounder level but not at the individual level. Lethal removal maintained stable densities of pigs in our treatment area, whereas density increased in our control area; territory size in the 2 areas was weakly and inversely related to density of pigs. Territorial behavior in feral pigs could influence population density by limiting access to reproductive space. Removal strategies that 1) match distribution of removal efforts to distribution of territories, 2) remove entire sounders instead of individuals, and 3) focus efforts where high-quality food resources strongly influence territorial behaviors may be best for long-term control of feral pigs.
de Roos, André M; Persson, Lennart
2003-02-01
In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults. In line with results that we previously obtained in size-structured consumer-resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if mortality and/or development is independent of food density, i.e. in a situation with a constant juvenile developmental delay and a constant, food-independent background mortality. Thus, the oscillations that occur when juveniles are more competitive are induced by the juvenile delay per se. When juveniles exert a larger foraging pressure on the shared resource, maturation implies an increase not only in adult density, but also in food density and consequently fecundity. Our analysis suggests that this correlation in time between adult density and fecundity is crucial for the occurrence of population cycles when juveniles are competitively superior.
Urban characteristics attributable to density-driven tie formation
NASA Astrophysics Data System (ADS)
Pan, Wei; Ghoshal, Gourab; Krumme, Coco; Cebrian, Manuel; Pentland, Alex
2013-06-01
Motivated by empirical evidence on the interplay between geography, population density and societal interaction, we propose a generative process for the evolution of social structure in cities. Our analytical and simulation results predict both super-linear scaling of social-tie density and information contagion as a function of the population. Here we demonstrate that our model provides a robust and accurate fit for the dependency of city characteristics with city-size, ranging from individual-level dyadic interactions (number of acquaintances, volume of communication) to population level variables (contagious disease rates, patenting activity, economic productivity and crime) without the need to appeal to heterogeneity, modularity, specialization or hierarchy.
Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.
1997-01-01
Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.
Mitchell, Toby; Alton, Lesley A; White, Craig R; Franklin, Craig E
2012-12-01
Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are present, UVBR can have compounding negative effects. Thus, examination of the effects of UVBR in the absence of other stressors may substantially underestimate its potential to affect amphibians in natural habitats. We examined the independent and interactive effects of increased UVBR and high conspecific density would have embryonic and larval striped marsh frogs (Limnodynastes peronii). We exposed individuals to a factorial combination of low and high UVBR levels and low, medium, and high densities of striped marsh frog tadpoles. The response variables were time to hatching, hatching success, posthatch survival, burst-swimming performance of tadpoles (maximum instantaneous swim speed following an escape response), and size and morphology of tadpoles. Consistent with results of previous studies, we found that exposure to UVBR alone increased the time to hatching of embryos and reduced the burst-swimming performance and size of tadpoles. Similarly, increasing conspecific density increased the time to hatching of embryos and reduced the size of tadpoles, but had no effect on burst-swimming performance. The negative effect of UVBR on tadpole size was not apparent at high densities of tadpoles. This result suggests that tadpoles living at higher densities may invest relatively less energy in growth and thus have more energy to repair UVBR-induced damage. Lower densities of conspecifics increased the negative effects of UVBR on developing amphibians. Thus, low-density populations, which may include declining populations, may be particularly susceptible to the detrimental effects of increased UVBR and thus may be driven toward extinction faster than might be expected on the basis of results from single-factor studies. ©2012 Society for Conservation Biology.
The size distribution of inhabited planets
NASA Astrophysics Data System (ADS)
Simpson, Fergus
2016-02-01
Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.
Temperature-driven regime shifts in the dynamics of size-structured populations.
Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David
2011-02-01
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.
Fishing for lobsters indirectly increases epidemics in sea urchins
Lafferty, Kevin D.
2004-01-01
Two ecological paradigms, the trophic cascade and the host-density threshold in disease, interact in the kelp-forest ecosystem to structure the community. To investigate what happens when a trophic cascade pushes a host population over a host-threshold density, I analyzed a 20-year data set of kelp forest communities at 16 sites in the region of the Channel Islands National Park, California, USA. Historically, lobsters, and perhaps other predators, kept urchin populations at low levels and kelp forests developed a community-level trophic cascade. In geographic areas where the main predators on urchins were fished, urchin populations increased to the extent that they overgrazed algae and starvation eventually limited urchin-population growth. Despite the limitation of urchin population size by food availability, urchin densities, at times, well exceeded the host-density threshold for epidemics. An urchin-specific bacterial disease entered the region after 1992 and acted as a density-dependent mortality source. Dense populations were more likely to experience epidemics and suffer higher mortality. Disease did not reduce the urchin population at a site to the density that predators previously did. Therefore, disease did not fully replace predators in the trophic cascade. These results indicate how fishing top predators can indirectly favor disease transmission in prey populations.
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Taniguchi, Mari; Lovich, Jeffrey E.; Mine, Kanako; Ueno, Shintaro; Kamezaki, Naoki
2017-01-01
The slider turtle (Trachemys scripta Thunberg in Schoepff, 1792) is native to the USA and Mexico. Due to the popularity of their colorful hatchlings as pets, they have been exported worldwide and are now present on all continents, except Antarctica. Slider turtles are well-established in Japan and occupy aquatic habitats in urban and agricultural areas, to the detriment of native turtles with which they compete. We asked the overall question, do slider turtles in Japan have a performance advantage because they are liberated from the numerous competing turtle species in their native range and released from many of their natural predators? Traits compared included various measures of adult body size (mean, maximum), female size at maturity as measured by size of gravid females, clutch size, population density and biomass, sex ratio, and sexual size dimorphism, the latter two a partial reflection of growth and maturity differences between the sexes. We sampled slider turtle populations in three habitats in Japan and compared population attributes with published data for the species from throughout its native range in the USA. Mean male body sizes were at the lower end of values from the USA suggesting that males in Japan may mature at smaller body sizes. The smallest gravid females in Japan mature at smaller body sizes but have mean clutch sizes larger than some populations in the USA. Compared to most populations in the USA, slider turtles achieve higher densities and biomasses in Japanese wetlands, especially the lotic system we sampled. Sex ratios were female-biased, the opposite of what is reported for many populations in protected areas of the USA. Sexual size dimorphism was enhanced relative to native populations with females as the larger sex. The enhanced dimorphism is likely a result of earlier size of maturity in Japanese males and the large size of mature (gravid) Japanese females. Slider turtles appear to have a performance advantage over native turtles in Japan, possibly as a result of being released from competition with numerous sympatric turtle species in their native range, and the absence of many co-evolved predators and parasites in Japan. This slight competitive edge, coupled with the catholic diet and broad tolerance of varying aquatic habitats of slider turtles, is reflected in their dominance over native and naturalized Japanese turtles in altered aquatic habitats.
Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh
2012-05-01
Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations.
Importance of latrine communication in European rabbits shifts along a rural-to-urban gradient.
Ziege, Madlen; Bierbach, David; Bischoff, Svenja; Brandt, Anna-Lena; Brix, Mareike; Greshake, Bastian; Merker, Stefan; Wenninger, Sandra; Wronski, Torsten; Plath, Martin
2016-06-14
Information transfer in mammalian communication networks is often based on the deposition of excreta in latrines. Depending on the intended receiver(s), latrines are either formed at territorial boundaries (between-group communication) or in core areas of home ranges (within-group communication). The relative importance of both types of marking behavior should depend, amongst other factors, on population densities and social group sizes, which tend to differ between urban and rural wildlife populations. Our study is the first to assess (direct and indirect) anthropogenic influences on mammalian latrine-based communication networks along a rural-to-urban gradient in European rabbits (Oryctolagus cuniculus) living in urban, suburban and rural areas in and around Frankfurt am Main (Germany). The proportion of latrines located in close proximity to the burrow was higher at rural study sites compared to urban and suburban ones. At rural sites, we found the largest latrines and highest latrine densities close to the burrow, suggesting that core marking prevailed. By contrast, latrine dimensions and densities increased with increasing distance from the burrow in urban and suburban populations, suggesting a higher importance of peripheral marking. Increased population densities, but smaller social group sizes in urban rabbit populations may lead to an increased importance of between-group communication and thus, favor peripheral over core marking. Our study provides novel insights into the manifold ways by which man-made habitat alterations along a rural-to-urban gradient directly and indirectly affect wildlife populations, including latrine-based communication networks.
Patch size and landscape effects on density and nesting success of grassland birds
Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.; Donovan, Therese M.; Svedarsky, W. Daniel
2006-01-01
Current management recommendations for grassland birds in North America emphasize providing large patches of grassland habitat within landscapes that have few forest or shrubland areas. These Bird Conservation Areas are being proposed under the assumption that large patches of habitat in treeless landscapes will maintain viable populations of grassland birds. This assumption requires that patch size and landscape features affect density and nesting success of grassland birds, and that these effects are consistent among years and regions and across focal species. However, these assumptions have not yet been validated for grassland birds, and the relative importance of local vegetation structure, patch size, and landscape composition on grassland bird populations is not well known. In addition, factors influencing grassland bird nesting success have been investigated mostly in small-scale and short-duration studies. To develop management guidelines for grassland birds, we tested the spatial and temporal repeatability of the influence of patch size and landscape composition on density and nesting success of 3 grassland passerines, after controlling for local-scale vegetation structure, climate, and—when analyzing nest success—bird density. We conducted our study during 4 years (1998–2001) in 44 study plots that were set up in 3 regions of the northern tallgrass prairie in Minnesota and North Dakota, USA. In these study plots we measured density and nesting success of clay-colored sparrows (Spizella pallida), Savannah sparrows (Passerculus sandwichensis), and bobolinks (Dolichonyx oryzivorus). Statistical models indicated that density was influenced by patch size, landscape, region, and local vegetation structure more so than by local vegetation structure alone. Both magnitude and direction of the response of density to patch size varied among regions, years, and species. In contrast, the direction of landscape effects was consistent among regions, years, and between Savannah sparrows and bobolinks. In each species, this landscape effect was independent of patch size. Nesting success was not clearly influenced by patch size or landscape composition, and none of the factors that influenced avian density also influenced nesting success in any of the 3 species. General statements on “optimal habitat” for grassland birds should therefore be viewed cautiously. Instead, long-term studies in different regions as well as a deeper understanding of the local system are needed to determine which factors are most important for grassland birds in a particular area.
Detectability of landscape effects on recolonization increases with regional population density
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-01-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881
Detectability of landscape effects on recolonization increases with regional population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-07-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.
What regulates crab predation on mangrove propagules?
NASA Astrophysics Data System (ADS)
Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid
2015-02-01
Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.
Robles, Hugo; Ciudad, Carlos
2012-04-01
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species. ©2012 Society for Conservation Biology.
Williams, Jennifer L; Levine, Jonathan M
2018-04-01
Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.
Yoshikura, Hiroshi
2018-04-27
Relation between number of measles patients (y) and population size (x) was expressed by an equation y = ax s , where a is a constant and s the slope of the plot; s was 2.04-2.17 for prefectures in Japan, i.e., the number of patients was proportional to square of the prefecture population size. For European countries that joined European Union no later than 2009, the slope was 1.43-1.87. The measles' population dependency found among prefectures in Japan was thus scalable up to European countries. It was surprising because, unlike Japan, population density in EU countries was not uniform and not proportional to the population size. The population size dependency was not observed among Western Pacific and South-East Asian countries probably on account of confounding interacting socioeconomic factors. Correlation between measles incidence and birth rate, infant mortality or GDP per capita was almost insignificant.Size distribution of local infection clusters (LICs) of measles and rubella in Japan followed power law. For measles, though the population dependency remained unchanged after "elimination", there was change in the Zipf-type plot of LIC sizes. After the "elimination", LICs linked to importation-related outbreaks in less populated prefectures emerged as the top-ranked LICs.
Lipoprotein lipase S447X variant associated with VLDL, LDL and HDL diameter clustering in the MetS
USDA-ARS?s Scientific Manuscript database
Previous analysis clustered 1,238 individuals from the general population Genetics of Lipid Lowering Drugs Network (GOLDN) study by the size of their fasting very low-density, low-density and high-density lipoproteins (VLDL, LDL, HDL) using latent class analysis. From two of the eight identified gro...
Spatially associated clump populations in Rosette from CO and dust maps
NASA Astrophysics Data System (ADS)
Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.
2018-04-01
Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.
Size and DNA distributions of electrophoretically separated cultured human kidney cells
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Plank, L. D.; Todd, P. W.
1985-01-01
Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.
Allsopp, N; Stock, W D
1992-08-01
The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.
Morrison, Suzanne F.; Biciloa, Pita; Harlow, Peter S.; Keogh, J. Scott
2013-01-01
The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs. PMID:24019902
Morrison, Suzanne F; Biciloa, Pita; Harlow, Peter S; Keogh, J Scott
2013-01-01
The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs.
NASA Astrophysics Data System (ADS)
Penha-Lopes, Gil; Bouillon, Steven; Mangion, Perrine; Macia, Adriano; Paula, José
2009-09-01
Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5-10 m apart showed some variation (-21.2‰ to -23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell height, T. palustris individuals start occupying microhabitats nearer the mangrove trees characterized by large densities of pneumatophores and litter, as well as sediments of smaller grain size, leading to higher organic matter availability in the sediment.
Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin
2011-05-01
The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.
Gorresen, P. Marcos; Camp, Richard J.; Brinck, Kevin W.; Farmer, Chris
2012-01-01
Point-transect surveys indicated that millerbirds were more abundant than shown by the striptransect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the pointtransect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, pointtransect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa
NASA Astrophysics Data System (ADS)
Kahn, Amanda S.; Ruhl, Henry A.; Smith, Kenneth L.
2012-12-01
Density and average size of two species of abyssal sponges were analyzed at Station M (∼4100 m depth) over an 18-year time-series (1989-2006) using camera sled transects. Both sponge taxa share a similar plate-like morphology despite being within different families, and both showed similar variations in density and average body size over time, suggesting that the same factors may control the demographics of both species. Peaks in significant cross correlations between increases in particulate organic carbon flux and corresponding increases in sponge density occurred with a time lag of 13 months. Sponge density also fluctuated with changes in two climate indices: the NOI with a time lag of 18 months and NPGO with a time lag of 15 months. The results support previous suggestions that increased particulate organic carbon flux may induce recruitment or regeneration in deep-sea sponges. It is unknown whether the appearance of young individuals results from recruitment, regeneration, or both, but the population responses to seasonal and inter-annual changes in food supply demonstrate that sponge populations are dynamic and are capable of responding to inter-annual changes despite being sessile and presumably slow-growing.
Y. Zhang; X. Liao; B.J. Butler; J. Schelhas
2009-01-01
The state-level distribution of the size of family forest holdings in the contiguous United States was examined using data collected by the USDA Forest Service in 1993 and 2003. Regressions models were used to analyze the factors influencing the mean size and structural variation among states and between the two periods. Population density, percent of the population at...
Kanaya, Gen
2014-04-01
Influences of sediment types on recolonization of estuarine macrozoobenthos were tested using enclosures in a hypertrophic lagoon. Three types of azoic sediment, sand (S), sulfide-rich mud (M), and mud removed of sulfide through iron addition (MFe), were set in field for 35 days during a hypoxic period. A total of 14 taxa including opportunistic polychaetes and amphipods occurred. Infaunal community in S treatment was characterized by highest diversity, total density and biomass, and population density of five dominant taxa, while those parameters were lowest in M treatment. Sulfide removal in MFe treatment achieved much higher density, biomass, and population densities of several taxa in the sediment. Multivariate analyses demonstrated that the established community structure was unique to each treatment. These imply that dissolved sulfide level as well as sediment grain size is a key determinant for the community composition and recolonization speed of early colonists in estuarine soft-bottom habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar
2013-07-01
Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.
Ohio River Environmental Assessment: Cultural Resources Reconnaissance Report, West Virginia.
1977-08-01
that Paleo-Indian populations consisted of nomadic hunting bands that ranged over large territories. Population density in the project area appears to...Complex which is present in Ohio and filters sporadically to the floodplain (Prufer and Baby 1963) during this period appears to be absent in West Virignia...riverine and estuarine resources as well as hunting and gathering (Caldwell, 1958). Sites are variable in size and density with some indications of
Dietary niche variation and its relationship to lizard population density.
Novosolov, Maria; Rodda, Gordon H; Gainsbury, Alison M; Meiri, Shai
2018-01-01
Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Miranda, Nelson A F; Perissinotto, Renzo; Appleton, Christopher C
2011-01-01
Estuaries and coastal lakes receive little attention despite being heavily invaded by non-indigenous invasive species (NIS). In these situations, studies of population dynamics in invaded habitats can provide valuable insights into how NIS interact with new environments. Tarebia granifera is a prosobranch gastropod from south-east Asia which has invaded other sub-tropical parts of the world. This study addresses whether a small number of key environmental factors influences gastropod communities, and specifically how the population density and size structure of T. granifera were influenced by environmental change in estuaries and coastal lakes in southern Africa. T. granifera's density, number of brooded juveniles and size structure were measured at the St. Lucia Estuary, Mgobozeleni Estuary, Lake Sibaya and Lake Nhlange. Size structure was classified according to shell height (SH). All dissected individuals were found to be female and free from trematode infection. Salinity, water depth, temperature, and pH were the main factors correlated with population density of gastropod communities. T. granifera often reached densities well over 1000 ind. m(-2), displacing indigenous gastropods and becoming a dominant component of the benthic community. T. granifera successfully invaded estuaries despite frequent exposure to high salinity and desiccation, which could together eliminate >97% of the population. The persistence of T. granifera was ensured due to its high fecundity and the environmental tolerance of large adults (20-30 mm SH) which carried an average of 158±12.8 SD brooded juveniles. Repeat introductions were not essential for the success of this parthenogenetic NIS. There is a need for a broader study on the reproductive biology of T. granifera (including the previously overlooked "brood pouch ecology"), which affects population dynamics and may be relevant to other parthenogenetic NIS, such as Melanoides tuberculata and Potamopyrgus antipodarum.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti
2016-01-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti
2016-10-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Dynamic regimes of local homogeneous population model with time lag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neverova, Galina; Frisman, Efim
We investigated Moran - Ricker model with time lag 1. It is made analytical and numerical study of the model. It is shown there is co-existence of various dynamic regimes under the same values of parameters. The model simultaneously possesses several different limit regimes: stable state, periodic fluctuations, and chaotic attractor. The research results show if present population size substantially depends on population number of previous year then it is observed quasi-periodic oscillations. Fluctuations with period 2 occur when the growth of population size is regulated by density dependence in the current year.
Miller, K A; Nelson, N J; Smith, H G; Moore, J A
2009-09-01
Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara (Sphenodon), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (approximately 10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1-14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.
Muñoz, Eliana M; Ortega, Angela M; Bock, Brian C; Páez, Vivian P
2003-03-01
We studied the demography and nesting ecology of two populations of Iguana iguana that face heavy exploitation and habitat modification in the Momposina Depression, Colombia. Lineal transect data was analyzed using the Fourier model to provide estimates of social group densities, which was found to differ both within and among populations (1.05-6.0 groups/ha). Mean group size and overall iguana density estimates varied between populations as well (1.5-13.7 iguanas/ha). The density estimates were far lower than those reported from more protected areas in Panama and Venezuela. Iguana densities were consistently higher in sites located along rivers (2.5 iguanas/group) than in sites along the margin of marshes, probably due to vegetational differences (1.5 iguanas/group). There was no correlation between density estimates and estimates of relative abundance (number of iguanas seen/hour/person) due to differing detectabilities of iguana groups among sites. The adult sex ratio (1:2.5 males:females) agreed well with other reports in the literature based upon observation of adult social groups, and probably results from the polygynous mating system in this species rather than a real demographic skew. Nesting in this population occurs from the end of January through March and hatching occurs between April and May. We monitored 34 nests, which suffered little vertebrate predation, perhaps due to the lack of a complete vertebrate fauna in this densely inhabited area, but nests suffered from inundation, cattle trampling, and infestation by phorid fly larvae. Clutch sizes in these populations were lower than all other published reports except for the iguana population on the highly xeric island of Curaçao, implying that adult females in our area are unusually small. We argue that this is more likely the result of the exploitation of these populations rather than an adaptive response to environmentally extreme conditions.
Approximate sample sizes required to estimate length distributions
Miranda, L.E.
2007-01-01
The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.
Molecular cloud (MC) observations show that clouds have non-thermal velocity dispersions that scale with the cloud size as σ ∝ R {sup 1/2} at a constant surface density, and for varying surface density scale with both the cloud’s size and surface density, σ {sup 2} ∝ R Σ. The energy source driving these chaotic motions remains poorly understood. We describe the velocity dispersions observed in a cloud population formed in a numerical simulation of a magnetized, stratified, supernova (SN)-driven, interstellar medium, including diffuse heating and radiative cooling, before and after we include the effects of the self-gravity of the gas.more » We compare the relationships between velocity dispersion, size, and surface density measured in the simulated cloud population to those found in observations of Galactic MCs. Our simulations prior to the onset of self-gravity suggest that external SN explosions alone do not drive turbulent motions of the observed magnitudes within dense clouds. On the other hand, self-gravity induces non-thermal motions as gravitationally bound clouds begin to collapse in our model, approaching the observed relations between velocity dispersion, size, and surface density. Energy conservation suggests that the observed behavior is consistent with the kinetic energy being proportional to the gravitational energy. However, the clouds in our model show no sign of reaching a stable equilibrium state at any time, even for strongly magnetized clouds. We conclude that gravitationally bound MCs are always in a state of gravitational contraction and their properties are a natural result of this chaotic collapse. In order to agree with observed star formation efficiencies, this process must be terminated by the early destruction of the clouds, presumably from internal stellar feedback.« less
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.
Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei
2017-09-01
Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.
Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.
Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn
2009-01-01
1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.
Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.
2011-01-01
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.
Effects of Spearfishing on Reef Fish Populations in a Multi-Use Conservation Area
Frisch, Ashley J.; Cole, Andrew J.; Hobbs, Jean-Paul A.; Rizzari, Justin R.; Munkres, Katherine P.
2012-01-01
Although spearfishing is a popular method of capturing fish, its ecological effects on fish populations are poorly understood, which makes it difficult to assess the legitimacy and desirability of spearfishing in multi-use marine reserves. Recent management changes within the Great Barrier Reef Marine Park (GBRMP) fortuitously created a unique scenario by which to quantify the effects of spearfishing on fish populations. As such, we employed underwater visual surveys and a before-after-control-impact experimental design to investigate the effects of spearfishing on the density and size structure of target and non-target fishes in a multi-use conservation park zone (CPZ) within the GBRMP. Three years after spearfishing was first allowed in the CPZ, there was a 54% reduction in density and a 27% reduction in mean size of coral trout (Plectropomus spp.), the primary target species. These changes were attributed to spearfishing because benthic habitat characteristics and the density of non-target fishes were stable through time, and the density and mean size of coral trout in a nearby control zone (where spearfishing was prohibited) remained unchanged. We conclude that spearfishing, like other forms of fishing, can have rapid and substantial negative effects on target fish populations. Careful management of spearfishing is therefore needed to ensure that conservation obligations are achieved and that fishery resources are harvested sustainably. This is particularly important both for the GBRMP, due to its extraordinarily high conservation value and world heritage status, and for tropical island nations where people depend on spearfishing for food and income. To minimize the effects of spearfishing on target species and to enhance protection of functionally important fishes (herbivores), we recommend that fishery managers adjust output controls such as size- and catch-limits, rather than prohibit spearfishing altogether. This will preserve the cultural and social importance of spearfishing in coastal communities where it is practised. PMID:23251656
Su, Nan-Yao; Lee, Sang-Hee
2008-04-01
Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.
Occupancy in continuous habitat
Efford, Murray G.; Dawson, Deanna K.
2012-01-01
The probability that a site has at least one individual of a species ('occupancy') has come to be widely used as a state variable for animal population monitoring. The available statistical theory for estimation when detection is imperfect applies particularly to habitat patches or islands, although it is also used for arbitrary plots in continuous habitat. The probability that such a plot is occupied depends on plot size and home-range characteristics (size, shape and dispersion) as well as population density. Plot size is critical to the definition of occupancy as a state variable, but clear advice on plot size is missing from the literature on the design of occupancy studies. We describe models for the effects of varying plot size and home-range size on expected occupancy. Temporal, spatial, and species variation in average home-range size is to be expected, but information on home ranges is difficult to retrieve from species presence/absence data collected in occupancy studies. The effect of variable home-range size is negligible when plots are very large (>100 x area of home range), but large plots pose practical problems. At the other extreme, sampling of 'point' plots with cameras or other passive detectors allows the true 'proportion of area occupied' to be estimated. However, this measure equally reflects home-range size and density, and is of doubtful value for population monitoring or cross-species comparisons. Plot size is ill-defined and variable in occupancy studies that detect animals at unknown distances, the commonest example being unlimited-radius point counts of song birds. We also find that plot size is ill-defined in recent treatments of "multi-scale" occupancy; the respective scales are better interpreted as temporal (instantaneous and asymptotic) rather than spatial. Occupancy is an inadequate metric for population monitoring when it is confounded with home-range size or detection distance.
Donner, D.M.; Ribic, C.A.; Probst, J.R.
2009-01-01
Forest planners must evaluate how spatiotemporal changes in habitat amount and configuration across the landscape as a result of timber management will affect species' persistence. However, there are few long-term programs available for evaluation. We investigated the response of male Kirtland's Warbler (Dendroica kirtlandii) to 26 years of changing patch and landscape structure during a large, 26-year forestry-habitat restoration program within the warbler's primary breeding range. We found that the average density of male Kirtland's Warblers was related to a different combination of patch and landscape attributes depending on the species' regional population level and habitat amounts on the landscape (early succession jack pine (Pinus banksiana) forests; 15-42% habitat cover). Specifically, patch age and habitat regeneration type were important at low male population and total habitat amounts, while patch age and distance to an occupied patch were important at relatively high population and habitat amounts. Patch age and size were more important at increasing population levels and an intermediate amount of habitat. The importance of patch age to average male density during all periods reflects the temporal buildup and decline of male numbers as habitat suitability within the patch changed with succession. Habitat selection (i.e., preference for wildfire-regenerated habitat) and availability may explain the importance of habitat type and patch size during lower population and habitat levels. The relationship between male density and distance when there was the most habitat on the landscape and the male population was large and still increasing may be explained by the widening spatial dispersion of the increasing male population at the regional scale. Because creating or preserving habitat is not a random process, management efforts would benefit from more investigations of managed population responses to changes in spatial structure that occur through habitat gain rather than habitat loss to further our empirical understanding of general principles of the fragmentation process and habitat cover threshold effects within dynamic landscapes.
Okano, Yutaka; Hristova, Krassimira R; Leutenegger, Christian M; Jackson, Louise E; Denison, R Ford; Gebreyesus, Binyam; Lebauer, David; Scow, Kate M
2004-02-01
Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and has a large global impact. In the past, the ecology and physiology of AOB were not well understood because these organisms are notoriously difficult to culture. Recent applications of molecular techniques have advanced our knowledge of AOB, but the necessity of using PCR-based techniques has made quantitative measurements difficult. A quantitative real-time PCR assay targeting part of the ammonia-monooxygenase gene (amoA) was developed to estimate AOB population size in soil. This assay has a detection limit of 1.3 x 10(5) cells/g of dry soil. The effect of the ammonium concentration on AOB population density was measured in soil microcosms by applying 0, 1.5, or 7.5 mM ammonium sulfate. AOB population size and ammonium and nitrate concentrations were monitored for 28 days after (NH4)2SO4 application. AOB populations in amended treatments increased from an initial density of approximately 4 x 10(6) cells/g of dry soil to peak values (day 7) of 35 x 10(6) and 66 x 10(6) cells/g of dry soil in the 1.5 and 7.5 mM treatments, respectively. The population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) remained between 0.7 x 10(9) and 2.2 x 10(9) cells/g of soil, regardless of the ammonia concentration. A fertilization experiment was conducted in a tomato field plot to test whether the changes in AOB density observed in microcosms could also be detected in the field. AOB population size increased from 8.9 x 10(6) to 38.0 x 10(6) cells/g of soil by day 39. Generation times were 28 and 52 h in the 1.5 and 7.5 mM treatments, respectively, in the microcosm experiment and 373 h in the ammonium treatment in the field study. Estimated oxidation rates per cell ranged initially from 0.5 to 25.0 fmol of NH4+ h(-1) cell(-1) and decreased with time in both microcosms and the field. Growth yields were 5.6 x 10(6), 17.5 x 10(6), and 1.7 x 10(6) cells/mol of NH4+ in the 1.5 and 7.5 mM microcosm treatments and the field study, respectively. In a second field experiment, AOB population size was significantly greater in annually fertilized versus unfertilized soil, even though the last ammonium application occurred 8 months prior to measurement, suggesting a long-term effect of ammonium fertilization on AOB population size.
Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Cassey, Phillip; Bradshaw, Corey J A
2014-01-01
The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate--at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate.
Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.
2014-01-01
The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate. PMID:24618822
Density of transneptunian object 229762 2007 UK126
NASA Astrophysics Data System (ADS)
Grundy, Will
2017-08-01
Densities provide unique information about bulk composition and interior structure and are key to going beyond the skin-deep view offered by remote-sensing techniques based on photometry, spectroscopy, and polarimetry. They are known for a handful of the relict planetesimals that populate our Solar System's Kuiper belt, revealing intriguing differences between small and large bodies. More and better quality data are needed to address fundamental questions about how planetesimals form from nebular solids, and how distinct materials are distributed through the nebula. Masses from binary orbits are generally quite precise, but a problem afflicting many of the known densities is that they depend on size estimates from thermal emission observations, with large model-dependent uncertainties that dominate the error bars on density estimates. Stellar occultations can provide much more accurate sizes and thus densities, but they depend on fortuitous geometry and thus can only be done for a few particularly valuable binaries. We propose observations of a system where an accurate density can be determined: 229762 2007 UK126. An accurate size is already available from multiple stellar occultation chords. This proposal will determine the mass, and thus the density.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.
Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M
2011-02-06
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.
2011-01-01
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630
Native intra- and inter-specific reactions may cause the paradox of pest control with harvesting.
Seno, Hiromi
2010-05-01
We analyse a general time-discrete mathematical model of host-parasite population dynamics with harvesting, in which the host can be regarded as a pest. We harvest a portion of the host population at a moment in each year. Our model involves the density effect on the host population. We investigate the condition in which the harvesting of the host results in a paradoxical increase of its equilibrium population size. Our results imply that for a family of pest-enemy systems, the paradox of pest control could be caused essentially by the interspecific relationship and the intraspecific density effect.
García-Hoyos, Marta; Riancho, José Antonio; Valero, Carmen
2017-07-21
Patients with Down syndrome have a number of risk factors that theoretically could predispose them to osteoporosis, such as early aging, development disorders, reduced physical activity, limited sun exposure, frequent comorbidities and use of drug therapies which could affect bone metabolism. In addition, the bone mass of these people may be affected by their anthropometric and body composition peculiarities. In general terms, studies in adults with Down syndrome reported that these people have lower areal bone mineral density (g/cm 2 ) than the general population. However, most of them have not taken the smaller bone size of people with Down syndrome into account. In fact, when body mineral density is adjusted by bone size and we obtain volumetric body mineral density (g/cm 3 ), the difference between both populations disappears. On the other hand, although people with Down syndrome have risk factor of hypovitaminosis D, the results of studies regarding 25(OH)D in this population are not clear. Likewise, the studies about biochemical bone markers or the prevalence of fractures are not conclusive. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Camera traps and activity signs to estimate wild boar density and derive abundance indices.
Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave
2018-04-01
Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros
NASA Technical Reports Server (NTRS)
Thomas, P. C.; Robinson, M. S.
2005-01-01
Impact cratering acts in a variety of ways to create a surprising range of scenery on small satellites and asteroids. The visible crater population is a self-modifying characteristic of these airless objects, and determining the various ways younger craters can add or subtract from the population is an important aspect of small body "geology." Asteroid 433 Eros, the most closely studied of any small body, has two aspects of its crater population that have attracted attention: a fall-off of crater densities below approx.100 m diameter relative to an expected equilibrium population [1] and regions of substantially lower large crater densities [2, 3, 4]. In this work we examine the global variation of the density of craters on Eros larger than 0.177 km, a size range above that involved in small crater depletion hypotheses [1, 5]. We counted all craters on Eros to a size range somewhat below 0.177 km diameter (and different from data used in [3]). The primary metric for this study is the number of craters between 0.177 and 1.0 km within a set radius of each grid point on the 2deg x 2deg shape model of Eros. This number can be expressed as an R-value [6], provided that it is remembered that the large bin size makes individual R values slightly different from those obtained in the usual root-2 bins.
Body size and lean mass of brown bears across and within four diverse ecosystems
Hilderbrand, Grant V.; Gustine, David; Mangipane, Buck A.; Joly, Kyle; Leacock, William; Mangipane, Lindsey S.; Erlenbach, Joy; Sorum, Mathew; Cameron, Matthew; Belant, Jerrold L.; Cambier, Troy
2018-01-01
Variation in body size across populations of brown bears (Ursus arctos) is largely a function of the availability and quality of nutritional resources while plasticity within populations reflects utilized niche width with implications for population resiliency. We assessed skull size, body length, and lean mass of adult female and male brown bears in four Alaskan study areas that differed in climate, primary food resources, population density, and harvest regime. Full body-frame size, as evidenced by asymptotic skull size and body length, was achieved by 8 to 14 years of age across populations and sexes. Lean body mass of both sexes continued to increase throughout their life. Differences between populations existed for all morphological measures in both sexes, bears in ecosystems with abundant salmon were generally larger. Within all populations, broad variation was seen in body size measures of adults with females displaying roughly a 2-fold difference in lean mass and males showing a 3- to 4-fold difference. The high level of intraspecific variation seen across and within populations suggests the presence of multiple life-history strategies and niche variation relative to resource partitioning, risk tolerance or aversion, and competition. Further, this level of variation indicates broad potential to adapt to changes within a given ecosystem and across the species’ range.
Zhang, Jinqu; Wang, Yunpeng
2008-01-01
Ten cities with different population and urban sizes located in the Pearl River Delta, Guangdong Province, P.R. China were selected to study the relationships between the spatial extent of surface urban heat islands (SUHI) and five urban characteristic factors such as urban size, development area, water proportion, mean NDVI (Normalized Vegetation Index) and population density, etc. The spatial extent of SUHI was quantified by using the hot island area (HIA). All the cities are almost at the same latitude, showing similar climate and solar radiation, the influence of which could thus be eliminated during our computation and comparative study. The land surface temperatures (LST) were retrieved from the data of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) band 6 using a mono-window algorithm. A variance-segmenting method was proposed to compute HIA for each city from the retrieved LST. Factors like urban size, development area and water proportion were extracted directly from the classification images of the same ETM+ data and the population density factor is from the official census. Correlation and regression analyses were performed to study the relationships between the HIA and the related factors, and the results show that HIA is highly correlated to urban size (r=0.95), population density (r=0.97) and development area (r=0.83) in this area. It was also proved that a weak negative correlation existed between HIA and both mean NDVI and water proportion for each city. Linear functions between HIA and its related factors were established, respectively. The HIA can reflect the spatial extent and magnitude of the surface urban heat island effect, and can be used as reference in the urban planning. PMID:27873939
NASA Astrophysics Data System (ADS)
Ota, Kazutaka; Hori, Michio; Kohda, Masanori
2012-01-01
To determine whether the appearance of a reproductively parasitic tactic varies, and how this variation affects territorial males of the Lake Tanganyika cichlid fish Telmatochromis vittatus, we examined the reproductive ecology of territorial males in Mtondwe and compared it with that of a neighboring Wonzye population, where nest density differs from that at Mtondwe. In Wonzye, with high nest density, male tactics change with their body size from a territorial to a non-territorial parasitic tactic called piracy in which they conquer several nests defended by territorial males and take over the nests while females are spawning. These "pirate" males could decrease the costs incurred by travelling among nests by exclusively targeting aggregations of nests in close proximity while avoiding separate nests. Territorial males in Wonzye sacrifice the potential higher attractiveness offered by large nests and instead compete for nests farther from neighbors on which pirates less frequently intrude. In contrast, the Mtondwe population had lower nest density and piracy was absent. Given that the success of piracy depends on the close proximity of nests, nest density is likely responsible for the observed variation in the occurrence of piracy between the two populations. Furthermore, in Mtondwe, territorial males competed for larger nests and were smaller than the territorial males in Wonzye. Thus, this lower nest density may free territorial males from the selection pressures for increased size caused by both defense against nest piracy and the need to develop into pirates as they grow.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050
Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba
2004-01-01
Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.
Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis.
Goyens, J; Reijniers, J; Borremans, B; Leirs, H
2013-01-21
Well-established theoretical models predict host density thresholds for invasion and persistence of parasites with a density-dependent transmission. Studying such thresholds in reality, however, is not obvious because it requires long-term data for several fluctuating populations of different size. We developed a spatially explicit and individual-based SEIR model of Mopeia virus in multimammate mice Mastomys natalensis. This is an interesting model system for studying abundance thresholds because the host is the most common African rodent, populations fluctuate considerably and the virus is closely related to Lassa virus but non-pathogenic to humans so can be studied safely in the field. The simulations show that, while host density clearly is important, sharp thresholds are only to be expected for persistence (and not for invasion), since at short time-spans (as during invasion), stochasticity is determining. Besides host density, also the spatial extent of the host population is important. We observe the repeated local occurrence of herd immunity, leading to a decrease in transmission of the virus, while even a limited amount of dispersal can have a strong influence in spreading and re-igniting the transmission. The model is most sensitive to the duration of the infectious stage, the size of the home range and the transmission coefficient, so these are important factors to determine experimentally in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population
NASA Technical Reports Server (NTRS)
Herrick, Robert R.; Phillips, Roger J.
1994-01-01
The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.
James F. Fowler; Carolyn Hull Sieg; Shaula Hedwall
2015-01-01
Population size and density estimates have traditionally been acceptable ways to track speciesâ response to changing environments; however, species' population centroid elevation has recently been an equally important metric. Packera franciscana (Greene) W.A. Weber and A. Love (Asteraceae; San Francisco Peaks ragwort) is a single mountain endemic plant found only...
Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara
2017-01-01
Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804
A kinetic theory for age-structured stochastic birth-death processes
NASA Astrophysics Data System (ADS)
Chou, Tom; Greenman, Chris
Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but they are structurally unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Conversely, current theories that include size-dependent population dynamics (e.g., carrying capacity) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a BBGKY-like hierarchy. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution. NSF.
Introduced species and their missing parasites
Torchin, Mark E.; Lafferty, Kevin D.; Dobson, Andrew P.; McKenzie, Valerie J.; Kuris, Armand M.
2003-01-01
Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites behind and encounters few new parasites can experience a demographic release and become a pest. To test whether introduced species are less parasitized, we have compared the parasites of exotic species in their native and introduced ranges, using 26 host species of molluscs, crustaceans, fishes, birds, mammals, amphibians and reptiles. Here we report that the number of parasite species found in native populations is twice that found in exotic populations. In addition, introduced populations are less heavily parasitized (in terms of percentage infected) than are native populations. Reduced parasitization of introduced species has several causes, including reduced probability of the introduction of parasites with exotic species (or early extinction after host establishment), absence of other required hosts in the new location, and the host-specific limitations of native parasites adapting to new hosts.
Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”
Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.
2010-01-01
Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734
Effects of the distant population density on spatial patterns of demographic dynamics
NASA Astrophysics Data System (ADS)
Tamura, Kohei; Masuda, Naoki
2017-08-01
Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km.
Effects of the distant population density on spatial patterns of demographic dynamics.
Tamura, Kohei; Masuda, Naoki
2017-08-01
Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m ) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km.
Effects of the distant population density on spatial patterns of demographic dynamics
2017-01-01
Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km. PMID:28878987
NASA's New Orbital Debris Engineering Model, ORDEM2010
NASA Technical Reports Server (NTRS)
Krisko, Paula H.
2010-01-01
This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.
Evaluating the potential for stock size to limit recruitment in largemouth bass
Allen, Michael S.; Rogers, Mark W.; Catalano, Mathew J.; Gwinn, Daniel G.; Walsh, Stephen J.
2011-01-01
Compensatory changes in juvenile survival allow fish stocks to maintain relatively constant recruitment across a wide range of stock sizes (and levels of fishing), but few studies have experimentally explored recruitment compensation in fish populations. We evaluated the potential for recruitment compensation in largemouth bass Micropterus salmoides by stocking six 0.4-ha hatchery ponds with adult densities ranging from 6 to 40 fish over 2 years. Ponds were drained in October each year, and the age-0 fish densities were used as a measure of recruitment. We found no relationship between stock abundance and recruitment; ponds with low adult densities produced nearly as many recruits as the higher-density ponds in some cases. Both prey abundance and the growth of age-0 largemouth bass declined with age-0 fish density. Recruit abundance was highly variable both within and among the adult density groups, and thus we were unable to identify a clear stock–recruit relationship for largemouth bass. Our results indicate that reducing the number of effective spawners via angling practices would not reduce recruitment over a relatively large range in stock size.
Kinetic theory of age-structured stochastic birth-death processes
NASA Astrophysics Data System (ADS)
Greenman, Chris D.; Chou, Tom
2016-01-01
Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.
Vandewoestijne, Sofie; Schtickzelle, Nicolas; Baguette, Michel
2008-11-05
Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.
The progenitors of the first red sequence galaxies at z ~ 2
NASA Astrophysics Data System (ADS)
Barro, G.; Faber, S.; Perez-Gonzalez, P.; Koo, D.; Williams, C.; Kocevski, D.; Trump, J.; Mozena, M.
2013-07-01
Nearby galaxies come in two flavors: red quiescent galaxies (QGs) with old stellar populations, and blue young star-forming galaxies (SFGs). This color bimodality seems to be already in place at z = 2 - 3, presenting also strong correlations with size and morphology. Surprisingly, massive QGs at higher redshifts are ~5 times smaller than local, equal mass analogs. In contrast, most of the massive SFGs at these redshifts are still relatively large disks. The strong bimodality in both SFR and sizes indicates that some SFGs must experience strong structural transformations accompanied by a rapid truncation of the star-formation to match the observed properties of QGs. Using high-resolution HST/WFC3 F160W imaging from the CANDELS survey in GOODS-S and UDS, along with multi-wavelength ancillary data, we analyze stellar masses, SFRs and sizes of a sample of massive (M* > 1010 M ⊙) galaxies at z = 1.4 - 3.0 to identify a population of compact SFGs with similar structural properties as compact QGs at z~2. We also find that the number density of QGs increases rapidly since z = 3. Among these, the number of compact QGs builds up first, and only at z < 1.8 we do start finding a sizable number of extended QGs. This suggests that the bulk of these galaxies are assembled at late times by both continuous migration (quenching) of non-compact SFGs and size growth of cQGs. As a result of this growth, the population of cQGs disappears by z~1. Simultaneously, we identify a population of compact SFGs (cSFGs) whose number density decreases steadily with time since z = 3.0, being almost completely absent at z < 1.4. The number of cSFGs makes up less than 20% of all massive SFGs, but they present similar number densities as cQGs down to z~2, suggesting an evolutionary link between the two populations.
González, Edgar J; Martorell, Carlos
2013-07-01
Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.
González, Edgar J; Martorell, Carlos
2013-01-01
Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems. PMID:23919169
Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)
Emlen, John M.
1995-01-01
In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.
Development of an adaptive harvest management program for Taiga bean geese
Johnson, Fred A.; Alhainen, Mikko; Fox, Anthony D.; Madsen, Jesper
2016-01-01
This report describes recent progress in specifying the elements of an adaptive harvest program for taiga bean goose. It describes harvest levels appropriate for first rebuilding the population of the Central Management Unit and then maintaining it near the goal specified in the AEWA International Single Species Action Plan (ISSAP). This report also provides estimates of the length of time it would take under ideal conditions (no density dependence and no harvest) to rebuild depleted populations in the Western and Eastern Management Units. We emphasize that our estimates are a first approximation because detailed demographic information is lacking for taiga bean geese. Using allometric relationships, we estimated parameters of a thetalogistic matrix population model. The mean intrinsic rate of growth was estimated as r = 0.150 (90% credible interval: 0.120 – 0.182). We estimated the mean form of density dependence as 2.361 (90% credible interval: 0.473 – 11.778), suggesting the strongest density dependence occurs when the population is near its carrying capacity. Based on expert opinion, carrying capacity (i.e., population size expected in the absence of hunting) for the Central Management Unit was estimated as K 87,900 (90% credible interval: 82,000 – 94,100). The ISSAP specifies a population goal for the Central Management Unit of 60,000 – 80,000 individuals in winter; thus, we specified a preliminary objective function as one which would minimize the difference between this goal and population size. Using the concept of stochastic dominance to explicitly account for uncertainty in demography, we determined that optimal harvest rates for 5, 10, 15, and 20-year time horizons were h = 0.00, 0.02, 0.05, and 0.06, respectively. These optima represent a tradeoff between the harvest rate and the time required to achieve and maintain a population size within desired bounds. We recognize, however, that regulation of absolute harvest rather than harvest rate is more practical, but our matrix model does not permit one to calculate an exact harvest associated with a specific harvest rate. Approximate harvests for current population size in the Central Management Unit are 0, 1,200, 2,300, and 3,500 for the 5, 10, 15, and 20-year time horizons, respectively. Populations of taiga bean geese in the Western and Eastern Units would require at least 10 and 13 years, respectively, to reach their minimum goals under the most optimistic of scenarios. The presence of harvest, density dependence, or environmental variation could extend these time frames considerably. Finally, we stress that development and implementation of internationally coordinated monitoring programs will be essential to further development and implementation of an adaptive harvest management program.
Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L
2016-01-01
Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323
Buckley, Cara; Nekaris, K A I; Husson, Simon John
2006-10-01
Few data are available on gibbon populations in peat-swamp forest. In order to assess the importance of this habitat for gibbon conservation, a population of Hylobates agilis albibarbis was surveyed in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. This is an area of about 5,500 km(2) of selectively logged peat-swamp forest, which was formally gazetted as a national park during 2005. The study was conducted during June and July 2004 using auditory sampling methods. Five sample areas were selected and each was surveyed for four consecutive days by three teams of researchers at designated listening posts. Researchers recorded compass bearings of, and estimated distances to, singing groups. Nineteen groups were located. Population density is estimated to be 2.16 (+/-0.46) groups/km(2). Sightings occurring either at the listening posts or that were obtained by tracking in on calling groups yielded a mean group size of 3.4 individuals, hence individual gibbon density is estimated to be 7.4 (+/-1.59) individuals/km(2). The density estimates fall at the mid-range of those calculated for other gibbon populations, thus suggesting that peat-swamp forest is an important habitat for gibbon conservation in Borneo. A tentative extrapolation of results suggests a potential gibbon population size of 19,000 individuals within the mixed-swamp forest habitat sub-type in the Sabangau. This represents one of the largest remaining continuous populations of Bornean agile gibbons. The designation of the Sabangau forest as a national park will hopefully address the problem of illegal logging and hunting in the region. Further studies should note any difference in gibbon density post protection.
The Mood of American Youth 1996.
ERIC Educational Resources Information Center
National Association of Secondary School Principals, Reston, VA.
This report compares results from 1996 national study of the current attitudes of American teenagers with similar 1974 and 1983 surveys. Almost 1,000 students between 13 and 17 years from households representative of the national population in geographic distribution, population density, household size, age of household head, and family income…
Harris, Julianne E.; Hightower, Joseph E.
2012-01-01
American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.
Makinster, Andrew S.; Persons, William R.; Avery, Luke A.
2011-01-01
The Lees Ferry reach of the Colorado River, a 25-kilometer segment of river located immediately downstream from Glen Canyon Dam, has contained a nonnative rainbow trout (Oncorhynchus mykiss) sport fishery since it was first stocked in 1964. The fishery has evolved over time in response to changes in dam operations and fish management. Long-term monitoring of the rainbow trout population downstream of Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program. A standardized sampling design was implemented in 1991 and has changed several times in response to independent, external scientific-review recommendations and budget constraints. Population metrics (catch per unit effort, proportional stock density, and relative condition) were estimated from 1991 to 2009 by combining data collected at fixed sampling sites during this time period and at random sampling sites from 2002 to 2009. The validity of combining population metrics for data collected at fixed and random sites was confirmed by a one-way analysis of variance by fish-length class size. Analysis of the rainbow trout population metrics from 1991 to 2009 showed that the abundance of rainbow trout increased from 1991 to 1997, following implementation of a more steady flow regime, but declined from about 2000 to 2007. Abundance in 2008 and 2009 was high compared to previous years, which was likely the result of increased early survival caused by improved habitat conditions following the 2008 high-flow experiment at Glen Canyon Dam. Proportional stock density declined between 1991 and 2006, reflecting increased natural reproduction and large numbers of small fish in samples. Since 2001, the proportional stock density has been relatively stable. Relative condition varied with size class of rainbow trout but has been relatively stable since 1991 for fish smaller than 152 millimeters (mm), except for a substantial decrease in 2009. Relative condition was more variable for larger size classes, and substantial decreases were observed for the 152-304-mm size class in 2009 and 305-405-mm size class in 2008 that persisted into 2009.
Factors leading to different viability predictions for a grizzly bear data set
Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.
1996-01-01
Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.
DS — Software for analyzing data collected using double sampling
Bart, Jonathan; Hartley, Dana
2011-01-01
DS analyzes count data to estimate density or relative density and population size when appropriate. The software is available at http://iwcbm.dev4.fsr.com/IWCBM/default.asp?PageID=126. The software was designed to analyze data collected using double sampling, but it also can be used to analyze index data. DS is not currently configured to apply distance methods or methods based on capture-recapture theory. Double sampling for the purpose of this report means surveying a sample of locations with a rapid method of unknown accuracy and surveying a subset of these locations using a more intensive method assumed to yield unbiased estimates. "Detection ratios" are calculated as the ratio of results from rapid surveys on intensive plots to the number actually present as determined from the intensive surveys. The detection ratios are used to adjust results from the rapid surveys. The formula for density is (results from rapid survey)/(estimated detection ratio from intensive surveys). Population sizes are estimated as (density)(area). Double sampling is well-established in the survey sampling literature—see Cochran (1977) for the basic theory, Smith (1995) for applications of double sampling in waterfowl surveys, Bart and Earnst (2002, 2005) for discussions of its use in wildlife studies, and Bart and others (in press) for a detailed account of how the method was used to survey shorebirds across the arctic region of North America. Indices are surveys that do not involve complete counts of well-defined plots or recording information to estimate detection rates (Thompson and others, 1998). In most cases, such data should not be used to estimate density or population size but, under some circumstances, may be used to compare two densities or estimate how density changes through time or across space (Williams and others, 2005). The Breeding Bird Survey (Sauer and others, 2008) provides a good example of an index survey. Surveyors record all birds detected but do not record any information, such as distance or whether each bird is recorded in subperiods, that could be used to estimate detection rates. Nonetheless, the data are widely used to estimate temporal trends and spatial patterns in abundance (Sauer and others, 2008). DS produces estimates of density (or relative density for indices) by species and stratum. Strata are usually defined using region and habitat but other variables may be used, and the entire study area may be classified as a single stratum. Population size in each stratum and for the entire study area also is estimated for each species. For indices, the estimated totals generally are only useful if (a) plots are surveyed so that densities can be calculated and extrapolated to the entire study area and (b) if the detection rates are close to 1.0. All estimates are accompanied by standard errors (SE) and coefficients of variation (CV, that is, SE/estimate).
Ecological and genetic impact of the 2011 Tohoku Earthquake Tsunami on intertidal mud snails
Miura, Osamu; Kanaya, Gen; Nakai, Shizuko; Itoh, Hajime; Chiba, Satoshi; Makino, Wataru; Nishimura, Tomohiro; Kojima, Shigeaki; Urabe, Jotaro
2017-01-01
Natural disturbances often destroy local populations and can considerably affect the genetic properties of these populations. The 2011 Tohoku Earthquake Tsunami greatly damaged local populations of various coastal organisms, including the mud snail Batillaria attramentaria, which was an abundant macroinvertebrate on the tidal flats in the Tohoku region. To evaluate the impact of the tsunami on the ecology and population genetic properties of these snails, we monitored the density, shell size, and microsatellite DNA variation of B. attramentaria for more than ten years (2005–2015) throughout the disturbance event. We found that the density of snails declined immediately after the tsunami. Bayesian inference of the genetically effective population size (Ne) demonstrated that the Ne declined by 60–99% at the study sites exposed to the tsunami. However, we found that their genetic diversity was not significantly reduced after the tsunami. The maintenance of genetic diversity is essential for long-term survival of local populations, and thus, the observed genetic robustness could play a key role in the persistence of snail populations in this region which has been devastated by similar tsunamis every 500–800 years. Our findings have significant implications for understanding the sustainability of populations damaged by natural disturbances. PMID:28281698
Creel, Scott; Creel, Michael
2009-11-01
1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results predict a substantial reduction in the limiting effect of snow accumulation on Montana elk populations in the coming decades. If other limiting factors do not operate with greater force, population growth rates would increase substantially.
Phelps, Q.E.; Ward, M.J.; Paukert, C.P.; Chipps, S.R.; Willis, D.W.
2005-01-01
We explored relationships among black bullhead (Ameiurus melas) population characteristics and physicochemical attributes in shallow lakes and quantified relationships between population characteristics of black bullhead and sport fishes. Lake characteristics and fisheries survey data were collected from the Sandhills region of northcentral Nebraska from May through June, 1998 and 1999. Relative abundance of black bullheads was inversely related to proportional stock density (r=-0.672, df=15, P=0.004); however, neither relative weight nor growth was significantly (P ??? 0.20) related to black bullhead relative abundance. Population characteristics of common panfish species such as bluegill (Lepomis macrochirus), green sunfish (L. cyanellus), pumpkinseed (L. gibbosus), and yellow perch (Perca flavescens) were not correlated with black bullhead relative abundance or size structure. Rather, proportional stock density (r=0.655, df=10, P=0.029) and growth (r=0.59, df=11, P=0.04) of black bullhead were positively related to relative abundance of largemouth bass (Micropterus salmoides). Similarly, black bullhead relative abundance was inversely related to largemouth bass size structure (r=-0.51, df=14, P= 0.05). Black bullhead mean length at age 3 was positively related to total phosphorous concentration (r=0.65, df=16, P=0.004), and bullhead relative abundance was positively related to shoreline development index (r=0.46, df=22, P=0.03). Population characteristics of black bullhead appeared to have little influence on panfish communities. Rather, black bullhead abundance, predator density, and lake productivity exhibited stronger relationships with black bullhead population characteristics.
Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma
2013-01-01
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent. PMID:24223132
Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma
2013-01-01
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.
Choi, Kai Yip; Yu, Wing Yan; Lam, Christie Hang I; Li, Zhe Chuang; Chin, Man Pan; Lakshmanan, Yamunadevi; Wong, Francisca Siu Yin; Do, Chi Wai; Lee, Paul Hong; Chan, Henry Ho Lung
2017-09-01
People in Hong Kong generally live in a densely populated area and their homes are smaller compared with most other cities worldwide. Interestingly, East Asian cities with high population densities seem to have higher myopia prevalence, but the association between them has not been established. This study investigated whether the crowded habitat in Hong Kong is associated with refractive error among children. In total, 1075 subjects [Mean age (S.D.): 9.95 years (0.97), 586 boys] were recruited. Information such as demographics, living environment, parental education and ocular status were collected using parental questionnaires. The ocular axial length and refractive status of all subjects were measured by qualified personnel. Ocular axial length was found to be significantly longer among those living in districts with a higher population density (F 2,1072 = 6.15, p = 0.002) and those living in a smaller home (F 2,1072 = 3.16, p = 0.04). Axial lengths were the same among different types of housing (F 3,1071 = 1.24, p = 0.29). Non-cycloplegic autorefraction suggested a more negative refractive error in those living in districts with a higher population density (F 2,1072 = 7.88, p < 0.001) and those living in a smaller home (F 2,1072 = 4.25, p = 0.02). After adjustment for other confounding covariates, the population density and home size also significantly predicted axial length and non-cycloplegic refractive error in the multiple linear regression model, while axial length and refractive error had no relationship with types of housing. Axial length in children and childhood refractive error were associated with high population density and small home size. A constricted living space may be an environmental threat for myopia development in children. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Lotka-Volterra system in a random environment.
Dimentberg, Mikhail F
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic "damping" term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent gamma-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
Lotka-Volterra system in a random environment
NASA Astrophysics Data System (ADS)
Dimentberg, Mikhail F.
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
Bracewell, Sally A; Robinson, Leonie A; Firth, Louise B; Knights, Antony M
2013-01-01
Artificial structures can create novel habitat in the marine environment that has been associated with the spread of invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free space provided for settlement of marine organisms. Whilst correlation between the amount of free space available and recruitment success has been shown in populations of several marine benthic organisms, there has been relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn barnacle, Austrominiusmodestus, on a unique art installation located in Liverpool Bay. Population growth and recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were rapidly recolonised and monocultures of A. modestus formed within 6 weeks. The size of patch created during disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after 8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become more available more frequently in the future supporting the expansion of fast-colonising species.
Is the lionfish invasion waning? Evidence from The Bahamas
NASA Astrophysics Data System (ADS)
Benkwitt, Cassandra E.; Albins, Mark A.; Buch, Kevin L.; Ingeman, Kurt E.; Kindinger, Tye L.; Pusack, Timothy J.; Stallings, Christopher D.; Hixon, Mark A.
2017-12-01
Indo-Pacific lionfishes ( Pterois volitans/ miles) have undergone rapid population growth and reached extremely high densities in parts of the invaded Atlantic. However, their long-term population trends in areas without active management programs are unknown. Since 2005, we have monitored lionfish abundance in the Exuma Cays of the central Bahamas on 64 reefs ranging in size from 1 to 4000 m2. Lionfish densities increased from the first sighting in 2005 through 2009, leveled off between 2010 and 2011, and then began to decrease. By 2015, densities had noticeably declined on most of these reefs, despite a lack of culling or fishing efforts in this part of The Bahamas. There was no consistent change in lionfish size structure through time. We discuss possible causes of the decline, including reductions in larval supply or survival, hurricanes, interactions with native species, and intraspecific interactions. Further studies are required to determine whether the declines will persist. In the meantime, we recommend that managers continue efforts to control invasive lionfish abundances locally.
NASA Astrophysics Data System (ADS)
Fedorov, N. I.; Mikhailenko, O. I.; Zharkikh, T. L.; Bakirova, R. T.
2018-01-01
Mapping of the vegetation (1:25000) of the Pre-Urals Steppe area at the Orenburg State Nature Reserve was completed in 2016. A map created with the geoinformation system contains 1931 simple and complex polygons for 25 types of vegetation. In a drought year, the average stock of palatable vegetation of the whole area is estimated at 8380 tons dry weight. The estimation is based on the size of areas covered by different types of vegetation, their grass production, the correction coefficients for decreasing of pasture forage stocks in winter and decreasing of production of grass communities in dry years. Based on pasture forage stocks the area could tolerate the maximum population size of 1769 individuals of the Przewalski horse, their average density could be 0.11 horse per ha. Yet, as watering places for animals are limited in Pre-Urals Steppe, grazing pressures on the vegetation next to the water sources may increase in dry years. That is why the above-mentioned calculated maximum population size and density must be reduced at least by half until some additional watering places are established and monitoring of the grazing effect on the vegetation next to the places is carried out regularly. Thus, the maximum size of the population is estimated at 800 to 900 individuals, which is almost 1.5 times more than necessary to establish a self-sustained population of the Przewalski horse.
James F. Selgrade; James H. Roberds
2005-01-01
A 4-dimensional system of nonlinear difference equations tracking allele frequencies and population sizes for a two-patch metapopulation model is studied. This system describes intergenerational changes brought about by density-dependent selection within patches and moderated by the effects of migration between patches. To determine conditions which result in similar...
People with Mental Retardation Have an Increased Prevalence of Osteoporosis: A Population Study.
ERIC Educational Resources Information Center
Center, Jacqueline; Beange, Helen; McElduff, Aidan
1998-01-01
Prevalence of and risk factors for osteoporosis in 94 young adults with mental retardation was examined. Results showed they had lower bone mineral density when compared to controls. Factors associated with low bone mineral density included small body size, hypgonadism, and Down syndrome. Low vitamin D levels were common. (Author/CR)
Optimal city size and population density for the 21st century.
Speare A; White, M J
1990-10-01
The thesis that large scale urban areas result in greater efficiency, reduced costs, and a better quality of life is reexamined. The environmental and social costs are measured for different scales of settlement. The desirability and perceived problems of a particular place are examined in relation to size of place. The consequences of population decline are considered. New York city is described as providing both opportunities in employment, shopping, and cultural activities as well as a high cost of living, crime, and pollution. The historical development of large cities in the US is described. Immigration has contributed to a greater concentration of population than would have otherwise have occurred. The spatial proximity of goods and services argument (agglomeration economies) has changed with advancements in technology such as roads, trucking, and electronic communication. There is no optimal city size. The overall effect of agglomeration can be assessed by determining whether the markets for goods and labor are adequate to maximize well-being and balance the negative and positive aspects of urbanization. The environmental costs of cities increase with size when air quality, water quality, sewage treatment, and hazardous waste disposal is considered. Smaller scale and lower density cities have the advantages of a lower concentration of pollutants. Also, mobilization for program support is easier with homogenous population. Lower population growth in large cities would contribute to a higher quality of life, since large metropolitan areas have a concentration of immigrants, younger age distributions, and minority groups with higher than average birth rates. The negative consequences of decline can be avoided if reduction of population in large cities takes place gradually. For example, poorer quality housing can be removed for open space. Cities should, however, still attract all classes of people with opportunities equally available.
Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary
2015-07-14
Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in turn, how these changes affect Moapa dace abundance. Such tools are critical for devising management strategies to achieve recovery goals.
NASA Astrophysics Data System (ADS)
Schlacher, Thomas A.; Lucrezi, Serena; Peterson, Charles H.; Connolly, Rod M.; Olds, Andrew D.; Althaus, Franziska; Hyndes, Glenn A.; Maslo, Brooke; Gilby, Ben L.; Leon, Javier X.; Weston, Michael A.; Lastra, Mariano; Williams, Alan; Schoeman, David S.
2016-06-01
Most ecological studies require knowledge of animal abundance, but it can be challenging and destructive of habitat to obtain accurate density estimates for cryptic species, such as crustaceans that tunnel deeply into the seafloor, beaches, or mudflats. Such fossorial species are, however, widely used in environmental impact assessments, requiring sampling techniques that are reliable, efficient, and environmentally benign for these species and environments. Counting and measuring the entrances of burrows made by cryptic species is commonly employed to index population and body sizes of individuals. The fundamental premise is that burrow metrics consistently predict density and size. Here we review the evidence for this premise. We also review criteria for selecting among sampling methods: burrow counts, visual censuses, and physical collections. A simple 1:1 correspondence between the number of holes and population size cannot be assumed. Occupancy rates, indexed by the slope of regression models, vary widely between species and among sites for the same species. Thus, 'average' or 'typical' occupancy rates should not be extrapolated from site- or species specific field validations and then be used as conversion factors in other situations. Predictions of organism density made from burrow counts often have large uncertainty, being double to half of the predicted mean value. Whether such prediction uncertainty is 'acceptable' depends on investigators' judgements regarding the desired detectable effect sizes. Regression models predicting body size from burrow entrance dimensions are more precise, but parameter estimates of most models are specific to species and subject to site-to-site variation within species. These results emphasise the need to undertake thorough field validations of indirect census techniques that include tests of how sensitive predictive models are to changes in habitat conditions or human impacts. In addition, new technologies (e.g. drones, thermal-, acoustic- or chemical sensors) should be used to enhance visual census techniques of burrows and surface-active animals.
Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators
Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.
2003-01-01
Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this “blind” test allowed us to evaluate the influence of expertise and experience in calculating density estimates in comparison to simply using default values in programs CAPTURE and DISTANCE. While the rodent sample sizes were considerably smaller than the recommended minimum for good model results, we found that several models performed well empirically, including the web-based uniform and half-normal models in program DISTANCE, and the grid-based models Mb and Mbh in program CAPTURE (with AÌ‚ adjusted by species-specific full mean maximum distance moved (MMDM) values). These models produced accurate DÌ‚ values (with 95% confidence intervals that included the true D values) and exhibited acceptable bias but poor precision. However, in linear regression analyses comparing each model's DÌ‚ values to the true D values over the range of observed test densities, only the web-based uniform model exhibited a regression slope near 1.0; all other models showed substantial slope deviations, indicating biased estimates at higher or lower density values. In addition, the grid-based DÌ‚ analyses using full MMDM values for WÌ‚ area adjustments required a number of theoretical assumptions of uncertain validity, and we therefore viewed their empirical successes with caution. Finally, density estimates from the independent analysts were highly variable, but estimates from web-based approaches had smaller mean square errors and better achieved confidence-interval coverage of D than did grid-based approaches. Our results support the contention that web-based approaches for density estimation of small-mammal populations are both theoretically and empirically superior to grid-based approaches, even when sample size is far less than often recommended. In view of the increasing need for standardized environmental measures for comparisons among ecosystems and through time, analytical models based on distance sampling appear to offer accurate density estimation approaches for research studies involving small-mammal abundances.
Ginsberg, H.S.; Butler, M.; Zhioua, E.
2002-01-01
The effects of deer exclusion on northern populations of lone star ticks, Amblyomma americanum, were tested at the Lighthouse Tract, Fire Island, NY, USA, where densities of this species have increased recently. Game fencing was erected to exclude deer from two sites of roughly one ha each, and populations of nymphal and adult A. americanum within were compared with those at control sites outside the exclosures. Percent control of nymphs within vs. outside the exclosures averaged 48.4% in the four years post-treatment, compared to pretreatment values. Percent control varied markedly in different years, suggesting that factors in addition to deer densities had strong effects on population densities of A. americanum. Exclosures of this size did not control adult A. americanum. Effects of deer exclusion in this recently expanded northern population of A. americanum were similar to those that have been reported for southern populations of this species.
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Ruiz Ayma, Gabriel; Olalla Kerstupp, Alina; Macías Duarte, Alberto; Guzmán Velasco, Antonio; González Rojas, José I
2016-08-26
The western burrowing owl (Athene cunicularia hypugaea) occurs throughout western North America in various habitats such as desert, short-grass prairie and shrub-steppe, among others, where the main threat for this species is habitat loss. Range-wide declines have prompted a need for reliable estimates of its populations in Mexico, where the size of resident and migratory populations remain unknown. Our objective was to estimate the abundance and density of breeding western burrowing owl populations in Mexican prairie dog (Cynomys mexicanus) colonies in two sites located within the Chihuahuan Desert ecoregion in the states of Nuevo Leon and San Luis Potosi, Mexico. Line transect surveys were conducted from February to April of 2010 and 2011. Fifty 60 ha transects were analyzed using distance sampling to estimate owl and Mexican prairie dog populations. We estimated a population of 2026 owls (95 % CI 1756-2336) in 2010 and 2015 owls (95 % CI 1573-2317) in 2011 across 50 Mexican prairie dog colonies (20,529 ha). The results represent the first systematic attempt to provide reliable evidence related to the size of the adult owl populations, within the largest and best preserved Mexican prairie dog colonies in Mexico.
From innervation density to tactile acuity: 1. Spatial representation.
Brown, Paul B; Koerber, H Richard; Millecchia, Ronald
2004-06-11
We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination.
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.
2013-01-01
Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.
NASA Astrophysics Data System (ADS)
Fidler, Robert Young, III
Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.
Ehlers Smith, David A; Ehlers Smith, Yvette C
2013-08-01
Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.
Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation
Vandewoestijne, Sofie; Schtickzelle, Nicolas; Baguette, Michel
2008-01-01
Background Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. Results We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Conclusion Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change. PMID:18986515
Lamb, Juliet S.; Satgé, Yvan G.; Jodice, Patrick G. R.
2017-01-01
Density-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density-dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density-dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density-dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density-dependent competition on breeding success and population regulation remain uncertain in this system.
Chien, Yu Ching; Wu, Shian Chee; Chen, Wan Ching; Chou, Chih Chung
2013-04-01
Microcystis , a genus of potentially harmful cyanobacteria, is known to proliferate in stratified freshwaters due to its capability to change cell density and regulate buoyancy. In this study, a trajectory model was developed to simulate the cell density change and spatial distribution of Microcystis cells with nonuniform colony sizes. Simulations showed that larger colonies migrate to the near-surface water layer during the night to effectively capture irradiation and become heavy enough to sink during daytime. Smaller-sized colonies instead took a longer time to get to the surface. Simulation of the diurnally varying Microcystis population profile matched the observed pattern in the field when the radii of the multisized colonies were in a beta distribution. This modeling approach is able to take into account the history of cells by keeping track of their positions and properties, such as cell density and the sizes of colonies. It also serves as the basis for further developmental modeling of phytoplanktons that are forming colonies and changing buoyancy.
Effects of habitat fragmentation and disturbance on howler monkeys: a review.
Arroyo-Rodríguez, Víctor; Dias, Pedro Américo D
2010-01-01
We examined the literature on the effects of habitat fragmentation and disturbance on howler monkeys (genus Alouatta) to (1) identify different threats that may affect howlers in fragmented landscapes; (2) review specific predictions developed in fragmentation theory and (3) identify the empirical evidence supporting these predictions. Although howlers are known for their ability to persist in both conserved and disturbed conditions, we found evidence that they are negatively affected by high levels of habitat loss, fragmentation and degradation. Patch size appears to be the main factor constraining populations in fragmented habitats, probably because patch size is positively related to food availability, and negatively related to anthropogenic pressures, physiological stress and parasite loads. Patch isolation is not a strong predictor of either patch occupancy or population size in howlers, a result that may be related to the ability of howlers to move among forest patches. Thus, we propose that it is probable that habitat loss has larger consistent negative effects on howler populations than habitat fragmentation per se. In general, food availability decreases with patch size, not only due to habitat loss, but also because the density of big trees, plant species richness and howlers' home range size are lower in smaller patches, where howlers' population densities are commonly higher. However, it is unclear which vegetation attributes have the biggest influence on howler populations. Similarly, our knowledge is still limited concerning the effects of postfragmentation threats (e.g. hunting and logging) on howlers living in forest patches, and how several endogenous threats (e.g. genetic diversity, physiological stress, and parasitism) affect the distribution, population structure and persistence of howlers. More long-term studies with comparable methods are necessary to quantify some of the patterns discussed in this review, and determine through meta-analyses whether there are significant inter-specific differences in species' responses to habitat loss and fragmentation. (c) 2009 Wiley-Liss, Inc.
Regulation of an unexploited brown trout population in Spruce Creek, Pennsylvania
Carline, R.F.
2006-01-01
The purpose of this paper is to describe the annual variations in the density of an unexploited population of lotic brown trout Salmo trutta that has been censused annually for 19 years and to explore the importance of density-independent and density-dependent processes in regulating population size. Brown trout density and indices of stream discharge and water temperature were related to annual variations in natural mortality, recruitment, and growth. Annual mortality of age-1 and older (age-1+) brown trout ranged from 0.30 to 0.75 and was best explained by discharge during spring and by brown trout density. Recruitment to age 1 varied fivefold. Density of age-1 brown trout was inversely related to spawner density and positively related to discharge during the fall spawning period. The median length of age-1 brown trout was positively related to discharge during summer and fall. Relative weight was inversely related to the density of age-2+ brown trout. The interactive effects of discharge and brown trout density accounted for most of the annual variation in mortality, recruitment, and growth during the first year of life. Annual trends in the abundance of age-1+ brown trout were largely dictated by natural mortality. ?? Copyright by the American Fisheries Society 2006.
Sensitivity of condition indices to changing density in a white-tailed deer population
Sams, M.G.; Lochmiller, R.L.; Qualls, C.W.; Leslie, David M.
1998-01-01
The ways in which comprehensive condition profiles, incorporating morphometric, histologic, physiologic, and diet quality indices, responded to changes in density of a white-tailed deer (Odocoileus virginianus) population were examined. Changes in these condition indices were monitored in a northeastern Oklahoma deer herd as density declined from peaks of 80 and 72 deer/km2 in 1989 and 1990 (high-density) to lows of 39 and 41 deer/km2 in 1991 and 1992 (reduced-density), respectively. Compared to a reference population (6 deer/km2), deer sampled during high-density exhibited classic signs of nutritional stress such as low body and visceral organ masses (except elevated adrenal gland mass), low fecal nitrogen levels, reduced concentrations of serum albumin, elevated serum creatinine concentrations, and a high prevalence of parasitic infections. Although density declined by one half over the 4-yr study, gross indices of condition (in particular body mass and size) remained largely unchanged. However, selected organ masses, serum albumin and non-protein nitrogen constituents, and fecal nitrogen indices reflected improvements in nutritional status with reductions in density. Many commonly used indices of deer condition (fat reserves, hematocrit, total serum protein, and blood urea nitrogen) were not responsive to fluctuations in density. ?? Wildlife Disease Association 1998.
Reeve, John D; Frantz, Alain C; Dawson, Deborah A; Burke, Terry; Roper, Timothy J
2008-09-01
1. Urban and rural populations of animals can differ in their behaviour, both in order to meet their ecological requirements and due to the constraints imposed by different environments. The study of urban populations can therefore offer useful insights into the behavioural flexibility of a species as a whole, as well as indicating how the species in question adapts to a specifically urban environment. 2. The genetic structure of a population can provide information about social structure and movement patterns that is difficult to obtain by other means. Using non-invasively collected hair samples, we estimated the population size of Eurasian badgers Meles meles in the city of Brighton, England, and calculated population-specific parameters of genetic variability and sex-specific rates of outbreeding and dispersal. 3. Population density was high in the context of badger densities reported throughout their range. This was due to a high density of social groups rather than large numbers of individuals per group. 4. The allelic richness of the population was low compared with other British populations. However, the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements suggest that, on a local scale, the population was outbred. Although members of both sexes visited other groups, there was a trend for more females to make intergroup movements. 5. The results reveal that urban badgers can achieve high densities and suggest that while some population parameters are similar between urban and rural populations, the frequency of intergroup movements is higher among urban badgers. In a wider context, these results demonstrate the ability of non-invasive genetic sampling to provide information about the population density, social structure and behaviour of urban wildlife.
Jones, Christopher; Kammen, Daniel M
2014-01-21
Which municipalities and locations within the United States contribute the most to household greenhouse gas emissions, and what is the effect of population density and suburbanization on emissions? Using national household surveys, we developed econometric models of demand for energy, transportation, food, goods, and services that were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities, counties, and metropolitan areas. We find consistently lower HCF in urban core cities (∼ 40 tCO2e) and higher carbon footprints in outlying suburbs (∼ 50 tCO2e), with a range from ∼ 25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas. Suburbs alone account for ∼ 50% of total U.S. HCF. Differences in the size, composition, and location of household carbon footprints suggest the need for tailoring of greenhouse gas mitigation efforts to different populations.
Evolutionary dynamics of fearfulness and boldness.
Ji, Ting; Zhang, Boyu; Sun, Yuehua; Tao, Yi
2009-02-21
A negative relationship between reproductive effort and survival is consistent with life-history. Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper understanding of the strategy dynamics.
Shenoi, V N; Ali, S Z; Prasad, N G
2016-02-01
In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Dańko, Aleksandra; Schaible, Ralf; Pijanowska, Joanna; Dańko, Maciej J
2018-01-01
Budding hydromedusae have high reproductive rates due to asexual reproduction and can occur in high population densities along the coasts, specifically in tidal pools. In laboratory experiments, we investigated the effects of population density on the survival and reproductive strategies of a single clone of Eleutheria dichotoma . We found that sexual reproduction occurs with the highest rate at medium population densities. Increased sexual reproduction was associated with lower budding (asexual reproduction) and survival probability. Sexual reproduction results in the production of motile larvae that can, in contrast to medusae, seek to escape unfavorable conditions by actively looking for better environments. The successful settlement of a larva results in starting the polyp stage, which is probably more resistant to environmental conditions. This is the first study that has examined the life-history strategies of the budding hydromedusa E. dichotoma by conducting a long-term experiment with a relatively large sample size that allowed for the examination of age-specific mortality and reproductive rates. We found that most sexual and asexual reproduction occurred at the beginning of life following a very rapid process of maturation. The parametric models fitted to the mortality data showed that population density was associated with an increase in the rate of aging, an increase in the level of late-life mortality plateau, and a decrease in the hidden heterogeneity in individual mortality rates. The effects of population density on life-history traits are discussed in the context of resource allocation and the r/K-strategies' continuum concept.
Multiscale habitat selection by Ruffed Grouse at low population densities
Zimmerman, G.S.; Gutierrez, R.J.; Thogmartin, W.E.; Banerjee, S.
2009-01-01
Theory suggests habitats should be chosen according to their relative evolutionary benefits and costs. It has been hypothesized that aspen (Populus spp.) forests provide optimal habitat for Ruffed Grouse (Bonasa umbellus). We used the low phase of a grouse population's cycle to assess the prediction that grouse should occupy aspen and avoid other forest types at low population density because of the presumptive fitness benefits of aspen. On the basis of our observations, we predict how the Ruffed Grouse population will increase in different forest types during the next cycle. In conifer (Pinus spp., Abies balsamea, Picea spp.)-dominated and mixed aspen-conifer landscapes, grouse densities were highest where forest types were evenly distributed. Within these landscapes, male Ruffed Grouse selected young aspen stands that were large and round or square. Although Ruffed Grouse selected young aspen stands strongly, contrary to prediction, they also used other forest types even when young aspen stands remained unoccupied. The relative densities of Ruffed Grouse in aspen and conifer forests indicated that the aspen forest's carrying capacities for grouse was higher than the conifer forest's at least during the low and declining phases of the grouse's cycle. On the basis of our observations, we predict that Ruffed Grouse populations in aspen-dominated landscapes will have higher population densities and fluctuate more than will populations in conifer-dominated landscapes. We suggest that studies of avian habitat selection would benefit from knowledge about the relative densities among habitats at differing population sizes because this information could provide insight into the role of habitat in regulating populations and clarify inferences from studies about habitat quality for birds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Socio-Economic Instability and the Scaling of Energy Use with Population Size
DeLong, John P.; Burger, Oskar
2015-01-01
The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system. PMID:26091499
Socio-Economic Instability and the Scaling of Energy Use with Population Size.
DeLong, John P; Burger, Oskar
2015-01-01
The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system.
Simkins, Richard M; Belk, Mark C
2017-08-01
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.
Cheyne, Susan M; Thompson, Claire J H; Phillips, Abigail C; Hill, Robyn M C; Limin, Suwido H
2008-01-01
We demonstrate that although auditory sampling is a useful tool, this method alone will not provide a truly accurate indication of population size, density and distribution of gibbons in an area. If auditory sampling alone is employed, we show that data collection must take place over a sufficient period to account for variation in calling patterns across seasons. The population of Hylobates albibarbis in the Sabangau catchment, Central Kalimantan, Indonesia, was surveyed from July to December 2005 using methods established previously. In addition, auditory sampling was complemented by detailed behavioural data on six habituated groups within the study area. Here we compare results from this study to those of a 1-month study conducted in 2004. The total population of the Sabangau catchment is estimated to be about in the tens of thousands, though numbers, distribution and density for the different forest subtypes vary considerably. We propose that future density surveys of gibbons must include data from all forest subtypes where gibbons are found and that extrapolating from one forest subtype is likely to yield inaccurate density and population estimates. We also propose that auditory census be carried out by using at least three listening posts (LP) in order to increase the area sampled and the chances of hearing groups. Our results suggest that the Sabangau catchment contains one of the largest remaining contiguous populations of Bornean agile gibbon.
Prey life-history and bioenergetic responses across a predation gradient.
Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E
2010-10-01
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Liz, Eduardo
2018-02-01
The gamma-Ricker model is one of the more flexible and general discrete-time population models. It is defined on the basis of the Ricker model, introducing an additional parameter [Formula: see text]. For some values of this parameter ([Formula: see text], population is overcompensatory, and the introduction of an additional parameter gives more flexibility to fit the stock-recruitment curve to field data. For other parameter values ([Formula: see text]), the gamma-Ricker model represents populations whose per-capita growth rate combines both negative density dependence and positive density dependence. The former can lead to overcompensation and dynamic instability, and the latter can lead to a strong Allee effect. We study the impact of the cooperation factor in the dynamics and provide rigorous conditions under which increasing the Allee effect strength stabilizes or destabilizes population dynamics, promotes or prevents population extinction, and increases or decreases population size. Our theoretical results also include new global stability criteria and a description of the possible bifurcations.
NASA Astrophysics Data System (ADS)
Vianna, Gabriel M. S.; Meekan, Mark G.; Ruppert, Jonathan L. W.; Bornovski, Tova H.; Meeuwig, Jessica J.
2016-09-01
Shark sanctuaries are promoted as a management tool to achieve conservation goals following global declines of shark populations. We assessed the status of reef-shark populations and indicators of fishing pressure across the world's first shark sanctuary in Palau. Using underwater surveys and stereophotogrammetry, we documented large differences in abundance and size structure of shark populations across the sanctuary, with a strong negative relationship between shark densities and derelict fishing gear on reefs. Densities of 10.9 ± 4.7 (mean ± SE) sharks ha-1 occurred on reefs adjacent to the most populated islands of Palau, contrasting with lower densities of 1.6 ± 0.8 sharks ha-1 on remote uninhabited reefs, where surveillance and enforcement was limited. Our observations suggest that fishing still remains a major factor structuring shark populations in Palau, demonstrating that there is an urgent need for better enforcement and surveillance that targets both illegal and licensed commercial fisheries to provide effective protection for sharks within the sanctuary.
2017-01-01
Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host-parasite interactions—and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics. PMID:28828270
Rodríguez, Sara M; Valdivia, Nelson
2017-01-01
Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.
NASA Astrophysics Data System (ADS)
Chen, Huai; Li, Danxun; Bai, Ruonan; Wang, Xingkui
2018-05-01
Swirling strength is an effective vortex indicator in wall turbulence, and it can be determined based on either two-dimensional (2D) or three-dimensional (3D) velocity fields, written as λci2D and λci3D, respectively. A comparison between λci2D and λci3D has been made in this paper in sliced XY, YZ, and XZ planes by using 3D DNS data of channel flow. The magnitude of λci2D in three orthogonal planes differs in the inner region, but the difference tends to diminish in the outer flow. The magnitude of λci3D exceeds each λci2D, and the square of λci3D is greater than the summation of squares of three λci2D. Extraction with λci2D in XY, YZ, and XZ planes yields different population densities and vortex sizes, i.e., in XZ plane, the vortices display the largest population density and the smallest size, and in XY and YZ planes the vortices are similar in size but fewer vortices are extracted in the XY plane in the inner layer. Vortex size increases inversely with the threshold used for growing the vortex region from background turbulence. When identical thresholds are used, the λci3D approach leads to a slightly smaller population density and a greater vortex radius than the λci2D approach. A threshold of 0.8 for the λci3D approach is approximately equivalent to a threshold of 1.5 for the λci2D approach.
Population size and relatedness affect fitness of a self-incompatible invasive plant.
Elam, Diane R; Ridley, Caroline E; Goodell, Karen; Ellstrand, Norman C
2007-01-09
One of the lingering paradoxes in invasion biology is how founder populations of an introduced species are able to overcome the limitations of small size and, in a "reversal of fortune," proliferate in a new habitat. The transition from colonist to invader is especially enigmatic for self-incompatible species, which must find a mate to reproduce. In small populations, the inability to find a mate can result in the Allee effect, a positive relationship between individual fitness and population size or density. Theoretically, the Allee effect should be common in founder populations of self-incompatible colonizing species and may account for the high rate of failed introductions, but little supporting evidence exists. We created a field experiment to test whether the Allee effect affects the maternal fitness of a self-incompatible invasive species, wild radish (Raphanus sativus). We created populations of varying size and relatedness. We measured maternal fitness in terms of both fruit set per flower and seed number per fruit. We found that both population size and the level of genetic relatedness among individuals influence maternal reproductive success. Our results explicitly define an ecological genetic obstacle faced by populations of an exotic species on its way to becoming invasive. Such a mechanistic understanding of the invasions of species that require a mate can and should be exploited for both controlling current outbreaks and reducing their frequency in the future.
Adaptive evolution of body size subject to indirect effect in trophic cascade system.
Wang, Xin; Fan, Meng; Hao, Lina
2017-09-01
Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy density of bloaters in the upper Great Lakes
Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.
2012-01-01
We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
The New NASA Orbital Debris Engineering Model ORDEM 3.0
NASA Technical Reports Server (NTRS)
Krisko, P. H.
2014-01-01
The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2000, now referred to as ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 micron through larger than 1 m in non-GEO and 10 cm through larger than 1 m in GEO are available. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours of data from existing sources and from new sources than past ORDEM versions. The object data range in size from 10 µm to larger than 1 m, and include in situ and remote measurements. The in situ data reveals material characteristics of small particles. Mass densities are grouped in ORDEM 3.0 in terms of 'high-density', represented by 7.9 g/cc, 'medium-density' represented by 2.8 g/cc and 'low-density' represented by 1.4 g/cc. Supporting models have also advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intact spacecraft and rocket bodies, mission related debris, and explosion and collision event fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific populations are added from sodium potassium droplet releases, recent major accidental and deliberate collisions, and known anomalous debris events. This paper elaborates on the upgrades of this model over previous versions. Sample validation results with remote and in situ measurements are shown, and the consequences of including material density are discussed as it relates to heightened risks to crewed and robotic spacecraft
Goovaerts, Pierre
2006-01-01
Background Geostatistical techniques that account for spatially varying population sizes and spatial patterns in the filtering of choropleth maps of cancer mortality were recently developed. Their implementation was facilitated by the initial assumption that all geographical units are the same size and shape, which allowed the use of geographic centroids in semivariogram estimation and kriging. Another implicit assumption was that the population at risk is uniformly distributed within each unit. This paper presents a generalization of Poisson kriging whereby the size and shape of administrative units, as well as the population density, is incorporated into the filtering of noisy mortality rates and the creation of isopleth risk maps. An innovative procedure to infer the point-support semivariogram of the risk from aggregated rates (i.e. areal data) is also proposed. Results The novel methodology is applied to age-adjusted lung and cervix cancer mortality rates recorded for white females in two contrasted county geographies: 1) state of Indiana that consists of 92 counties of fairly similar size and shape, and 2) four states in the Western US (Arizona, California, Nevada and Utah) forming a set of 118 counties that are vastly different geographical units. Area-to-point (ATP) Poisson kriging produces risk surfaces that are less smooth than the maps created by a naïve point kriging of empirical Bayesian smoothed rates. The coherence constraint of ATP kriging also ensures that the population-weighted average of risk estimates within each geographical unit equals the areal data for this unit. Simulation studies showed that the new approach yields more accurate predictions and confidence intervals than point kriging of areal data where all counties are simply collapsed into their respective polygon centroids. Its benefit over point kriging increases as the county geography becomes more heterogeneous. Conclusion A major limitation of choropleth maps is the common biased visual perception that larger rural and sparsely populated areas are of greater importance. The approach presented in this paper allows the continuous mapping of mortality risk, while accounting locally for population density and areal data through the coherence constraint. This form of Poisson kriging will facilitate the analysis of relationships between health data and putative covariates that are typically measured over different spatial supports. PMID:17137504
Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won
2012-01-01
Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.
Hunt, Len M; Arlinghaus, Robert; Lester, Nigel; Kushneriuk, Rob
2011-10-01
We used a coupled social-ecological model to study the landscape-scale patterns emerging from a mobile population of anglers exploiting a spatially structured walleye (Sander vitreus) fishery. We systematically examined how variations in angler behaviors (i.e., relative importance of walleye catch rate in guiding fishing site choices), harvesting efficiency (as implied by varying degrees of inverse density-dependent catchability of walleye), and angler population size affected the depletion of walleye stocks across 157 lakes located near Thunder Bay (Ontario, Canada). Walleye production biology was calibrated using lake-specific morphometric and edaphic features, and angler fishing site choices were modeled using an empirically grounded multi-attribute utility function. We found support for the hypothesis of sequential collapses of walleye stocks across the landscape in inverse proportionality of travel cost from the urban residence of anglers. This pattern was less pronounced when the regional angler population was low, density-dependent catchability was absent or low, and angler choices of lakes in the landscape were strongly determined by catch rather than non-catch-related attributes. Thus, our study revealed a systematic pattern of high catch importance reducing overfishing potential at low and aggravating overfishing potential at high angler population sizes. The analyses also suggested that density-dependent catchability might have more serious consequences for regional overfishing states than variations in angler behavior. We found little support for the hypotheses of systematic overexploitation of the most productive walleye stocks and homogenized catch-related qualities among lakes sharing similar access costs to anglers. Therefore, one should not expect anglers to systematically exploit the most productive fisheries or to equalize catch rates among lakes through their mobility and other behaviors. This study underscores that understanding landscape overfishing dynamics involves a careful appreciation of angler population size and how it interacts with the attributes that drive angler behaviors and depensatory mechanisms such as inverse density-dependent catchability. Only when all of these ingredients are considered and understood can one derive reasonably predictable patterns of overfishing in the landscape. These patterns range from self-regulating systems with low levels of regional fishing pressure to sequential collapse of walleye fisheries from the origin of angling effort.
Dynamical behaviour of a discrete selection-migration model with arbitrary dominance
James F. Selgrade; Jordan West Bostic; James H. Roberds
2009-01-01
To study the effects of immigration of genes (possibly transgenic) into a natural population, a one-island selection-migration model with density-dependent regulation is used to track allele frequency and population size. The existence and uniqueness of a polymorphic genetic equilibrium is proved under a general assumption about dominance in fitnesses. Also, conditions...
Association of Overweight with Food Portion Size among Adults of São Paulo - Brazil.
Pereira, Jaqueline Lopes; Mendes, Aline; Crispim, Sandra Patricia; Marchioni, Dirce Maria; Fisberg, Regina Mara
2016-01-01
Although studies show that portion size affects energy intake, few have demonstrated a link between portion size and weight status, especially in free-living populations. The objective of the present study was to assess the relationship between food portion sizes and overweight in a representative population of adults of São Paulo, Brazil. Cross-sectional population-based study with 1005 adults from São Paulo, Brazil. Dietary data were obtained from two 24-hour recalls. Reported foods were classified into groups and energy contribution, prevalence of consumers and portion sizes were calculated. Individuals were classified according to BMI in with and without overweight. Logistic regression models were used to evaluate the association between food portion sizes and being overweight. The most consumed food groups were: beans, breads/rolls, coffee/tea, milk, rice, and sugar. Rice, red meat, breads/rolls, and white meat were the groups with the highest percentage of contribution to total energy intake. Butter/margarine, toasts/biscuits, sugar, and cakes were the groups with the highest energy density. After adjustment for confounding variables, overweight was associated with larger portions of pizza (OR = 1.052; p = 0.048), red meat (OR = 1.025; p = 0.043), rice (OR = 1.033; p<0.001), salted snacks (OR = 1.078; p = 0.022), and soft drinks (OR = 1.016; p = 0.007). Larger portions of few food groups with different energy densities were associated with being overweight, suggesting that overweight may be related to the consumption of larger portion sizes of a series of food groups, not a food group alone. Additionally, we highlight the importance of considering underreporting as a confounding factor in these associations.
Incorporating Allee effects into the potential biological removal level
Hadier, Humza; Oldfield, Sarah; Tu, Tiffany; Moreno, Rosa; Diffendorfer, Jay E.; Eager, Eric A.; Erickson, Richard A.
2017-01-01
Potential biological removal (PBR) is an approach used to calculate sustainable harvest and “take” limits for populations. PBR was originally derived assuming logistic growth while ignoring the effects of small population size (i.e., an Allee effect). We derived a version of PBR that includes an Allee effect (i.e., small population size or densities limiting population growth rates). We found that PBR becomes less conservative when it fails to consider an Allee effect. Specifically, sustainable harvest and take levels based upon PBR with an Allee effect were between approximately 51% and 66% of levels based upon PBR without an Allee effect. Managers and biologists using PBR may need to consider the limitations if an Allee effect may be present in the species being modeled.
Coccidian infection may explain the differences in the life history of octopus host populations.
Storero, Lorena P; Narvarte, Maite A
2013-11-01
The prevalence of coccidian parasites in three Octopus tehuelchus populations from San Matías Gulf (Patagonia, Argentina) is compared. The prevalence was similar between sexes, but varied between seasons (being highest during cold months) and sites. Islote Lobos had the highest prevalence (42.7-100%) followed by San Antonio Bay (0-66%) and El Fuerte (0-24.5%). Octopuses under 27 mm of dorsal mantle length showed a low prevalence (less than 50%), which increased with size. We hypothesize that the high prevalence of parasites, which affect the three populations differentially, could account for the observed variability in life-span and growth, size-frequency distributions, reproduction and densities of O. tehuelchus populations. Copyright © 2013 Elsevier Inc. All rights reserved.
Factors influencing nesting success of burrowing owls in southeastern Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, R.S.; Johnson, D.R.
1985-01-31
A burrowing owl (Athene cunicularia) population nesting on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho utilized burrows excavated by badgers (Taxidea taxus) or natural cavities in lava flows as nesting sites. The size of the population was small (N = 13-14 pairs) in relation to the number of available nesting sites, suggesting that factors other than burrow availability limited this population. Rodents and Jerusalem crickets (Stenopelmatus fuscus) represented the primary prey utilized during the nesting season. This population demonstrated both a numerical (brood size) and functional (dietary) response to a decrease in the density of three species ofmore » rodents on the INEL during a drought in 1977. 11 references, 1 figure, 2 table.« less
Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.
2011-01-01
Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.
Stochastic population dynamics of a montane ground-dwelling squirrel.
Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K
2012-01-01
Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λ(s) was 0.92, suggesting a declining population; however, the 95% CI on λ(s) included 1.0 (0.52-1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.
Stochastic Population Dynamics of a Montane Ground-Dwelling Squirrel
Hostetler, Jeffrey A.; Kneip, Eva; Van Vuren, Dirk H.; Oli, Madan K.
2012-01-01
Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990–2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λs was 0.92, suggesting a declining population; however, the 95% CI on λs included 1.0 (0.52–1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration. PMID:22479616
Bottomley, Peter J.; Dughri, Muktar H.
1989-01-01
Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36. PMID:16347896
Persson, Lennart; Elliott, J Malcolm
2013-05-01
The theory of cannibal dynamics predicts a link between population dynamics and individual life history. In particular, increased individual growth has, in both modeling and empirical studies, been shown to result from a destabilization of population dynamics. We used data from a long-term study of the dynamics of two leech (Erpobdella octoculata) populations to test the hypothesis that maximum size should be higher in a cycling population; one of the study populations exhibited a delayed feedback cycle while the other population showed no sign of cyclicity. A hump-shaped relationship between individual mass of 1-year-old leeches and offspring density the previous year was present in both populations. As predicted from the theory, the maximum mass of individuals was much larger in the fluctuating population. In contrast to predictions, the higher growth rate was not related to energy extraction from cannibalism. Instead, the higher individual mass is suggested to be due to increased availability of resources due to a niche widening with increased individual body mass. The larger individual mass in the fluctuating population was related to a stronger correlation between the densities of 1-year-old individuals and 2-year-old individuals the following year in this population. Although cannibalism was the major mechanism regulating population dynamics, its importance was negligible in terms of providing cannibalizing individuals with energy subsequently increasing their fecundity. Instead, the study identifies a need for theoretical and empirical studies on the largely unstudied interplay between ontogenetic niche shifts and cannibalistic population dynamics.
NASA Astrophysics Data System (ADS)
Moreira, Antonio Jose De Araujo
Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in 2002. Variograms were fitted to the data to describe the spatial characteristics of SCN population densities in both fields at planting and at harvest from 2000 to 2003 and these parameters varied within seasons and during overwinter periods in both experiments. Distinct relationships between temporal and spatial changes in SCN population densities were not detected.
Population dynamics in an intermittent refuge
NASA Astrophysics Data System (ADS)
Colombo, E. H.; Anteneodo, C.
2016-10-01
Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.
Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A
2018-02-09
It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Density dependence and risk of extinction in a small population of sea otters
Gerber, L.R.; Buenau, K.E.; VanBlaricom, G.
2004-01-01
Sea otters (Enhydra lutris (L.)) were hunted to extinction off the coast of Washington State early in the 20th century. A new population was established by translocations from Alaska in 1969 and 1970. The population, currently numbering at least 550 animals, A major threat to the population is the ongoing risk of majour oil spills in sea otter habitat. We apply population models to census and demographic data in order to evaluate the status of the population. We fit several density dependent models to test for density dependence and determine plausible values for the carrying capacity (K) by comparing model goodness of fit to an exponential model. Model fits were compared using Akaike Information Criterion (AIC). A significant negative relationship was found between the population growth rate and population size (r2=0.27, F=5.57, df=16, p<0.05), suggesting density dependence in Washington state sea otters. Information criterion statistics suggest that the model is the most parsimonious, followed closely by the logistic Beverton-Holt model. Values of K ranged from 612 to 759 with best-fit parameter estimates for the Beverton-Holt model including 0.26 for r and 612 for K. The latest (2001) population index count (555) puts the population at 87-92% of the estimated carrying capacity, above the suggested range for optimum sustainable population (OSP). Elasticity analysis was conducted to examine the effects of proportional changes in vital rates on the population growth rate (??). The elasticity values indicate the population is most sensitive to changes in survival rates (particularly adult survival).
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
USDA-ARS?s Scientific Manuscript database
Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414...
Kirillov, A A; Kirillova, N Yu
2015-01-01
Variability of the body size in females of the Cosmocerca ornata (Dujardin, 1845), a parasite of marsh frogs, is studied. The influence of both biotic (age, sex and a phenotype of the host, density of the parasite population) and abiotic (a season of the year, water temperature) factors on the formation of the body size structure in the C. ornata hemipopulation (infrapopulation) is demonstrated. The body size structure of the C. ornata hemipopulation is characterized by the low level of individual variability as within certain subpopulation groups of amphibians (sex, age and phenotype), so within the population of marsh frogs as a whole. The more distinct are the differences in biology and ecology of these host subpopulations, the more pronounced is the variability in the body size of C ornata.
Deter, J; Berthier, K; Chaval, Y; Cosson, J F; Morand, S; Charbonnel, N
2006-04-01
Infection by the cestode Taenia taeniaeformis was investigated within numerous cyclic populations of the fossorial water vole Arvicola terrestris sampled during 4 years in Franche-Comté (France). The relative influence of different rodent demographic parameters on the presence of this cestode was assessed by considering (1) the demographic phase of the cycle; (2) density at the local geographical scale (<0.1 km2); (3) mean density at a larger scale (>10 km2). The local scale corresponded to the rodent population (intermediate host), while the large scale corresponded to the definitive host population (wild and feral cats). General linear models based on analyses of 1804 voles revealed the importance of local density but also of year, rodent age, season and interactions between year and season and between age and season. Prevalence was significantly higher in low vole densities than during local outbreaks. By contrast, the large geographical scale density and the demographic phase had less influence on infection by the cestode. The potential impacts of the cestode on the fitness of the host were assessed and infection had no effect on the host body mass, litter size or sexual activity of voles.
Impacts of Insect Herbivores on Plant Populations.
Myers, Judith H; Sarfraz, Rana M
2017-01-31
Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.
Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients
Windemuth, Andreas; de Leon, Jose; Goethe, John W.; Schwartz, Harold I.; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R.; Seip, Richard L.; Ruaño, Gualberto
2016-01-01
The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population. PMID:21851846
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.
Solving the puzzle of yeast survival in ephemeral nectar systems: exponential growth is not enough.
Hausmann, Sebastian L; Tietjen, Britta; Rillig, Matthias C
2017-12-01
Flower nectar is a sugar-rich ephemeral habitat for microorganisms. Nectar-borne yeasts are part of the microbial community and can affect pollination by changing nectar chemistry, attractiveness to pollinators or flower temperature if yeast population densities are high. Pollinators act as dispersal agents in this system; however, pollination events lead potentially to shrinking nectar yeast populations. We here examine how sufficiently high cell densities of nectar yeast can develop in a flower. In laboratory experiments, we determined the remaining fraction of nectar yeast cells after nectar removal, and used honeybees to determine the number of transmitted yeast cells from one flower to the next. The results of these experiments directly fed into a simulation model providing an insight into movement and colonization ecology of nectar yeasts. We found that cell densities only reached an ecologically relevant size for an intermediate pollination probability. Too few pollination events reduce yeast inoculation rate and too many reduce yeast population size strongly. In addition, nectar yeasts need a trait combination of at least an intermediate growth rate and an intermediate remaining fraction to compensate for highly frequent decimations. Our results can be used to predict nectar yeast dispersal, growth and consequently their ecological effects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lü, Shi-Hai; Lu, Xin-Shi; Gao, Ji-Xi
2007-09-01
To reveal the relationships between soil fauna and soil environmental factors in the process of steppe desertification, field survey combined with laboratory analysis was made to study the community structure, population density and biodiversity of soil fauna, and their relationships with the changes of soil organic matter, hydrolysable nitrogen, available phosphorus and moisture contents and soil pH at different stages of desertification of Hulunbeir steppe. The soil faunal specimens collected belonged to 4 phyla, 6 classes and 12 orders. Nematoda was the only dominant group of medium- and small-sized soil fauna, occupying 94.3% of the total, while Coleoptera and Hemiptera were the dominant groups of large-sized soil fauna, with the amount of 79.7%. The group amount, population density, diversity, and evenness of soil fauna had an obvious decreasing trend with the aggravation of steppe desertification. At serious stage of desertification, soil fauna vanished completely. The population density of soil fauna in 0-20 cm soil layer had significant linear correlations with soil nutrients and moisture contents, soil pH, and litter mass, indicating that soil fauna had stronger sensibility to the changes of soil environmental factors in the process of wind erosion desertification of Hulunbeir steppe.
Population densities of painted buntings in the southeastern United States
Meyers, J. Michael
2011-01-01
The eastern population trend of Passerina ciris (Painted Bunting) declined 3.5% annually during the first 30 yrs of the Breeding Bird Survey (BBS, 1966–1996). Recently, the US Fish and Wildlife Service listed Painted Buntings as a focal species. Surveys for this focal species for the next 10 yrs (BBS, 1997–2007), however, are too low (2 in young pine plantations to 42 per km2 in maritime shrub. Effective detection radii for habitats varied from 64 to 90 m and were slightly higher in developed than in undeveloped habitats. Distance sampling is recommended to determine densities of Painted Buntings; however, large sample sizes (70–100 detections/habitat type) are required to monitor Painted Bunting densities in most habitats in the Atlantic coastal region of the southeastern United States. Special attention should be given to maritime shrub habitats, which may be important to maintaining the Painted Bunting population in the southeastern US.
Estimating total population size for adult female sea turtles: Accounting for non-nesters
Kendall, W.L.; Richardson, J.I.; Rees, Alan F.
2008-01-01
Assessment of population size and changes therein is important to sea turtle management and population or life history research. Investigators might be interested in testing hypotheses about the effect of current population size or density (number of animals per unit resource) on future population processes. Decision makers might want to determine a level of allowable take of individual turtles of specified life stage. Nevertheless, monitoring most stages of sea turtle life histories is difficult, because obtaining access to individuals is difficult. Although in-water assessments are becoming more common, nesting females and their hatchlings remain the most accessible life stages. In some cases adult females of a given nesting population are sufficiently philopatric that the population itself can be well defined. If a well designed tagging study is conducted on this population, survival, breeding probability, and the size of the nesting population in a given year can be estimated. However, with published statistical methodology the size of the entire breeding population (including those females skipping nesting in that year) cannot be estimated without assuming that each adult female in this population has the same probability of nesting in a given year (even those that had just nested in the previous year). We present a method for estimating the total size of a breeding population (including nesters those skipping nesting) from a tagging study limited to the nesting population, allowing for the probability of nesting in a given year to depend on an individual's nesting status in the previous year (i.e., a Markov process). From this we further develop estimators for rate of growth from year to year in both nesting population and total breeding population, and the proportion of the breeding population that is breeding in a given year. We also discuss assumptions and apply these methods to a breeding population of hawksbill sea turtles (Eretmochelys imbricata) from the Caribbean. We anticipate that this method could also be useful for in-water studies of well defined populations.
Microhabitat and biology of Sphaerium striatinum in a central New York stream
Dittman, Dawn E.; Johnson, James H.; Nack, Christopher C.
2018-01-01
In many lotic systems, drastic declines in freshwater bivalve populations, including fingernail clams (Sphaeriidae), have created concerns about biodiversity and future ecosystem services. We examined the local occurrence of the historically common fingernail clam, Sphaerium striatinum, in a central New York stream. We sampled the density of sphaeriids and measured the associated habitat variables (substrate, depth, water flow) to test within-stream multivariate benthic microhabitat association. Size distribution, density, and diel feeding periodicity were measured as focal aspects of fingernail clam biology and ecology. S. striatinum tended to be found in microhabitats that had harder substrates and faster flow. The Labrador Creek fingernail clam local population had positive indicators (size distribution, density). There was significant diel periodicity in feeding behavior. The clams fed most actively during the 0400–0800 h periods. This kind of behavioral periodicity can indicate a significant ecological interaction between predators and bivalve prey. Increased understanding of the behavioral ecology of small native freshwater bivalves in an unimpacted headwater stream is a fundamental building block for development of overall ecological conservation goals for freshwater bivalves and their lotic habitats.
An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence
Böttger, Katrin; Hatzikirou, Haralambos; Voss-Böhme, Anja; Cavalcanti-Adam, Elisabetta Ada; Herrero, Miguel A.; Deutsch, Andreas
2015-01-01
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects overall tumor growth, in particular initiation and persistence. To address this problem, we formulate and study a mathematical model of spatio-temporal tumor dynamics which incorporates the microenvironmental influence through a local cell density dependence. Our analysis reveals that two dynamic regimes can be distinguished. If cell motility is allowed to increase with local cell density, any tumor cell population will persist in time, irrespective of its initial size. On the contrary, if cell motility is assumed to decrease with respect to local cell density, any tumor population below a certain size threshold will eventually extinguish, a fact usually termed as Allee effect in ecology. These results suggest that strategies aimed at modulating migration are worth to be explored as alternatives to those mainly focused at keeping tumor proliferation under control. PMID:26335202
Ricca, Mark A.; Van Vuren, Dirk H.; Weckerly, Floyd W.; Williams, Jeffrey C.; Miles, A. Keith
2014-01-01
Large mammalian herbivores introduced to islands without predators are predicted to undergo irruptive population and spatial dynamics, but only a few well-documented case studies support this paradigm. We used the Riney-Caughley model as a framework to test predictions of irruptive population growth and spatial expansion of caribou (Rangifer tarandus granti) introduced to Adak Island in the Aleutian archipelago of Alaska in 1958 and 1959. We utilized a time series of spatially explicit counts conducted on this population intermittently over a 54-year period. Population size increased from 23 released animals to approximately 2900 animals in 2012. Population dynamics were characterized by two distinct periods of irruptive growth separated by a long time period of relative stability, and the catalyst for the initial irruption was more likely related to annual variation in hunting pressure than weather conditions. An unexpected pattern resembling logistic population growth occurred between the peak of the second irruption in 2005 and the next survey conducted seven years later in 2012. Model simulations indicated that an increase in reported harvest alone could not explain the deceleration in population growth, yet high levels of unreported harvest combined with increasing density-dependent feedbacks on fecundity and survival were the most plausible explanation for the observed population trend. No studies of introduced island Rangifer have measured a time series of spatial use to the extent described in this study. Spatial use patterns during the post-calving season strongly supported Riney-Caughley model predictions, whereby high-density core areas expanded outwardly as population size increased. During the calving season, caribou displayed marked site fidelity across the full range of population densities despite availability of other suitable habitats for calving. Finally, dispersal and reproduction on neighboring Kagalaska Island represented a new dispersal front for irruptive dynamics and a new challenge for resource managers. The future demography of caribou on both islands is far from certain, yet sustained and significant hunting pressure should be a vital management tool.
Using Fish Population Metrics to Compare the Effects of Artificial Reef Density.
Froehlich, Catheline Y M; Kline, Richard J
2015-01-01
Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1-190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71-120 culverts in a 30-m radius to yield the highest fish abundances.
Using Fish Population Metrics to Compare the Effects of Artificial Reef Density
2015-01-01
Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1–190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71–120 culverts in a 30-m radius to yield the highest fish abundances. PMID:26422472
Lord, Joshua P; Williams, Larissa M
2017-04-01
Hemigrapsus sanguineus , the Asian shore crab, has rapidly replaced Carcinus maenas , the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus , populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species.
Reproductive success of Horned Lark and McCown's Longspur in relation to wind energy infrastructure
Mahoney, Anika; Chalfoun, Anna D.
2016-01-01
Wind energy is a rapidly expanding industry with potential indirect effects to wildlife populations that are largely unexplored. In 2011 and 2012, we monitored 211 nests of 2 grassland songbirds, Horned Lark (Eremophila alpestris) and McCown's Longspur (Rhynchophanes mccownii), at 3 wind farms and 2 undeveloped reference sites in Wyoming, USA. We evaluated several indices of reproductive investment and success: clutch size, size-adjusted nestling mass, daily nest survival rate, and number of fledglings. We compared reproductive success between wind farms and undeveloped sites and modeled reproductive success within wind farms as a function of wind energy infrastructure and habitat. Size-adjusted nestling mass of Horned Lark was weakly negatively related to turbine density. In 2011, nest survival of Horned Lark decreased 55% as turbine density increased from 10 to 39 within 2 km of the nest. In 2012, however, nest survival of Horned Lark was best predicted by the combination of vegetation height, distance to shrub edge, and turbine density, with survival increasing weakly with increasing vegetation height. McCown's Longspur nest survival was weakly positively related to vegetation density at the nest site when considered with the amount of grassland habitat in the neighborhood and turbine density within 1 km of the nest. Habitat and distance to infrastructure did not explain clutch size or number of fledglings for either species, or size-adjusted nestling mass for McCown's Longspur. Our results suggest that the influence of wind energy infrastructure varies temporally and by species, even among species using similar habitats. Turbine density was repeatedly the most informative measure of wind energy development. Turbine density could influence wildlife responses to wind energy production and may become increasingly important to consider as development continues in areas with high-quality wind resources.
Air quality and urban form in U.S. urban areas: evidence from regulatory monitors.
Clark, Lara P; Millet, Dylan B; Marshall, Julian D
2011-08-15
The layout of an urban area can impact air pollution via changes in emissions and their spatial distribution. Here, we explore relationships between air quality and urban form based on cross-sectional observations for 111 U.S. urban areas. We employ stepwise linear regression to quantify how long-term population-weighted outdoor concentrations of ozone, fine particulate matter (PM(2.5)), and other criteria pollutants measured by the U.S. Environmental Protection Agency depend on urban form, climate, transportation, city size, income, and region. Aspects of urban form evaluated here include city shape, road density, jobs-housing imbalance, population density, and population centrality. We find that population density is associated with higher population-weighted PM(2.5) concentrations (p < 0.01); population centrality is associated with lower population-weighted ozone and PM(2.5) concentrations (p < 0.01); and transit supply is associated with lower population-weighted PM(2.5) concentrations (p < 0.1). Among pollutants, interquartile range changes in urban form variables are associated with 4%-12% changes in population-weighted concentrations-amounts comparable, for example, to changes in climatic factors. Our empirical findings are consistent with prior modeling research and suggest that urban form could potentially play a modest but important role in achieving (or not achieving) long-term air quality goals.
Herbivores limit the population size of big-leaf mahogany trees in an Amazonian forest
Julian M. Norghauer; Christopher M. Free; R. Matthew Landis; James Grogan; Jay R. Malcolm; Sean C. Thomas
2015-01-01
The Janzen -- Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-...
Ceres and the terrestrial planets impact cratering record
NASA Astrophysics Data System (ADS)
Strom, R. G.; Marchi, S.; Malhotra, R.
2018-03-01
Dwarf planet Ceres, the largest object in the Main Asteroid Belt, has a surface that exhibits a range of crater densities for a crater diameter range of 5-300 km. In all areas the shape of the craters' size-frequency distribution is very similar to those of the most ancient heavily cratered surfaces on the terrestrial planets. The most heavily cratered terrain on Ceres covers ∼15% of its surface and has a crater density similar to the highest crater density on <1% of the lunar highlands. This region of higher crater density on Ceres probably records the high impact rate at early times and indicates that the other 85% of Ceres was partly resurfaced after the Late Heavy Bombardment (LHB) at ∼4 Ga. The Ceres cratering record strongly indicates that the period of Late Heavy Bombardment originated from an impactor population whose size-frequency distribution resembles that of the Main Belt Asteroids.
DiStefano, Robert J.; Westhoff, Jacob T.; Ames, Catlin W.; Rosenberger, Amanda E.
2016-01-01
The vulnerable freckled crayfish, Cambarus maculatus Hobbs and Pflieger, 1988, is endemic to only one drainage in eastern Missouri, USA, which is impacted by heavy metals mining and adjacent to a rapidly-expanding urban area. We studied populations of C. maculatus in two small streams for 25 months to describe annual reproductive cycles, and gather information about fecundity, sex ratio, size at maturity, size-class structure, and growth, capturing a monthly average of more than 50 individuals from each of the two study populations. Information about the density of the species at supplemental sampling streams was also obtained. The species exhibited traits consistent with a K-strategist life history; long-lived, slow-growing, with fewer but larger eggs than sympatric crayfish species. Breeding season occurred in mid- to late autumn, potentially extending into early winter. Egg brooding occurred primarily in May. Young of year were first observed in June. We estimated that these populations contained four to six size-classes, observed smaller individuals grew faster than larger individuals, and most became sexually mature in their second year of life. Densities of C. maculatus were low relative to several sympatric species of Orconectes Cope, 1872. Life history information presented herein will be important for anticipated future conservation efforts.
Drinking, driving, and crashing: a traffic-flow model of alcohol-related motor vehicle accidents.
Gruenewald, Paul J; Johnson, Fred W
2010-03-01
This study examined the influence of on-premise alcohol-outlet densities and of drinking-driver densities on rates of alcohol-related motor vehicle crashes. A traffic-flow model is developed to represent geographic relationships between residential locations of drinking drivers, alcohol outlets, and alcohol-related motor vehicle crashes. Cross-sectional and time-series cross-sectional spatial analyses were performed using data collected from 144 geographic units over 4 years. Data were obtained from archival and survey sources in six communities. Archival data were obtained within community areas and measured activities of either the resident population or persons visiting these communities. These data included local and highway traffic flow, locations of alcohol outlets, population density, network density of the local roadway system, and single-vehicle nighttime (SVN) crashes. Telephone-survey data obtained from residents of the communities were used to estimate the size of the resident drinking and driving population. Cross-sectional analyses showed that effects relating on-premise densities to alcohol-related crashes were moderated by highway trafficflow. Depending on levels of highway traffic flow, 10% greater densities were related to 0% to 150% greater rates of SVN crashes. Time-series cross-sectional analyses showed that changes in the population pool of drinking drivers and on-premise densities interacted to increase SVN crash rates. A simple traffic-flow model can assess the effects of on-premise alcohol-outlet densities and of drinking-driver densities as they vary across communities to produce alcohol-related crashes. Analyses based on these models can usefully guide policy decisions on the sitting of on-premise alcohol outlets.
Destruction of a Holothuria scabra population by overfishing at Abu Rhamada Island in the Red Sea.
Hasan, Mohamed Hamza
2005-10-01
Populations of Holothuria scabra at Abu Rhamada Island were investigated during 52 months, from July 1999 to October 2003. During the first 23 months (July, 1999-May, 2001) the Island had a robust population with a tri-modal size frequency distribution curve, very high densities (85.7-95.1 ind./100 m2 at the sandy habitat), high abundance (3362-3110 individuals) and biomass (46.7-34.3 kg/100 m2). Also, during this period most individuals were at depths between 4 and 6m and no individuals were recorded deeper than 15m. The population declined after harvesting began (June, 2001) and by March, 2002 the size frequency distribution showed a bimodal pattern with an obvious decrease in abundance of large individuals. There was also a slight reduction in densities (73.2-60.1 ind./100 m2 at the sandy habitat), abundance (2292-1682 individuals) and biomass (21.6-11.3 kg/100 m2), and a marked shift towards deeper waters. Overfishing reached its maximum during the final 19 months of the study, and by October, 2003, density (30.7-0.4 ind./100 m2 at the sandy habitat), abundance (802-10 individuals) and biomass (6.9-0.1 kg/100 m2) were all greatly reduced. The size frequency distribution of the population became unimodal, large animals disappeared and no recruits were seen. During this period, individuals were found at very deep depths (30 to >40 m). The study also showed that sandy substrate was the preferred habitat for H. scabra, accommodating the largest number of individuals. The population of H. scabra at Abu Rhamada Island was found to spawn biannually from 1999 to 2001, then only once during 2002 when high fishing pressure occurred, and ceased completely in 2003. The sex ratio was not significantly different from 1:1 before fishing begun, but shifted to an increasing male bias reaching 93% males by January 2003. None of the small animals remaining after January, 2003 could be sexed. Size at sexual maturity decreased from prefishing (185 mm for females and 160 mm for males) to 155 mm for females and 125 mm for males in January 2003. There was a positive relationship between fecundity and size. And oocyte/female was highest in 1999 (0.73-1.7 million) and 2000 (0.75-1.72 million), decreased during 2001 (0.2-0.85 million) to reach its minimum at 2002 (0.28-0.29 million).
A structured population model with diffusion in structure space.
Pugliese, Andrea; Milner, Fabio
2018-05-09
A structured population model is described and analyzed, in which individual dynamics is stochastic. The model consists of a PDE of advection-diffusion type in the structure variable. The population may represent, for example, the density of infected individuals structured by pathogen density x, [Formula: see text]. The individuals with density [Formula: see text] are not infected, but rather susceptible or recovered. Their dynamics is described by an ODE with a source term that is the exact flux from the diffusion and advection as [Formula: see text]. Infection/reinfection is then modeled moving a fraction of these individuals into the infected class by distributing them in the structure variable through a probability density function. Existence of a global-in-time solution is proven, as well as a classical bifurcation result about equilibrium solutions: a net reproduction number [Formula: see text] is defined that separates the case of only the trivial equilibrium existing when [Formula: see text] from the existence of another-nontrivial-equilibrium when [Formula: see text]. Numerical simulation results are provided to show the stabilization towards the positive equilibrium when [Formula: see text] and towards the trivial one when [Formula: see text], result that is not proven analytically. Simulations are also provided to show the Allee effect that helps boost population sizes at low densities.
Factors Related to Spatial Patterns of Rural Land Fragmentation in Texas
NASA Astrophysics Data System (ADS)
Kjelland, Michael E.; Kreuter, Urs P.; Clendenin, George A.; Wilkins, R. Neal; Wu, X. Ben; Afanador, Edith Gonzalez; Grant, William E.
2007-08-01
Fragmentation of family-owned farms and ranches has been identified as the greatest single threat to wildlife habitat, water supply, and the long-term viability of agriculture in Texas. However, an integrative framework for insights into the pathways of land use change has been lacking. The specific objectives of the study are to test the hypotheses that the nonagricultural value (NAV) of rural land is a reliable indicator of trends in land fragmentation and that NAV in Texas is spatially correlated with population density, and to explore the idea that recent changes in property size patterns are better represented by a categorical model than by one that reflects incremental changes. We propose that the State-and-Transition model, developed to describe the dynamics of semi-arid ecosystems, provides an appropriate conceptual framework for characterizing categorical shifts in rural property patterns. Results suggest that changes in population density are spatially correlated with NAV and farm size, and that rural property size is spatially correlated with changes in NAV. With increasing NAV, the proportion of large properties tends to decrease while the area represented by small properties tends to increase. Although a correlation exists between NAV and population density, it is the trend in NAV that appears to be a stronger predictor of land fragmentation. The empirical relationships established herein, viewed within the conceptual framework of the State-and-Transition model, can provide a useful tool for evaluating land use policies for maintaining critical ecosystem services delivered from privately owned land in private land states, such as Texas.
Saunders, W. Carl; Budy, Phaedra E.; Thiede, Gary P.
2015-01-01
Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low-elevation tributary, using single-pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density-dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density-dependent population regulation, or near sources of exotics, short-term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large-scale management of exotic species.
Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J
2018-04-01
Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.
NASA Astrophysics Data System (ADS)
Sumi, Ayako; Olsen, Lars Folke; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi
2003-02-01
We have carried out spectral analysis of measles notifications in several communities in Denmark, UK and USA. The results confirm that each power spectral density (PSD) shows exponential characteristics, which are universally observed in the PSD for time series generated from nonlinear dynamical system. The exponential gradient increases with the population size. For almost all communities, many spectral lines observed in each PSD can be fully assigned to linear combinations of several fundamental periods, suggesting that the measles data are substantially noise-free. The optimum least squares fitting curve calculated using these fundamental periods essentially reproduces an underlying variation of the measles data, and an extension of the curve can be used to predict measles epidemics. For the communities with large population sizes, some PSD patterns obtained from segment time series analysis show a close resemblance to the PSD patterns at the initial stages of a period-doubling bifurcation process for the so-called susceptible/exposed/infectious/recovered (SEIR) model with seasonal forcing. The meaning of the relationship between the exponential gradient and the population size is discussed.
Capture-recapture of white-tailed deer using DNA from fecal pellet-groups
Goode, Matthew J; Beaver, Jared T; Muller, Lisa I; Clark, Joseph D.; van Manen, Frank T.; Harper, Craig T; Basinger, P Seth
2014-01-01
Traditional methods for estimating white-tailed deer population size and density are affected by behavioral biases, poor detection in densely forested areas, and invalid techniques for estimating effective trapping area. We evaluated a noninvasive method of capture—recapture for white-tailed deer (Odocoileus virginianus) density estimation using DNA extracted from fecal pellets as an individual marker and for gender determination, coupled with a spatial detection function to estimate density (spatially explicit capture—recapture, SECR). We collected pellet groups from 11 to 22 January 2010 at randomly selected sites within a 1-km2 area located on Arnold Air Force Base in Coffee and Franklin counties, Tennessee. We searched 703 10-m radius plots and collected 352 pellet-group samples from 197 plots over five two-day sampling intervals. Using only the freshest pellets we recorded 140 captures of 33 different animals (15M:18F). Male and female densities were 1.9 (SE = 0.8) and 3.8 (SE = 1.3) deer km-2, or a total density of 5.8 deer km-2 (14.9 deer mile-2). Population size was 20.8 (SE = 7.6) over a 360-ha area, and sex ratio was 1.0 M: 2.0 F (SE = 0.71). We found DNA sampling from pellet groups improved deer abundance, density and sex ratio estimates in contiguous landscapes which could be used to track responses to harvest or other management actions.
Estimating black bear density using DNA data from hair snares
Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.
2010-01-01
DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.
de Oliveira, Suellen; Villela, Daniel Antunes Maciel; Dias, Fernando Braga Stehling; Moreira, Luciano Andrade
2017-01-01
Background Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size. Methodology/principal findings Three different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain), wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae. Conclusions/significance In all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion. PMID:28991902
Korman, Josh; Yard, Mike
2017-01-01
Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.
Metropolitan planning organizations in Texas : overview and profiles : final report.
DOT National Transportation Integrated Search
2017-04-01
A metropolitan planning organization (MPO) has authority and responsibility for regional transportation planning in urbanized areas where the population is at least 50,000 and surrounding areas meet size/density criteria determined by the U.S. Census...
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1988-01-01
The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.
Dispersal leads to spatial autocorrelation in species distributions: A simulation model
Bahn, V.; Krohn, W.B.; O'Connor, R.J.
2008-01-01
Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.
Magrach, Ainhoa; Larrinaga, Asier R.; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as “…an island covered by one great forest…” has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and “edge effects” can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58–73% more isolated and 11–50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km2) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation. PMID:21738723
Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as "…an island covered by one great forest…" has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and "edge effects" can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58-73% more isolated and 11-50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km(2)) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation.
Efremov, V V; Parenskiĭ, V A
2004-04-01
Using Parensky's approach for estimating the number of breeding pairs, we determined effective subpopulation size Ne in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka) in 1977 through 1981. On average (over years and populations), biased sex ratio decreased Ne by 7% as compared to the number of fish on the spawning sites (Ni). High density reduced the Ne/Ni ratio by 62-66% because some fish were excluded from spawning. Dominance polygyny as compared to monogamy and random union of gametes could reduce Ne by about 17%.
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
Population and prehistory III: food-dependent demography in variable environments.
Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad
2009-11-01
The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.
Schroeder, Natalia M; Matteucci, Silvia D; Moreno, Pablo G; Gregorio, Pablo; Ovejero, Ramiro; Taraborelli, Paula; Carmanchahi, Pablo D
2014-01-01
Monitoring species abundance and distribution is a prerequisite when assessing species status and population viability, a difficult task to achieve for large herbivores at ecologically meaningful scales. Co-occurrence patterns can be used to infer mechanisms of community organization (such as biotic interactions), although it has been traditionally applied to binary presence/absence data. Here, we combine density surface and null models of abundance data as a novel approach to analyze the spatial and seasonal dynamics of abundance and distribution of guanacos (Lama guanicoe) and domestic herbivores in northern Patagonia, in order to visually and analytically compare the dispersion and co-occurrence pattern of ungulates. We found a marked seasonal pattern in abundance and spatial distribution of L. guanicoe. The guanaco population reached its maximum annual size and spatial dispersion in spring-summer, decreasing up to 6.5 times in size and occupying few sites of the study area in fall-winter. These results are evidence of the seasonal migration process of guanaco populations, an increasingly rare event for terrestrial mammals worldwide. The maximum number of guanacos estimated for spring (25,951) is higher than the total population size (10,000) 20 years ago, probably due to both counting methodology and population growth. Livestock were mostly distributed near human settlements, as expected by the sedentary management practiced by local people. Herbivore distribution was non-random; i.e., guanaco and livestock abundances co-varied negatively in all seasons, more than expected by chance. Segregation degree of guanaco and small-livestock (goats and sheep) was comparatively stronger than that of guanaco and large-livestock, suggesting a competition mechanism between ecologically similar herbivores, although various environmental factors could also contribute to habitat segregation. The new and compelling combination of methods used here is highly useful for researchers who conduct counts of animals to simultaneously estimate population sizes, distributions, assess temporal trends and characterize multi-species spatial interactions.
Gopko, Mikhail; Mikheev, Victor N; Taskinen, Jouni
2017-09-01
Parasites manipulate their hosts' phenotype to increase their own fitness. Like any evolutionary adaptation, parasitic manipulations should be costly. Though it is difficult to measure costs of the manipulation directly, they can be evaluated using an indirect approach. For instance, theory suggests that as the parasite infrapopulation grows, the investment of individual parasites in host manipulation decreases, because of cost sharing. Another assumption is that in environments where manipulation does not pay off for the parasite, it can decrease its investment in the manipulation to save resources. We experimentally infected rainbow trout Oncorhynchus mykiss with the immature larvae of the trematode Diplostomum pseudospathaceum, to test these assumptions. Immature D. pseudospathaceum metacercariae are known for their ability to manipulate the behaviour of their host enhancing its anti-predator defenses to avoid concomitant predation. We found that the growth rate of individual parasites in rainbow trout increased with the infrapopulation size (positive density-dependence) suggesting cost sharing. Moreover, parasites adjusted their growth to the intensity of infection within the eye lens where they were localized suggesting population density sensing. Results of this study support the hypothesis that macroparasites can adjust their growth rate and manipulation investment according to cost sharing level and infrapopulation size.
Rai, Kedar N; Jain, Subodh K
1982-06-01
Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.
A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.
1982-01-01
A slit sieve model has been used to develop a general correlation between the average pore size of the upstream surface of a membrane and the molecular weight of the solute which it retains by better than 80%. The pore size is determined by means of the correlation using the high retention data from an ultrafiltration (UF) or a reverse osmosis (RO) experiment. The pore population density can also be calculated from the flux data via appropriate equations.
Indoor tanning facility density in eighty U.S. cities.
Palmer, Richard C; Mayer, Joni A; Woodruff, Susan I; Eckhardt, Laura; Sallis, James F
2002-06-01
The purpose of this study was to examine the number of tanning facilities in select U.S. cities. The twenty most populated cities from each of 4 U.S. regions were selected for the sample. For each city, data on the number of tanning facilities, climate, and general demographic profile were collected. Data for state tanning facility legislation also were collected. A tanning facility density variable was created by dividing the city's number of facilities by its population size. The 80 cities had an average of 50 facilities each. Results of linear regression analysis indicated that higher density was significantly associated with colder climate, lower median income, and higher proportion of Whites. These data indicate that indoor tanning facilities are prevalent in the environments of U.S. urban-dwellers. Cities having the higher density profile may be logical targets for interventions promoting less or safer use of these facilities.
Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.
2010-01-01
Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.
A novel approach to evaluation of pest insect abundance in the presence of noise.
Embleton, Nina; Petrovskaya, Natalia
2014-03-01
Evaluation of pest abundance is an important task of integrated pest management. It has recently been shown that evaluation of pest population size from discrete sampling data can be done by using the ideas of numerical integration. Numerical integration of the pest population density function is a computational technique that readily gives us an estimate of the pest population size, where the accuracy of the estimate depends on the number of traps installed in the agricultural field to collect the data. However, in a standard mathematical problem of numerical integration, it is assumed that the data are precise, so that the random error is zero when the data are collected. This assumption does not hold in ecological applications. An inherent random error is often present in field measurements, and therefore it may strongly affect the accuracy of evaluation. In our paper, we offer a novel approach to evaluate the pest insect population size under the assumption that the data about the pest population include a random error. The evaluation is not based on statistical methods but is done using a spatially discrete method of numerical integration where the data obtained by trapping as in pest insect monitoring are converted to values of the population density. It will be discussed in the paper how the accuracy of evaluation differs from the case where the same evaluation method is employed to handle precise data. We also consider how the accuracy of the pest insect abundance evaluation can be affected by noise when the data available from trapping are sparse. In particular, we show that, contrary to intuitive expectations, noise does not have any considerable impact on the accuracy of evaluation when the number of traps is small as is conventional in ecological applications.
Developing recreational harvest regulations for an unexploited lake trout population
Lenker, Melissa A; Weidel, Brian C.; Jensen, Olaf P.; Solomon, Christopher T.
2016-01-01
Developing fishing regulations for previously unexploited populations presents numerous challenges, many of which stem from a scarcity of baseline information about abundance, population productivity, and expected angling pressure. We used simulation models to test the effect of six management strategies (catch and release; trophy, minimum, and maximum length limits; and protected and exploited slot length limits) on an unexploited population of Lake Trout Salvelinus namaycush in Follensby Pond, a 393-ha lake located in New York State’s Adirondack Park. We combined field and literature data and mark–recapture abundance estimates to parameterize an age-structured population model and used the model to assess the effects of each management strategy on abundance, catch per unit effort (CPUE), and harvest over a range of angler effort (0–2,000 angler-days/year). Lake Trout density (3.5 fish/ha for fish ≥ age 13, the estimated age at maturity) was similar to densities observed in other unexploited systems, but growth rate was relatively slow. Maximum harvest occurred at levels of effort ≤ 1,000 angler-days/year in all the scenarios considered. Regulations that permitted harvest of large postmaturation fish, such as New York’s standard Lake Trout minimum size limit or a trophy size limit, resulted in low harvest and high angler CPUE. Regulations that permitted harvest of small and sometimes immature fish, such as a protected slot or maximum size limit, allowed high harvest but resulted in low angler CPUE and produced rapid declines in harvest with increases in effort beyond the effort consistent with maximum yield. Management agencies can use these results to match regulations to management goals and to assess the risks of different management options for unexploited Lake Trout populations and other fish species with similar life history traits.
Size-Energy Relationships in Ecological Communities
Sewall, Brent J.; Freestone, Amy L.; Hawes, Joseph E.; Andriamanarina, Ernest
2013-01-01
Hypotheses that relate body size to energy use are of particular interest in community ecology and macroecology because of their potential to facilitate quantitative predictions about species interactions and to clarify complex ecological patterns. One prominent size-energy hypothesis, the energetic equivalence hypothesis, proposes that energy use from shared, limiting resources by populations or size classes of foragers will be independent of body size. Alternative hypotheses propose that energy use will increase with body size, decrease with body size, or peak at an intermediate body size. Despite extensive study, however, size-energy hypotheses remain controversial, due to a lack of directly-measured data on energy use, a tendency to confound distinct scaling relationships, and insufficient attention to the ecological contexts in which predicted relationships are likely to occur. Our goal, therefore, was to directly evaluate size-energy hypotheses while clarifying how results would differ with alternate methods and assumptions. We comprehensively tested size-energy hypotheses in a vertebrate frugivore guild in a tropical forest in Madagascar. Our test of size-energy hypotheses, which is the first to examine energy intake directly, was consistent with the energetic equivalence hypothesis. This finding corresponds with predictions of metabolic theory and models of energy distribution in ecological communities, which imply that body size does not confer an advantage in competition for energy among populations or size classes of foragers. This result was robust to different assumptions about energy regulation. Our results from direct energy measurement, however, contrasted with those obtained with conventional methods of indirect inference from size-density relationships, suggesting that size-density relationships do not provide an appropriate proxy for size-energy relationships as has commonly been assumed. Our research also provides insights into mechanisms underlying local size-energy relationships and has important implications for predicting species interactions and for understanding the structure and dynamics of ecological communities. PMID:23950873
The Global Contribution of Secondary Craters on the Icy Satellites
NASA Astrophysics Data System (ADS)
Hoogenboom, T.; Johnson, K. E.; Schenk, P.
2014-12-01
At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters. Nonetheless, we confirm that secondary craters on Ganymede have narrow size-frequency distributions and that they correlate with primary crater diameter. From these data we will evaluate the contribution of secondary craters over a range of crater diameters.
NASA Astrophysics Data System (ADS)
Wolverton, Steve; Kennedy, James H.; Cornelius, John D.
2007-04-01
Archaeological and paleontological datasets are used in conservation to add time-depth to ecology. In central Texas, several top carnivores including prehistoric Native American hunters have been extirpated or have had their historic ranges restricted, which has resulted in pest-level white-tailed deer ( Odocoileus virginianus texana) populations in some areas. Differences in body size of deer between prehistory and modernity are expected, given that a lack of predation likely has increased intraspecific competition for forage among deer, resulting in smaller body size today. In fact, modern deer from settings without harvest pressure are significantly smaller than those from harvested areas and from prehistoric deer. From a natural history perspective, this research highlights potential evolutionary causes and effects of top-predator removal on deer populations and related components of biological communities in central Texas.
Estimating numbers of greater prairie-chickens using mark-resight techniques
Clifton, A.M.; Krementz, D.G.
2006-01-01
Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.
LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu
2017-01-20
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less
A conceptual guide to detection probability for point counts and other count-based survey methods
D. Archibald McCallum
2005-01-01
Accurate and precise estimates of numbers of animals are vitally needed both to assess population status and to evaluate management decisions. Various methods exist for counting birds, but most of those used with territorial landbirds yield only indices, not true estimates of population size. The need for valid density estimates has spawned a number of models for...
Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.
2004-01-01
We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.
Growth rates and variances of unexploited wolf populations in dynamic equilibria
Mech, L. David; Fieberg, John
2015-01-01
Several states have begun harvesting gray wolves (Canis lupus), and these states and various European countries are closely monitoring their wolf populations. To provide appropriate perspective for determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota, USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2 mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was 6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Nt+1/Nt, was (0.88, 1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit a density-independent model and a Ricker model to each time series, and in both cases we considered the potential for observation error. Mean growth rates from the density-independent model were close to 0 for all 3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including those describing annual variability or process variance, as providing useful summaries of the trajectories of these populations. The estimates of these natural wolf population parameters can serve as benchmarks for comparison with those of recovering wolf populations. Because our study populations were all from circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not confounded by changes in occupied area as would be the case with populations expanding their range, as are wolf populations in many states).
Lipton, Robert; Ponicki, William R; Gruenewald, Paul J; Gaidus, Andrew
2018-06-01
Past research has linked alcohol outlet densities to drinking, drunken driving, and alcohol-related motor vehicle crashes (MVCs). Because impaired drivers travel some distances from drinking places to crash locations, spatial relationships between outlets and crashes are complex. We investigate these relationships at 3 geographic levels: census block groups (CBGs), adjacent (nearby) areas, and whole cities. We examined risks of all injury MVCs as well as "had been drinking" (HBD) and single-vehicle-nighttime (SVN) subgroups using data from the Statewide Integrated Traffic Records System across CBGs among 50 California cities from 2001 to 2008. Relationships between outlet densities at the city level, within CBGs, and in adjacent CBGs and crashes were examined using Bayesian Poisson space-time analyses controlling for population size income and other demographics (all as covariates). All injury MVCs were positively related to adjacent CBG population size (relative rate [RR] = 1.008, 95% credible interval (CI) = 1.004, 1.012), and outlet densities at CBG (RR = 1.027, CI = 1.020, 1.035), nearby area (RR = 1.084, CI = 1.060, 1.106) and city levels (RR = 1.227, CI = 1.147, 1.315), and proportion of bars or pubs at the city level (RR = 2.257, CI = 1.187, 4.125). HBD and SVN crashes were comparatively less frequent in high outlet density CBG (RR = 0.993, CI = 0.987, 0.999; RR = 0.963, CI = 0.951, 0.975) and adjacent areas (RR = 0.979, CI = 0.962, 0.996; RR = 0.909, CI = 0.883, 0.936), but positively associated with city-level proportions of bars (RR = 3.373, CI = 0.736, 15.644; RR = 10.322, CI = 1.704, 81.215). Overall, a 10% increase in all outlets was related to 2.8% more injury crashes (CI = 2.3, 3.3) and 2.5% more HBDs (CI = 1.7, 3.3). A 10% increase in bars was related to 1.4% more crashes, 4.3% more HBDs, and 10.3% more SVNs. Population size and densities of bars or pubs were found to be associated with crash rates, with population effects appearing across cities and outlet effects appearing within dense downtown areas. Summary estimates of outlet and population impacts on MVCs must consider varying contributions at multiple spatial scales. Copyright © 2018 by the Research Society on Alcoholism.
2014-01-01
Background Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. Results We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. Conclusions During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks. PMID:24886481
Pinot, Adrien; Gauffre, Bertrand; Bretagnolle, Vincent
2014-05-28
Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks.
Murphy, Sean M; Augustine, Ben C; Ulrey, Wade A; Guthrie, Joseph M; Scheick, Brian K; McCown, J Walter; Cox, John J
2017-01-01
Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted.
Guthrie, Joseph M.; Scheick, Brian K.; McCown, J. Walter; Cox, John J.
2017-01-01
Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida’s largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted. PMID:28738077
Williams, Larissa M.
2017-01-01
Hemigrapsus sanguineus, the Asian shore crab, has rapidly replaced Carcinus maenas, the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus, populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species. PMID:28919836
Matsumoto, Masatoshi; Inoue, Kazuo; Noguchi, Satomi; Toyokawa, Satoshi; Kajii, Eiji
2009-02-18
In many countries, there is a surplus of physicians in some communities and a shortage in others. Population size is known to be correlated with the number of physicians in a community, and is conventionally considered to represent the power of communities to attract physicians. However, associations between other demographic/economic variables and the number of physicians in a community have not been fully evaluated. This study seeks other parameters that correlate with the physician population and show which characteristics of a community determine its "attractiveness" to physicians. Associations between the number of physicians and selected demographic/economic/life-related variables of all of Japan's 3132 municipalities were examined. In order to exclude the confounding effect of community size, correlations between the physician-to-population ratio and other variable-to-population ratios or variable-to-area ratios were evaluated with simple correlation and multiple regression analyses. The equity of physician distribution against each variable was evaluated by the orenz curve and Gini index. Among the 21 variables selected, the service industry workers-to-population ratio (0.543), commercial land price (0.527), sales of goods per person (0.472), and daytime population density (0.451) were better correlated with the physician-to-population ratio than was population density (0.409). Multiple regression analysis showed that the service industry worker-to-population ratio, the daytime population density, and the elderly rate were each independently correlated with the physician-to-population ratio (standardized regression coefficient 0.393, 0.355, 0.089 respectively; each p<0.001). Equity of physician distribution was higher against service industry population (Gini index=0.26) and daytime population (0.28) than against population (0.33). Daytime population and service industry population in a municipality are better parameters of community attractiveness to physicians than population. Because attractiveness is supposed to consist of medical demand and the amenities of urban life, the two parameters may represent the amount of medical demand and/or the extent of urban amenities of the community more precisely than population does. The conventional demand-supply analysis based solely on population as the demand parameter may overestimate the inequity of the physician distribution among communities.
Predicting Grizzly Bear Density in Western North America
Mowat, Garth; Heard, Douglas C.; Schwarz, Carl J.
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552
Predicting grizzly bear density in western North America.
Mowat, Garth; Heard, Douglas C; Schwarz, Carl J
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.
Takeshita, Kazutaka; Ikeda, Takashi; Takahashi, Hiroshi; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko; Kaji, Koichi
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered.
Accounting for body size deviations when reporting bone mineral density variables in children.
Webber, C E; Sala, A; Barr, R D
2009-01-01
In a child, bone mineral density (BMD) may differ from an age-expected normal value, not only because of the presence of disease, but also because of deviations of height or weight from population averages. Appropriate adjustment for body size deviations simplifies interpretation of BMD measurements. For children, a bone mineral density (BMD) measurement is normally expressed as a Z score. Interpretation is complicated when weight or height distinctly differ from age-matched children. We develop a procedure to allow for the influence of body size deviations upon measured BMD. We examined the relation between body size deviation and spine, hip and whole body BMD deviation in 179 normal children (91 girls). Expressions were developed that allowed derivation of an expected BMD based on age, gender and body size deviation. The difference between measured and expected BMD was expressed as a HAW score (Height-, Age-, Weight-adjusted score). In a second independent sample of 26 normal children (14 girls), measured spine, total femur and whole body BMD all fell within the same single normal range after accounting for age, gender and body size deviations. When traditional Z scores and HAW scores were compared in 154 children, 17.5% showed differences of more than 1 unit and such differences were associated with height and weight deviations. For almost 1 in 5 children, body size deviations influence BMD to an extent that could alter clinical management.
Impact craters on Venus: An overview from Magellan observations
NASA Technical Reports Server (NTRS)
Schaber, G. G.; Strom, R. G.; Moore, H. J.; Soderblom, L. A.; Kirk, R. L.; Chadwick, D. J.; Dawson, D. D.; Gaddis, L. R.; Boyce, J. M.; Russell, J.
1992-01-01
Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta.
Riedle, J.D.; Shipman, P.A.; Fox, S. F.; Hackler, J.C.; Lesie, D.M.
2008-01-01
A mark-recapture project on Macrochelys temminckii was conducted between 1997 and 2000 at Sequoyah National Wildlife Refuge, Muskogee and Sequoyah counties, in eastern Oklahoma. Turtles were captured in all streams and exhibited equal sex ratios, marked sexual-size dimorphism, and population densities between 28 and 34 animals per km stretch of stream. There was evidence of past population perturbations, with very few large adults captured, and a cohort of subadults highly underrepresented. ?? 2008 Chelonian Research Foundation.
Continuous microbial cultures maintained by electronically-controlled device
NASA Technical Reports Server (NTRS)
Eisler, W. J., Jr.; Webb, R. B.
1967-01-01
Photocell-controlled instrument maintains microbial culture. It uses commercially available chemostat glassware, provides adequate aeration through bubbling of the culture, maintains the population size and density, continuously records growth rates over small increments of time, and contains a simple, sterilizable nutrient control mechanism.
Leptokurtic pollen-flow, non-leptokurtic gene-flow in a wind-pollinated herb, Plantago lanceolata L.
Tonsor, Stephen J
1985-10-01
The purpose of this study was to simultaneously measure pollen dispersal distance and actual pollen-mediated gene-flow distance in a wind-pollinated herb, Plantago lanceolata. The pollen dispersal distribution, measured as pollen deposition in a wind tunnel, is leptokurtic, as expected from previous studies of wind-pollinated plants. Gene-flow, measured as seeds produced on rows of male-sterile inflorescences in the wind tunnel, is non-leptokurtic, peaking at an intermediate distance. The difference between the two distributions results from the tendency of the pollen grains to cluster. These pollen clusters are the units of gene dispersal, with clusters of intermediate and large size contributing disproportionately to gene-flow. Since many wind-pollinated species show pollen clustering (see text), the common assumption for wind-pollinated plants that gene-flow is leptokurtic requires re-examination. Gene-flow was also measured in an artifical outdoor population of male-steriles, containing a single pollen source plant in the center of the array. The gene flow distribution is significantly platykurtic, and has the same general properties outdoors, where wind speed and turbulence are uncontrolled, as it does in the wind tunnel. I estimated genetic neighborhood size based on my measure of gene-flow in the outdoor population. The estimate shows that populations of Plantago lanceolata will vary in effective number from a few tens of plants to more than five hundred plants, depending on the density of the population in question. Thus, the measured pollen-mediated gene-flow distribution and population density will interact to produce effective population sizes ranging from those in which there is no random genetic drift to those in which random genetic drift plays an important role in determining gene frequencies within and among populations. Despite the platykurtosis in the distribution, pollen-mediated gene dispersal distances are still quite limited, and considerable within and among-population genetic differentiation is to be expected in this species.
Optimal exploitation of spatially distributed trophic resources and population stability
Basset, A.; Fedele, M.; DeAngelis, D.L.
2002-01-01
The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness and long-term population stability. ?? 2002 Elsevier Science B.V. All rights reserved.
Linking removal targets to the ecological effects of invaders: a predictive model and field test.
Green, Stephanie J; Dulvy, Nicholas K; Brooks, Annabelle M L; Akins, John L; Cooper, Andrew B; Miller, Skylar; Côté, Isabelle M
Species invasions have a range of negative effects on recipient ecosystems, and many occur at a scale and magnitude that preclude complete eradication. When complete extirpation is unlikely with available management resources, an effective strategy may be to suppress invasive populations below levels predicted to cause undesirable ecological change. We illustrated this approach by developing and testing targets for the control of invasive Indo-Pacific lionfish (Pterois volitans and P. miles) on Western Atlantic coral reefs. We first developed a size-structured simulation model of predation by lionfish on native fish communities, which we used to predict threshold densities of lionfish beyond which native fish biomass should decline. We then tested our predictions by experimentally manipulating lionfish densities above or below reef-specific thresholds, and monitoring the consequences for native fish populations on 24 Bahamian patch reefs over 18 months. We found that reducing lionfish below predicted threshold densities effectively protected native fish community biomass from predation-induced declines. Reductions in density of 25–92%, depending on the reef, were required to suppress lionfish below levels predicted to overconsume prey. On reefs where lionfish were kept below threshold densities, native prey fish biomass increased by 50–70%. Gains in small (<6 cm) size classes of native fishes translated into lagged increases in larger size classes over time. The biomass of larger individuals (>15 cm total length), including ecologically important grazers and economically important fisheries species, had increased by 10–65% by the end of the experiment. Crucially, similar gains in prey fish biomass were realized on reefs subjected to partial and full removal of lionfish, but partial removals took 30% less time to implement. By contrast, the biomass of small native fishes declined by >50% on all reefs with lionfish densities exceeding reef-specific thresholds. Large inter-reef variation in the biomass of prey fishes at the outset of the study, which influences the threshold density of lionfish, means that we could not identify a single rule of thumb for guiding control efforts. However, our model provides a method for setting reef-specific targets for population control using local monitoring data. Our work is the first to demonstrate that for ongoing invasions, suppressing invaders below densities that cause environmental harm can have a similar effect, in terms of protecting the native ecosystem on a local scale, to achieving complete eradication.
Island Economic Vulnerability to Natural Disasters—the case of Changdao
NASA Astrophysics Data System (ADS)
Zhang, Z.
2016-12-01
The paper take Changdao County as sample to analyze differentiated impacts of natural disasters on island counties. The result shows that under increased population densities, small islands quickly face binding size limitations and suffer diminished per-capita resources from sustained population increases. The isolated, high-risk geography of small islands exacerbate the scale of a natural disaster shock, rendering many risk-pooling local mechanisms ineffective; disaster assistance flows were also shown to be ineffective in this study. In an environment of increasing weather hazards and resources at risk, it is imperative to understand the determinants of natural disaster vulnerability towards future loss mitigation. Importantly, disaster-thwarting polices must consider perverse implications of economic development measures, such as per-capita income, and infrastructure investments interacting with increased population densities.
Tucić, Nikola; Stojković, Oliver; Gliksman, Ivana; Milanović, Agana; Šešlija, Darka
1997-12-01
Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil. © 1997 The Society for the Study of Evolution.
Effects of egg and hatchling harvest on American alligators in Florida
Rice, K.G.; Percival, H.F.; Woodward, A.R.; Jennings, Michael L.
1999-01-01
Harvest of crocodilian eggs and young for captive rearing (ranching) has been used worldwide as an option for producing crocodilian skins and meat from wild stock. The long-term effects of harvesting a certain proportion of early age class, wild American alligators (Alligator mississippiensis) without repatriation is unknown. We removed an estimated 50% of annual production of alligators on Lakes Griffin and Jesup in central Florida over an 11-year period and monitored population levels via night-light counts. Densities of the total alligator population increased (P 0.117), and subadult (122-182 cm TL) alligators increased (P < 0.011) on harvest areas. The density of juveniles on the control area increased (P = 0.006), and the density of subadults showed some evidence of increasing (P = 0.088). No changes were detected in size distributions on the treatment areas. Nest production, as observed from aerial helicopter surveys, increased (P < 0.039) on Lake Woodruff NWR and Lake Jesup and showed some evidence of an increase on Lake Griffin (P = 0.098) during 1983-91. A 50% harvest rate of eggs or hatchlings did not adversely affect recruitment into the subadult or adult size classes.
Stahler, Daniel R; MacNulty, Daniel R; Wayne, Robert K; vonHoldt, Bridgett; Smith, Douglas W
2013-01-01
Reproduction in social organisms is shaped by numerous morphological, behavioural and life-history traits such as body size, cooperative breeding and age of reproduction, respectively. Little is known, however, about the relative influence of these different types of traits on reproduction, particularly in the context of environmental conditions that determine their adaptive value. Here, we use 14 years of data from a long-term study of wolves (Canis lupus) in Yellowstone National Park, USA, to evaluate the relative effects of different traits and ecological factors on the reproductive performance (litter size and survival) of breeding females. At the individual level, litter size and survival improved with body mass and declined with age (c. 4-5 years). Grey-coloured females had more surviving pups than black females, which likely contributed to the maintenance of coat colour polymorphism in this system. The effect of pack size on reproductive performance was nonlinear as litter size peaked at eight wolves and then declined, and litter survival increased rapidly up to three wolves, beyond which it increased more gradually. At the population level, litter size and survival decreased with increasing wolf population size and canine distemper outbreaks. The relative influence of these different-level factors on wolf reproductive success followed individual > group > population. Body mass was the primary determinant of litter size, followed by pack size and population size. Body mass was also the main driver of litter survival, followed by pack size and disease. Reproductive gains because of larger body size and cooperative breeding may mitigate reproductive losses because of negative density dependence and disease. These findings highlight the adaptive value of large body size and sociality in promoting individual fitness in stochastic and competitive environments. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Density-dependent effects on growth, body size, and clutch size in Black Brant
Sedinger, James S.; Lindberg, Mark S.; Person, Brian T.; Eichholz, Michael W.; Herzog, Mark P.; Flint, Paul L.
1998-01-01
We documented gosling size in late summer, adult body size, and clutch size of known-age Black Brant (Branta bernicla nigricans) females nesting on the Tutakoke River colony between 1986 and 1995. During this period, the colony increased from 1,100 to >5,000 nesting pairs. Gosling mass at 30 days of age declined from 764 ± SE of 13 g and 723 ± 15 g for males and females, respectively, in the 1986 cohort, to 665 ± 18 g and 579 ± 18 g in the 1994 cohort. Gosling size was directly negatively correlated with number of Black Brant broods. We detected no trend in adult body size for individuals from these cohorts; in fact, adults from the 1992 and 1994 cohorts had the largest overall masses. Clutch size increased with age from 3.4 eggs for 2-year-old females to 4.4 eggs for 5-year-old females. Clutch size declined during the study by 0.20 (3-year-old females) to 0.45 (2-year-old females) eggs. Clutch size did not decline between the 1986 and 1990 cohorts for females that were >5 years old. Our results for clutch size and gosling size are similar to those recorded for Lesser Snow Geese (Chen caerulescens caerulescens). Our failure to detect a trend in adult body size, however, differs from the response of other geese to increasing population density. We interpret this difference in effects of density on adult size between Black Brant and other geese as an indication of stronger selection against the smallest individuals in Black Brant relative to other species of geese.
Sutherland, Andrew M; Parrella, Michael P
2011-08-01
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.
Mark-recapture using tetracycline and genetics reveal record-high bear density
Peacock, E.; Titus, K.; Garshelis, D.L.; Peacock, M.M.; Kuc, M.
2011-01-01
We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics. Copyright ?? 2011 The Wildlife Society.
George, Scott D.; Baldigo, Barry P.
2016-05-13
The U.S. Geological Survey, in cooperation with Cornell Cooperative Extension of Ulster County, New York State Energy Research and Development Authority, the New York State Department of Environmental Conservation, and the New York City Department of Environmental Protection, surveyed fish communities annually on the main stem and tributaries of the upper Esopus Creek, Ulster County, New York, from 2009 to 2015. This report summarizes the density, biomass, and size structure of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) populations from the 2015 surveys along with data from the preceding 6 years. The mean density of rainbow trout populations in 2015 was 98 fish per 0.1 hectare, which was the highest value observed since 2010, and the mean biomass of rainbow trout populations in 2015 was 864 grams per 0.1 hectare, which was the highest value observed since 2012.
Kut'in, S D; Konstantinov, V M
2008-01-01
Studies on specific features of nesting bird populations in patchy landscapes were performed in Meshchovsk Opolye, Kaluga Region, from 1981 to 1990. Indices of similarity between the avifaunas of agricultural fields, lowland bogs, and small-leaved forests markedly differed from parameters of their population density in rank and value. In the series of biotopes differing in the relative amount of woodland, from central areas of small-leaved forests to forest margins and then to forest islands gradually decreasing in size, the birds segregated into two distinct groups, one characteristic of forest margins and large forest islands and the other characteristic of small and very small forest islands. Specific features of bird density distribution in forest-meadow-field landscapes of Meshchovsk Opolye reflected heterogeneity of their populations manifested in diverse connections with nesting biotopes.
Lundy, Mark E.; Parrella, Michael P.
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026
Lundy, Mark E; Parrella, Michael P
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.
Non-invasive genetic censusing and monitoring of primate populations.
Arandjelovic, Mimi; Vigilant, Linda
2018-03-01
Knowing the density or abundance of primate populations is essential for their conservation management and contextualizing socio-demographic and behavioral observations. When direct counts of animals are not possible, genetic analysis of non-invasive samples collected from wildlife populations allows estimates of population size with higher accuracy and precision than is possible using indirect signs. Furthermore, in contrast to traditional indirect survey methods, prolonged or periodic genetic sampling across months or years enables inference of group membership, movement, dynamics, and some kin relationships. Data may also be used to estimate sex ratios, sex differences in dispersal distances, and detect gene flow among locations. Recent advances in capture-recapture models have further improved the precision of population estimates derived from non-invasive samples. Simulations using these methods have shown that the confidence interval of point estimates includes the true population size when assumptions of the models are met, and therefore this range of population size minima and maxima should be emphasized in population monitoring studies. Innovations such as the use of sniffer dogs or anti-poaching patrols for sample collection are important to ensure adequate sampling, and the expected development of efficient and cost-effective genotyping by sequencing methods for DNAs derived from non-invasive samples will automate and speed analyses. © 2018 Wiley Periodicals, Inc.
Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik
2015-01-01
Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway. PMID:26601785
NASA Astrophysics Data System (ADS)
Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik
2015-11-01
Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.
Zhang, Yong; Jia, Qiang; Prins, Herbert H T; Cao, Lei; de Boer, Willem Frederik
2015-11-25
Forage quality and availability, climatic factors, and a wetland's conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years' census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.
Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.
Husband, Brian C; Barrett, Spencer C H
1992-03-01
The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m 2 /minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.
Johnson, Fred A.; Madsen, Jesper
2013-01-01
This report describes progress on the development of an adaptive harvestmanagement strategy for maintaining the Svalbard population of pink-footed geese near their agreed target level (60,000) by providing for sustainable harvests in Norway and Denmark. Specifically, this report provides an optimal harvest quota for the 2013-2015 hunting seasons and describes a process for evaluating whether emergency hunting closures would be needed during that period. By combining varying hypotheses about survival and reproduction, a suite of nine models have been developed that represent a wide range of possibilities concerning the extent to which demographic rates are density dependent or independent, and the extent to which spring temperatures are important. The most current set of monitoring information was used to update model weights for the 1991 – 2012 period. Current model weights suggest no evidence for density-dependent survival. These results suggest that the pink-footed goose population may have recently experienced a release from density-dependent mechanisms, corresponding to the period of most rapid growth in population size. There was equivocal evidence for the effect of May temperature days (number of days with temperatures above freezing) on survival and on reproduction. The optimal harvest strategy suggests that the appropriate annual harvest quota for the 20132015 period is 15,000; hence there is no need to take emergency measures to close the upcoming hunting season. For comparison, the estimated harvest in 2012 was 11,000. If the harvest quota of 15,000 were met, the autumn 2013 population count is expected to be 76,000. If only the most recent 3-year mean harvest were realized (11,500), an autumn population size of 80,000 thousand is expected. Thus, it may be that harvest is approaching the magnitude needed to stabilize the population.
Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.
Böhning, Dankmar; Kuhnert, Ronny
2006-12-01
This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.
The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers
NASA Astrophysics Data System (ADS)
Gargiulo, Adriana; Vipers Team
2017-06-01
At fixed stellar mass, the population of passive galaxies has increased its mean effective radius < Re > by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in < Re > is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 < z < 1.0 and to study, with unprecedented statistics, the evolution of their number density as function of their mean stellar mass density in this redshift range. Taking advantage of both spectroscopic (D4000) and photometric (SED fitting) data available, we studied the age of the stellar population of passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.
How can mortality increase population size? A test of two mechanistic hypotheses.
McIntire, Kristina M; Juliano, Steven A
2018-05-03
Overcompensation occurs when added mortality increases survival to the next life-cycle stage. Overcompensation can contribute to the Hydra Effect, wherein added mortality increases equilibrium population size. One hypothesis for overcompensation is that added mortality eases density-dependence, increasing survival to adulthood ("temporal separation of mortality and density dependence"). Mortality early in the life cycle is therefore predicted to cause overcompensation, whereas mortality later in the life cycle is not. Another hypothesis for overcompensation is that threat of mortality (e.g., from predation) causes behavioral changes that reduce overexploitation of resources, allowing resource recovery, and increasing production of adults ("prudent resource exploitation"). Behaviorally active predation cues alone are therefore predicted to cause overcompensation. We tested these predictions in two experiments with larvae of two species of Aedes. As predicted, early mortality yielded greater production of adults, and of adult females, and greater estimated rate of population increase than did later mortality. Addition of water-borne predation cues usually reduced browsing on surfaces in late-stage larvae, but contrary to prediction, resulted in neither significantly greater production of adult mosquitoes nor significantly greater estimated rate of increase. Thus we have strong evidence that timing of mortality contributes to overcompensation and the Hydra effect in mosquitoes. Evidence that predation cues alone can result in overcompensation via prudent resource exploitation is lacking. We expect the overcompensation in response to early mortality will be common in organisms with complex life cycles, density dependence among juveniles, and developmental control of populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
EFFECTS OF LUPINUS PERENNIS POPULATION SIZE AND LOCAL DENSITY ON POLLINATOR BEHAVIOR. (R826596)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Assessing Predictive Properties of Genome-Wide Selection in Soybeans
Xavier, Alencar; Muir, William M.; Rainey, Katy Martin
2016-01-01
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786
Clinical review: Ethnic differences in bone mass--clinical implications.
Leslie, William D
2012-12-01
Differences in bone mineral density (BMD) as assessed with dual-energy x-ray absorptiometry are observed between geographic and ethnic groups, with important implications in clinical practice. PubMed was employed to identify relevant studies. A review of the literature was conducted, and data were summarized and integrated. The available data highlight the complex ethnic variations in BMD, which only partially account for observed variations in fracture rates. Factors contributing to ethnic differences include genetics, skeletal size, body size and composition, lifestyle, and social determinants. Despite BMD differences, the gradient of risk for fracture from BMD and other clinical risk factors appears to be similar across ethnic groups. Furthermore, BMD variation is greater within an ethnic population than between ethnic populations. New imaging technologies have identified ethnic differences in bone geometry, volumetric density, microarchitecture, and estimated bone strength that may contribute to a better understanding of ethnic differences in fracture risk. Factors associated with ethnicity affect BMD and fracture risk through direct and indirect mechanisms.
Factors affecting unintentional harvesting selectivity in a monomorphic species.
Bunnefeld, Nils; Baines, David; Newborn, David; Milner-Gulland, E J
2009-03-01
1. Changes in the abundance of populations have always perplexed ecologists but long-term studies are revealing new insights into population dynamic processes. Long-term data are often derived from harvest records although many wild populations face high harvesting pressures leading to overharvesting and extinction. Additionally, harvest records used to describe population processes such as fluctuations in abundance and reproductive success often assume a random off-take. 2. Selective harvesting based on phenotypic characteristics occurs in many species (e.g. trophy hunting, fisheries) and has important implications for population dynamics, conservation and management. 3. In species with no marked morphological differences between the age and sex classes, such as the red grouse Lagopus lagopus scoticus during the shooting season, hunters cannot consciously select for a specific sex or age class during the shooting process but harvest records could still give a biased reflection of the population structure because of differences in behaviour between age and sex classes. 4. This study compared age and sex ratios in the bag with those in the population before shooting for red grouse at different points in the shooting season and different densities, which has rarely been tested before. 5. More young than old grouse were shot at large bag sizes and vice versa for small bag sizes than would be expected from the population composition before shooting. The susceptibility of old males to shooting compared to females increased with bag size and was high at the first time the area was shot but decreased with the number of times an area was harvested. 6. These findings stress that the assumption made in many studies that harvest records reflect the age and sex ratio of the population and therefore reflect productivity can be misleading. 7. In this paper, as in the literature, it is also shown that number of grouse shot reflects grouse density and therefore that hunting selectivity might influence population dynamics in a cyclic species. 8. The study is not only relevant for red grouse but applies to systems showing interactions between selective harvesting and wider ecological processes, such as age- and sex-related parasitism and territoriality, which may drive population fluctuations.
Parasite transmission in social interacting hosts: Monogenean epidemics in guppies
Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.
2011-01-01
Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.
Parasite transmission in social interacting hosts: Monogenean epidemics in guppies
Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne
2011-01-01
Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.
Population dynamics of pond zooplankton II Daphnia ambigua Scourfield
Angino, E.E.; Armitage, K.B.; Saxena, B.
1973-01-01
Calcium was the most important of 27 environmental components affecting density for a 50 week period. Simultaneous stepwise regression accounted for more variability in total number/1 and in the number of ovigerous females/1 than did any of the lag analyses; 1-week lag accounted for the greatest amount of variability in clutch size. Total number and clutch size were little affected by measures of food. ?? 1973 Dr. W. Junk b.v. Publishers.
Characterizing fishing effort and spatial extent of coastal fisheries.
Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B
2010-12-29
Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
Size and spatial distribution of stray dog population in the University of São Paulo campus, Brazil.
Dias, Ricardo Augusto; Guilloux, Aline Gil Alves; Borba, Mauro Riegert; Guarnieri, Maria Cristina de Lourdes; Prist, Ricardo; Ferreira, Fernando; Amaku, Marcos; Neto, José Soares Ferreira; Stevenson, Mark
2013-06-01
A longitudinal study was carried out to describe the size and spatial distribution of the stray dog population in the University of São Paulo campus, Brazil from November 2010 to November 2011. The campus is located within the urban area of São Paulo, the largest city of Brazil, with a population over 11 million. The 4.2 km(2) that comprise the university grounds are walled, with 10 access gates, allowing stray dogs to move in and out freely. Over 100,000 people and 50,000 vehicles circulate in the campus daily. Five observations were made during the study period, using a mark-resight method. The same route was performed in all observations, being traveled twice on each observation day. Observed animals were photographed and the sight coordinates were obtained using a GPS device. The estimated size of the stray dog population varied from 32 (CI 95% 23-56) to 56 (CI 95% 45-77) individuals. Differences between in- and outward dog movements influenced dog population estimates. Overlapping home ranges of docile dogs were observed in areas where most people circulate. An elusive group was observed close to a protected rain forest area and the estimated home range for this group did not overlap with the home ranges for other dogs within the campus. A kernel density map showed that higher densities of stray dog sighting is associated with large organic matter generators, such as university restaurants. We conclude that the preferred source of food of the stray dogs on the University of São Paulo campus was leftover food deliberately offered by restaurant users. The population was stable during the study period and the constant source of food was the main reason to retain this population within the campus. Copyright © 2012 Elsevier B.V. All rights reserved.
DePerno, Christopher S.
2017-01-01
Comparisons of recent and historic population demographic studies of eastern hellbenders Cryptobranchus alleganiensis alleganiensis have identified significant population declines and extirpations associated with habitat degradation, poor water quality and disease, leading to nomination as a candidate for listing under the Endangered Species Act. However, populations in the southern Appalachian region of the range have received less attention despite relatively high levels of watershed protection due to the establishment of federally protected National Forest and National Park public lands. These watersheds likely represent some of the best remaining available habitat, yet the lack of published studies make assessment of population stability and viability very difficult. Our objectives were to (1) conduct a capture-mark-recapture (CMR) demographic study and a point transect survey on the Hiwassee River in Tennessee which is designated a National Scenic River, and is largely contained within the Cherokee National Forest, (2) quantify the size structure of the population, (3) compare abundance, survival and recruitment with historic and contemporary hellbender populations across the range, (4) assess the importance of this population and the significance of National Forest and National Park lands in the context of hellbender population conservation in the southeastern United States. We detected all age classes present, with larval hellbenders comprising 21.5% of captures. Using a combination of static life table and CMR methods, we determined that survival rates during the first year were low (~10%), but were high (68–94%) for taggable sized hellbenders. Density of hellbenders at the study site was very high (84 taggable sized hellbenders per 100m of river) compared to recent demographic studies conducted in other regions of the range. We detected hellbenders over ~28 km of river, with a mean density of 23 taggable sized hellbenders per 100m of river, and a total population estimate of 6440 taggable hellbenders. National Forest and National Park lands are likely to continue to play a particularly important role in providing suitable habitat for hellbenders in the southern Appalachians. In fact, only six of 21 known hellbender locations in Tennessee appear to show consistent larval recruitment, all of which are located within or adjacent to National Forest or National Park land. PMID:28594881
Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki
2010-09-01
A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.
Electrophoretic cell separation using microspheres. [purification of lymphocytes
NASA Technical Reports Server (NTRS)
Smolka, A.; Sachs, G.
1980-01-01
Methods of cell separation based on the electrokinetic properties of the cell membrane offer a degree of discrimination among cell populations which is not available with methods based on cell size or density alone. Studies aimed at extending red cell separations using microspheres to purification of lymphocytes.
THE EFFECTS OF POPULATION SIZE AND DENSITY ON THE MATING SYSTEM OF LUPINUS PERENNIS. (R826596)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study
Schutte, Rudolph; Nawrot, Tim S.; Richart, Tom; Thijs, Lutgarde; Vanderschueren, Dirk; Kuznetsova, Tatiana; Van Hecke, Etienne; Roels, Harry A.; Staessen, Jan A.
2008-01-01
Background Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. Objective We sought evidence for a direct osteotoxic effect of cadmium in women. Methods We randomly recruited 294 women (mean age, 49.2 years) from a Flemish population with environmental cadmium exposure. We measured 24-hr urinary cadmium and blood cadmium as indexes of lifetime and recent exposure, respectively. We assessed the multivariate-adjusted association of exposure with specific markers of bone resorption, urinary hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), as well as with calcium excretion, various calciotropic hormones, and forearm bone density. Results In all women, the effect sizes associated with a doubling of lifetime exposure were 8.4% (p = 0.009) for HP, 6.9% (p = 0.10) for LP, 0.77 mmol/day (p = 0.003) for urinary calcium, –0.009 g/cm2 (p = 0.055) for proximal forearm bone density, and –16.8% (p = 0.065) for serum parathyroid hormone. In 144 postmenopausal women, the corresponding effect sizes were –0.01223 g/cm2 (p = 0.008) for distal forearm bone density, 4.7% (p = 0.064) for serum calcitonin, and 10.2% for bone-specific alkaline phosphatase. In all women, the effect sizes associated with a doubling of recent exposure were 7.2% (p = 0.001) for urinary HP, 7.2% (p = 0.021) for urinary LP, –9.0% (p = 0.097) for serum parathyroid hormone, and 5.5% (p = 0.008) for serum calcitonin. Only one woman had renal tubular dysfunction (urinary retinol-binding protein > 338 μg/day). Conclusions In the absence of renal tubular dysfunction, environmental exposure to cadmium increases bone resorption in women, suggesting a direct osteotoxic effect with increased calciuria and reactive changes in calciotropic hormones. PMID:18560534
ORDEM 3.0 and the Risk of High-Density Debris
NASA Technical Reports Server (NTRS)
Matney, Mark; Anz-Meador, Philip
2014-01-01
NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.
Takeshita, Kazutaka; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered. PMID:27711181
Asymmetric competition causes multimodal size distributions in spatially structured populations
Velázquez, Jorge; Allen, Robert B.; Coomes, David A.; Eichhorn, Markus P.
2016-01-01
Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts. PMID:26817778
Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.
2007-01-01
A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.
Rossing, N N; Stentoft, D; Flattum, A; Côté, J; Karbing, D S
2018-03-01
Previous studies have found significant differences in the likelihood of becoming an elite athlete depending on community population sizes and densities, an effect known as the place of early development, or birthplace effect. However, the results have not been consistent between sports or European countries. As both professional and voluntary clubs are vital to the talent development systems in Europe, the proximity of an athlete's place of early development to the location of talent clubs may be an important predictor of the likelihood of becoming an elite athlete. Therefore, the primary purpose of this study was to investigate the place of early development effect and the effect of proximity to talent clubs. The samples included elite youth league athletes (579 football and 311 handball) and national youth athletes (85 football and 80 handball) and a comparison group of 147 221 football and 26 290 handball youth athletes. Odds ratios showed variations in the optimal community size and density across sports. Geospatial analyses of proximity to talent clubs highlighted a trend indicating that most national and elite youth league athletes in both sports had their place of early development in their sport near a talent club. The results suggest that proximity is an important predictor in the development of expertise across sports, but future studies need to clarify if proximity is important in other countries and sports. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Grossman, Gary D.; Carline, Robert F.; Wagner, Tyler
2017-01-01
We examined the relationship between density-independent and density-dependent factors on the demography of a dense, relatively unexploited population of brown trout in Spruce Creek Pennsylvania between 1985 and 2011.Individual PCAs of flow and temperature data elucidated groups of years with multiple high flow versus multiple low flow characteristics and high versus low temperature years, although subtler patterns of variation also were observed.Density and biomass displayed similar temporal patterns, ranging from 710 to 1,803 trout/ha and 76–263 kg/ha. We detected a significantly negative linear stock-recruitment relationship (R2 = .39) and there was no evidence that flow or water temperature affected recruitment.Both annual survival and the per-capita rate of increase (r) for the population varied over the study, and density-dependent mechanisms possessed the greatest explanatory power for annual survival data. Temporal trends in population r suggested it displayed a bounded equilibrium with increases observed in 12 years and decreases detected in 13 years.Model selection analysis of per-capita rate of increase data for age 1, and adults (N = eight interpretable models) indicated that both density-dependent (five of eight) and negative density-independent processes (five of eight, i.e. high flows or temperatures), affected r. Recruitment limitation also was identified in three of eight models. Variation in the per-capita rate of increase for the population was most strongly affected by positive density independence in the form of increasing spring–summer temperatures and recruitment limitation.Model selection analyses describing annual variation in both mean length and mass data yielded similar results, although maximum wi values were low ranging from 0.09 to 0.23 (length) and 0.13 to 0.22 (mass). Density-dependence was included in 15 of 15 interpretable models for length and all ten interpretable models for mass. Similarly, positive density-independent effects in the form of increasing autumn–winter flow were present in seven of 15 interpretable models for length and five of ten interpretable models for mass. Negative density independent effects also were observed in the form of high spring–summer flows or temperatures (N = 4), or high autumn–winter temperatures (N = 1).Our analyses of the factors affecting population regulation in an introduced population of brown trout demonstrate that density-dependent forces affected every important demographic characteristic (recruitment, survivorship, the rate of increase, and size) within this population. However, density-independent forces in the form of seasonal variations in flow and temperature also helped explain annual variation in the per-capita rate of increase, and mean length and mass data. Consequently, population regulation within this population is driven by a complex of biotic and environmental factors, although it seems clear that density-dependent factors play a dominant role.
Effect of Exercise Training on Cardiac Biomarkers in At-Risk Populations: A Systematic Review.
Glenney, Susan Sullivan; Brockemer, Derrick Paul; Ng, Andy C; Smolewski, Michael A; Smolgovskiy, Vladimir M; Lepley, Adam S
2017-12-01
Studies have demonstrated beneficial effects of exercise on cardiovascular disease biomarkers for healthy individuals; however, a comprehensive review regarding the effect of exercise on cardiovascular disease biomarkers in at-risk populations is lacking. A literature search was performed to identify studies meeting the following criteria: randomized controlled study, participants with pathology/activity limitations, biomarker outcome (total cholesterol, high-density lipoprotein, low-density lipoprotein, C-reactive protein, insulin, triglycerides, or glucose), and exercise intervention. Means and standard deviations from each biomarker were used to calculate standardized Cohen's d effect sizes with 95% confidence intervals. In total, 37 articles were included. The majority (44/57; 77%) of data points demonstrated moderate to strong effects for the reduction in total cholesterol, triglycerides, and low-density lipoprotein, and elevation in high-density lipoprotein following exercise. The majority of data points demonstrated strong effects for reductions in blood glucose (24/30; 80%) and insulin (23/24; 96%) levels following exercise intervention. Evidence is heterogeneous regarding the influence of exercise on cardiovascular disease biomarkers in at-risk patients, which does not allow a definitive conclusion. Favorable effects include reductions in triglycerides, total cholesterol, low-density lipoprotein, glucose, and insulin, and elevation in high-density lipoprotein following exercise intervention. The strongest evidence indicates that exercise is favorable for the reduction in glucose and cholesterol levels among obese patients, and reduction of insulin regardless of population.
Agetsuma, Naoki; Koda, Ryosuke; Tsujino, Riyou; Agetsuma-Yanagihara, Yoshimi
2015-02-01
Population densities of wildlife species tend to be correlated with resource productivity of habitats. However, wildlife density has been greatly modified by increasing human influences. For effective conservation, we must first identify the significant factors that affect wildlife density, and then determine the extent of the areas in which the factors should be managed. Here, we propose a protocol that accomplishes these two tasks. The main threats to wildlife are thought to be habitat alteration and hunting, with increases in alien carnivores being a concern that has arisen recently. Here, we examined the effect of these anthropogenic disturbances, as well as natural factors, on the local density of Yakushima macaques (Macaca fuscata yakui). We surveyed macaque densities at 30 sites across their habitat using data from 403 automatic cameras. We quantified the effect of natural vegetation (broad-leaved forest, mixed coniferous/broad-leaved forest, etc.), altered vegetation (forestry area and agricultural land), hunting pressure, and density of feral domestic dogs (Canis familiaris). The effect of each vegetation type was analyzed at numerous spatial scales (between 150 and 3,600-m radii from the camera locations) to determine the best scale for explaining macaque density (effective spatial scale). A model-selection procedure (generalized linear mixed model) was used to detect significant factors affecting macaque density. We detected that the most effective spatial scale was 400 m in radius, a scale that corresponded to group range size of the macaques. At this scale, the amount of broad-leaved forest was selected as a positive factor, whereas mixed forest and forestry area were selected as negative factors for macaque density. This study demonstrated the importance of the simultaneous evaluation of all possible factors of wildlife population density at the appropriate spatial scale. © 2014 Wiley Periodicals, Inc.
Bacterial finite-size effects for population expansion under flow
NASA Astrophysics Data System (ADS)
Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc
2016-11-01
For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.
Savanna elephant numbers are only a quarter of their expected values
Robson, Ashley S.; Trimble, Morgan J.; Purdon, Andrew; Young-Overton, Kim D.; Pimm, Stuart L.; van Aarde, Rudi J.
2017-01-01
Savannas once constituted the range of many species that human encroachment has now reduced to a fraction of their former distribution. Many survive only in protected areas. Poaching reduces the savanna elephant, even where protected, likely to the detriment of savanna ecosystems. While resources go into estimating elephant populations, an ecological benchmark by which to assess counts is lacking. Knowing how many elephants there are and how many poachers kill is important, but on their own, such data lack context. We collated savanna elephant count data from 73 protected areas across the continent estimated to hold ~50% of Africa’s elephants and extracted densities from 18 broadly stable population time series. We modeled these densities using primary productivity, water availability, and an index of poaching as predictors. We then used the model to predict stable densities given current conditions and poaching for all 73 populations. Next, to generate ecological benchmarks, we predicted such densities for a scenario of zero poaching. Where historical data are available, they corroborate or exceed benchmarks. According to recent counts, collectively, the 73 savanna elephant populations are at 75% of the size predicted based on current conditions and poaching levels. However, populations are at <25% of ecological benchmarks given a scenario of zero poaching (~967,000)—a total deficit of ~730,000 elephants. Populations in 30% of the 73 protected areas were <5% of their benchmarks, and the median current density as a percentage of ecological benchmark across protected areas was just 13%. The ecological context provided by these benchmark values, in conjunction with ongoing census projects, allow efficient targeting of conservation efforts. PMID:28414784
Johnson, Fred A.; Madsen, Jesper
2016-01-01
This document describes progress to date on the development of an adaptive harvest management strategy for maintaining the Svalbard population of pink‐footed geese (Anser brachyrhynchus) near their agreed target level (60,000) by providing for sustainable harvests in Norway and Denmark. This report provides an assessment of the most recent monitoring information (1991-2015) and its implications for the harvest management strategy. By combining varying hypotheses about survival and reproduction, a suite of nine models have been developed that represent a wide range of possibilities concerning the extent to which demographic rates are density dependent or independent. These results suggest that the pink‐footed goose population may have recently experienced a release from density‐dependent mechanisms, corresponding to the period of most rapid growth in population size. Beginning with the 2016 hunting season, harvest quotas will be prescribed on an annual basis rather than every three years because of the potential to better meet population management objectives. Based on updated model weights, the recent observations of population size (74,800), the proportion of the population comprised of one-year-old birds (0.138), and temperature days in Svalbard (20), the optimal harvest quota for the 2016 hunting season is 25,000. The large increase in quota compared to that during first three years of AHM reflects stakeholders’ desire to reduce population size to the goal of 60,000, recognizing that population size remains relatively high and above-average production is expected in 2016 due to a warm spring.
Temporal variation in size-assortative mating and male mate choice in a spider with amphisexual care
NASA Astrophysics Data System (ADS)
Moura, Rafael R.; Gonzaga, Marcelo O.
2017-04-01
Males should be more selective when they have a high investment in reproduction, especially in species with biparental or paternal care. In this context, male mate choice can promote size-assortative mating (SAM) when (1) large males win intrasexual disputes, (2) large females are more fecund, and (3) males prefer larger females to smaller ones. In the spider Manogea porracea, males exhibit high reproductive investment by building their webs above those of females and exhibiting extended care of offspring in the absence of females. Under these circumstances, we expect the occurrence of SAM and male preference for large females. Herein, we performed observations and experiments in the field to evaluate the hypotheses that (1) M. porracea mates assortatively by size and (2) SAM is influenced by male mate choice. Furthermore, we measured variables that could affect mating patterns, the sex ratios, and densities of both sexes. Pairing in M. porracea was positively size-assortative in 2012, but not in 2013. Large males won most disputes for mates and preferred larger females, which produced more eggs. The inconsistency in detection of SAM was due to population dynamics, namely variations in sex ratio and population density across the breeding season. Furthermore, we found that the significance of male mate choice on sexual selection of body size in M. porracea strongly depends on the competition intensity for mating opportunities. The traditional sexual selection hypothesis of SAM needs to be reviewed and must include measures of competition intensity.
Inference about density and temporary emigration in unmarked populations
Chandler, Richard B.; Royle, J. Andrew; King, David I.
2011-01-01
Few species are distributed uniformly in space, and populations of mobile organisms are rarely closed with respect to movement, yet many models of density rely upon these assumptions. We present a hierarchical model allowing inference about the density of unmarked populations subject to temporary emigration and imperfect detection. The model can be fit to data collected using a variety of standard survey methods such as repeated point counts in which removal sampling, double-observer sampling, or distance sampling is used during each count. Simulation studies demonstrated that parameter estimators are unbiased when temporary emigration is either "completely random" or is determined by the size and location of home ranges relative to survey points. We also applied the model to repeated removal sampling data collected on Chestnut-sided Warblers (Dendroica pensylvancia) in the White Mountain National Forest, USA. The density estimate from our model, 1.09 birds/ha, was similar to an estimate of 1.11 birds/ha produced by an intensive spot-mapping effort. Our model is also applicable when processes other than temporary emigration affect the probability of being available for detection, such as in studies using cue counts. Functions to implement the model have been added to the R package unmarked.
Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon
Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.
2016-01-01
Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.
Food resource effects on diel movements and body size of cisco in north-temperate lakes.
Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L
2013-12-01
The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.
A tale of two polar bear populations: Ice habitat, harvest, and body condition
Rode, Karyn D.; Peacock, Elizabeth; Taylor, Mitchell K.; Stirling, Ian; Born, Erik W.; Laidre, Kristin L.; Wiig, Øystein
2012-01-01
One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.
Grossi, D A; Brito, L F; Jafarikia, M; Schenkel, F S; Feng, Z
2018-04-30
The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.
Harvesting, predation and competition effects on a red coral population
NASA Astrophysics Data System (ADS)
Abbiati, M.; Buffoni, G.; Caforio, G.; Di Cola, G.; Santangelo, G.
A Corallium rubrum population, dwelling in the Ligurian Sea, has been under observation since 1987. Biometric descriptors of colonies (base diameter, weight, number of polyps, number of growth rings) have been recorded and correlated. The population size structure was obtained by distributing the colonies into diameter classes, each size class representing the average annual increment of diameter growth. The population was divided into ten classes, including a recruitment class. This size structure showed a fairly regular trend in the first four classes. The irregularity of survival in the older classes agreed with field observations on harvesting and predation. Demographic parameters such as survival, growth plasticity and natality coefficients were estimated from the experimental data. On this basis a discrete nonlinear model was implemented. The model is based on a kind of density-dependent Leslie matrix, where the feedback term only occurs in survival of the first class; the recruitment function is assumed to be dependent on the total biomass and related to inhibiting effects due to competitive interactions. Stability analysis was applied to steady-state solutions. Numerical simulations of population evolution were carried out under different conditions. The dynamics of settlement and the effects of disturbances such as harvesting, predation and environmental variability were studied.
Colony mapping: A new technique for monitoring crevice-nesting seabirds
Renner, H.M.; Renner, M.; Reynolds, J.H.; Harping, A.M.A.; Jones, I.L.; Irons, D.B.; Byrd, G.V.
2006-01-01
Monitoring populations of auklets and other crevice-nesting seabirds remains problematic, although numerous methods have been attempted since the mid-1960s. Anecdotal evidence suggests several large auklet colonies have recently decreased in both abundance and extent, concurrently with vegetation encroachment and succession. Quantifying changes in the geographical extent of auklet colonies may be a useful alternative to monitoring population size directly. We propose a standardized method for colony mapping using a randomized systematic grid survey with two components: a simple presence/absence survey and an auklet evidence density survey. A quantitative auklet evidence density index was derived from the frequency of droppings and feathers. This new method was used to map the colony on St. George Island in the southeastern Bering Sea and results were compared to previous colony mapping efforts. Auklet presence was detected in 62 of 201 grid cells (each grid cell = 2500 m2) by sampling a randomly placed 16 m2 plot in each cell; estimated colony area = 155 000 m2. The auklet evidence density index varied by two orders of magnitude across the colony and was strongly correlated with means of replicated counts of birds socializing on the colony surface. Quantitatively mapping all large auklet colonies is logistically feasible using this method and would provide an important baseline for monitoring colony status. Regularly monitoring select colonies using this method may be the best means of detecting changes in distribution and population size of crevice-nesting seabirds. ?? The Cooper Ornithological Society 2006.
Population ecology of variegate darter (Etheostoma variatum) in Virginia
Argentina, Jane E.; Angermeier, Paul; Hallerman, Eric M.
2013-01-01
Variegate darters (Etheostoma variatum) were listed as endangered in Virginia in 1992. Reasons for listing included habitat degradation and concerns about current and future impacts of coal mining throughout their Virginia range. Prior to this research, little was known about variegate darter distribution, habitat use, or populations in Virginia. Two primary goals of this research were to gain knowledge about the current population ecology and the relationship between landscape-level factors (e.g., land cover changes, watershed size, isolation from other populations) on current and past variegate darter population sizes.We investigated distribution, habitat suitability, population genetics, and population size and structure of variegate darters in the upper Big Sandy River drainage, Buchanan, Dickenson, and Wise Co., Virginia. Our results indicate variegate darters are primarily found in the Levisa Fork, with highest densities and abundances between its confluence with Dismal Creek and the Virginia-Kentucky border. Sporadic occurrences in smaller tributaries to the Levisa and Tug forks indicate they exist more widely in low densities, especially near the confluence with the Tug and Levisa mainstems. Detection of variegate darters in smaller tributaries was inconsistent, with reach-level occupancy estimates varying among years. We detected young-of-year variegate darters every year we sampled, but age 1+ darters were indistinguishable from older darters based on standard length.Variegate darter population size and stability in Virginia were estimated via multiple methods, including site occupancy surveys, mark-recapture studies, and population genetic analysis. Using mark-recapture methods at five sites, we estimated overall population size in 2011 to be approximately 12,800 individuals in the 35-km reach between the Levisa Fork - Dismal Creek confluence and the Virginia-Kentucky border. Age structure seemed stable, with breeding adults and young-of-year collected annually during 2008-2011. Population genetic analysis indicated variegate darters in the Levisa Fork and its tributaries are part of a single genetic population. Historical and current genetic stability were seen in our analysis of the variegate darter population, with no genetic differentiation among riffles across the upper Levisa Fork watershed, indicating dispersal among these sites is enough to overcome random genetic drift. This population is genetically isolated from downstream populations by the dam at Fishtrap Lake, Pike Co., Kentucky, and is beginning to show genetic isolation from other nearby populations. As expected, the Virginia population is most closely related to those in the Russell Fork and Levisa Fork downstream of the dam.Regular monitoring of variegate darters in the Levisa Fork mainstem from the Dismal Creek confluence to the Virginia-Kentucky border would facilitate better understanding of normal fluctuations of population size and distribution, as well as assessments of population status. This reach encompasses the core of the variegate darter population in Virginia, and its persistence will determine long-term viability of this species. Given that little is known about long-term population trends, we suggest that annual site-occupancy and population size estimates be made at ten randomly selected riffles for at least ten years to understand normal levels of variability. Thereafter, these population parameters could be monitored bi-annually as a way to detect shrinking distribution or abundance, especially after any fish kill or other pollution event in the Levisa Fork. We further suggest that the sites upstream and downstream of the saline diffusor pipe be monitored to detect changes in the extent of the impact zone.Overall, the variegate darter population in Virginia appears stable, although primarily confined to the lower 35 km of the Levisa Fork. Nevertheless, variegate darters in Virginia remain susceptible to extirpation due to catastrophic events, both physical (chemical spill) and biological (disease outbreak or invasive species introduction).
Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia
Gimenez, Olivier; Ambu, Laurentius; Ancrenaz, Karine; Andau, Patrick; Goossens, Benoît; Payne, John; Sawang, Azri; Tuuga, Augustine; Lackman-Ancrenaz, Isabelle
2005-01-01
Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah. PMID:15630475
Miller, Colleen R; Latimer, Christopher E; Zuckerberg, Benjamin
2018-05-01
Allen's rule predicts that homeotherms inhabiting cooler climates will have smaller appendages, while those inhabiting warmer climates will have larger appendages relative to body size. Birds' bills tend to be larger at lower latitudes, but few studies have tested whether modern climate change and urbanization affect bill size. Our study explored whether bill size in a wide-ranging bird would be larger in warmer, drier regions and increase with rising temperatures. Furthermore, we predicted that bill size would be larger in densely populated areas, due to urban heat island effects and the higher concentration of supplementary foods. Using measurements from 605 museum specimens, we explored the effects of climate and housing density on northern cardinal bill size over an 85-year period across the Linnaean subspecies' range. We quantified the geographic relationships between bill surface area, housing density, and minimum temperature using linear mixed effect models and geographically weighted regression. We then tested whether bill surface area changed due to housing density and temperature in three subregions (Chicago, IL., Washington, D.C., and Ithaca, NY). Across North America, cardinals occupying drier regions had larger bills, a pattern strongest in males. This relationship was mediated by temperature such that birds in warm, dry areas had larger bills than those in cool, dry areas. Over time, female cardinals' bill size increased with warming temperatures in Washington, D.C., and Ithaca. Bill size was smaller in developed areas of Chicago, but larger in Washington, D.C., while there was no pattern in Ithaca, NY. We found that climate and urbanization were strongly associated with bill size for a wide-ranging bird. These biogeographic relationships were characterized by sex-specific differences, varying relationships with housing density, and geographic variability. It is likely that anthropogenic pressures will continue to influence species, potentially promoting microevolutionary changes over space and time.
Sub- and supercritical jet disintegration
NASA Astrophysics Data System (ADS)
DeSouza, Shaun; Segal, Corin
2017-04-01
Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.
de Sherbinin, Alex; Carr, David; Cassels, Susan; Jiang, Leiwen
2009-01-01
The interactions between human population dynamics and the environment have often been viewed mechanistically. This review elucidates the complexities and contextual specificities of population-environment relationships in a number of domains. It explores the ways in which demographers and other social scientists have sought to understand the relationships among a full range of population dynamics (e.g., population size, growth, density, age and sex composition, migration, urbanization, vital rates) and environmental changes. The chapter briefly reviews a number of the theories for understanding population and the environment and then proceeds to provide a state-of-the-art review of studies that have examined population dynamics and their relationship to five environmental issue areas. The review concludes by relating population-environment research to emerging work on human-environment systems. PMID:20011237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet
Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit amore » density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.« less
Thompson, Craig M.; Royle, J. Andrew; Garner, James D.
2012-01-01
Wildlife management often hinges upon an accurate assessment of population density. Although undeniably useful, many of the traditional approaches to density estimation such as visual counts, livetrapping, or mark–recapture suffer from a suite of methodological and analytical weaknesses. Rare, secretive, or highly mobile species exacerbate these problems through the reality of small sample sizes and movement on and off study sites. In response to these difficulties, there is growing interest in the use of non-invasive survey techniques, which provide the opportunity to collect larger samples with minimal increases in effort, as well as the application of analytical frameworks that are not reliant on large sample size arguments. One promising survey technique, the use of scat detecting dogs, offers a greatly enhanced probability of detection while at the same time generating new difficulties with respect to non-standard survey routes, variable search intensity, and the lack of a fixed survey point for characterizing non-detection. In order to account for these issues, we modified an existing spatially explicit, capture–recapture model for camera trap data to account for variable search intensity and the lack of fixed, georeferenced trap locations. We applied this modified model to a fisher (Martes pennanti) dataset from the Sierra National Forest, California, and compared the results (12.3 fishers/100 km2) to more traditional density estimates. We then evaluated model performance using simulations at 3 levels of population density. Simulation results indicated that estimates based on the posterior mode were relatively unbiased. We believe that this approach provides a flexible analytical framework for reconciling the inconsistencies between detector dog survey data and density estimation procedures.
McCreesh, Nicky; Arinaitwe, Moses; Arineitwe, Wilber; Tukahebwa, Edridah M; Booth, Mark
2014-11-12
Mathematical models can be used to identify areas at risk of increased or new schistosomiasis transmission as a result of climate change. The results of these models can be very different when parameterised to different species of host snail, which have varying temperature preferences. Currently, the experimental data needed by these models are available for only a few species of snail. The choice of density-dependent functions can also affect model results, but the effects of increasing densities on Biomphalaria populations have only previously been investigated in artificial aquariums. Laboratory experiments were conducted to estimate Biomphalaria sudanica mortality, fecundity and growth rates at ten different constant water temperatures, ranging from 13-32°C. Snail cages were used to determine the effects of snail densities on B. sudanica and B. stanleyi mortality and fecundity rates in semi-natural conditions in Lake Albert. B. sudanica survival and fecundity were highest at 20°C and 22°C respectively. Growth in shell diameter was estimated to be highest at 23°C in small and medium sized snails, but the relationship between temperature and growth was not clear. The fecundity of both B. sudanica and B. stanleyi decreased by 72-75% with a four-fold increase in population density. Increasing densities four-fold also doubled B. stanleyi mortality rates, but had no effect on the survival of B. sudanica. The optimum temperature for fecundity was lower for B. sudanica than for previously studied species of Biomphalaria. In contrast to other Biomphalaria species, B. sudanica have a distinct peak temperature for survival, as opposed to a plateau of highly suitable temperatures. For both B. stanleyi and B. sudanica, fecundity decreased with increasing population densities. This means that snail populations may experience large fluctuations in numbers, even in the absence of any external factors such as seasonal temperature changes. Survival also decreased with increasing density for B. stanleyi, in contrast to B. sudanica and other studied Biomphalaria species where only fecundity has been shown to decrease.
Status and distribution of the angonoka tortoise (Geochelone yniphora) of western Madagascar
Smith, Lora L.; Reid, Don; Robert, Bourou; Joby, Mahatoly; Clement, Sibo
1999-01-01
From 1993 to 1995, field surveys were conducted in western Madagascar to assess the current status of the angonoka tortoise (Geochelone yniphora) in the wild. Tortoise presence was documented at 10 of 11 localities surveyed. These localities represent at least five populations, all within a 30-km radius of Baly Bay, near the town of Soalala. The populations occur on fragments of habitat ranging from <50 to 4–6000 ha in size. One hundred and forty-five tortoises were marked in the five populations. Hatchling or juvenile tortoises were observed in all populations, indicating that reproduction was occurring. Most of the 145 tortoises (68%) were marked on Cape Sada, where monthly surveys were conducted. The tortoise density on the c. 150 ha peninsula was 0.66 tortoises/ha. The remains of 22 dead juveniles were found on Cape Sada over the 2-year period. This evidence, combined with the low number of juveniles in intermediate size classes in the Cape Sada population suggests that juvenile mortality may be high.
Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi
2017-03-01
The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.
NASA Astrophysics Data System (ADS)
Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.
2001-02-01
The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1994-01-01
We simulate collisional evolution of grains in dense turbulent molecular cloud cores (or Bok globules) in static equilibrium and free-fall collapse, assuming spherical symmetry. Relative velocities are due to thermal motions, differential settling, and turbulence, with the latter dominant for sonic turbulence with an assumed Kolmogorov spectrum. Realistic criteria are used to determine outcomes of collisions (coagulation vs. destruction) as functions of particle size and velocity. Results are presented for a variety of cloud parameters (radial density profile, turbulent velocity) and particle properties (density, impact strength). Results are sensitive to the assumed mechanical properties (density and impact strength) of grain aggregates. Particle growth is enhanced if aggregates have low density or fractal structures. On a timescale of a few Myr, an initial population of 0.1 micrometers grains may produce dense compact particles approximately 1 micrometer in size, or fluffy aggregates approximately 100 micrometers. For impact strengths less than or equal to 10(exp 6) ergs/g, a steady state is reached between coagulation of small grains and collisional disruption of larger aggregates. Formation of macroscopic aggregates requires high mechanical strengths and low aggregate densities. We assume sonic turbulence during collapse, with varied eddy size scales determining the dissipation rate or turbulence strength. The degree of collisional evolution during collapse is sensitive to the assumed small-scale structure (inner sc ale) of the turbulence. Weak turbulence results in few collisions and preserves the precollapse particle size distribution with little change. Strong turbulence tends to produce net destruction, rather than particle growth, during infall, unless inpact strengths are greater than 10(exp 6)ergs/g.
NASA Astrophysics Data System (ADS)
Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.
2017-10-01
Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.
Habitable pore space and survival ofRhizobium leguminosarum biovartrifolii introduced into soil.
Postma, J; van Veen, J A
1990-03-01
The hypothesis that the population size of introduced bacteria is affected by habitable pore space was studied by varying moisture content and bulk density in sterilized, as well as in natural loamy sand and silt loam. The soils were inoculated withRhizobium leguminosarum biovartrifolii and established and maintained at soil water potentials between -5 and -20 kPa (pF 1.7 and 2.3). Rhizobial cells were enumerated when population sizes were expected to be more or less stable. In sterilized soils, the rhizobial numbers were not affected or decreased only slightly when water potentials increased from -20 to -5 kPa. In natural soils, the decrease in rhizobial numbers with increasing water potentials was more pronounced. Bulk density had only minor effects on the population sizes of rhizobia or total bacteria. Soil water retention curves of both soils were used to calculate volume and surface area of pores from different diameter classes, and an estimation of the habitable pore space was made. Combining these values of the theoretical habitable pore space with the measured rhizobial numbers showed that only 0.37 and 0.44% of the habitable pore space was occupied in the sterilized loamy sand and silt loam, respectively. The situation in natural soil is more complicated, since a whole variety of microorganisms is present. Nevertheless, it was suggested that, in general, pore space does not limit proliferation and growth of soil microorganisms.
NASA Astrophysics Data System (ADS)
Rubal, Marcos; Veiga, Puri; Moreira, Juan; Sousa-Pinto, Isabel
2014-03-01
The intertidal gastropod Phorcus sauciatus is a subtropical grazer that reaches its northern boundary in the Iberian Peninsula. Distribution of P. sauciatus along the Iberian Peninsula shows, however, gaps in its distribution. The present study was aimed at detecting possible recent changes on the population structure and distribution of P. sauciatus along the north-west Atlantic coast of the Iberian Peninsula. To achieve this aim, we adopted a qualitative sampling design to explore the presence of P. sauciatus along a region within its historical gap of distribution (north Portuguese coast). In addition, a quantitative sampling design was adopted to test hypotheses about the abundance and size structure of P. sauciatus populations among regions with different historical records of its abundance and among shores with different exposure. Results showed that P. sauciatus was present along the north Portuguese coast. However, the abundance and size structure of the newly settled populations were significantly different to those of the historically recorded populations. Moreover, P. sauciatus was able to establish populations at sheltered shores. Considering these results, we propose models for the distribution of P. sauciatus along the Iberian Peninsula, based on effects of sea surface temperature, and to explain the size-frequency of their populations based on their density.
Hardstaff, Joanne L; Bulling, Mark T; Marion, Glenn; Hutchings, Michael R; White, Piran C L
2012-06-27
The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6-8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such external sources of infection.
2012-01-01
Background The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. Results The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6–8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. Conclusions External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such external sources of infection. PMID:22738118
Density vs. disease: Crustaceans in a temperate marine protected area
NASA Astrophysics Data System (ADS)
Davies, C. E.; Johnson, A. F.; Wootton, E. C.; Greenwood, S.; Clark, K. F.; Vogan, C. L.; Rowley, A. F.
2016-02-01
Since the move towards an ecosystem-based approach in fisheries management, marine protected areas (MPAs) have become increasingly popular. Implementation, however, is somewhat contentious and as a result of their short history, effects are still widely unknown and understudied. Here, we investigated the health of brown crab Cancer pagurus and European lobster Homarus gammarus populations in the Lundy Island MPA after 7 years of no-take protection. Population parameters (size, sex, abundance), disease (shell disease, Hematodinium spp., gaffkaemia) and injury presence (a known precursor to disease) were assessed over two years in both an un-fished no-take zone (NTZ) and a fished refuge zone (RZ). There was a higher lobster density and larger lobsters in the NTZ compared with the RZ, but an opposite trend for crabs. The probability of shell disease increased notably in lobsters over the minimum landing size (MLS), in those displaying injury, and in males. Injury presence was higher in lobsters in the NTZ compared with the RZ and in those above the MLS. Gaffkaemia was detected in <1% of lobsters. The number of injured crabs increased significantly over the two years surveyed (12%), as did the prevalence of shell disease (15%). The probability of shell disease increased significantly for male crabs and for those missing limbs. Crabs below the MLS had an increased probability of being injured. Overall, the study demonstrates both positive and potentially negative effects of long-term NTZs. Recovering populations in NTZs may be more susceptible to disease as a result of increased injury through density-dependent interaction. This in turn may lead to increased disease infection. The findings highlight the necessity for long-term MPA management to include monitoring of population abundance, as well as secondary community change effects such as disease increase, both before and after implementation.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.
Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A
2016-02-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales. © 2015 John Wiley & Sons Ltd.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems
Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.
2016-01-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.
Kiffney, P.M.; Pess, G.R.; Anderson, J.H.; Faulds, P.; Burton, Kenneth; Riley, S.C.
2009-01-01
Migration barriers are a major reason for species loss and population decline of freshwater organisms. Significant efforts have been made to remove or provide passage around these barriers; however, our understanding of the ecological effects of these efforts is minimal. Installation of a fish passage facility at the Landsburg Dam, WA, USA provided migratory fish access to habitat from which they had been excluded for over 100 years. Relying on voluntary recruitment, we examined the effectiveness of this facility in restoring coho (Oncorhynchus kisutch) salmon populations above the diversion, and whether reintroduction of native anadromous species affected the distribution and abundance of resident trout (O. mykiss and O. clarki). Before the ladder, late summer total salmonid (trout only) density increased with distance from the dam. This pattern was reversed after the ladder was opened, as total salmonid density (salmon {thorn} trout) approximately doubled in the three reaches closest to the dam. These changes were primarily due to the addition of coho, but small trout density also increased in lower reaches and decreased in upper reaches. A nearby source population, dispersal by adults and juveniles, low density of resident trout and high quality habitat above the barrier likely promoted rapid colonization of targeted species. Our results suggest that barrier removal creates an opportunity for migratory species to re-establish populations leading to range expansion and potentially to increased population size. ?? 2008 John Wiley & Sons, Ltd.
Diaz Curiel, M; Carrasco de la Peña, J L; Honorato Perez, J; Perez Cano, R; Rapado, A; Ruiz Martinez, I
1997-01-01
The aim of this study was to generate standard curves for bone mineral density (BMD) in a Spanish population using dual-energy X-ray absorptiometry (DXA), at both lumbar spine and femoral neck sites. The total sample size was 2442 subjects of both sexes aged 20-80 years, stratified according to survival rates, demographic distribution by local regions and sex ratio in the Spanish population. Subjects with suspected conditions affecting bone metabolism or receiving any treatment affecting bone mineralization were excluded. The study was carried out in 14 hospitals and bone density measurements were performed, using a QDR/ 1000 Hologic device. In the female population, the highest value for lumbar spine BMD was found within the 30-39 years age group, being significantly lower after the age of 49 years. In the male population, the highest values for lumbar spine BMD are found one decade earlier than in the female population and become significantly lower after the age of 69 years. The highest values for femoral neck BMD in men and women was found in the 20-29 year age group. Values for femoral neck BMD in the female population become statistically lower after the age of 49 years, while in the male population this effect was seen after the age of 69 years. Values for femoral neck BMD were higher in men than women at all ages.
Challenges of DNA-based mark-recapture studies of American black bears
Settlage, K.E.; Van Manen, F.T.; Clark, J.D.; King, T.L.
2008-01-01
We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p >0.20) and population estimates with a low coefficient of variation (CV <20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark–recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark–recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.
Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.
2016-01-01
The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.
Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao
2012-01-01
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one's morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages.
Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao
2012-01-01
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one’s morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages. PMID:23226393