Sample records for size-based ecosystem model

  1. Two takes on the ecosystem impacts of climate change and fishing: Comparing a size-based and a species-based ecosystem model in the central North Pacific

    NASA Astrophysics Data System (ADS)

    Woodworth-Jefcoats, Phoebe A.; Polovina, Jeffrey J.; Howell, Evan A.; Blanchard, Julia L.

    2015-11-01

    We compare two ecosystem model projections of 21st century climate change and fishing impacts in the central North Pacific. Both a species-based and a size-based ecosystem modeling approach are examined. While both models project a decline in biomass across all sizes in response to climate change and a decline in large fish biomass in response to increased fishing mortality, the models vary significantly in their handling of climate and fishing scenarios. For example, based on the same climate forcing the species-based model projects a 15% decline in catch by the end of the century while the size-based model projects a 30% decline. Disparities in the models' output highlight the limitations of each approach by showing the influence model structure can have on model output. The aspects of bottom-up change to which each model is most sensitive appear linked to model structure, as does the propagation of interannual variability through the food web and the relative impact of combined top-down and bottom-up change. Incorporating integrated size- and species-based ecosystem modeling approaches into future ensemble studies may help separate the influence of model structure from robust projections of ecosystem change.

  2. From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems.

    PubMed

    Blanchard, Julia L; Heneghan, Ryan F; Everett, Jason D; Trebilco, Rowan; Richardson, Anthony J

    2017-03-01

    Size-based ecosystem modeling is emerging as a powerful way to assess ecosystem-level impacts of human- and environment-driven changes from individual-level processes. These models have evolved as mechanistic explanations for observed regular patterns of abundance across the marine size spectrum hypothesized to hold from bacteria to whales. Fifty years since the first size spectrum measurements, we ask how far have we come? Although recent modeling studies capture an impressive range of sizes, complexity, and real-world applications, ecosystem coverage is still only partial. We describe how this can be overcome by unifying functional traits with size spectra (which we call functional size spectra) and highlight the key knowledge gaps that need to be filled to model ecosystems from bacteria to whales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Trait-based Modeling Reveals How Plankton Biodiversity-Ecosystem Function (BEF) Relationships Depend on Environmental Variability

    NASA Astrophysics Data System (ADS)

    Smith, S. L.; Chen, B.; Vallina, S. M.

    2017-12-01

    Biodiversity-Ecosystem Function (BEF) relationships, which are most commonly quantified in terms of productivity or total biomass yield, are known to depend on the timescale of the experiment or field study, both for terrestrial plants and phytoplankton, which have each been widely studied as model ecosystems. Although many BEF relationships are positive (i.e., increasing biodiversity enhances function), in some cases there is an optimal intermediate diversity level (i.e., a uni-modal relationship), and in other cases productivity decreases with certain measures of biodiversity. These differences in BEF relationships cannot be reconciled merely by differences in the timescale of experiments. We will present results from simulation experiments applying recently developed trait-based models of phytoplankton communities and ecosystems, using the `adaptive dynamics' framework to represent continuous distributions of size and other key functional traits. Controlled simulation experiments were conducted with different levels of phytoplankton size-diversity, which through trait-size correlations implicitly represents functional-diversity. One recent study applied a theoretical box model for idealized simulations at different frequencies of disturbance. This revealed how the shapes of BEF relationships depend systematically on the frequency of disturbance and associated nutrient supply. We will also present more recent results obtained using a trait-based plankton ecosystem model embedded in a three-dimensional ocean model applied to the North Pacific. This reveals essentially the same pattern in a spatially explicit model with more realistic environmental forcing. In the relatively more variable subarctic, productivity tends to increase with the size (and hence functional) diversity of phytoplankton, whereas productivity tends to decrease slightly with increasing size-diversity in the relatively calm subtropics. Continuous trait-based models can capture essential features of BEF relationships, while requiring far fewer calculations compared to typical plankton diversity models that explicitly simulate a great many idealized species.

  4. Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries

    USGS Publications Warehouse

    Forcada, J.; Malone, D.; Royle, J. Andrew; Staniland, I.J.

    2009-01-01

    Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90-125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12-16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the "escapement" due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management. ?? 2009 Elsevier B.V.

  5. Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries

    USGS Publications Warehouse

    Forcada, J.; Royle, J. Andrew; Staniland, I.J.

    2009-01-01

    Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management.

  6. Fishery-induced changes in the subtropical Pacific pelagic ecosystem size structure: observations and theory.

    PubMed

    Polovina, Jeffrey J; Woodworth-Jefcoats, Phoebe A

    2013-01-01

    We analyzed a 16-year (1996-2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch.

  7. Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current.

    PubMed

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Dunne, John P; Blanchard, Julia L

    2013-03-01

    Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupled climate model with a biogeochemical model including major nutrients, three phytoplankton functional groups, and zooplankton grazing. The size-based food web model includes linkages between two size-structured pelagic communities: primary producers and consumers. Our investigation focuses on seven sites in the North Pacific, each highlighting a specific aspect of projected climate change, and includes top-down ecosystem depletion through fishing. We project declines in large fish abundance ranging from 0 to 75.8% in the central North Pacific and increases of up to 43.0% in the California Current (CC) region over the 21st century in response to change in phytoplankton size structure and direct physiological effects. We find that fish abundance is especially sensitive to projected changes in large phytoplankton density and our model projects changes in the abundance of large fish being of the same order of magnitude as changes in the abundance of large phytoplankton. Thus, studies that address only climate-induced impacts to primary production without including changes to phytoplankton size structure may not adequately project ecosystem responses. © 2012 Blackwell Publishing Ltd.

  8. Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent

    2016-01-01

    This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.

  9. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities

    PubMed Central

    García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298

  10. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  11. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum.

    PubMed

    Zhu, Dan; Ciais, Philippe; Chang, Jinfeng; Krinner, Gerhard; Peng, Shushi; Viovy, Nicolas; Peñuelas, Josep; Zimov, Sergey

    2018-04-01

    Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO 2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.

  12. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA)

    PubMed Central

    Letelier, Ricardo M.; Whitmire, Amanda L.; Barone, Benedetto; Bidigare, Robert R.; Church, Matthew J.; Karl, David M.

    2015-01-01

    Abstract The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite‐based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction‐based depth profiles of the PSD and pigment‐based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time‐series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction‐based estimations of relative particle size nor pigment‐based PFTs was found to be significantly related to the rate of 14C‐based PP in the light‐saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present‐day bio‐optical PP models for this region. However, at depths of 100–125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2–20 μm particles. PMID:27812434

  13. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA).

    PubMed

    White, Angelicque E; Letelier, Ricardo M; Whitmire, Amanda L; Barone, Benedetto; Bidigare, Robert R; Church, Matthew J; Karl, David M

    2015-11-01

    The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of 14 C-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100-125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2-20 μm particles.

  14. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity.

    PubMed

    Maury, Olivier; Poggiale, Jean-Christophe

    2013-05-07

    Individual metabolism, predator-prey relationships, and the role of biodiversity are major factors underlying the dynamics of food webs and their response to environmental variability. Despite their crucial, complementary and interacting influences, they are usually not considered simultaneously in current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate a mathematical model of the size-structured dynamics of marine communities which integrates mechanistically individual, population and community levels. The model represents the transfer of energy generated in both time and size by an infinite number of interacting fish species spanning from very small to very large species. It is based on standard individual level assumptions of the Dynamic Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based predation and competition for food. Resting on the inter-specific body-size scaling relationships of the DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary solutions of the model as well as the transient solutions arising when environmental signals (e.g. variability of primary production and temperature) propagate through the ecosystem are studied using numerical simulations. It is shown that in the absence of density-dependent feedback processes, the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-linear stationary spectrum matches well with empirical studies. When oscillations of primary production are simulated, the model predicts that the variability propagates along the spectrum in a given frequency-dependent size range before decreasing for larger sizes. At the species level, the simulations show that small and large species dominate the community successively (small species being more abundant at small sizes and large species being more abundant at large sizes) and that the total biomass of a species decreases with its maximal size which again corroborates empirical studies. Our results indicate that the simultaneous consideration of individual growth and reproduction, size-structured trophic interactions, the diversity of life-history traits and a density-dependent stabilizing process allow realistic community structure and dynamics to emerge without any arbitrary prescription. As a logical consequence of our model construction and a basis for future studies, we define the function Φ as the relative contribution of each species to the total biomass of the ecosystem, for any given size. We argue that this function is a measure of the functional role of biodiversity characterizing the impact of the structure of the community (its species composition) on its function (the relative proportions of losses, dissipation and biological work). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Origin of Pareto-like spatial distributions in ecosystems.

    PubMed

    Manor, Alon; Shnerb, Nadav M

    2008-12-31

    Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.

  16. Empirical Succession Mapping and Data Assimilation to Constrain Demographic Processes in an Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Kelly, R.; Andrews, T.; Dietze, M.

    2015-12-01

    Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.

  17. DecAID: a decaying wood advisory model for Oregon and Washington.

    Treesearch

    Kim Mellen; Bruce G. Marcot; Janet L. Ohmann; Karen L. Waddell; Elizabeth A. Willhite; Bruce B. Hostetler; Susan A. Livingston; Cay Ogden

    2002-01-01

    DecAID is a knowledge-based advisory model that provides guidance to managers in determining the size, amount, and distribution of dead and decaying wood (dead and partially dead trees and down wood) necessary to maintain wildlife habitat and ecosystem functions. The intent of the model is to update and replace existing snag-wildlife models in Washington and Oregon....

  18. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    PubMed

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  19. A unifying theory for top-heavy ecosystem structure in the ocean.

    PubMed

    Woodson, C Brock; Schramski, John R; Joye, Samantha B

    2018-01-02

    Size generally dictates metabolic requirements, trophic level, and consequently, ecosystem structure, where inefficient energy transfer leads to bottom-heavy ecosystem structure and biomass decreases as individual size (or trophic level) increases. However, many animals deviate from simple size-based predictions by either adopting generalist predatory behavior, or feeding lower in the trophic web than predicted from their size. Here we show that generalist predatory behavior and lower trophic feeding at large body size increase overall biomass and shift ecosystems from a bottom-heavy pyramid to a top-heavy hourglass shape, with the most biomass accounted for by the largest animals. These effects could be especially dramatic in the ocean, where primary producers are the smallest components of the ecosystem. This approach makes it possible to explore and predict, in the past and in the future, the structure of ocean ecosystems without biomass extraction and other impacts.

  20. Dual influences of ecosystem size and disturbance on food chain length in streams.

    PubMed

    McHugh, Peter A; McIntosh, Angus R; Jellyman, Phillip G

    2010-07-01

    The number of trophic transfers occurring between basal resources and top predators, food chain length (FCL), varies widely in the world's ecosystems for reasons that are poorly understood, particularly for stream ecosystems. Available evidence indicates that FCL is set by energetic constraints, environmental stochasticity, or ecosystem size effects, although no single explanation has yet accounted for FCL patterns in a broad sense. Further, whether environmental disturbance can influence FCL has been debated on both theoretical and empirical grounds for quite some time. Using data from sixteen South Island, New Zealand streams, we determined whether the so-called ecosystem size, disturbance, or resource availability hypotheses could account for FCL variation in high country fluvial environments. Stable isotope-based estimates of maximum trophic position ranged from 2.6 to 4.2 and averaged 3.5, a value on par with the global FCL average for streams. Model-selection results indicated that stream size and disturbance regime best explained across-site patterns in FCL, although resource availability was negatively correlated with our measure of disturbance; FCL approached its maximum in large, stable springs and was <3.5 trophic levels in small, fishless and/or disturbed streams. Community data indicate that size influenced FCL, primarily through its influence on local fish species richness (i.e., via trophic level additions and/or insertions), whereas disturbance did so via an effect on the relative availability of intermediate predators (i.e., predatory invertebrates) as prey for fishes. Overall, our results demonstrate that disturbance can have an important food web-structuring role in stream ecosystems, and further imply that pluralistic explanations are needed to fully understand the range of structural variation observed for real food webs.

  1. Improving Marine Ecosystem Models with Biochemical Tracers

    NASA Astrophysics Data System (ADS)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  2. Interactive effects of body-size structure and adaptive foraging on food-web stability.

    PubMed

    Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian

    2012-03-01

    Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.

  3. Evaluating Trade-offs of a Large, Infrequent Diversion for Restoration of a Forested Wetland and Associated Ecosystem Services in the Mississippi delta

    NASA Astrophysics Data System (ADS)

    Day, J.; Rutherford, J.; Weigman, A.; D'Elia, C.

    2017-12-01

    Flood control levees have eliminated the supply of sediment to Mississippi delta coastal wetlands, putting the delta on a trajectory for submergence in the 21st century. River diversions have been proposed as a method to provide a sustainable supply of sediment to the delta. Operating river diversions based on the size and frequency of natural crevasse events that were large (>5000 m3/s) and infrequent (active < once a year). This study assesses tradeoffs for a large, infrequent diversion into the forested wetlands of the Maurepas Swamp using a 2-dimensional model, that predicts land building is simulated for several diversion sizes and intermittencies. A cost-benefit analysis (CBA) was conducted by combining model results with an ecosystem service valuation (ESV) and estimated costs. Land building is proportional to diversion size and inversely proportional to years inactive. Because benefits are assumed to scale linearly with land gain, and costs increase with diversion size, there are disadvantages to operating large diversions less often, compared to smaller diversions more often. However, infrequent operation would provide additional ES benefits to the broader Lake Pontchartrain ecosystem by minimizing long-term changes to water quality and salinity, reducing inundation time, and allowing for greater consolidation of soils between diversion pulses. Compared to diversions, marsh creation costs increase over time due to sea level rise and energy costs.

  4. An online database for informing ecological network models: http://kelpforest.ucsc.edu.

    PubMed

    Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H; Tinker, Martin T; Black, August; Caselle, Jennifer E; Hoban, Michael; Malone, Dan; Iles, Alison

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).

  5. An Online Database for Informing Ecological Network Models: http://kelpforest.ucsc.edu

    PubMed Central

    Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H.; Tinker, Martin T.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui). PMID:25343723

  6. An online database for informing ecological network models: http://kelpforest.ucsc.edu

    USGS Publications Warehouse

    Beas-Luna, Rodrigo; Tinker, M. Tim; Novak, Mark; Carr, Mark H.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison C.

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/data​baseui).

  7. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  8. Resonance-induced multimodal body-size distributions in ecosystems

    PubMed Central

    Lampert, Adam; Tlusty, Tsvi

    2013-01-01

    The size of an organism reflects its metabolic rate, growth rate, mortality, and other important characteristics; therefore, the distribution of body size is a major determinant of ecosystem structure and function. Body-size distributions often are multimodal, with several peaks of abundant sizes, and previous studies suggest that this is the outcome of niche separation: species from distinct peaks avoid competition by consuming different resources, which results in selection of different sizes in each niche. However, this cannot explain many ecosystems with several peaks competing over the same niche. Here, we suggest an alternative, generic mechanism underlying multimodal size distributions, by showing that the size-dependent tradeoff between reproduction and resource utilization entails an inherent resonance that may induce multiple peaks, all competing over the same niche. Our theory is well fitted to empirical data in various ecosystems, in which both model and measurements show a multimodal, periodically peaked distribution at larger sizes, followed by a smooth tail at smaller sizes. Moreover, we show a universal pattern of size distributions, manifested in the collapse of data from ecosystems of different scales: phytoplankton in a lake, metazoans in a stream, and arthropods in forests. The demonstrated resonance mechanism is generic, suggesting that multimodal distributions of numerous ecological characters emerge from the interplay between local competition and global migration. PMID:23248320

  9. Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach

    PubMed Central

    Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy

    2014-01-01

    Background Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. Methodology In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Principal findings Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Conclusion/significance Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems. PMID:24763610

  10. Global patterns in ecological indicators of marine food webs: a modelling approach.

    PubMed

    Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy

    2014-01-01

    Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems.

  11. Application of a hybrid model to reduce bias and improve precision in population estimates for elk (Cervus elaphus) inhabiting a cold desert ecosystem

    USGS Publications Warehouse

    Schoenecker, Kathryn A.; Lubow, Bruce C.

    2016-01-01

    Accurately estimating the size of wildlife populations is critical to wildlife management and conservation of species. Raw counts or “minimum counts” are still used as a basis for wildlife management decisions. Uncorrected raw counts are not only negatively biased due to failure to account for undetected animals, but also provide no estimate of precision on which to judge the utility of counts. We applied a hybrid population estimation technique that combined sightability modeling, radio collar-based mark-resight, and simultaneous double count (double-observer) modeling to estimate the population size of elk in a high elevation desert ecosystem. Combining several models maximizes the strengths of each individual model while minimizing their singular weaknesses. We collected data with aerial helicopter surveys of the elk population in the San Luis Valley and adjacent mountains in Colorado State, USA in 2005 and 2007. We present estimates from 7 alternative analyses: 3 based on different methods for obtaining a raw count and 4 based on different statistical models to correct for sighting probability bias. The most reliable of these approaches is a hybrid double-observer sightability model (model MH), which uses detection patterns of 2 independent observers in a helicopter plus telemetry-based detections of radio collared elk groups. Data were fit to customized mark-resight models with individual sighting covariates. Error estimates were obtained by a bootstrapping procedure. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to double-observer modeling. The resulting population estimate corrected for multiple sources of undercount bias that, if left uncorrected, would have underestimated the true population size by as much as 22.9%. Our comparison of these alternative methods demonstrates how various components of our method contribute to improving the final estimate and demonstrates why each is necessary.

  12. Sheldon spectrum and the plankton paradox: two sides of the same coin-a trait-based plankton size-spectrum model.

    PubMed

    Cuesta, José A; Delius, Gustav W; Law, Richard

    2018-01-01

    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species.

  13. Predictive mapping for tree sizes and densities in southeast Alaska.

    Treesearch

    John P. Caouette; Eugene J. DeGayner

    2005-01-01

    The Forest Service has relied on a single forest measure, timber volume, to meet many management and planning information needs in southeast Alaska. This economic-based categorization of forest types tends to mask critical information relevant to other contemporary forest-management issues, such as modeling forest structure, ecosystem diversity, or wildlife habitat. We...

  14. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  15. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    NASA Astrophysics Data System (ADS)

    Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.

    2018-04-01

    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.

  16. Is the impact of eutrophication on phytoplankton diversity dependent on lake volume/ecosystem size?

    USGS Publications Warehouse

    Baho, Didier L.; Drakare, Stina; Johnson, Richard K.; Allen, Craig R.; Angeler, David G.

    2017-01-01

    Research focusing on biodiversity responses to the interactions of ecosystem size and anthropogenic stressors are based mainly on correlative gradient studies, and may therefore confound size-stress relationships due to spatial context and differences in local habitat features across ecosystems. We investigated how local factors related to anthropogenic stressors (e.g.,eutrophication) interact with ecosystem size to influence species diversity. In this study, constructed lake mesocosms (with two contrasting volumes: 1020 (shallow mesocosms) and 2150 (deep mesocosms) litres) were used to simulate ecosystems of different size and manipulated nutrient levels to simulate mesotrophic and hypertrophic conditions. Using a factorial design, we assessed how the interaction between ecosystem size and nutrients influences phytoplankton diversity. We assessed community metrics (richness, diversity, evenness and total biovolumes) and multivariate community structure over a growing season (May to early November 2011). Different community structures were found between deep and shallow mescosoms with nutrient enrichment: Cyanobacteria dominated in the deep and Charophyta in the shallow mesocosms. In contrast, phytoplankton communities were more similar to each other in the low nutrient treatments; only Chlorophyta had generally a higher biovolume in the shallow compared to the deep mesocosms. These results suggest that ecosystem size is not only a determinant of species diversity, but that it can mediate the influence of anthropogenic effects on biodiversity. Such interactions increase the uncertainty of global change outcomes, and should therefore not be ignored in risk/impact assessment and management.

  17. Metabolic theory predicts whole-ecosystem properties.

    PubMed

    Schramski, John R; Dell, Anthony I; Grady, John M; Sibly, Richard M; Brown, James H

    2015-02-24

    Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude-from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers-as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.

  18. The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

    USGS Publications Warehouse

    He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.

    2014-01-01

    The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.

  19. Body Size as a Driver of Scavenging in Theropod Dinosaurs.

    PubMed

    Kane, Adam; Healy, Kevin; Ruxton, Graeme D; Jackson, Andrew L

    2016-06-01

    Theropod dinosaurs dominated Earth's terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agent-based models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.

  20. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    NASA Technical Reports Server (NTRS)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  1. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World's Marine Ecosystems.

    PubMed

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world's oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1 kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts.

  2. Modeling the nitrogen cycle one gene at a time

    NASA Astrophysics Data System (ADS)

    Coles, V.; Stukel, M. R.; Hood, R. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2016-02-01

    Marine ecosystem models are lagging the revolution in microbial oceanography. As a result, modeling of the nitrogen cycle has largely failed to leverage new genomic information on nitrogen cycling pathways and the organisms that mediate them. We developed a nitrogen based ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response curves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Community size spectra and chlorophyll-a concentrations emerge in the model with reasonable fidelity to observations. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  3. Evaluating trade-offs of a large, infrequent sediment diversion for restoration of a forested wetland in the Mississippi delta

    NASA Astrophysics Data System (ADS)

    Rutherford, Jeffrey S.; Day, John W.; D'Elia, Christopher F.; Wiegman, Adrian R. H.; Willson, Clinton S.; Caffey, Rex H.; Shaffer, Gary P.; Lane, Robert R.; Batker, David

    2018-04-01

    Flood control levees cut off the supply of sediment to Mississippi delta coastal wetlands, and contribute to putting much of the delta on a trajectory for continued submergence in the 21st century. River sediment diversions have been proposed as a method to provide a sustainable supply of sediment to the delta, but the frequency and magnitude of these diversions needs further assessment. Previous studies suggested operating river sediment diversions based on the size and frequency of natural crevasse events, which were large (>5000 m3/s) and infrequent (active < once a year) in the last naturally active delta. This study builds on these previous works by quantitatively assessing tradeoffs for a large, infrequent diversion into the forested wetlands of the Maurepas swamp. Land building was estimated for several diversion sizes and years inactive using a delta progradation model. A benefit-cost analysis (BCA) combined model land building results with an ecosystem service valuation and estimated costs. Results demonstrated that land building is proportional to diversion size and inversely proportional to years inactive. Because benefits were assumed to scale linearly with land gain, and costs increase with diversion size, there are disadvantages to operating large diversions less often, compared to smaller diversions more often for the immediate project area. Literature suggests that infrequent operation would provide additional gains (through increased benefits and reduced ecosystem service costs) to the broader Lake Maurepas-Pontchartrain-Borgne ecosystem. Future research should incorporate these additional effects into this type of BCA, to see if this changes the outcome for large, infrequent diversions.

  4. Predicting mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem

    NASA Astrophysics Data System (ADS)

    Potter, Meredith W.; Kessell, Stephen R.

    1980-05-01

    A model for predicting community mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem is presented. It applies an algorithm that delineates the size and shape of each patch from grid-based input data and calculates standard diversity measures for the entire mosaic of community patches and their included animal species. The user can print these diversity calculations, maps of the current community-type-age-class mosaic, and maps of habitat utilization by each animal species. Furthermore, the user can print estimates of changes in each resulting from natural disturbance. Although data and resolution level independent, the model is demonstrated and tested with data from the Lewis and Clark National Forest in Montana.

  5. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    PubMed

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  6. Optimization of ecosystem model parameters with different temporal variabilities using tower flux data and an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    He, L.; Chen, J. M.; Liu, J.; Mo, G.; Zhen, T.; Chen, B.; Wang, R.; Arain, M.

    2013-12-01

    Terrestrial ecosystem models have been widely used to simulate carbon, water and energy fluxes and climate-ecosystem interactions. In these models, some vegetation and soil parameters are determined based on limited studies from literatures without consideration of their seasonal variations. Data assimilation (DA) provides an effective way to optimize these parameters at different time scales . In this study, an ensemble Kalman filter (EnKF) is developed and applied to optimize two key parameters of an ecosystem model, namely the Boreal Ecosystem Productivity Simulator (BEPS): (1) the maximum photosynthetic carboxylation rate (Vcmax) at 25 °C, and (2) the soil water stress factor (fw) for stomatal conductance formulation. These parameters are optimized through assimilating observations of gross primary productivity (GPP) and latent heat (LE) fluxes measured in a 74 year-old pine forest, which is part of the Turkey Point Flux Station's age-sequence sites. Vcmax is related to leaf nitrogen concentration and varies slowly over the season and from year to year. In contrast, fw varies rapidly in response to soil moisture dynamics in the root-zone. Earlier studies suggested that DA of vegetation parameters at daily time steps leads to Vcmax values that are unrealistic. To overcome the problem, we developed a three-step scheme to optimize Vcmax and fw. First, the EnKF is applied daily to obtain precursor estimates of Vcmax and fw. Then Vcmax is optimized at different time scales assuming fw is unchanged from first step. The best temporal period or window size is then determined by analyzing the magnitude of the minimized cost-function, and the coefficient of determination (R2) and Root-mean-square deviation (RMSE) of GPP and LE between simulation and observation. Finally, the daily fw value is optimized for rain free days corresponding to the Vcmax curve from the best window size. The optimized fw is then used to model its relationship with soil moisture. We found that the optimized fw is best correlated linearly to soil water content at 5 to 10 cm depth. We also found that both the temporal scale or window size and the priori uncertainty of Vcmax (given as its standard deviation) are important in determining the seasonal trajectory of Vcmax. During the leaf expansion stage, an appropriate window size leads to reasonable estimate of Vcmax. In the summer, the fluctuation of optimized Vcmax is mainly caused by the uncertainties in Vcmax but not the window size. Our study suggests that a smooth Vcmax curve optimized from an optimal time window size is close to the reality though the RMSE of GPP at this window is not the minimum. It also suggests that for the accurate optimization of Vcmax, it is necessary to set appropriate levels of uncertainty of Vcmax in the spring and summer because the rate of leaf nitrogen concentration change is different over the season. Parameter optimizations for more sites and multi-years are in progress.

  7. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.

    PubMed

    Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan

    2004-10-01

    In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.

  8. Fishing-induced life-history changes degrade and destabilize harvested ecosystems.

    PubMed

    Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S; Lassaux, Hélène; Martinez, Neo D

    2016-02-26

    Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.

  9. Stepping stones for biological invasion: A bioeconomic model of transferable risk

    Treesearch

    Travis Warziniack; David Finnoff; Jonathan Bossenbroek; Jason F. Shogren; David Lodge

    2011-01-01

    We investigate three sources of bias in valuation methods for ecosystem risk: failure to consider substitution possibilities between goods, failure to consider nonseparability of ecosystem services with market goods, and failure to consider substitution possibilities between ecosystems. The first two biases are known in the literature, and we offer insight on the size...

  10. Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems

    NASA Astrophysics Data System (ADS)

    Travers, M.; Shin, Y.-J.; Jennings, S.; Cury, P.

    2007-12-01

    End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus on enabling two-way interaction, carefully selecting the key functional groups and species, reconciling different time and space scales and the methods of converting between energy, nutrients and mass.

  11. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  12. Trophic flow structure of a neotropical estuary in northeastern Brazil and the comparison of ecosystem model indicators of estuaries

    NASA Astrophysics Data System (ADS)

    Lira, Alex; Angelini, Ronaldo; Le Loc'h, François; Ménard, Frédéric; Lacerda, Carlos; Frédou, Thierry; Lucena Frédou, Flávia

    2018-06-01

    We developed an Ecopath model for the Estuary of Sirinhaém River (SIR), a small-sized system surrounded by mangroves, subject to high impact, mainly by the sugar cane and other farming industries in order to describe the food web structure and trophic interactions. In addition, we compared our findings with those of 20 available Ecopath estuarine models for tropical, subtropical and temperate regions, aiming to synthesize the knowledge on trophic dynamics and provide a comprehensive analysis of the structures and functioning of estuaries. Our model consisted of 25 compartments and its indicators were within the expected range for estuarine areas around the world. The average trophic transfer efficiency for the entire system was 11.8%, similar to the theoretical value of 10%. The Keystone Index and MTI (Mixed Trophic Impact) analysis indicated that the snook (Centropomus undecimalis and Centropomus parallelus) and jack (Caranx latus and Caranx hippos) are considered as key resources in the system, revealing their high impact in the food web. Both groups have a high ecological and commercial relevance, despite the unregulated fisheries. As result of the comparison of ecosystem model indicators in estuaries, differences in the ecosystem structure from the low latitude zones (tropical estuaries) to the high latitude zones (temperate system) were noticed. The structure of temperate and sub-tropical estuaries is based on high flows of detritus and export, while tropical systems have high biomass, respiration and consumption rates. Higher values of System Omnivory Index (SOI) and Overhead (SO) were observed in the tropical and subtropical estuaries, denoting a more complex food chain. Globally, none of the estuarine models were classified as fully mature ecosystems, although the tropical ecosystems were considered more mature than the subtropical and temperate ecosystems. This study is an important contribution to the trophic modeling of estuaries, which may also help the knowledge of the role of key ecosystem processes in SIR.

  13. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator.

    PubMed

    Nifong, James C; Layman, Craig A; Silliman, Brian R

    2015-01-01

    Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  14. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    USGS Publications Warehouse

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  15. The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery

    PubMed Central

    Scott, Abigail L.; York, Paul H.; Duncan, Clare; Macreadie, Peter I.; Connolly, Rod M.; Ellis, Megan T.; Jarvis, Jessie C.; Jinks, Kristin I.; Marsh, Helene; Rasheed, Michael A.

    2018-01-01

    Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services – including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top–down and bottom–up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services. PMID:29487606

  16. Returning fire to Ozark Highland forest ecosystems: Effects on advance regeneration

    Treesearch

    Daniel C. Dey; George Hartman

    2005-01-01

    In mature forests of the Ozark Highlands, MO, USA, we evaluated fire effects on the survival and growth of tree seedlings and saplings (i.e., advance regeneration), and used this information to develop species-specific models that predict the probability of survival based on initial tree size and number of times burned. A 1000 ha forest area was divided into five units...

  17. Response of South American Ecosystems to Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.

    2009-12-01

    The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.

  18. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  19. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World’s Marine Ecosystems

    PubMed Central

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts. PMID:26226590

  20. Fishing-induced life-history changes degrade and destabilize harvested ecosystems

    NASA Astrophysics Data System (ADS)

    Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S.; Lassaux, Hélène; Martinez, Neo D.

    2016-02-01

    Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes’ food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes’ resilience to fishing and ecosystems’ resistance to environmental variations.

  1. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis

    2016-01-01

    Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  2. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  3. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    USGS Publications Warehouse

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.

  4. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951

  5. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Patterns of resource partitioning by nesting herons and ibis: how are odonata exploited?

    PubMed

    Samraoui, Farrah; Nedjah, Riad; Boucheker, Abdennour; Alfarhan, Ahmed H; Samraoui, Boudjéma

    2012-04-01

    Herons and ibis are colonially nesting waders which, owing to their number, mobility and trophic role as top predators, play a key role in aquatic ecosystems. They are also good biological models to investigate interspecific competition between sympatric species and predation; two processes which structure ecological communities. Odonata are also numerous, diverse, mobile and can play an important role in aquatic ecosystems by serving as prey for herons and ibis. A relationship between prey size and bird predator has been observed in Numidia wetlands (NE Algeria) after analyzing food boluses regurgitated by six species of birds (Purple Heron, Black-crowned Night Heron, Glossy Ibis, Little Egret, Squacco Heron and Cattle Egret) during the breeding period, which also shows a temporal gradient for the six species. Both the Levins index and preliminary multivariate analysis of the Odonata as prey fed to nestling herons and ibis, indicated a high degree of resource overlap. However, a distinction of prey based on taxonomy (suborder and family) and developmental stage (larvae or adults) reveals a clear size dichotomy with large-sized predators (Purple Heron, Black-crowned Night Heron and Glossy Ibis) preying on large preys like Aeshnids and Libellulids and small-sized predators feeding mainly on small prey like Zygoptera. Overall, the resource utilization suggests a pattern of resource segregation by coexisting nesting herons and ibis based on the timing of reproduction, prey types, prey size and foraging microhabitats. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    PubMed

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  8. Climate change decouples oceanic primary and export productivity and organic carbon burial

    PubMed Central

    Lopes, Cristina; Kucera, Michal; Mix, Alan C.

    2015-01-01

    Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity. PMID:25453073

  9. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  10. Report from the workshop on climate downscaling and its application in high Hawaiian Islands, September 16–17, 2015

    USGS Publications Warehouse

    Helweg, David A.; Keener, Victoria; Burgett, Jeff M.

    2016-07-14

    In the subtropical and tropical Pacific islands, changing climate is predicted to influence precipitation and freshwater availability, and thus is predicted to impact ecosystems goods and services available to ecosystems and human communities. The small size of high Hawaiian Islands, plus their complex microlandscapes, require downscaling of global climate models to provide future projections of greater skill and spatial resolution. Two different climate modeling approaches (physics-based dynamical downscaling and statistics-based downscaling) have produced dissimilar projections. Because of these disparities, natural resource managers and decision makers have low confidence in using the modeling results and are therefore are unwilling to include climate-related projections in their decisions. In September 2015, the Pacific Islands Climate Science Center (PICSC), the Pacific Islands Climate Change Cooperative (PICCC), and the Pacific Regional Integrated Sciences and Assessments (Pacific RISA) program convened a 2-day facilitated workshop in which the two modeling teams, plus key model users and resource managers, were brought together for a comparison of the two approaches, culminating with a discussion of how to provide predictions that are useable by resource managers. The proceedings, discussions, and outcomes of this Workshop are summarized in this Open-File Report.

  11. Evaluating Ecosystem effects of oyster restoration in the Mississippi Sound

    NASA Astrophysics Data System (ADS)

    Klutse, C. K.; Milroy, S. P.

    2016-02-01

    Oyster reefs along the northern Gulf of Mexico are primarily formed by the eastern oyster, Crassostrea virginica, and are among the few biogenic natural habitats in the region. The increasing awareness of ecosystem services that habitat-forming bivalves provide, and the decline of the native species' population has led to a myriad of restoration efforts which have yielded varying results. Successful reef restoration efforts requires a deeper understanding of how variations in the timing and scales of environmental stressors control the survival, growth, and recruitment of reef associated species like oysters, shrimps, pelagic and benthic fish species. A modeling approach has been designed for exploring optimal growth conditions for oysters, studying the effect of seasonal trends in environmental stressors on the growth and survival of reef-associated species, and performing scenario testing for alternative restoration plans in the Mississippi Sound. The model uses a carbon budget approach, accounts for different functional groups within the trophic network on the reef, and operates on daily temporal resolution. Preliminary results indicate that restoration efforts may maximize benefits from the interactions between different salinity regimes and growth as well as mortality of oysters at three different class sizes of sacks, seeds, and spats. The study also seeks to evaluate the effects of different restoration efforts on promotion and recruitments in oyster populations as well as other reef-associated fishes and invertebrates. The current capabilities of the model can be scaled up to include evaluating changes in ecosystem goods and assessing their contributions to human well-being, the results of which will inform management decisions. Keywords: ecosystem modeling, oyster ecology, ecosystem-based management.

  12. A New Trait-Based Auto-Emergent Model for Zooplankton and Confrontation with Size-Structured Observations from the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Vandromme, Pieter; Sourisseau, Marc; Huret, Martin

    2013-04-01

    Zooplankton plays a significant role in marine ecosystems bridging the gap between primary producers and top consumers and interacting with the particle flux through complex dynamics. Scarcity of data and complexity of observing zooplankton make it difficult to integrate it in biogeochemical models where it is most often formulated in a simpler manner, i.e. classic box models with usually two compartments (micro and meso/macro zooplankton). Recent advances in automatic sizing, counting and identification allow better estimates of the dynamics and distribution of zooplankton, notably through the measurement of its size structure, and for zooplankton size matter. Most zooplankton physiological rates as well as predator:prey interactions can be significantly relied to individuals size through allometric relations. Such size-dependency was used in recent models. Yet, these models were neither confronted to observations nor integrated in 3D biogeochemical models. Here we propose a newly developed model of zooplankton dynamics based on size-dependent allometric relations but which allows various diet types regardless of the size. A size and a degree of herbivory is randomly drawn for each zooplankton species generated within the model (up to 400 here, limited by actual computational costs). By generating random degree of herbivory zooplankton species of same size could have various diet (from herbivore to carnivore). Other parameters leading to various reproductive strategies or vertical migration could also be drawn randomly (not tested here). The zooplankton model is coupled to the 3D biogeochemical model MARS3D on a test case representing a simplified view of the Bay of Biscay (i.e., continental shelf, estuary, tides). The model shows auto-emergent properties with the selection of size/diet most adapted to local conditions (here offshore vs. coastal, estuary…). Then, patterns of the modeled size-structure of the zooplankton are confronted to the ones observed during Spring-time cruises in the Bay of Biscay. The usefulness of the proposed zooplankton model for large scale biogeochemical models is further discussed.

  13. Geometric factors influencing the diet of vertebrate predators in marine and terrestrial environments

    PubMed Central

    Carbone, Chris; Codron, Daryl; Scofield, Conrad; Clauss, Marcus; Bielby, Jon; Enquist, Brian

    2014-01-01

    Predator–prey relationships are vital to ecosystem function and there is a need for greater predictive understanding of these interactions. We develop a geometric foraging model predicting minimum prey size scaling in marine and terrestrial vertebrate predators taking into account habitat dimensionality and biological traits. Our model predicts positive predator–prey size relationships on land but negative relationships in the sea. To test the model, we compiled data on diets of 794 predators (mammals, snakes, sharks and rays). Consistent with predictions, both terrestrial endotherm and ectotherm predators have significantly positive predator–prey size relationships. Marine predators, however, exhibit greater variation. Some of the largest predators specialise on small invertebrates while others are large vertebrate specialists. Prey–predator mass ratios were generally higher for ectothermic than endothermic predators, although dietary patterns were similar. Model-based simulations of predator–prey relationships were consistent with observed relationships, suggesting that our approach provides insights into both trends and diversity in predator–prey interactions. PMID:25265992

  14. Impacts of Suspended Sediment and Estuarine - Shelf Exchange Pathways on Shelf Ecosystem Dynamics in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wiggert, J. D.; Pan, C.; Dinniman, M. S.; Lau, Y.; Fitzpatrick, P. J.; O'Brien, S. J.; Bouchard, C.; Quas, L. M.; Miles, T. N.; Cambazoglu, M. K.; Dykstra, S. L.; Dzwonkowski, B.; Jacobs, G. A.; Church, I.; Hofmann, E. E.

    2017-12-01

    A circulation model based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System, with coupled biogeochemical and sediment transport modules, has been implemented for Mississippi Sound and the adjacent continental shelf region. The model has 400-m horizontal resolution, 24 vertical layers, and includes wetting/drying capability to resolve shallow inshore regions. The circulation model was spun-up using oceanographic initial and lateral boundary conditions provided by a 1-km resolution regional implementation of the Navy Coastal Ocean Model (NCOM) in the Gulf of Mexico. The biogeochemical module includes multiple size classes of phytoplankton, zooplankton and detritus, a fish larvae compartment, and explicitly tracks dissolved oxygen with benthic cycling interaction. The sediment transport model is implemented based on benthic mapping data that provides bottom sediment type distributions and spatio-temporal validation. A regionally specific atmospheric forcing product that provides improved spatial and temporal resolution, including diurnal sea breeze impacts, has been developed and applied. Model experiments focus on periods when comprehensive ship-based sampling was deployed by the CONCORDE (Consortium for Coastal River-Dominated Ecosystems) research program, which was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. Biophysical interactions and biogeochemical variability associated with estuarine - shelf exchanges between nearshore lagoonal estuarine waters and the continental shelf revealed by the model provide new insight into how seasonal variation of hydrological forcing conditions influence ecological and biogeochemical processes in the highly productive Northern Gulf region. Application of the COAWST-based model system with and without inclusion of the sediment transport module demonstrates how suspended sediment in the nearshore waters influences inner shelf ecosystem function through impacts exerted on the in situ light environment and particle aggregation-mediated organic matter fluxes.

  15. Ecosystem development of Haizhou Bay Ecological Restoration Area from 2003 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Li, Yunkai; Xie, Bin; Zhang, Hu; Zhang, Shuo

    2017-12-01

    Two Ecopath mass-balance models were implemented for evaluating the structure and function of Haizhou Bay Ecological Restoration Area ecosystem using 14 ecological indicators in two distinctive years (2003 and 2013). The results showed that the size of HZERA ecosystem became larger as total biomass was increased in last decade, especially in primary producer and zooplankton groups. Total system throughput increased from 7496.00 t km-2 yr-1 to 9547.54 t km-2 yr-1. The P/R (production/respiration) ratio decreased over the decade. Finn's cycling index and Finn's mean path length increased over the decade. No keystone species (KS) occurred during ten years; however, evidences of top-down control in 2003 and 2013 models were demonstrated by high KS value belonging to Lophius litulon group in food web. Drawing upon Odum's theory of ecosystem maturity, the structured, web-like ecosystem of 2013 model had developed into a highly mature system compared with that of 2003 model.

  16. Spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers in marine ecosystems.

    PubMed

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-11-15

    Body-size spectra has proved to be a useful taxon-free resolution to summarize a community structure for bioassessment. The spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers were studied based on an annual dataset. Samples were biweekly collected at five stations in a bay of the Yellow Sea, northern China during a 1-year cycle. Based on a multivariate approach, the second-stage analysis, it was shown that the annual cycles of the body-size spectra were significantly different among five sampling stations. Correlation analysis demonstrated that the spatial variations in the body-size spectra were significantly related to changes of environmental conditions, especially dissolved nitrogen, alone or in combination with salinity and dissolve oxygen. Based on results, it is suggested that the nutrients may be the environmental drivers to shape the spatial variations in annual cycles of planktonic ciliates in terms of body-size spectra in marine ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  18. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System

    NASA Astrophysics Data System (ADS)

    Gruber, Nicolas; Frenzel, Hartmut; Doney, Scott C.; Marchesiello, Patrick; McWilliams, James C.; Moisan, John R.; Oram, John J.; Plattner, Gian-Kasper; Stolzenbach, Keith D.

    2006-09-01

    We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional (3-D), eddy-resolving circulation model coupled to an ecosystem/biogeochemistry model. The physical model is based on the Regional Oceanic Modeling System (ROMS), configured at a resolution of 15 km for a domain covering the entire US West Coast, with an embedded child grid covering the central California upwelling region at a resolution of 5 km. The model is forced with monthly mean boundary conditions at the open lateral boundaries as well as at the surface. The ecological/biogeochemical model is nitrogen based, includes single classes for phytoplankton and zooplankton, and considers two detrital pools with different sinking speeds. The model also explicitly simulates a variable chlorophyll-to-carbon ratio. Comparisons of model results with either remote sensing observations (AVHRR, SeaWiFS) or in-situ measurements from the CalCOFI program indicate that our model is capable of replicating many of the large-scale, time-averaged features of the coastal upwelling system. An exception is the underestimation of the chlorophyll levels in the northern part of the domain, perhaps because of the lack of short-term variations in the atmospheric forcing. Another shortcoming is that the modeled thermocline is too diffuse, and that the upward slope of the isolines toward the coast is too small. Detailed time-series comparisons with observations from Monterey Bay reveal similar agreements and discrepancies. We attribute the good agreement between the modeled and observed ecological properties in large part to the accuracy of the physical fields. In turn, many of the discrepancies can be traced back to our use of monthly mean forcing. Analysis of the ecosystem structure and dynamics reveal that the magnitude and pattern of phytoplankton biomass in the nearshore region are determined largely by the balance of growth and zooplankton grazing, while in the offshore region, growth is balanced by mortality. The latter appears to be inconsistent with in situ observations and is a result of our consideration of only one zooplankton size class (mesozooplankton), neglecting the importance of microzooplankton grazing in the offshore region. A comparison of the allocation of nitrogen into the different pools of the ecosystem in the 3-D results with those obtained from a box model configuration of the same ecosystem model reveals that only a few components of the ecosystem reach a local steady-state, i.e. where biological sources and sinks balance each other. The balances for the majority of the components are achieved by local biological source and sink terms balancing the net physical divergence, confirming the importance of the 3-D nature of circulation and mixing in a coastal upwelling system.

  19. Generation of multi annual land use and crop rotation data for regional agro-ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Waldhoff, G.; Lussem, U.; Sulis, M.; Bareth, G.

    2017-12-01

    For agro-ecosystem modeling on a regional scale with systems like the Community Land Model (CLM), detailed crop type and crop rotation information on the parcel-level is of key importance. Only with this, accurate assessments of the fluxes associated with the succession of crops and their management are possible. However, sophisticated agro-ecosystem modeling for large regions is only feasible at grid resolutions, which are much coarser than the spatial resolution of modern land use maps (usually ca. 30 m). As a result, much of the original information content of the maps has to be dismissed during resampling. Here we present our mapping approach for the Rur catchment (located in the west of Germany), which was developed to address these demands and issues. We integrated remote sensing and geographic information system (GIS) methods to classify multi temporal images of (e.g.) Landsat, RapidEye and Sentinel-2 to generate annual crop maps for the years 2008-2017 at 15 m spatial resolution (accuracy always ca. 90 %). A key aspect of our method is the consideration of crop phenology for the data selection and the analysis. In a GIS, the annul crop maps were integrated to a crop sequence dataset from which the major crop rotations were derived (based on the 10-years). To retain the multi annual crop succession and crop area information at coarser grid resolutions, cell-based land use fractions, including other land use classes were calculated for each year and for various target cell sizes (1-32 arc seconds). The resulting datasets contain the contribution (in percent) of every land use class to each cell. Our results show that parcels with the major crop types can be differentiated with a high accuracy and on an annual basis. The analysis of the crop sequence data revealed a very large number of different crop rotations, but only relatively few crop rotations cover larger areas. This strong diversity emphasizes the importance of information on crop rotations to reduce uncertainties in agro-ecosystem modeling. Through the combination of the multi annual land use fractions, the resulting datasets additionally inform about land use changes and trends within the coarser grid cells. We see this as a major advantage, because we are able to maintain much more precise land use information when a coarser cell size is used.

  20. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  1. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  2. Detecting Changes in Functional Traits of Forest after Extreme Climate Episode using Model Data Fusion

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Kawai, Y.; Toda, M.

    2016-12-01

    The increase in extreme climate episodes associated with ongoing climate change may induce extensive damage to terrestrial ecosystems, changing plant functional traits that regulate ecosystem carbon budget. Over the last two decades, an advanced observational operation of tower-based eddy covariance has enhanced our ability to understand spatial and temporal features of ecosystem carbon exchange worldwide. In contrast, there remain several unresolved issues regarding plant function responses to extreme climate episodes and the resulting effects on the terrestrial carbon balance. In this work, we examined the effects of an extreme climatic event (typhoon) on plant functional traits of a cool-temperate forest in Japan using a model data fusion technique. We used a semi-process model to describes the time changes in net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystem based on the distributions of foliage and size of an individual in a plant population, assuming the diameter profile and the pipe model theory (Shinozaki et al., 1964). The canopy photosynthesis model (Yokozawa et al., 1996) provides us the vertical distribution of gross photosynthetic rates within stand. It can allow us to examine the differences in photosynthetic rate with plant functional traits changed by climate disturbance. The DREAM(ZS) algorithm (ter Braak & Vrugt, 2008) was used to estimate the model parameters. To reduce the effects of heteroscedastic error, a generalized likelihood function was adopted (Schoup & Vrugt, 2010). The estimated annual parameter which represents the initial slope of light-photosynthetic rate curve, significantly changed after typhoon disturbance in 2004. Time changes in the profile of the maximum photosynthetic rate also shows the intensive response to the disturbance. After the disturbance, the values at upper foliage layer are higher than at lower foliage layer in contrast to that before disturbance. Specifically, just after disturbance in 2004b-5a, the value at uppermost foliage layer was estimated to be the highest value. It implies that the plant population recovered the damage by changing the distribution of leaves having different functional traits, i.e. resilient behavior.

  3. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    PubMed Central

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers. PMID:23951002

  4. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    PubMed

    Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.

  5. Size-Based Hydroacoustic Measures of Within-Season Fish Abundance in a Boreal Freshwater Ecosystem

    PubMed Central

    Pollom, Riley A.; Rose, George A.

    2015-01-01

    Eleven sequential size-based hydroacoustic surveys conducted with a 200 kHz split-beam transducer during the summers of 2011 and 2012 were used to quantify seasonal declines in fish abundance in a boreal reservoir in Manitoba, Canada. Fish densities were sufficiently low to enable single target resolution and tracking. Target strengths converted to log2-based size-classes indicated that smaller fish were consistently more abundant than larger fish by a factor of approximately 3 for each halving of length. For all size classes, in both years, abundance (natural log) declined linearly over the summer at rates that varied from -0.067.day-1 for the smallest fish to -0.016.day-1 for the largest (R2 = 0.24–0.97). Inter-annual comparisons of size-based abundance suggested that for larger fish (>16 cm), mean winter decline rates were an order of magnitude lower (-0.001.day-1) and overall survival higher (71%) than in the main summer fishing season (mean loss rate -0.038.day-1; survival 33%). We conclude that size-based acoustic survey methods have the potential to assess within-season fish abundance dynamics, and may prove useful in long-term monitoring of productivity and hence management of boreal aquatic ecosystems. PMID:25875467

  6. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  7. Scaling range sizes to threats for robust predictions of risks to biodiversity.

    PubMed

    Keith, David A; Akçakaya, H Resit; Murray, Nicholas J

    2018-04-01

    Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  8. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    PubMed

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  9. Too big or too narrow? Disturbance characteristics determine the functional resilience in virtual microbial ecosystems

    NASA Astrophysics Data System (ADS)

    König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin

    2017-04-01

    In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.

  10. BOREAS Regional DEM in Raster Format and AEAC Projection

    NASA Technical Reports Server (NTRS)

    Knapp, David; Verdin, Kristine; Hall, Forrest G. (Editor)

    2000-01-01

    This data set is based on the GTOPO30 Digital Elevation Model (DEM) produced by the United States Geological Survey EROS Data Center (USGS EDC). The BOReal Ecosystem-Atmosphere Study (BOREAS) region (1,000 km x 1000 km) was extracted from the GTOPO30 data and reprojected by BOREAS staff into the Albers Equal-Area Conic (AEAC) projection. The pixel size of these data is 1 km. The data are stored in binary, image format files.

  11. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  12. Modeling of the nearshore marine ecosystem with the AQUATOX model

    EPA Science Inventory

    Process-based models can be used to forecast the responses of coastal ecosystems to changes under future scenarios. However, most models applied to coastal systems do not include higher trophic levels, which are important providers of ecosystem services. AQUATOX is a mechanistic...

  13. Physical Control of Biological Productivity Off the Coast of Peru During the 1997-1998 El Nino

    NASA Technical Reports Server (NTRS)

    Carr, Mary-Elena

    1999-01-01

    Satellite observations and an ecosystem model are used to understand the variability in the planktonic ecosystem off Peru for the period January 1996 to May 1998. The objective of this study is to quantify the changes in the ecosystem components, carbon pathways, and available food for small pelagic fish that occur associated with the change in physical forcing due to El Nino. Two periods are distinguished based on the observed sea level anomaly: a La Nina (LaN) period (1996) in which sea level was below normal and El Nino (EN), the average conditions for December 1997, in which the sea level was anomalously high. There are three phytoplankton size classes (pico-, nano-, and net-phytoplankton) which compete for nutrients and are eaten by three zooplankton size classes. The ecosystem model is forced by alongshore wind speed measured by the NASA Scatterometer (NSCAT) and the European Remote-sensing Satellites (ERS-1 and ERS-2). Larger, slower growing organisms are more sensitive to physical disturbance than smaller organisms (Carr, 1998]. In the present simulation as well, the primary effect of the El Nino (reduced nutrient supply, and increased temperature) is to reduce the biomass of large cells (netphytoplankton) and consequently of the zooplankton that rely on large cells as food source. EN conditions are accompanied by a rearrangement of carbon pathways: comparable uptake goes into reduced biomass accumulation, increased losses to respiration, reduced carbon export, and much reduced carbon available to fish. The star indicates the remotely sensed biomass (assuming a constant carbon to chlorophyll ratio of 60) as measured by the Ocean Color and Temperature Sensor (Nov.-Dec. 1996) and the Sea-viewing Wide Field-of-view Sensor (Dec. 1997). The model, which assumes no light limitation, overestimates total phytoplankton biomass. Additional Information is contained in the original.

  14. More than Anecdotes: Fishers' Ecological Knowledge Can Fill Gaps for Ecosystem Modeling.

    PubMed

    Bevilacqua, Ana Helena V; Carvalho, Adriana R; Angelini, Ronaldo; Christensen, Villy

    2016-01-01

    Ecosystem modeling applied to fisheries remains hampered by a lack of local information. Fishers' knowledge could fill this gap, improving participation in and the management of fisheries. The same fishing area was modeled using two approaches: based on fishers' knowledge and based on scientific information. For the former, the data was collected by interviews through the Delphi methodology, and for the latter, the data was gathered from the literature. Agreement between the attributes generated by the fishers' knowledge model and scientific model is discussed and explored, aiming to improve data availability, the ecosystem model, and fisheries management. The ecosystem attributes produced from the fishers' knowledge model were consistent with the ecosystem attributes produced by the scientific model, and elaborated using only the scientific data from literature. This study provides evidence that fishers' knowledge may suitably complement scientific data, and may improve the modeling tools for the research and management of fisheries.

  15. Trophic modeling of the Northern Humboldt Current Ecosystem, Part I: Comparing trophic linkages under La Niña and El Niño conditions

    NASA Astrophysics Data System (ADS)

    Tam, Jorge; Taylor, Marc H.; Blaskovic, Verónica; Espinoza, Pepe; Michael Ballón, R.; Díaz, Erich; Wosnitza-Mendo, Claudia; Argüelles, Juan; Purca, Sara; Ayón, Patricia; Quipuzcoa, Luis; Gutiérrez, Dimitri; Goya, Elisa; Ochoa, Noemí; Wolff, Matthias

    2008-10-01

    The El Niño of 1997-98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995-96 with the El Niño (EN) years in 1997-98. The model area extends from 4°S-16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid ( Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a stronger ecological impact of the fishery and stresses the need for precautionary management of fisheries during and after EN. During EN energetic indicators such as the lower primary production/total biomass ratio suggest a more energetically efficient ecosystem, while reduced network indicators such as the cycling index and relative ascendency indicate of a less organized state of the ecosystem. Compared to previous trophic models of the NHCE we observed: (i) a shrinking of ecosystem size in term of energy flows, (ii) slight changes in overall functioning (proportion of energy flows used for respiration, consumption by predators and detritus), and (iii) the use of alternate pathways leading to a higher ecological impact of the fishery for planktivorous fish.

  16. Body size distributions signal a regime shift in a lake ecosystem

    USGS Publications Warehouse

    Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.

    2016-01-01

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.

  17. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    PubMed

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  18. Application of a predator-prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Greer, A. T.; Woodson, C. B.

    2016-02-01

    Because of the complexity and extremely large size of marine ecosystems, research attention has a strong focus on modelling the system through space and time to elucidate processes driving ecosystem state. One of the major weaknesses of current modelling approaches is the reliance on a particular grid cell size (usually 10's of km in the horizontal & water column mean) to capture the relevant processes, even though empirical research has shown that marine systems are highly structured on fine scales, and this structure can persist over relatively long time scales (days to weeks). Fine-scale features can have a strong influence on the predator-prey interactions driving trophic transfer. Here we apply a statistic, the AB ratio, used to quantify increased predator production due to predator-prey overlap on fine scales in a manner that is computationally feasible for larger scale models. We calculated the AB ratio for predator-prey distributions throughout the scientific literature, as well as for data obtained with a towed plankton imaging system, demonstrating that averaging across a typical model grid cell neglects the fine-scale predator-prey overlap that is an essential component of ecosystem productivity. Organisms from a range of trophic levels and oceanographic regions tended to overlap with their prey both in the horizontal and vertical dimensions. When predator swimming over a diel cycle was incorporated, the amount of production indicated by the AB ratio increased substantially. For the plankton image data, the AB ratio was higher with increasing sampling resolution, especially when prey were highly aggregated. We recommend that ecosystem models incorporate more fine-scale information both to more accurately capture trophic transfer processes and to capitalize on the increasing sampling resolution and data volume from empirical studies.

  19. Ecological structure and function differs between habitats dominated by seagrasses and green seaweeds.

    PubMed

    Tuya, Fernando; Png-Gonzalez, Lydia; Riera, Rodrigo; Haroun, Ricardo; Espino, Fernando

    2014-07-01

    Marine vegetated habitats, e.g. seagrass meadows, deliver essential functions and services to coastal ecosystems and human welfare. Impacts induced by humans, however, have facilitated the replacement of seagrasses by alternative vegetation, e.g. green rhizophytic seaweeds. The implications of habitat shifts for ecosystem attributes and processes and the services they deliver remain poorly known. In this study, we compared ecosystem structure and function between Cymodocea nodosa seagrass meadows and bottoms dominated by Caulerpa prolifera, a green, native, rhizophytic seaweed, through 5 ecological proxies: (i) primary production (via community metabolism), (ii) composition and abundance of epifauna (a proxy for provision of habitat for epifauna), composition and abundance of (iii) small-sized (juvenile) and (iv) large-sized (adult) fishes (proxies for provision of habitat for fishes), and (v) sediment retention (a proxy for sediment stabilization). Four of these proxies were greater in C. nodosa seagrass meadows than in C. prolifera beds: gross primary productivity (∼1.4 times), the total abundance, species density and biomass of small-sized fishes (∼2.1, 1.3 and 1.3 times, respectively), the total abundance and species density of large-sized fishes (∼3.6 and 1.5 times, respectively), and sediment stabilization (∼1.4 times). In contrast, the total abundance and species density of epifauna was larger (∼3.1 and 1.7 times, respectively) in C. prolifera than in C. nodosa seagrass beds. These results suggest that ecosystem structure and function may differ if seagrasses are replaced by green rhizophytic seaweeds. Importantly, ecosystem functions may not be appropriate surrogates for one another. As a result, assessments of ecosystem services associated with ecosystem functions cannot be based on exclusively one service that is expected to benefit other services. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Climate change and body size shift in Mediterranean bivalve assemblages: unexpected role of biological invasions.

    PubMed

    Nawrot, Rafał; Albano, Paolo G; Chattopadhyay, Devapriya; Zuschin, Martin

    2017-08-16

    Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems. © 2017 The Author(s).

  1. Predicting Chronic Climate-Driven Disturbances and Their Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.

    Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances--including drought, heat, insect outbreaks, and wildfire--are rising as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. We explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plant mortality to changesmore » in ecosystem stocks and fluxes. Efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less

  2. Predicting Chronic Climate-Driven Disturbances and Their Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.

    Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances, including drought, heat, insect outbreaks, and wildfire, are growing as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. Here, we explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plantmore » mortality to changes in ecosystem stocks and fluxes. Our efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less

  3. Predicting Chronic Climate-Driven Disturbances and Their Mitigation

    DOE PAGES

    McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.; ...

    2017-11-13

    Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances, including drought, heat, insect outbreaks, and wildfire, are growing as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. Here, we explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plantmore » mortality to changes in ecosystem stocks and fluxes. Our efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less

  4. Integrating ecosystem sampling, gradient modeling, remote sensing, and ecosystem simulation to create spatially explicit landscape inventories

    Treesearch

    Robert E. Keane; Matthew G. Rollins; Cecilia H. McNicoll; Russell A. Parsons

    2002-01-01

    Presented is a prototype of the Landscape Ecosystem Inventory System (LEIS), a system for creating maps of important landscape characteristics for natural resource planning. This system uses gradient-based field inventories coupled with gradient modeling remote sensing, ecosystem simulation, and statistical analyses to derive spatial data layers required for ecosystem...

  5. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  6. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    NASA Astrophysics Data System (ADS)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-11-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.

  7. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models.

  8. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    PubMed Central

    Fleming, Nicholas E.C.; Newton, Jason; Houghton, Jonathan D.R.

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position) were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models. PMID:26244116

  9. Using high-resolution satellite imagery to assess populations of animals in the Antarctic

    NASA Astrophysics Data System (ADS)

    LaRue, Michelle Ann

    The Southern Ocean is one of the most rapidly-changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically-important krill and fish. It is imperative that populations of indicator species, such as penguins and seals, be monitored at regional- to global scales to decouple the effects of climate and anthropogenic changes for appropriate ecosystem-based management of the Southern Ocean. Remotely monitoring populations through high-resolution satellite imagery is currently the only feasible way to gain information about population trends of penguins and seals in Antarctica. In my first chapter, I review the literature where high-resolution satellite imagery has been used to assess populations of animals in polar regions. Building on this literature, my second chapter focuses on estimating changes in abundance in the Weddell seal population in Erebus Bay. I found a strong correlation between ground and satellite counts, and this finding provides an alternate method for assessing populations of Weddell seals in areas where less is known about population status. My third chapter explores how size of the guano stain of Adelie penguins can be used to predict population size. Using high-resolution imagery and ground counts, I built a model to estimate the breeding population of Adelie penguins using a supervised classification to estimate guano size. These results suggest that the size of guano stain is an accurate predictor of population size, and can be applied to estimate remote Adelie penguin colonies. In my fourth chapter, I use air photos, satellite imagery, climate and mark-resight data to determine that climate change has positively impacted the population of Adelie penguins at Beaufort Island through a habitat release that ultimately affected the dynamics within the southern Ross Sea metapopulation. Finally, for my fifth chapter I combined the literature with observations from aerial surveys and satellite imagery to determine that emperor penguins are not philopatric. These results have implications for interpreting long-term modeling studies and I suggest that future research should account for metapopulation dynamics within emperor penguin populations. Combined, my dissertation provides resources and new insights for effective management of the Southern Ocean ecosystem.

  10. Exploring the role of movement in determining the global distribution of marine biomass using a coupled hydrodynamic - Size-based ecosystem model

    NASA Astrophysics Data System (ADS)

    Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.

    2015-11-01

    Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.

  11. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    PubMed

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-05-15

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.

    PubMed

    Galic, Nika; Grimm, Volker; Forbes, Valery E

    2017-08-01

    Freshwater ecosystems are exposed to many stressors, including toxic chemicals and global warming, which can impair, separately or in combination, important processes in organisms and hence higher levels of organization. Investigating combined effects of warming and toxicants has been a topic of little research, but neglecting their combined effects may seriously misguide management efforts. To explore how toxic chemicals and warming, alone and in combination, propagate across levels of biological organization, including a key ecosystem process, we developed an individual-based model (IBM) of a freshwater amphipod detritivore, Gammarus pseudolimnaeus, feeding on leaf litter. In this IBM, life history emerges from the individuals' energy budgets. We quantified, in different warming scenarios (+1-+4 °C), the effects of hypothetical toxicants on suborganismal processes, including feeding, somatic and maturity maintenance, growth, and reproduction. Warming reduced mean adult body sizes and population abundance and biomass, but only in the warmest scenarios. Leaf litter processing, a key contributor to ecosystem functioning and service delivery in streams, was consistently enhanced by warming, through strengthened interaction between the detritivorous consumer and its resource. Toxicant effects on feeding and maintenance resulted in initially small adverse effects on consumers, but ultimately led to population extinction and loss of ecosystem process. Warming in combination with toxicants had little effect at the individual and population levels, but ecosystem process was impaired in the warmer scenarios. Our results suggest that exposure to the same amount of toxicants can disproportionately compromise ecosystem processing depending on global warming scenarios; for example, reducing organismal feeding rates by 50% will reduce resource processing by 50% in current temperature conditions, but by up to 200% with warming of 4 °C. Our study has implications for assessing and monitoring impacts of chemicals on ecosystems facing global warming. We advise complementing existing monitoring approaches with directly quantifying ecosystem processes and services. © 2017 John Wiley & Sons Ltd.

  13. How does abundance scale with body size in coupled size-structured food webs?

    PubMed

    Blanchard, Julia L; Jennings, Simon; Law, Richard; Castle, Matthew D; McCloghrie, Paul; Rochet, Marie-Joëlle; Benoît, Eric

    2009-01-01

    1. Widely observed macro-ecological patterns in log abundance vs. log body mass of organisms can be explained by simple scaling theory based on food (energy) availability across a spectrum of body sizes. The theory predicts that when food availability falls with body size (as in most aquatic food webs where larger predators eat smaller prey), the scaling between log N vs. log m is steeper than when organisms of different sizes compete for a shared unstructured resource (e.g. autotrophs, herbivores and detritivores; hereafter dubbed 'detritivores'). 2. In real communities, the mix of feeding characteristics gives rise to complex food webs. Such complexities make empirical tests of scaling predictions prone to error if: (i) the data are not disaggregated in accordance with the assumptions of the theory being tested, or (ii) the theory does not account for all of the trophic interactions within and across the communities sampled. 3. We disaggregated whole community data collected in the North Sea into predator and detritivore components and report slopes of log abundance vs. log body mass relationships. Observed slopes for fish and epifaunal predator communities (-1.2 to -2.25) were significantly steeper than those for infaunal detritivore communities (-0.56 to -0.87). 4. We present a model describing the dynamics of coupled size spectra, to explain how coupling of predator and detritivore communities affects the scaling of log N vs. log m. The model captures the trophic interactions and recycling of material that occur in many aquatic ecosystems. 5. Our simulations demonstrate that the biological processes underlying growth and mortality in the two distinct size spectra lead to patterns consistent with data. Slopes of log N vs. log m were steeper and growth rates faster for predators compared to detritivores. Size spectra were truncated when primary production was too low for predators and when detritivores experienced predation pressure. 6. The approach also allows us to assess the effects of external sources of mortality (e.g. harvesting). Removal of large predators resulted in steeper predator spectra and increases in their prey (small fish and detritivores). The model predictions are remarkably consistent with observed patterns of exploited ecosystems.

  14. Predictive model for sustaining biodiversity in tropical countryside

    PubMed Central

    Mendenhall, Chase D.; Sekercioglu, Cagan H.; Brenes, Federico Oviedo; Ehrlich, Paul R.; Daily, Gretchen C.

    2011-01-01

    Growing demand for food, fuel, and fiber is driving the intensification and expansion of agricultural land through a corresponding displacement of native woodland, savanna, and shrubland. In the wake of this displacement, it is clear that farmland can support biodiversity through preservation of important ecosystem elements at a fine scale. However, how much biodiversity can be sustained and with what tradeoffs for production are open questions. Using a well-studied tropical ecosystem in Costa Rica, we develop an empirically based model for quantifying the “wildlife-friendliness” of farmland for native birds. Some 80% of the 166 mist-netted species depend on fine-scale countryside forest elements (≤60-m-wide clusters of trees, typically of variable length and width) that weave through farmland along hilltops, valleys, rivers, roads, and property borders. Our model predicts with ∼75% accuracy the bird community composition of any part of the landscape. We find conservation value in small (≤20 m wide) clusters of trees and somewhat larger (≤60 m wide) forest remnants to provide substantial support for biodiversity beyond the borders of tropical forest reserves. Within the study area, forest elements on farms nearly double the effective size of the local forest reserve, providing seminatural habitats for bird species typically associated with the forest. Our findings provide a basis for estimating and sustaining biodiversity in farming systems through managing fine-scale ecosystem elements and, more broadly, informing ecosystem service analyses, biodiversity action plans, and regional land use strategies. PMID:21911396

  15. Predictive model for sustaining biodiversity in tropical countryside.

    PubMed

    Mendenhall, Chase D; Sekercioglu, Cagan H; Brenes, Federico Oviedo; Ehrlich, Paul R; Daily, Gretchen C

    2011-09-27

    Growing demand for food, fuel, and fiber is driving the intensification and expansion of agricultural land through a corresponding displacement of native woodland, savanna, and shrubland. In the wake of this displacement, it is clear that farmland can support biodiversity through preservation of important ecosystem elements at a fine scale. However, how much biodiversity can be sustained and with what tradeoffs for production are open questions. Using a well-studied tropical ecosystem in Costa Rica, we develop an empirically based model for quantifying the "wildlife-friendliness" of farmland for native birds. Some 80% of the 166 mist-netted species depend on fine-scale countryside forest elements (≤ 60-m-wide clusters of trees, typically of variable length and width) that weave through farmland along hilltops, valleys, rivers, roads, and property borders. Our model predicts with ∼75% accuracy the bird community composition of any part of the landscape. We find conservation value in small (≤ 20 m wide) clusters of trees and somewhat larger (≤ 60 m wide) forest remnants to provide substantial support for biodiversity beyond the borders of tropical forest reserves. Within the study area, forest elements on farms nearly double the effective size of the local forest reserve, providing seminatural habitats for bird species typically associated with the forest. Our findings provide a basis for estimating and sustaining biodiversity in farming systems through managing fine-scale ecosystem elements and, more broadly, informing ecosystem service analyses, biodiversity action plans, and regional land use strategies.

  16. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems.

    PubMed

    Rousk, Johannes; Smith, Andrew R; Jones, Davey L

    2013-12-01

    We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long-term (>10 years) field experiments across Europe (EU-FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre-incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short-term ecosystem studies thereby providing a clear evidence base to allow long-term, broad-scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying-rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil. © 2013 John Wiley & Sons Ltd.

  17. Modeling the temporal dynamics of nonstructural carbohydrate pools in forest trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Andrew D.

    Trees store carbohydrates, in the form of sugars and starch, as reserves to be used to power both future growth as well as to support day-to-day metabolic functions. These reserves are particularly important in the context of how trees cope with disturbance and stress—for example, as related to pest outbreaks, wind or ice damage, and extreme climate events. In this project, we measured the size of carbon reserves in forest trees, and determined how quickly these reserves are used and replaced—i.e., their “turnover time”. Our work was conducted at Harvard Forest, a temperate deciduous forest in central Massachusetts. Through fieldmore » sampling, laboratory-based chemical analyses, and allometric modeling, we scaled these measurements up to whole-tree NSC budgets. We used these data to test and improve computer simulation models of carbon flow through forest ecosystems. Our modeling focused on the mathematical representation of these stored carbon reserves, and we examined the sensitivity of model performance to different model structures. This project contributes to DOE’s goal to improve next-generation models of the earth system, and to understand the impacts of climate change on terrestrial ecosystems.« less

  18. Improving coarse woody debris measurements: a taper-based technique

    Treesearch

    Christopher W. Woodall; James A. Westfall

    2007-01-01

    Coarse woody debris (CWD) are dead and down trees of a certain minimum size that are an important forest ecosystem component (e.g., wildlife habitat, carbon stocks, and fuels). Accurately measuring the dimensions of CWD is important for ensuring the quality of CWD estimates and hence for accurately assessing forest ecosystem attributes. To improve the quality of CWD...

  19. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  20. High-resolution modeling of a marine ecosystem using the FRESCO hydroecological model

    NASA Astrophysics Data System (ADS)

    Zalesny, V. B.; Tamsalu, R.

    2009-02-01

    The FRESCO (Finnish Russian Estonian Cooperation) mathematical model describing a marine hydroecosystem is presented. The methodology of the numerical solution is based on the method of multicomponent splitting into physical and biological processes, spatial coordinates, etc. The model is used for the reproduction of physical and biological processes proceeding in the Baltic Sea. Numerical experiments are performed with different spatial resolutions for four marine basins that are enclosed into one another: the Baltic Sea, the Gulf of Finland, the Tallinn-Helsinki water area, and Tallinn Bay. Physical processes are described by the equations of nonhydrostatic dynamics, including the k-ω parametrization of turbulence. Biological processes are described by the three-dimensional equations of an aquatic ecosystem with the use of a size-dependent parametrization of biochemical reactions. The main goal of this study is to illustrate the efficiency of the developed numerical technique and to demonstrate the importance of a high spatial resolution for water basins that have complex bottom topography, such as the Baltic Sea. Detailed information about the atmospheric forcing, bottom topography, and coastline is very important for the description of coastal dynamics and specific features of a marine ecosystem. Experiments show that the spatial inhomogeneity of hydroecosystem fields is caused by the combined effect of upwelling, turbulent mixing, surface-wave breaking, and temperature variations, which affect biochemical reactions.

  1. Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts of harvesting.

    PubMed

    Hill, S L; Murphy, E J; Reid, K; Trathan, P N; Constable, A J

    2006-11-01

    The ecosystem approach to fisheries recognises the interdependence between harvested species and other ecosystem components. It aims to account for the propagation of the effects of harvesting through the food-web. The formulation and evaluation of ecosystem-based management strategies requires reliable models of ecosystem dynamics to predict these effects. The krill-based system in the Southern Ocean was the focus of some of the earliest models exploring such effects. It is also a suitable example for the development of models to support the ecosystem approach to fisheries because it has a relatively simple food-web structure and progress has been made in developing models of the key species and interactions, some of which has been motivated by the need to develop ecosystem-based management. Antarctic krill, Euphausia superba, is the main target species for the fishery and the main prey of many top predators. It is therefore critical to capture the processes affecting the dynamics and distribution of krill in ecosystem dynamics models. These processes include environmental influences on recruitment and the spatially variable influence of advection. Models must also capture the interactions between krill and its consumers, which are mediated by the spatial structure of the environment. Various models have explored predator-prey population dynamics with simplistic representations of these interactions, while others have focused on specific details of the interactions. There is now a pressing need to develop plausible and practical models of ecosystem dynamics that link processes occurring at these different scales. Many studies have highlighted uncertainties in our understanding of the system, which indicates future priorities in terms of both data collection and developing methods to evaluate the effects of these uncertainties on model predictions. We propose a modelling approach that focuses on harvested species and their monitored consumers and that evaluates model uncertainty by using alternative structures and functional forms in a Monte Carlo framework.

  2. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  3. More than Anecdotes: Fishers’ Ecological Knowledge Can Fill Gaps for Ecosystem Modeling

    PubMed Central

    Bevilacqua, Ana Helena V.; Carvalho, Adriana R.; Angelini, Ronaldo; Christensen, Villy

    2016-01-01

    Background Ecosystem modeling applied to fisheries remains hampered by a lack of local information. Fishers’ knowledge could fill this gap, improving participation in and the management of fisheries. Methodology The same fishing area was modeled using two approaches: based on fishers’ knowledge and based on scientific information. For the former, the data was collected by interviews through the Delphi methodology, and for the latter, the data was gathered from the literature. Agreement between the attributes generated by the fishers’ knowledge model and scientific model is discussed and explored, aiming to improve data availability, the ecosystem model, and fisheries management. Principal Findings The ecosystem attributes produced from the fishers’ knowledge model were consistent with the ecosystem attributes produced by the scientific model, and elaborated using only the scientific data from literature. Conclusions/Significance This study provides evidence that fishers’ knowledge may suitably complement scientific data, and may improve the modeling tools for the research and management of fisheries. PMID:27196131

  4. Towards a Stochastic Predictive Understanding of Ecosystem Functioning and Resilience to Environmental Changes

    NASA Astrophysics Data System (ADS)

    Pappas, C.

    2017-12-01

    Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not captured by simulation results with process-based models. Our analysis offers a perspective for terrestrial ecosystem modelling, combining current process understanding with stochastic methods, and paves the way for new model-data integration opportunities in Earth system sciences.

  5. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they require many efforts to decipher the numerous interactions and feedback loops. Given the breadth of questions to be tackled when dealing with coral reefs, the best practice approach uses multiple model types and thus benefits from the strength of different models types.

  6. Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin

    USGS Publications Warehouse

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.

    2015-09-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic periods of high precipitation. Based on 30-year projections of burn and recovery rates, our population model predicted steady and substantial long-term declines in population size across the Great Basin. Further, example management scenarios that may help offset adverse wildfire effects are provided by models of varying levels of fire suppression and post-wildfire restoration that focus on areas especially important to sage-grouse populations. These models illustrate how sage-grouse population persistence likely will be compromised as sagebrush ecosystems and sage-grouse habitat are degraded by wildfire, especially in a warmer and drier climate, and by invasion of annual grasses that can increase wildfire frequency and size in the Great Basin.

  7. Satellite-based modeling of gross primary production in an evergreen needleleaf forest

    Treesearch

    Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III

    2004-01-01

    The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...

  8. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change

    PubMed Central

    Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L.; Lewis, Simon L.; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J. W.; Erwin, Terry L.; Feldpausch, Ted R.; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R.

    2016-01-01

    Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions. PMID:26711984

  9. Effects of future land use on biogeography of aquatic ecosystems of Amazonia

    NASA Astrophysics Data System (ADS)

    Howard, E. A.; Coe, M. T.; Foley, J. A.; Costa, M. H.

    2006-12-01

    Amazonian ecosystems provide key ecosystem services, such as regulating the amount and timing of water and carbon flows through the Amazon Basin. Land use in these ecosystems affects regional water balance, which in turn affects biogeography of aquatic ecosystems, including wetlands and floodplains. We combined a hydrological model (Terrestrial Hydrology Model with Biogeochemistry, THMB), remote sensing observations (Hess et al. 2003), and empirical data to identify the distribution of aquatic biogeographic types throughout the central Amazon basin over time. We explored how future land-use scenarios for the Amazon Basin through 2030 (Soares-Filho et al. 2004) would modify the spatial and temporal patterns of aquatic ecosystems as compared to a baseline of natural potential vegetation cover under historical climate variability for the 20th century. We calibrated monthly simulation results with remotely sensed observations of flooded area and extent of different wetland categories for high and low water periods over a 1.7 million sq. km region of the central Amazon. Two additional dimensions of floodplain biogeography (river size and color) were added to provide insight into the geographic distribution of key ecosystem types and their flooding seasonality. For historical conditions, the model results reproduced regional differences in seasonal flood extent and timing north and south of the Amazon mainstem, reflecting the dominant climatic regimes. Black-water streams and medium-sized rivers, followed by large white-water rivers, were the most extensive types across the study region. However much of the black water was in areas likely to be influenced by white-water rivers while flooded. The monthly extent of flooded areas dominated by woody vegetation was consistently more strongly seasonal than non-woody areas. Also, the extent of flooding in muddy and semi-muddy rivers and floodplains tended to be more highly seasonal than in black- and clear-water areas. We discuss our efforts to use our simulation results to extrapolate and bound estimates and patterns of aquatic ecosystem extent in the Amazon River system under future land-use scenarios. Regional flooding variability has disproportionate effects on different ecosystem types, suggesting that persistent, long-term changes to flooding regimes may have long-lasting consequences for floodplain vegetation, wildlife, and human residents.

  10. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits

    PubMed Central

    Vesk, Peter A.

    2017-01-01

    Plant functional traits are increasingly used to generalize across species, however few examples exist of predictions from trait-based models being evaluated in new species or new places. Can we use functional traits to predict growth of unknown species in different areas? We used three independently collected datasets, each containing data on heights of individuals from non-resprouting species over a chronosquence of time-since-fire sites from three ecosystems in south-eastern Australia. We examined the influence of specific leaf area, woody density, seed size and leaf nitrogen content on three aspects of plant growth; maximum relative growth rate, age at maximum growth and asymptotic height. We tested our capacity to perform out-of-sample prediction of growth trajectories between ecosystems using species functional traits. We found strong trait-growth relationships in one of the datasets; whereby species with low SLA achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed mass reached their time of maximum growth early. However these same growth-trait relationships did not hold across the two other datasets, making accurate prediction from one dataset to another unachievable. We believe there is evidence to suggest that growth trajectories themselves may be fundamentally different between ecosystems and that trait-height-growth relationships may change over environmental gradients. PMID:28486535

  11. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment.

    PubMed

    Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A

    2017-11-10

    Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.

  12. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    PubMed

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  13. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    PubMed

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  14. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  15. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William

    2017-09-01

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

  16. Feeding dynamics, consumption rates and daily ration of wahoo Acanthocybium solandri in Indo-Pacific waters.

    PubMed

    Perelman, J N; Schmidt, K N; Haro, I; Tibbetts, I R; Zischke, M T

    2017-05-01

    This study reports the diet composition of 363 wahoo Acanthocybium solandri captured from the Indo-Pacific. The study also provides the first estimates of consumption and daily ration for the species worldwide, which are important parameters for ecosystem models and may improve ecosystem-based fisheries management. Thirty-four prey taxa were identified from A. solandri stomachs with Scombridae having the highest relative importance. Actinopterygii comprised 96% of the total prey wet mass, of which 29% were epipelagic fishes, with 22% alone from Scombridae. There was no significant relationship between fish size and the size of prey items consumed. Feeding intensity, as measured by stomach fullness, did not significantly differ either among seasons or reproductive activity. The mean daily consumption rate was estimated as 344 g day -1 , which corresponded to a mean daily ration of 2·44% body mass day -1 . The results from this study suggest A. solandri is an opportunistic predator similar to other pelagic piscivores, worldwide. © 2017 The Fisheries Society of the British Isles.

  17. Do we have to choose between feeding the human population and conserving nature? Modelling the global dependence of people on ecosystem services.

    PubMed

    Cazalis, Victor; Loreau, Michel; Henderson, Kirsten

    2018-09-01

    The ability of the human population to continue growing depends strongly on the ecosystem services provided by nature. Nature, however, is becoming more and more degraded as the number of individuals increases, which could potentially threaten the future well-being of the human population. We use a dynamic model to conceptualise links between the global proportion of natural habitats and human demography, through four categories of ecosystem services (provisioning, regulating, cultural recreational and informational) to investigate the common future of nature and humanity in terms of size and well-being. Our model shows that there is generally a trade-off between the quality of life and human population size and identifies four short-term scenarios, corresponding to three long-term steady states of the model. First, human population could experience declines if nature becomes too degraded and regulating services diminish; second the majority of the population could be in a famine state, where the population continues to grow with minimal food provision. Between these scenarios, a desirable future scenario emerges from the model. It occurs if humans convert enough land to feed all the population, while maintaining biodiversity and ecosystem services. Finally, we find a fourth scenario, which combines famine and a decline in the population because of an overexploitation of land leading to a decrease in food production. Human demography is embedded in natural dynamics; the two factors should be considered together if we are to identify a desirable future for both nature and humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Linking phytoplankton community metabolism to the individual size distribution.

    PubMed

    Padfield, Daniel; Buckling, Angus; Warfield, Ruth; Lowe, Chris; Yvon-Durocher, Gabriel

    2018-05-25

    Quantifying variation in ecosystem metabolism is critical to predicting the impacts of environmental change on the carbon cycle. We used a metabolic scaling framework to investigate how body size and temperature influence phytoplankton community metabolism. We tested this framework using phytoplankton sampled from an outdoor mesocosm experiment, where communities had been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed and ambient phytoplankton communities differed substantially in their taxonomic composition and size structure. Despite this, the response of primary production and community respiration to long- and short-term warming could be estimated using a model that accounted for the size- and temperature dependence of individual metabolism, and the community abundance-body size distribution. This work demonstrates that the key metabolic fluxes that determine the carbon balance of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of the individual size distribution and environmental temperature. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models

    Treesearch

    Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston

    2016-01-01

    Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...

  20. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  1. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  2. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  3. Eco-evolution in size-structured ecosystems: simulation case study of rapid morphological changes in alewife.

    PubMed

    Kang, Jung Koo; Thibert-Plante, Xavier

    2017-02-27

    Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives' morphology to transition rapidly from anadromous to landlocked. Lakes with landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey. These rapid, well-documented changes in the alewives' morphology provide important insights into the morphological evolution of fish. Predicting the morphological evolution of fish is crucial for fisheries and ecosystem management, but the involvement of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives' morphological evolution change after 150-300 years in freshwater? Over the first 250 years, the alewives' numbers of gill-rakers only increased when reductions in their body size substantially improved their ability to forage for small prey. Additionally, alewives' gill-raker counts increased more rapidly as the adverse effects of narrow gill-raker spacings on foraging for large prey were made less severe. For the first 150-250 years, alewives' growth decreased monotonically, and their gill-raker number increased monotonically. After the first 150-250 years, however, the alewives exhibited multiple evolutionary morphological trajectories in different trophic settings. In several of these settings, their evolutionary trajectories even reversed after the first 150-250 years. Alewives affected the abundance and morphology of their prey, which in turn changed the abundance and morphology of the alewives. Complex low-trophic-level interactions can alter the abundance and characteristics of alewives. This study suggests that the current morphology of recently (∼300 years)-landlocked alewives may not represent an evolutionarily stable state.

  4. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  5. Soil factors of ecosystems' disturbance risk reduction under the impact of rocket fuel

    NASA Astrophysics Data System (ADS)

    Krechetov, Pavel; Koroleva, Tatyana; Sharapova, Anna; Chernitsova, Olga

    2016-04-01

    Environmental impacts occur at all stages of space rocket launch. One of the most dangerous consequences of a missile launch is pollution by components of rocket fuels ((unsymmetrical dimethylhydrazine (UDMH)). The areas subjected to falls of the used stages of carrier rockets launched from the Baikonur cosmodrome occupy thousands of square kilometers of different natural landscapes: from dry steppes of Kazakhstan to the taiga of West Siberia and mountains of the Altai-Sayany region. The study aims at assessing the environmental risk of adverse effects of rocket fuel on the soil. Experimental studies have been performed on soil and rock samples with specified parameters of the material composition. The effect of organic matter, acid-base properties, particle size distribution, and mineralogy on the decrease in the concentration of UDMH in equilibrium solutions has been studied. It has been found that the soil factors are arranged in the following series according to the effect on UDMH mobility: acid-base properties > organic matter content >clay fraction mineralogy > particle size distribution. The estimation of the rate of self-purification of contaminated soil is carried out. Experimental study of the behavior of UDMH in soil allowed to define a model for calculating critical loads of UDMH in terrestrial ecosystems.

  6. Strategy for modeling putative multilevel ecosystems on Europa.

    PubMed

    Irwin, Louis N; Schulze-Makuch, Dirk

    2003-01-01

    A general strategy for modeling ecosystems on other worlds is described. Two alternative biospheres beneath the ice surface of Europa are modeled, based on analogous ecosystems on Earth in potentially comparable habitats, with reallocation of biomass quantities consistent with different sources of energy and chemical constituents. The first ecosystem models a benthic biosphere supported by chemoautotrophic producers. The second models two concentrations of biota at the top and bottom of the subsurface water column supported by energy harvested from transmembrane ionic gradients. Calculations indicate the plausibility of both ecosystems, including small macroorganisms at the highest trophic levels, with ionotrophy supporting a larger biomass than chemoautotrophy.

  7. Patterns of ecosystem services supply across farm properties: Implications for ecosystem services-based policy incentives.

    PubMed

    Nahuelhual, Laura; Benra, Felipe; Laterra, Pedro; Marin, Sandra; Arriagada, Rodrigo; Jullian, Cristobal

    2018-09-01

    In developing countries, the protection of biodiversity and ecosystem services (ES) rests on the hands of millions of small landowners that coexist with large properties, in a reality of highly unequal land distribution. Guiding the effective allocation of ES-based incentives in such contexts requires researchers and practitioners to tackle a largely overlooked question: for a given targeted area, will single large farms or several small ones provide the most ES supply? The answer to this question has important implications for conservation planning and rural development alike, which transcend efficiency to involve equity issues. We address this question by proposing and testing ES supply-area relations (ESSARs) around three basic hypothesized models, characterized by constant (model 1), increasing (model 2), and decreasing increments (model 3) of ES supply per unit of area or ES "productivity". Data to explore ESSARs came from 3384 private landholdings located in southern Chile ranging from 0.5ha to over 30,000ha and indicators of four ES (forage, timber, recreation opportunities, and water supply). Forage provision best fit model 3, which suggests that targeting several small farms to provide this ES should be a preferred choice, as compared to a single large farm. Timber provision best fit model 2, suggesting that in this case targeting a single large farm would be a more effective choice. Recreation opportunities best fit model 1, which indicates that several small or a single large farm of a comparable size would be equally effective in delivering this ES. Water provision fit model 1 or model 2 depending on the study site. The results corroborate that ES provision is not independent from property area and therefore understanding ESSARs is a necessary condition for setting conservation incentives that are both efficient (deliver the highest conservation outcome at the least cost) and fair for landowners. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

    2013-04-23

    Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing.

  9. Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in dna-based approaches

    USGS Publications Warehouse

    Pfrender, M.E.; Ferrington, L.C.; Hawkins, C.P.; Hartzell, P.L.; Bagley, M.; Jackson, S.; Courtney, G.W.; Larsen, D.P.; Creutzburg, B.R.; Levesque, C.A.; Epler, J.H.; Morse, J.C.; Fend, S.; Petersen, M.J.; Ruiter, D.; Schindel, D.; Whiting, M.

    2010-01-01

    Assessing the biodiversity of macroinvertebrate fauna in freshwater ecosystems is an essential component of both basic ecological inquiry and applied ecological assessments. Aspects of taxonomic diversity and composition in freshwater communities are widely used to quantify water quality and measure the efficacy of remediation and restoration efforts. The accuracy and precision of biodiversity assessments based on standard morphological identifications are often limited by taxonomic resolution and sample size. Morphologically based identifications are laborious and costly, significantly constraining the sample sizes that can be processed. We suggest that the development of an assay platform based on DNA signatures will increase the precision and ease of quantifying biodiversity in freshwater ecosystems. Advances in this area will be particularly relevant for benthic and planktonic invertebrates, which are often monitored by regulatory agencies. Adopting a genetic assessment platform will alleviate some of the current limitations to biodiversity assessment strategies. We discuss the benefits and challenges associated with DNA-based assessments and the methods that are currently available. As recent advances in microarray and next-generation sequencing technologies will facilitate a transition to DNA-based assessment approaches, future research efforts should focus on methods for data collection, assay platform development, establishing linkages between DNA signatures and well-resolved taxonomies, and bioinformatics. ?? 2010 by The University of Chicago Press.

  10. AggModel: A soil organic matter model with measurable pools for use in incubation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segoli, Moran; De Gryze, S.; Dou, Fugen

    2013-01-01

    Current soil organic matter (SOM) models are empirical in nature by employing few conceptual SOM pools that have a specific turnover time, but that are not measurable and have no direct relationship with soil structural properties. Most soil particles are held together in aggregates and the number, size and stability of these aggregates significantly affect the size and amount of organic matter contained in these aggregates, and its susceptibility to decomposition. While it has been shown that soil aggregates and their dynamics can be measured directly in the laboratory and in the field, the impact of soil aggregate dynamics onmore » SOM decomposition has not been explicitly incorporated in ecosystem models. Here, we present AggModel, a conceptual and simulation model that integrates soil aggregate and SOM dynamics. In AggModel, we consider unaggregated and microaggregated soil that can exist within or external to macroaggregated soil. Each of the four aggregate size classes contains particulate organic matter and mineral-associated organic matter fractions. We used published data from laboratory incubations to calibrate and validate the biological and environmental effects on the rate of formation and breakdown of macroaggregates and microaggregates, and the organic matter dynamics within these different aggregate fractions. After calibration, AggModel explained more than 70% of the variation in aggregate masses and over 90% of the variation in aggregate-associated carbon. The model estimated the turnover time of macroaggregates as 32 days and 166 days for microaggregates. Sensitivity analysis of AggModel parameterization supported the notion that macroaggregate turnover rate has a strong control over microaggregate masses and, hence, carbon sequestration. In addition to AggModel being a proof-of-concept, the advantage of a model that is based on measurable SOM fractions is that its internal structure and dynamics can be directly calibrated and validated by using experimental data. In conclusion, AggModel successfully incorporates the explicit representation for the turnover of soil aggregates and their influence on SOM dynamics and can form the basis for new SOM modules within existing ecosystem models.« less

  11. Integrated Modeling for Watershed Ecosystem Services Assessment and Forecasting

    EPA Science Inventory

    Regional scale watershed management decisions must be informed by the science-based relationship between anthropogenic activities on the landscape and the change in ecosystem structure, function, and services that occur as a result. We applied process-based models that represent...

  12. Phylogenetic analyses suggest that diversification and body size evolution are independent in insects.

    PubMed

    Rainford, James L; Hofreiter, Michael; Mayhew, Peter J

    2016-01-08

    Skewed body size distributions and the high relative richness of small-bodied taxa are a fundamental property of a wide range of animal clades. The evolutionary processes responsible for generating these distributions are well described in vertebrate model systems but have yet to be explored in detail for other major terrestrial clades. In this study, we explore the macro-evolutionary patterns of body size variation across families of Hexapoda (insects and their close relatives), using recent advances in phylogenetic understanding, with an aim to investigate the link between size and diversity within this ancient and highly diverse lineage. The maximum, minimum and mean-log body lengths of hexapod families are all approximately log-normally distributed, consistent with previous studies at lower taxonomic levels, and contrasting with skewed distributions typical of vertebrate groups. After taking phylogeny and within-tip variation into account, we find no evidence for a negative relationship between diversification rate and body size, suggesting decoupling of the forces controlling these two traits. Likelihood-based modeling of the log-mean body size identifies distinct processes operating within Holometabola and Diptera compared with other hexapod groups, consistent with accelerating rates of size evolution within these clades, while as a whole, hexapod body size evolution is found to be dominated by neutral processes including significant phylogenetic conservatism. Based on our findings we suggest that the use of models derived from well-studied but atypical clades, such as vertebrates may lead to misleading conclusions when applied to other major terrestrial lineages. Our results indicate that within hexapods, and within the limits of current systematic and phylogenetic knowledge, insect diversification is generally unfettered by size-biased macro-evolutionary processes, and that these processes over large timescales tend to converge on apparently neutral evolutionary processes. We also identify limitations on available data within the clade and modeling approaches for the resolution of trees of higher taxa, the resolution of which may collectively enhance our understanding of this key component of terrestrial ecosystems.

  13. The role of discharge variation in scaling of drainage area and food chain length in rivers

    USGS Publications Warehouse

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  14. The role of discharge variation in scaling of drainage area and food chain length in rivers.

    PubMed

    Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M

    2010-11-12

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  15. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    NASA Astrophysics Data System (ADS)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were found to decrease as large grid size is used in rasterizing LIDAR return points. The analysis suggested that this methodology could be used as an operational procedure for monitoring changes in terrestrial ecosystem functions and structure brought by environmental changes.

  16. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.

  17. Early warning signals of desertification transitions in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Corrado, Raffaele; Cherubini, Anna Maria; Pennetta, Cecilia

    2014-12-01

    The identification of early warning signals for regime shifts in ecosystems is of crucial importance given their impact in terms of economic and social effects. We present here the results of a theoretical study on the desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing on the role played by the strength of external stresses, measured by the mortality rate m , we followed the progressive degradation of the ecosystem for increasing m , identifying different stages: first, the fragmentation transition occurring at relatively low values of m , then the desertification transition at higher mortality rates, and finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete degradation of the soil, attained at the maximum value of m . For each transition we calculated the spanning probabilities as functions of m and the percolation thresholds according to different spanning criteria. The identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions, which are attained respectively inside the fragmentation interval, for the vegetated biggest cluster, and inside the desertification interval, for the nonvegetated cluster.

  18. Early warning signals of desertification transitions in semiarid ecosystems.

    PubMed

    Corrado, Raffaele; Cherubini, Anna Maria; Pennetta, Cecilia

    2014-12-01

    The identification of early warning signals for regime shifts in ecosystems is of crucial importance given their impact in terms of economic and social effects. We present here the results of a theoretical study on the desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing on the role played by the strength of external stresses, measured by the mortality rate m, we followed the progressive degradation of the ecosystem for increasing m, identifying different stages: first, the fragmentation transition occurring at relatively low values of m, then the desertification transition at higher mortality rates, and finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete degradation of the soil, attained at the maximum value of m. For each transition we calculated the spanning probabilities as functions of m and the percolation thresholds according to different spanning criteria. The identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions, which are attained respectively inside the fragmentation interval, for the vegetated biggest cluster, and inside the desertification interval, for the nonvegetated cluster.

  19. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  20. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  1. Southwest Ecosystem Services Project (SwESP): Identifying Ecosystems Services Based on Tribal Values

    EPA Science Inventory

    USEPA Office of Research Development (ORD) new strategic focus is the measurement of benefits and services of ecosystem. The primary objective of the Ecosystem Services Research Program (ESRP) is to identify, measure, monitor, model and map ecosystem services and to enable their ...

  2. Acceptability of the Kalman filter to monitor pronghorn population size

    Treesearch

    Raymond L. Czaplewski

    1986-01-01

    Pronghorn antelope are important components of grassland and steppe ecosystems in Wyoming. Monitoring data on the size and population dynamics of these herds are expensive and gathered only a few times each year. Reliable data include estimates of animals harvested and proportion of bucks, does, and fawns. A deterministic simulation model has been used to improve...

  3. Linking water quality and quantity in environmental flow assessment in deteriorated ecosystems: a food web view.

    PubMed

    Chen, He; Ma, Lekuan; Guo, Wei; Yang, Ying; Guo, Tong; Feng, Cheng

    2013-01-01

    Most rivers worldwide are highly regulated by anthropogenic activities through flow regulation and water pollution. Environmental flow regulation is used to reduce the effects of anthropogenic activities on aquatic ecosystems. Formulating flow alteration-ecological response relationships is a key factor in environmental flow assessment. Traditional environmental flow models are characterized by natural relationships between flow regimes and ecosystem factors. However, food webs are often altered from natural states, which disturb environmental flow assessment in such ecosystems. In ecosystems deteriorated by heavy anthropogenic activities, the effects of environmental flow regulation on species are difficult to assess with current modeling approaches. Environmental flow management compels the development of tools that link flow regimes and food webs in an ecosystem. Food web approaches are more suitable for the task because they are more adaptive for disordered multiple species in a food web deteriorated by anthropogenic activities. This paper presents a global method of environmental flow assessment in deteriorated aquatic ecosystems. Linkages between flow regimes and food web dynamics are modeled by incorporating multiple species into an ecosystem to explore ecosystem-based environmental flow management. The approach allows scientists and water resources managers to analyze environmental flows in deteriorated ecosystems in an ecosystem-based way.

  4. [Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model].

    PubMed

    Wu, Zhen; Jia, Pei-Qiao; Hu, Zhong-Jun; Chen, Li-Qiao; Gu, Zhi-Min; Liu, Qi-Gen

    2012-03-01

    Based on the 2008-2009 survey data of fishery resources and eco-environment of Fenshuijiang Reservoir, a mass balance model for the Reservoir ecosystem was constructed by Ecopath with Ecosim software. The model was composed of 14 functional groups, including silver carp, bighead carp, Hemibarbus maculates, Cutler alburnus, Microlepis and other fishes, Oligochaeta, aquatic insect, zooplankton, phytoplankton, and organic detritus, etc. , being able to better simulate Fenshuijiang Reservoir ecosystem. In this ecosystem, there were five trophic levels (TLs), and the nutrient flow mainly occurred in the first three TLs. Grazing and detritus food chains were the main energy flows in the ecosystem, but the food web was simpler and susceptible to be disturbed by outer environment. The transfer efficiency at lower TLs was relatively low, indicating that the ecosystem had a lower capability in energy utilization, and the excessive stock of nutrients in the ecosystem could lead to eutrophication. The lower connectance index, system omnivory index, Finn' s cycled index, and Finn's mean path length demonstrated that the ecosystem was unstable, while the high ecosystem property indices such as Pp/R and Pp/B showed that the ecosystem was immature and highly productive. It was suggested that Fenshuijiang Reservoir was still a developing new reservoir ecosystem, with a very short history and comparatively high primary productivity.

  5. Merging Marine Ecosystem Models and Genomics

    NASA Astrophysics Data System (ADS)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  6. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less

  7. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    DOE PAGES

    Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.; ...

    2017-09-27

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less

  8. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.

    PubMed

    Gratton, Claudio; Vander Zanden, M Jake

    2009-10-01

    Recently, food web studies have started exploring how resources from one habitat or ecosystem influence trophic interactions in a recipient ecosystem. Benthic production in lakes and streams can be exported to terrestrial habitats via emerging aquatic insects and can therefore link aquatic and terrestrial ecosystems. In this study, we develop a general conceptual model that highlights zoobenthic production, insect emergence, and ecosystem geometry (driven principally by area-to-edge ratio) as important factors modulating the flux of aquatic production across the ecosystem boundary. Emerging insect flux, defined as total insect production emerging per meter of shoreline (g C x m(-1) x yr(-1)) is then distributed inland using decay functions and is used to estimate insect deposition rate to terrestrial habitats (g C x m(-2) x yr(-1)). Using empirical data from the literature, we simulate insect fluxes across the water-land ecosystem boundary to estimate the distribution of fluxes and insect deposition inland for lakes and streams. In general, zoobenthos in streams are more productive than in lakes (6.67 vs. 1.46 g C x m(-2) x yr(-1)) but have lower insect emergence to aquatic production ratios (0.19 vs. 0.30). However, as stream width is on average smaller than lake radius, this results in flux (F) estimates 2 1/2 times greater for lakes than for streams. Ultimately, insect deposition onto land (within 100 m of shore) adjacent to average-sized lakes (10-ha lakes, 0.021 g C x m(-2) x yr(-1)) is greater than for average-sized streams (4 m width, 0.002 g C x m(-2) x yr(-1)) used in our comparisons. For the average lake (both in size and productivity), insect deposition rate approaches estimates of terrestrial secondary production in low-productivity ecosystems (e.g., deserts and tundra, approximately 0.07 g C x m(-2) x yr(-1)). However, larger lakes (1300 ha) and streams (16 m) can have average insect deposition rates (approximately 0.01-2.4 g C x m(-2) x yr(-1)) comparable to estimates of secondary production of more productive ecosystems such as grasslands. Because of the potentially large inputs of emerging aquatic insects into terrestrial habitats, ecosystem processes and terrestrial consumers can be influenced by insect inputs. The relative contribution of lakes and streams to this flux will vary among landscapes depending on the number and size of these ecosystems types on the landscape.

  9. Tree Size Inequality Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light Competition Model.

    PubMed

    Bourdier, Thomas; Cordonnier, Thomas; Kunstler, Georges; Piedallu, Christian; Lagarrigues, Guillaume; Courbaud, Benoit

    2016-01-01

    Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the effect of structural diversity on ecosystem productivity, tree size inequality is a major facet that should be taken into account.

  10. Characterization and variability of particle size distributions in Hudson Bay, Canada

    NASA Astrophysics Data System (ADS)

    Xi, Hongyan; Larouche, Pierre; Tang, Shilin; Michel, Christine

    2014-06-01

    Particle size distribution (PSD) plays a significant role in many aspects of aquatic ecosystems, including phytoplankton dynamics, sediment fluxes, and optical scattering from particulates. As of yet, little is known on the variability of particle size distribution in marine ecosystems. In this study, we investigated the PSD properties and variability in Hudson Bay based on measurements from a laser diffractometer (LISST-100X Type-B) in concert with biogeochemical parameters collected during summer 2010. Results show that most power-law fitted PSD slopes ranged from 2.5 to 4.5, covering nearly the entire range observed for natural waters. Offshore waters showed a predominance of smaller particles while near the coast, the effect of riverine inputs on PSD were apparent. Particulate inorganic matter contributed more to total suspended matter in coastal waters leading to lower PSD slopes than offshore. The depth distribution of PSD slopes shows that larger particles were associated with the pycnocline. Below the pycnocline, smaller particles dominated the spectra. A comparison between a PSD slope-based method to derive phytoplankton size class (PSC) and pigment-based derived PSC showed the two methods agreed relatively well. This study provides valuable baseline information on particle size properties and phytoplankton composition estimates in a sub-arctic environment subject to rapid environmental change.

  11. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  12. A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models

    USGS Publications Warehouse

    Kicklighter, D.W.; Bruno, M.; Donges, S.; Esser, G.; Heimann, Martin; Helfrich, J.; Ift, F.; Joos, F.; Kaduk, J.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.M.; Meyer, R.; Moore, B.; Nadler, A.; Prentice, I.C.; Sauf, W.; Schloss, A.L.; Sitch, S.; Wittenberg, U.; Wurth, G.

    1999-01-01

    We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990 to 2300) changes of atmospheric CO2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial Ecosystem Model (TEM). The results of the model intercomparison suggest that CO2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called 'missing carbon sink' of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystems experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO2 fertilization on terrestrial carbon storage.

  13. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    PubMed

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  14. Using CarbonTracker carbon flux estimates to improve a terrestrial carbon cycle model

    NASA Astrophysics Data System (ADS)

    Peters, W.; Krol, M.; Miller, J. B.; Tans, P. P.; Carvalhais, N.; Schaefer, K.

    2009-12-01

    Estimates of net ecosystem exchange (NEE) from NOAA’s CarbonTracker CO2 data assimilation system show patterns of annual net uptake not represented in most terrestrial carbon cycle models. This is mainly because such models lack information on the land-use history of individual ecosystems, which is the main driver of long-term mean carbon exchange. Instead, they assume the biosphere to be in steady-state, with annual gross photosynthesis equalling ecosystem respiration everywhere. This limits their use in interpreting observations of carbon dynamics such as with eddy-covariance techniques or through atmospheric CO2 records. We have implemented a method that takes the long-term mean NEE estimates from CarbonTracker to derive the size of the dominant carbon pool in each ecosystem of the SIBCASA biosphere model. With the new pool sizes, the SIBCASA model is no longer in steady-state and reproduces annual carbon uptake patterns from CarbonTracker. We will show that the non steady-state SIBCASA model is not only much more consistent with the atmospheric CO2 record, but also with independent data on standing wood biomass and forest age from the Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service. Four years of CarbonTracker NEE are needed to reliably derive a long term mean for this process, and we use three other years from CarbonTracker to evaluate the non steady state SIBCASA NEE. We will furthermore show that the non steady-state SIBCASA NEE is a much better first-guess for the CarbonTracker data assimilation process, allowing more confidence in its final NEE estimate, and reducing a systematic bias in CarbonTracker modeled atmospheric CO2. This overcomes a long standing issue in inverse modeling, and opens the way for further assessment and improvement of carbon cycle models such as SIBCASA.

  15. Ecosystem-based fisheries management: Perception on definitions, implementations, and aspirations.

    PubMed

    Trochta, John T; Pons, Maite; Rudd, Merrill B; Krigbaum, Melissa; Tanz, Alexander; Hilborn, Ray

    2018-01-01

    Ecosystem-based fisheries management (EBFM) was developed to move beyond single species management by incorporating ecosystem considerations for the sustainable utilization of marine resources. Due to the wide range of fishery characteristics, including different goals of fisheries management across regions and species, theoretical best practices for EBFM vary greatly. Here we highlight the lack of consensus in the interpretation of EBFM amongst professionals in marine science and its implementation. Fisheries policy-makers and managers, stock assessment scientists, conservationists, and ecologists had very different opinions on the degree to which certain management strategies would be considered EBFM. We then assess the variability of the implementation of EBFM, where we created a checklist of characteristics typifying EBFM and scored fisheries across different regions, species, ecosystems, and fishery size and capacity. Our assessments show fisheries are unlikely to meet all the criteria on the EBFM checklist. Consequentially, it is unnecessary for management to practice all the traits of EBFM, as some may be disparate from the ecosystem attributes or fishery goals. Instead, incorporating some ecosystem-based considerations to fisheries management that are context-specific is a more realistic and useful way for EBFM to occur in practice.

  16. Ecosystem-based fisheries management: Perception on definitions, implementations, and aspirations

    PubMed Central

    Hilborn, Ray

    2018-01-01

    Ecosystem-based fisheries management (EBFM) was developed to move beyond single species management by incorporating ecosystem considerations for the sustainable utilization of marine resources. Due to the wide range of fishery characteristics, including different goals of fisheries management across regions and species, theoretical best practices for EBFM vary greatly. Here we highlight the lack of consensus in the interpretation of EBFM amongst professionals in marine science and its implementation. Fisheries policy-makers and managers, stock assessment scientists, conservationists, and ecologists had very different opinions on the degree to which certain management strategies would be considered EBFM. We then assess the variability of the implementation of EBFM, where we created a checklist of characteristics typifying EBFM and scored fisheries across different regions, species, ecosystems, and fishery size and capacity. Our assessments show fisheries are unlikely to meet all the criteria on the EBFM checklist. Consequentially, it is unnecessary for management to practice all the traits of EBFM, as some may be disparate from the ecosystem attributes or fishery goals. Instead, incorporating some ecosystem-based considerations to fisheries management that are context-specific is a more realistic and useful way for EBFM to occur in practice. PMID:29381700

  17. Assessing the vulnerability of human and biological communities to changing ecosystem services using a GIS-based multi-criteria decision support tool

    USGS Publications Warehouse

    Villarreal, Miguel; Norman, Laura M.; Labiosa, William B.

    2012-01-01

    In this paper we describe an application of a GIS-based multi-criteria decision support web tool that models and evaluates relative changes in ecosystem services to policy and land management decisions. The Santa Cruz Watershed Ecosystem Portfolio (SCWEPM) was designed to provide credible forecasts of responses to ecosystem drivers and stressors and to illustrate the role of land use decisions on spatial and temporal distributions of ecosystem services within a binational (U.S. and Mexico) watershed. We present two SCWEPM sub-models that when analyzed together address bidirectional relationships between social and ecological vulnerability and ecosystem services. The first model employs the Modified Socio-Environmental Vulnerability Index (M-SEVI), which assesses community vulnerability using information from U.S. and Mexico censuses on education, access to resources, migratory status, housing situation, and number of dependents. The second, relating land cover change to biodiversity (provisioning services), models changes in the distribution of terrestrial vertebrate habitat based on multitemporal vegetation and land cover maps, wildlife habitat relationships, and changes in land use/land cover patterns. When assessed concurrently, the models exposed some unexpected relationships between vulnerable communities and ecosystem services provisioning. For instance, the most species-rich habitat type in the watershed, Desert Riparian Forest, increased over time in areas occupied by the most vulnerable populations and declined in areas with less vulnerable populations. This type of information can be used to identify ecological conservation and restoration targets that enhance the livelihoods of people in vulnerable communities and promote biodiversity and ecosystem health.

  18. Optimization of terrestrial ecosystem model parameters using atmospheric CO2 concentration data with a global carbon assimilation system (GCAS)

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zhang, S.; Zheng, X.; Shangguan, W.

    2016-12-01

    A global carbon assimilation system (GCAS) that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25° (Vmax25 ), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1°resolution for the period from 2002 to 2008. Optimized multi-year average Vmax25 values range from 49 to 51 μmol m-2 s-1 over most regions of world. Vegetation from tropical zones has relatively lower values than vegetation in temperate regions. Optimized multi-year average Q10 values varied from 1.95 to 2.05 over most regions of the world. Relatively high values of Q10 are derived over high/mid latitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at mid-high latitudes. The maximum in occurs during the growing season, while the minima appear during non-growing seasons. Q10 values decreases with increasing temperature. The seasonal variabilities of and Q10 are larger at higher latitudes with tropical or low latitude regions showing little seasonal variabilities.

  19. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for ecosystem carbon cycle studies

    Treesearch

    Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...

  20. Modeling Complex Marine Ecosystems: An Investigation of Two Teaching Approaches with Fifth Graders

    ERIC Educational Resources Information Center

    Papaevripidou, M.; Constantinou, C. P.; Zacharia, Z. C.

    2007-01-01

    This study investigated acquisition and transfer of the modeling ability of fifth graders in various domains. Teaching interventions concentrated on the topic of marine ecosystems either through a modeling-based approach or a worksheet-based approach. A quasi-experimental (pre-post comparison study) design was used. The control group (n = 17)…

  1. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  2. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE PAGES

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...

    2016-11-24

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  3. Modeling extreme drought impacts on terrestrial ecosystems when thresholds are exceeded

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Rammig, A.; Smith, B.; Medvigy, D.; Lichstein, J. W.; Dukes, J. S.; Allen, C. D.; Beier, C.; Larsen, K. S.; Ficken, C. D.; Pockman, W.; Anderegg, W.; Luo, Y.

    2016-12-01

    Recent IPCC Assessment Reports suggest that with predicted climate changes future precipitation- and heat-related extreme events are becoming stronger and more frequent with potential for prolonged droughts. To prepare for these changes and their impacts, we need to develop a better understanding of terrestrial ecosystem responses to extreme drought events. In particular, we focus here on large-extent and long-lasting extreme drought events with noticeable impacts on the functioning of forested ecosystems. While most of ecosystem manipulative experiments have been motivated by ongoing and predicted climate change, the majority only applied relatively moderate droughts, not addressing the "very" extreme tail of these scenarios, i.e. "extreme extremes (EEs)". We explore the response of forest ecosystems to EEs using two demographic-based dynamic global vegetation models (DGVMs) (i.e. ED2, LPJ-GUESS) in which the abundances of different plant functional types, as well as tree size- and age-class structure, are emergent properties of resource competition. We evaluate the model's capabilities to represent extreme drought scenarios (i.e., 50% and 90% reduction in precipitation for 1-year, 2-year, and 4-year drought scenarios) at two dry forested sites: Palo Verde, Costa Rica (i.e. tropical) and EucFACE, Australia (i.e. temperate). Through the DGVM modeling outcomes we determine the following five testable hypotheses for future experiments: 1) EEs cannot be extrapolated from mild extremes due to plant plasticity and functional composition. 2) Response to EEs depends on functional diversity, trait combinations, and phenology, such that both models predicted even after 100 years plant biomass did not recover. 3) Mortality from drought reduces the pressure on resources and prevents further damage by subsequent years of drought. 4) Early successional stands are more vulnerable to extreme droughts while older stand are more resilient. 5) Elevated atmospheric CO2 alleviates impacts of extreme droughts while increased temperature exacerbates mortality. This study highlighted a number of questions about our current understanding of EEs and their corresponding thresholds and tipping points, and provides an analysis of confidence in model representation and accuracy of processes related to EEs.

  4. Adding ecosystem function to agent-based land use models

    USDA-ARS?s Scientific Manuscript database

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeoche...

  5. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.

    2015-12-01

    A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.

  6. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning.

    PubMed

    Ye, Lin; Chang, Chun-Yi; García-Comas, Carmen; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2013-09-01

    1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue. 2. To fill the gap, with large-scale field data from the East China Sea, we tested the novel hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton (H1) and compared it with five conventional hypotheses explaining the top-down control: flatter zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation decreases the strength of top-down control of zooplankton on phytoplankton through trophic cascade (H5); increasing temperature intensifies the strength of top-down control (H6). 3. The results of univariate analyses support the hypotheses based on zooplankton size diversity (H1), zooplankton size spectrum (H2), nutrient (H3) and zooplankton taxonomic diversity (H4), but not the hypotheses based on fish predation (H5) and temperature (H6). More in-depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in the East China Sea. 4. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators and thus elevates the strength of top-down control. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  7. Fishing degrades size structure of coral reef fish communities.

    PubMed

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016 John Wiley & Sons Ltd.

  8. The evolution of ecosystem ascendency in a complex systems based model.

    PubMed

    Brinck, Katharina; Jensen, Henrik Jeldtoft

    2017-09-07

    General patterns in ecosystem development can shed light on driving forces behind ecosystem formation and recovery and have been of long interest. In recent years, the need for integrative and process oriented approaches to capture ecosystem growth, development and organisation, as well as the scope of information theory as a descriptive tool has been addressed from various sides. However data collection of ecological network flows is difficult and tedious and comprehensive models are lacking. We use a hierarchical version of the Tangled Nature Model of evolutionary ecology to study the relationship between structure, flow and organisation in model ecosystems, their development over evolutionary time scales and their relation to ecosystem stability. Our findings support the validity of ecosystem ascendency as a meaningful measure of ecosystem organisation, which increases over evolutionary time scales and significantly drops during periods of disturbance. The results suggest a general trend towards both higher integrity and increased stability driven by functional and structural ecosystem coadaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  10. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  11. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    PubMed

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  12. Development of simplified ecosystem models for applications in Earth system studies: The Century experience

    NASA Technical Reports Server (NTRS)

    Parton, William J.; Ojima, Dennis S.; Schimel, David S.; Kittel, Timothy G. F.

    1992-01-01

    During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed.

  13. Development of an integrated generic model for multi-scale assessment of the impacts of agro-ecosystems on major ecosystem services in West Africa.

    PubMed

    Belem, Mahamadou; Saqalli, Mehdi

    2017-11-01

    This paper presents an integrated model assessing the impacts of climate change, agro-ecosystem and demographic transition patterns on major ecosystem services in West-Africa along a partial overview of economic aspects (poverty reduction, food self-sufficiency and income generation). The model is based on an agent-based model associated with a soil model and multi-scale spatial model. The resulting Model for West-Africa Agro-Ecosystem Integrated Assessment (MOWASIA) is ecologically generic, meaning it is designed for all sudano-sahelian environments but may then be used as an experimentation facility for testing different scenarios combining ecological and socioeconomic dimensions. A case study in Burkina Faso is examined to assess the environmental and economic performances of semi-continuous and continuous farming systems. Results show that the semi-continuous system using organic fertilizer and fallowing practices contribute better to environment preservation and food security than the more economically performant continuous system. In addition, this study showed that farmers heterogeneity could play an important role in agricultural policies planning and assessment. In addition, the results showed that MOWASIA is an effective tool for designing, analysing the impacts of agro-ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  14. A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals.

    PubMed

    Forbes, Valery E; Salice, Chris J; Birnir, Bjorn; Bruins, Randy J F; Calow, Peter; Ducrot, Virginie; Galic, Nika; Garber, Kristina; Harvey, Bret C; Jager, Henriette; Kanarek, Andrew; Pastorok, Robert; Railsback, Steve F; Rebarber, Richard; Thorbek, Pernille

    2017-04-01

    Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. Environ Toxicol Chem 2017;36:845-859. © 2017 SETAC. © 2017 SETAC.

  15. Taking the pulse of mountains: Ecosystem responses to climatic variability

    USGS Publications Warehouse

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.

  16. [Assessment of ecosystem in giant panda distribution area based on entropy method and coefficient of variation].

    PubMed

    Yan, Zhi Gang; Li, Jun Qing

    2017-12-01

    The areas of the habitat and bamboo forest, and the size of the giant panda wild population have greatly increased, while habitat fragmentation and local population isolation have also intensified in recent years. Accurate evaluation of ecosystem status of the panda in the giant panda distribution area is important for giant panda conservation. The ecosystems of the distribution area and six mountain ranges were subdivided into habitat and population subsystems based on the hie-rarchical system theory. Using the panda distribution area as the study area and the three national surveys as the time node, the evolution laws of ecosystems were studied using the entropy method, coefficient of variation, and correlation analysis. We found that with continuous improvement, some differences existed in the evolution and present situation of the ecosystems of six mountain ranges could be divided into three groups. Ecosystems classified into the same group showed many commonalities, and difference between the groups was considerable. Problems of habitat fragmentation and local population isolation became more serious, resulting in ecosystem degradation. Individuali-zed ecological protection measures should be formulated and implemented in accordance with the conditions in each mountain system to achieve the best results.

  17. Assessing ecosystem response to multiple disturbances and climate change in South Africa using ground- and satellite-based measurements and model

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.

    2015-12-01

    Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.

  18. Early Triassic marine biotic recovery: the predators' perspective.

    PubMed

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  19. Predicting Grizzly Bear Density in Western North America

    PubMed Central

    Mowat, Garth; Heard, Douglas C.; Schwarz, Carl J.

    2013-01-01

    Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552

  20. Predicting grizzly bear density in western North America.

    PubMed

    Mowat, Garth; Heard, Douglas C; Schwarz, Carl J

    2013-01-01

    Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.

  1. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2.

    PubMed

    Fatichi, Simone; Leuzinger, Sebastian; Paschalis, Athanasios; Langley, J Adam; Donnellan Barraclough, Alicia; Hovenden, Mark J

    2016-10-24

    Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic model to investigate the relative contributions of direct (through carbon assimilation) and indirect (via soil moisture savings due to stomatal closure, and changes in leaf area index) effects of elevated CO 2 across a variety of ecosystems. We specifically determined which ecosystems and climatic conditions maximize the indirect effects of elevated CO 2 The simulations suggest that the indirect effects of elevated CO 2 on net primary productivity are large and variable, ranging from less than 10% to more than 100% of the size of direct effects. For ET, indirect effects were, on average, 65% of the size of direct effects. Indirect effects tended to be considerably larger in water-limited ecosystems. As a consequence, the total CO 2 effect had a significant, inverse relationship with the wetness index and was directly related to vapor pressure deficit. These results have major implications for our understanding of the CO 2 response of ecosystems and for global projections of CO 2 fertilization, because, although direct effects are typically understood and easily reproducible in models, simulations of indirect effects are far more challenging and difficult to constrain. Our findings also provide an explanation for the discrepancies between experiments in the total CO 2 effect on net primary productivity.

  2. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Cheung, William W. L.; Sarmiento, Jorge L.; Dunne, John; Frölicher, Thomas L.; Lam, Vicky W. Y.; Deng Palomares, M. L.; Watson, Reg; Pauly, Daniel

    2013-03-01

    Changes in temperature, oxygen content and other ocean biogeochemical properties directly affect the ecophysiology of marine water-breathing organisms. Previous studies suggest that the most prominent biological responses are changes in distribution, phenology and productivity. Both theory and empirical observations also support the hypothesis that warming and reduced oxygen will reduce body size of marine fishes. However, the extent to which such changes would exacerbate the impacts of climate and ocean changes on global marine ecosystems remains unexplored. Here, we employ a model to examine the integrated biological responses of over 600 species of marine fishes due to changes in distribution, abundance and body size. The model has an explicit representation of ecophysiology, dispersal, distribution, and population dynamics. We show that assemblage-averaged maximum body weight is expected to shrink by 14-24% globally from 2000 to 2050 under a high-emission scenario. About half of this shrinkage is due to change in distribution and abundance, the remainder to changes in physiology. The tropical and intermediate latitudinal areas will be heavily impacted, with an average reduction of more than 20%. Our results provide a new dimension to understanding the integrated impacts of climate change on marine ecosystems.

  3. Resource partitioning among top predators in a Miocene food web

    PubMed Central

    Domingo, M. Soledad; Domingo, Laura; Badgley, Catherine; Sanisidro, Oscar; Morales, Jorge

    2013-01-01

    The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds. PMID:23135673

  4. A hybrid spectral representation of phytoplankton growth and zooplankton response: The ''control rod'' model of plankton interaction

    NASA Astrophysics Data System (ADS)

    Armstrong, Robert A.

    2003-11-01

    Phytoplankton species interact through competition for light and nutrients; they also interact through grazers they hold in common. Both interactions are expected to be size-dependent: smaller phytoplankton species will be at an advantage when nutrients are scarce due to surface/volume considerations, while species that are similar in size are more likely to be consumed by grazers held in common than are species that differ greatly in size. While phytoplankton competition for nutrients and light has been extensively characterized, size-based interaction through shared grazers has not been represented systematically. The latter situation is particularly unfortunate because small changes in community structure can give rise to large changes in ecosystem dynamics and, in inverse modeling, to large changes in estimated parameter values. A simple, systematic way to represent phytoplankton interaction through shared grazers, one resistant to unintended idiosyncrasy of model construction yet capable of representing scientifically justifiable idiosyncrasy, would aid greatly in the modeling process. Here I develop a model structure that allows systematic representation of plankton interaction. In this model, the zooplankton community is represented as a continuous size spectrum, while phytoplankton species can be represented individually. The mechanistic basis of the model is a shift in the zooplankton community from carnivory to omnivory to herbivory as phytoplankton density increases. I discuss two limiting approximations in some detail, and fit both to data from the IronEx II experiment. The first limiting case represents a community with no grazer-based interaction among phytoplankton species; this approximation illuminates the general structure of the model. In particular, the zooplankton spectrum can be viewed as the analog of a control rod in a nuclear reactor, which prevents (or fails to prevent) an exponential bloom of phytoplankton. A second, more complex limiting case allows more general interaction of phytoplankton species along a size axis. This latter case would be suitable for describing competition among species with distinct biogeochemical roles, or between species that cause harmful algal blooms and those that do not. The model structure as a whole is therefore simple enough to guide thinking, yet detailed enough to allow quantitative prediction.

  5. Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones

    Treesearch

    Dieter Gerten; Yiqi Luo; Guerric Le Maire; William J. Parton; Cindy Keough; Ensheng Weng; Claus Beier; Philippe Ciais; Wolfgang Cramer; Jeffrey S. Dukes; Paul J. Hanson; Alan A. K. Knapp; Sune Linder; Dan Nepstad; Lindsey Rustad; Alwyn. Sowerby

    2008-01-01

    The ongoing changes in the global climate expose the world’s ecosystems not only to increasing CO2 concentrations and temperatures but also to altered precipitation (P) regimes. Using four well-established process-based ecosystem models (LPJ, DayCent, ORCHIDEE, TECO), we explored effects of potential P...

  6. Finite-size effects on bacterial population expansion under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico

    2017-03-01

    The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.

  7. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  8. Rethinking plant functional types in Earth System Models: pan-tropical analysis of tree survival across environmental gradients

    NASA Astrophysics Data System (ADS)

    Johnson, D. J.; Needham, J.; Xu, C.; Davies, S. J.; Bunyavejchewin, S.; Giardina, C. P.; Condit, R.; Cordell, S.; Litton, C. M.; Hubbell, S.; Kassim, A. R. B.; Shawn, L. K. Y.; Nasardin, M. B.; Ong, P.; Ostertag, R.; Sack, L.; Tan, S. K. S.; Yap, S.; McDowell, N. G.; McMahon, S.

    2016-12-01

    Terrestrial carbon cycling is a function of the growth and survival of trees. Current model representations of tree growth and survival at a global scale rely on coarse plant functional traits that are parameterized very generally. In view of the large biodiversity in the tropical forests, it is important that we account for the functional diversity in order to better predict tropical forest responses to future climate changes. Several next generation Earth System Models are moving towards a size-structured, trait-based approach to modelling vegetation globally, but the challenge of which and how many traits are necessary to capture forest complexity remains. Additionally, the challenge of collecting sufficient trait data to describe the vast species richness of tropical forests is enormous. We propose a more fundamental approach to these problems by characterizing forests by their patterns of survival. We expect our approach to distill real-world tree survival into a reasonable number of functional types. Using 10 large-area tropical forest plots that span geographic, edaphic and climatic gradients, we model tree survival as a function of tree size for hundreds of species. We found surprisingly few categories of size-survival functions emerge. This indicates some fundamental strategies at play across diverse forests to constrain the range of possible size-survival functions. Initial cluster analysis indicates that four to eight functional forms are necessary to describe variation in size-survival relations. Temporal variation in size-survival functions can be related to local environmental variation, allowing us to parameterize how demographically similar groups of species respond to perturbations in the ecosystem. We believe this methodology will yield a synthetic approach to classifying forest systems that will greatly reduce uncertainty and complexity in global vegetation models.

  9. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey

    PubMed Central

    Tang, Xuli; Zhao, Xia; Bai, Yongfei; Wang, Wantong; Zhao, Yongcun; Wan, Hongwei; Xie, Zongqiang; Shi, Xuezheng; Wu, Bingfang; Wang, Gengxu; Yan, Junhua; Ma, Keping; Du, Sheng; Li, Shenggong; Han, Shijie; Ma, Youxin; Hu, Huifeng; Yang, Yuanhe; Han, Wenxuan; He, Hongling; Yu, Guirui; Fang, Jingyun; Zhou, Guoyi

    2018-01-01

    China’s terrestrial ecosystems have functioned as important carbon sinks. However, previous estimates of carbon budgets have included large uncertainties owing to the limitations of sample size, multiple data sources, and inconsistent methodologies. In this study, we conducted an intensive field campaign involving 14,371 field plots to investigate all sectors of carbon stocks in China’s forests, shrublands, grasslands, and croplands to better estimate the regional and national carbon pools and to explore the biogeographical patterns and potential drivers of these pools. The total carbon pool in these four ecosystems was 79.24 ± 2.42 Pg C, of which 82.9% was stored in soil (to a depth of 1 m), 16.5% in biomass, and 0.60% in litter. Forests, shrublands, grasslands, and croplands contained 30.83 ± 1.57 Pg C, 6.69 ± 0.32 Pg C, 25.40 ± 1.49 Pg C, and 16.32 ± 0.41 Pg C, respectively. When all terrestrial ecosystems are taken into account, the country’s total carbon pool is 89.27 ± 1.05 Pg C. The carbon density of the forests, shrublands, and grasslands exhibited a strong correlation with climate: it decreased with increasing temperature but increased with increasing precipitation. Our analysis also suggests a significant sequestration potential of 1.9–3.4 Pg C in forest biomass in the next 10–20 years assuming no removals, mainly because of forest growth. Our results update the estimates of carbon pools in China’s terrestrial ecosystems based on direct field measurements, and these estimates are essential to the validation and parameterization of carbon models in China and globally. PMID:29666314

  10. USING THE ECLPSS SOFTWARE ENVIRONMENT TO BUILD A SPATIALLY EXPLICIT COMPONENT-BASED MODEL OF OZONE EFFECTS ON FOREST ECOSYSTEMS. (R827958)

    EPA Science Inventory

    We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...

  11. Estimating Rates of Permafrost Degradation and their Impact on Ecosystems across Alaska and Northwest Canada using the Process-based Permafrost Dynamics Model GIPL as a Component of the Integrated Ecosystem Model (IEM)

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Genet, H.; Euskirchen, E. S.; Breen, A. L.; McGuire, A. D.; Rupp, S. T.; Romanovsky, V. E.; Bolton, W. R.; Walsh, J. E.

    2016-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Permafrost temperature has increased in most locations in the Arctic and Sub-Arctic during the past 30-40 years. The typical increase in permafrost temperature is 1-3°C. The process-based permafrost dynamics model GIPL developed in the Geophysical Institute Permafrost Lab, and which is the permafrost module of the Integrated Ecosystem Model (IEM) has been using to quantify the nature and rate of permafrost degradation and its impact on ecosystems, infrastructure, CO2 and CH4fluxes and net C storage following permafrost thaw across Alaska and Northwest Canada. The IEM project is a multi-institutional and multi-disciplinary effort aimed at understanding potential landscape, habitat and ecosystem change across the IEM domain. The IEM project also aims to tie three scientific models together Terrestrial Ecosystem Model (TEM), the ALFRESCO (ALaska FRame-based EcoSystem Code) and GIPL so that they exchange data at run-time. The models produce forecasts of future fire, vegetation, organic matter, permafrost and hydrology regimes. The climate forcing data are based on the historical CRU3.1 data set for the retrospective analysis period (1901-2009) and the CMIP3 CCCMA-CGCM3.1 and MPI-ECHAM5/MPI-OM climate models for the future period (2009-2100). All data sets were downscaled to a 1 km resolution, using a differencing methodology (i.e., a delta method) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) climatology. We estimated the dynamics of permafrost temperature, active layer thickness, area occupied by permafrost, and volume of thawed soils across the IEM domain. The modeling results indicate how different types of ecosystems affect the thermal state of permafrost and its stability. Although the rate of soil warming and permafrost degradation in peatland areas are slower than other areas, a considerable volume of peat will be thawed by the end of the current century. The release of carbon and the net effect of this thawing depends on the balance between increased productivity and respiration, which depend, in part, on soil moisture dynamics.

  12. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  13. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    NASA Astrophysics Data System (ADS)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  14. Distribution, abundance, and habitat associations of a large bivalve (Panopea generosa) in a eutrophic, fjord estuary

    USGS Publications Warehouse

    Mcdonald, P. Sean; Essington, Timothy E.; Davis, Jonathan P.; Galloway, Aaron W.E.; Stevick, Bethany C.; Jensen, Gregory C.; VanBlaricom, Glenn R.; Armstrong, David A.

    2015-01-01

    Marine bivalves are important ecosystem constituents and frequently support valuable fisheries. In many nearshore areas, human disturbance—including declining habitat and water quality—can affect the distribution and abundance of bivalve populations, and complicate ecosystem and fishery management assessments. Infaunal bivalves, in particular, are frequently cryptic and difficult to detect; thus, assessing potential impacts on their populations requires suitable, scalable methods for estimating abundance and distribution. In this study, population size of a common benthic bivalve (the geoduck Panopea generosa) is estimated with a Bayesian habitat-based model fit to scuba and tethered camera data in Hood Canal, a fjord basin in Washington state. Densities declined more than two orders of magnitude along a north—south gradient, concomitant with patterns of deepwater dissolved oxygen, and intensity and duration of seasonal hypoxia. Across the basin, geoducks were most abundant in loose, unconsolidated, sand substrate. The current study demonstrates the utility of using scuba, tethered video, and habitat models to estimate the abundance and distribution of a large infaunal bivalve at a regional (385-km2) scale.

  15. Addendum to "Colored-noise-induced discontinuous transitions in symbiotic ecosystems".

    PubMed

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N-species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  16. Addendum to ``Colored-noise-induced discontinuous transitions in symbiotic ecosystems''

    NASA Astrophysics Data System (ADS)

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N -species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  17. Size-dependent diffusion promotes the emergence of spatiotemporal patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay

    2014-07-01

    Spatiotemporal patterns, indicating the spatiotemporal variability of individual abundance, are a pronounced scenario in ecological interactions. Most of the existing models for spatiotemporal patterns treat species as homogeneous groups of individuals with average characteristics by ignoring intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly promotes the formation of spatiotemporal patterns, by creating regular spatiotemporal patterns out of temporal chaos. We also found that size-dependent diffusion can substitute large-amplitude base harmonics with spatiotemporal patterns with lower amplitude oscillations but with enriched harmonics. Finally, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting populations. Due to the ubiquity of individual ontogeny in natural ecosystems we conclude that diffusion variability within populations is a significant driving force for the emergence of spatiotemporal patterns. Our results offer a perspective on self-organized phenomena, and pave a way to understand such phenomena in systems organized as complex ecological networks.

  18. Using ground- and satellite-based measurements and models to quantify response to multiple disturbances and climate change in South African semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner

    2016-04-01

    Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.

  19. Land-based approach to evaluate sustainable land management and adaptive capacity of ecosystems/lands

    NASA Astrophysics Data System (ADS)

    Kust, German; Andreeva, Olga

    2015-04-01

    A number of new concepts and paradigms appeared during last decades, such as sustainable land management (SLM), climate change (CC) adaptation, environmental services, ecosystem health, and others. All of these initiatives still not having the common scientific platform although some agreements in terminology were reached, schemes of links and feedback loops created, and some models developed. Nevertheless, in spite of all these scientific achievements, the land related issues are still not in the focus of CC adaptation and mitigation. The last did not grow much beyond the "greenhouse gases" (GHG) concept, which makes land degradation as the "forgotten side of climate change" The possible decision to integrate concepts of climate and desertification/land degradation could be consideration of the "GHG" approach providing global solution, and "land" approach providing local solution covering other "locally manifesting" issues of global importance (biodiversity conservation, food security, disasters and risks, etc.) to serve as a central concept among those. SLM concept is a land-based approach, which includes the concepts of both ecosystem-based approach (EbA) and community-based approach (CbA). SLM can serve as in integral CC adaptation strategy, being based on the statement "the more healthy and resilient the system is, the less vulnerable and more adaptive it will be to any external changes and forces, including climate" The biggest scientific issue is the methods to evaluate the SLM and results of the SLM investments. We suggest using the approach based on the understanding of the balance or equilibrium of the land and nature components as the major sign of the sustainable system. Prom this point of view it is easier to understand the state of the ecosystem stress, size of the "health", range of adaptive capacity, drivers of degradation and SLM nature, as well as the extended land use, and the concept of environmental land management as the improved SLM approach. A number of case studies justify the schemes developed to explain this approach.

  20. Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach

    PubMed Central

    Lindegren, Martin; Möllmann, Christian; Nielsen, Anders; Stenseth, Nils C.

    2009-01-01

    Worldwide a number of fish stocks have collapsed because of overfishing and climate-induced ecosystem changes. Developing ecosystem-based fisheries management (EBFM) to prevent these catastrophic events in the future requires ecological models incorporating both internal food-web dynamics and external drivers such as fishing and climate. Using a stochastic food-web model for a large marine ecosystem (i.e., the Baltic Sea) hosting a commercially important cod stock, we were able to reconstruct the history of the stock. Moreover we demonstrate that in hindsight the collapse could only have been avoidable by adapting fishing pressure to environmental conditions and food-web interactions. The modeling approach presented here represents a significant advance for EBFM, the application of which is important for sustainable resource management in the future. PMID:19706557

  1. (abstract) Using an Inversion Algorithm to Retrieve Parameters and Monitor Changes over Forested Areas from SAR Data

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    1995-01-01

    In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.

  2. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    Atmospheric deposition of nitrogen (N) and sulfur (S) cause complex responses in ecosystems, from fertilization to forest ecosystem decline, freshwater eutrophication to acidification, loss of soil base cations, and alterations of disturbance regimes. DayCent-Chem, an ecosystem simulation model that combines ecosystem nutrient cycling and plant dynamics with aqueous geochemical equilibrium calculations, was developed to address ecosystem responses to combined atmospheric N and S deposition. It is unique among geochemically-based models in its dynamic biological cycling of N and its daily timestep for investigating ecosystem and surface water chemical response to episodic events. The model was applied to eight mountainous watersheds in the United States. The sites represent a gradient of N deposition across locales, from relatively pristine to N-saturated, and a variety of ecosystem types and climates. Overall, the model performed best in predicting stream chemistry for snowmelt-dominated sites. It was more difficult to predict daily stream chemistry for watersheds with deep soils, high amounts of atmospheric deposition, and a large degree of spatial heterogeneity. DayCent-Chem did well in representing plant and soil carbon and nitrogen pools and fluxes. Modeled stream nitrate (NO3-) and ammonium (NH4+) concentrations compared well with measurements at all sites, with few exceptions. Simulated daily stream sulfate (SO42-) concentrations compared well to measured values for sites where SO42- deposition has been low and where SO42- adsorption/desorption reactions did not seem to be important. The concentrations of base cations and silica in streams are highly dependent on the geochemistry and weathering rates of minerals in each catchment, yet these were rarely, if ever, known. Thus, DayCent-Chem could not accurately predict weathering products for some catchments. Additionally, few data were available for exchangeable soil cations or the magnitude of base cation deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  3. Fishing inside or outside? A case studies analysis of potential spillover effect from marine protected areas, using food web models

    NASA Astrophysics Data System (ADS)

    Colléter, Mathieu; Gascuel, Didier; Albouy, Camille; Francour, Patrice; Tito de Morais, Luis; Valls, Audrey; Le Loc'h, François

    2014-11-01

    Marine protected areas (MPAs) are implemented worldwide as an efficient tool to preserve biodiversity and protect ecosystems. We used food web models (Ecopath and EcoTroph) to assess the ability of MPAs to reduce fishing impacts on targeted resources and to provide biomass exports for adjacent fisheries. Three coastal MPAs: Bonifacio and Port-Cros (Mediterranean Sea), and Bamboung (Senegalese coast), were used as case studies. Pre-existing related Ecopath models were homogenized and ecosystem characteristics were compared based on network indices and trophic spectra analyses. Using the EcoTroph model, we simulated different fishing mortality scenarios and assessed fishing impacts on the three ecosystems. Lastly, the potential biomass that could be exported from each MPA was estimated. Despite structural and functional trophic differences, the three MPAs showed similar patterns of resistance to simulated fishing mortalities, with the Bonifacio case study exhibiting the highest potential catches and a slightly inferior resistance to fishing. We also show that the potential exports from our small size MPAs are limited and thus may only benefit local fishing activities. Based on simulations, their potential exports were estimated to be at the same order of magnitude as the amount of catch that could have been obtained inside the reserve. In Port Cros, the ban of fishing inside MPA could actually allow for improved catch yields outside the MPA due to biomass exports. This was not the case for the Bonifacio site, as its potential exports were too low to offset catch losses. This insight suggests the need for MPA networks and/or sufficiently large MPAs to effectively protect juveniles and adults and provide important exports. Finally, we discuss the effects of MPAs on fisheries that were not considered in food web models, and conclude by suggesting possible improvements in the analysis of MPA efficiency.

  4. The Integrated Landscape Modeling partnership - Current status and future directions

    USGS Publications Warehouse

    Mushet, David M.; Scherff, Eric J.

    2016-01-28

    The Integrated Landscape Modeling (ILM) partnership is an effort by the U.S. Geological Survey (USGS) and U.S. Department of Agriculture (USDA) to identify, evaluate, and develop models to quantify services derived from ecosystems, with a focus on wetland ecosystems and conservation effects. The ILM partnership uses the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling platform to facilitate regional quantifications of ecosystem services under various scenarios of land-cover change that are representative of differing conservation program and practice implementation scenarios. To date, the ILM InVEST partnership has resulted in capabilities to quantify carbon stores, amphibian habitat, plant-community diversity, and pollination services. Work to include waterfowl and grassland bird habitat quality is in progress. Initial InVEST modeling has been focused on the Prairie Pothole Region (PPR) of the United States; future efforts might encompass other regions as data availability and knowledge increase as to how functions affecting ecosystem services differ among regions.The ILM partnership is also developing the capability for field-scale process-based modeling of depressional wetland ecosystems using the Agricultural Policy/Environmental Extender (APEX) model. Progress was made towards the development of techniques to use the APEX model for closed-basin depressional wetlands of the PPR, in addition to the open systems that the model was originally designed to simulate. The ILM partnership has matured to the stage where effects of conservation programs and practices on multiple ecosystem services can now be simulated in selected areas. Future work might include the continued development of modeling capabilities, as well as development and evaluation of differing conservation program and practice scenarios of interest to partner agencies including the USDA’s Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS). When combined, the ecosystem services modeling capabilities of InVEST and the process-based abilities of the APEX model should provide complementary information needed to meet USDA and the Department of the Interior information needs.

  5. State-and-transition model archetypes: a global taxonomy of rangeland change

    USDA-ARS?s Scientific Manuscript database

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  6. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.

    1991-08-01

    Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.

  7. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.; Eldridge, David; Belnap, Jayne; Castillo-Monroy, Andrea; Escolar, Cristina; Soliveres, Santiago

    2014-01-01

    Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combinations of these features that should be more widely exploited in community, landscape and ecosystem ecology. In community ecology, biocrusts are elucidating the importance of biodiversity and spatial pattern for maintaining ecosystem multifunctionality due to their manipulability in experiments. Due to idiosyncrasies in their modes of facilitation and competition, biocrusts have led to new models on the interplay between environmental stress and biotic interactions and on the maintenance of biodiversity by competitive processes. Biocrusts are perhaps one of the best examples of micro-landscapes—real landscapes that are small in size. Although they exhibit varying patch heterogeneity, aggregation, connectivity and fragmentation, like macro-landscapes, they are also compatible with well-replicated experiments (unlike macro-landscapes). In ecosystem ecology, a number of studies are imposing small-scale, low cost manipulations of global change or state factors in biocrust micro-landscapes. The versatility of biocrusts to inform such disparate lines of inquiry suggests that they are an especially useful model system that can enable researchers to see ecological principles more clearly and quickly.

  8. Modelling multi-species interactions in the Barents Sea ecosystem with special emphasis on minke whales and their interactions with cod, herring and capelin

    NASA Astrophysics Data System (ADS)

    Lindstrøm, Ulf; Smout, Sophie; Howell, Daniel; Bogstad, Bjarte

    2009-10-01

    The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator-prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.

  9. The Effects of Land-Use Change on Ecosystem Oxidative Ratio

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Masiello, C. A.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    The carbon budgets of terrestrial ecosystems are typically estimated by tower-based CO2 fluxes and/or ground-based carbon inventories. Carbon uptake by the terrestrial biosphere can also be determined from their influence on the O2 concentration in the atmosphere (Keeling et al., 1996). Relating CO2 uptake to O2 production requires knowledge of the oxidative ratio (OR) of terrestrial ecosystems. Oxidative ratio (OR) is the molar ratio of O2:CO2 exchanged between the biosphere and the atmosphere by the processes of photosynthesis and respiration. Models currently used to apportion anthropogenic CO2 uptake between the land and ocean carbon sinks assume an invariant OR value of 1.10 for the terrestrial biosphere. The assumption of global invariance of OR is likely incorrect as climate and land-use changes alter ecosystem distributions. Moreover, small variations (0.01) in OR produce large global-scale discrepancies (1012 g C) in the estimated size of the terrestrial carbon sink (Randerson et al., 2006). The first SOCCR report estimated that 50% of the North American terrestrial carbon sink can be attributed to woody encroachment on abandoned agricultural lands (CCSP, 2007). The OR of early successional woodlands is poorly constrained and is likely to differ from croplands and forests. Therefore, we hypothesize that woody encroachment could drive a shift in the average OR value of North American ecosystems. The OR of an ecosystem can be measured by simultaneous CO2 and O2 flux measurements. Alternatively, OR can be estimated from the chemical composition of the organic matter in an ecosystem (plant biomass and soil). We used CHNOS combustion elemental analysis and 13C nuclear magnetic resonance to measure OR. We present a preliminary assessment of the OR of cropland, successional woodland, and mature forests at the Kellogg biological station LTER (Hickory Corners, MI, USA). We show significant variation in ecosystem OR, with coniferous forests having the highest OR values (~1.09), and corn agriculture having the lowest OR values (~1.04). Successional communities show large variation in OR values (ranging from ~1.03 to ~1.12).

  10. Sensitivity of mesquite shrubland CO2 exchange to precipitation in contrasting landscape settings.

    PubMed

    Potts, Daniel L; Scott, Russell L; Cable, Jessica M; Huxman, Travis E; Williams, David G

    2008-10-01

    In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.

  11. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in past ecosystem reconstructions. Counts of small numbers of confirmed species and estimates of maximum numbers of species present in the basin are used for the analysis and estimation of energy flow. This approach applies the methods of modern ecosystem analysis. ?? 2005 Elsevier Ltd. All rights reserved.

  12. Ecosystem functioning is enveloped by hydrometeorological variability.

    PubMed

    Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris

    2017-09-01

    Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.

  13. Design and impact assessment of watershed investments: An approach based on ecosystem services and boundary work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adem Esmail, Blal, E-mail: blal.ademesmail@unitn.it; Geneletti, Davide

    Watershed investments, whose main aim is to secure water for cities, represent a promising opportunity for large-scale sustainability transitions in the near future. If properly designed, they promote activities in the watershed that enhance ecosystem services while protecting nature and biodiversity, as well as achieving other societal goals. In this paper, we build on the concepts of ecosystem services and boundary work, to develop and test an operative approach for designing and assessing the impact of watershed investments. The approach is structured to facilitate negotiations among stakeholders. Its strategic component includes setting the agenda; defining investment scenarios; and assessing themore » performance of watershed investments as well as planning for a follow-up. Its technical component concerns data processing; tailoring spatially explicit ecosystem service models; hence their application to design a set of “investment portfolios”, generate future land use scenarios, and model impacts on selected ecosystem services. A case study illustrates how the technical component can be developed in a data scarce context in sub-Saharan Africa in a way that is functional to support the steps of the strategic component. The case study addresses soil erosion and water scarcity-related challenges affecting Asmara, a medium-sized city in Eritrea, and considers urban water security and rural poverty alleviation as two illustrative objectives, within a ten-year planning horizon. The case study results consist in spatially explicit data (investment portfolio, land use scenario, impact on ecosystem services), which were aggregated to quantitatively assess the performance of different watershed investments scenarios, in terms of changes in soil erosion control. By addressing stakeholders' concerns of credibility, saliency, and legitimacy, the approach is expected to facilitate negotiation of objectives, definition of scenarios, and assessment of alternative watershed investments, ultimately, to contribute to implementing an adaptive watershed management.« less

  14. The impact of large terrestrial carnivores on Pleistocene ecosystems

    PubMed Central

    Van Valkenburgh, Blaire; Ripple, William J.; Meloro, Carlo; Roth, V. Louise

    2016-01-01

    Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator–prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes. PMID:26504224

  15. Can market-based policies accomplish the optimal floodplain management? A gap between static and dynamic models.

    PubMed

    Mori, Koichiro

    2009-02-01

    The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.

  16. Body-size spectra of biofilm-dwelling protozoa and their seasonal shift in coastal ecosystems.

    PubMed

    Zhao, Lu; Xu, Guangjian; Wang, Zheng; Xu, Henglong

    2016-10-01

    Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent 'taxon-free' trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19-27μm), S3 (28-36μm), S4 (37-50μm) and S5 (53-71μm) were the top four levels in frequency of occurrence, while rank S1 (13-17μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)→S2/S4 (summer)→S4 (autumn)→S2 (winter) in frequency of occurrence; S1 (spring)→S4 (summer)→S2 (autumn)→S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan

    2017-04-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  18. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes.

    NASA Astrophysics Data System (ADS)

    Pietsch, S.

    2016-12-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong. Any given ecosystem never is at steady state! Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  19. Simulation of rapid ecological change in Lake Ontario

    USGS Publications Warehouse

    McKenna, James E.; Chalupnicki, Marc; Dittman, Dawn E.; Watkins, James M.

    2017-01-01

    Lower trophic level processes are integral to proper functioning of large aquatic ecosystems and have been disturbed in Lake Ontario by various stressors including exotic species. The invasion of benthic habitats by dreissenid mussels has led to systemic changes and native faunal declines. Size-dependent physiological rates, spatial differences and connectivity, competition, and differential population dynamics among invertebrate groups contributed to the change and system complexity. We developed a spatially explicit, individual-based mechanistic model of the benthic ecosystem in Lake Ontario, with coupling to the pelagic system, to examine ecosystem dynamics and effects of dreissenid mussel invasion and native fauna losses. Benthic organisms were represented by functional groups; filter-feeders (i.e., dreissenid mussels), surface deposit-feeders (e.g., native amphipod Diporeia spp.), and deposit-feeders (e.g., oligochaetes and other burrowers). The model was stable, represented ecological structure and function effectively, and reproduced observed effects of the mussel invasion. Two hypotheses for causes of Diporeia loss, competition or disease-like mortality, were tested. Simple competition for food did not explain observed declines in native surface deposit-feeders during the filter-feeder invasion. However, the elevated mortality scenario supports a disease-like cause for loss of the native amphipod, with population changes in various lake areas and altered benthic biomass transfers. Stabilization of mussel populations and possible recovery of the native, surface-deposit feeding amphipod were predicted. Although further research is required on forcing functions, model parameters, and natural conditions, the model provides a valuable tool to help managers understand the benthic system and plan for response to future disruptions.

  20. Ecosystem performance monitoring of rangelands by integrating modeling and remote sensing

    USGS Publications Warehouse

    Wylie, Bruce K.; Boyte, Stephen P.; Major, Donald J.

    2012-01-01

    Monitoring rangeland ecosystem dynamics, production, and performance is valuable for researchers and land managers. However, ecosystem monitoring studies can be difficult to interpret and apply appropriately if management decisions and disturbances are inseparable from the ecosystem's climate signal. This study separates seasonal weather influences from influences caused by disturbances and management decisions, making interannual time-series analysis more consistent and interpretable. We compared the actual ecosystem performance (AEP) of five rangeland vegetation types in the Owyhee Uplands for 9 yr to their expected ecosystem performance (EEP). Integrated growing season Normalized Difference Vegetation Index data for each of the nine growing seasons served as a proxy for annual AEP. Regression-tree models used long-term site potential, seasonal weather, and land cover data sets to generate annual EEP, an estimate of ecosystem performance incorporating annual weather variations. The difference between AEP and EEP provided a performance measure for each pixel in the study area. Ecosystem performance anomalies occurred when the ecosystem performed significantly better or worse than the model predicted. About 14% of the Owyhee Uplands showed a trend of significant underperformance or overperformance (P<0.10). Land managers can use results from weather-based rangeland ecosystem performance models to help support adaptive management strategies.

  1. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  2. A framework for predicting impacts on ecosystem services ...

    EPA Pesticide Factsheets

    Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. The framework introduced here represents an ongoing initiative supported by the National Institute of Mathematical and Biological Synthesis (NIMBioS; http://www.nimbi

  3. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  4. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  5. CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical transport applied to the North Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhang; Smith, Sherwood Lan

    2018-02-01

    Diversity plays critical roles in ecosystem functioning, but it remains challenging to model phytoplankton diversity in order to better understand those roles and reproduce consistently observed diversity patterns in the ocean. In contrast to the typical approach of resolving distinct species or functional groups, we present a ContInuous TRAiT-basEd phytoplankton model (CITRATE) that focuses on macroscopic system properties such as total biomass, mean trait values, and trait variance. This phytoplankton component is embedded within a nitrogen-phytoplankton-zooplankton-detritus-iron model that itself is coupled with a simplified one-dimensional ocean model. Size is used as the master trait for phytoplankton. CITRATE also incorporates trait diffusion for sustaining diversity and simple representations of physiological acclimation, i.e., flexible chlorophyll-to-carbon and nitrogen-to-carbon ratios. We have implemented CITRATE at two contrasting stations in the North Pacific where several years of observational data are available. The model is driven by physical forcing including vertical eddy diffusivity imported from three-dimensional general ocean circulation models (GCMs). One common set of model parameters for the two stations is optimized using the Delayed-Rejection Adaptive Metropolis-Hasting Monte Carlo (DRAM) algorithm. The model faithfully reproduces most of the observed patterns and gives robust predictions on phytoplankton mean size and size diversity. CITRATE is suitable for applications in GCMs and constitutes a prototype upon which more sophisticated continuous trait-based models can be developed.

  6. Unravelling the Gordian knot! Key processes impacting overwintering larval survival and growth: A North Sea herring case study

    NASA Astrophysics Data System (ADS)

    Hufnagl, Marc; Peck, Myron A.; Nash, Richard D. M.; Dickey-Collas, Mark

    2015-11-01

    Unraveling the key processes affecting marine fish recruitment will ultimately require a combination of field, laboratory and modelling studies. We combined analyzes of long-term (30-year) field data on larval fish abundance, distribution and length, and biophysical model simulations of different levels of complexity to identify processes impacting the survival and growth of autumn- and winter-spawned Atlantic herring (Clupea harengus) larvae. Field survey data revealed interannual changes in intensity of utilization of the five major spawning grounds (Orkney/Shetland, Buchan, Banks north, Banks south, and Downs) as well as spatio-temporal variability in the length and abundance of overwintered larvae. The mean length of larvae captured in post-winter surveys was negatively correlated to the proportion of larvae from the southern-most (Downs) winter-spawning component. Furthermore, the mean length of larvae originating from all spawning components has decreased since 1990 suggesting ecosystem-wide changes impacting larval growth potential, most likely due to changes in prey fields. A simple biophysical model assuming temperature-dependent growth and constant mortality underestimated larval growth rates suggesting that larval mortality rates steeply declined with increasing size and/or age during winter as no match with field data could be obtained. In contrast better agreement was found between observed and modelled post-winter abundance for larvae originating from four spawning components when a more complex, physiological-based foraging and growth model was employed using a suite of potential prey field and size-based mortality scenarios. Nonetheless, agreement between field and model-derived estimates was poor for larvae originating from the winter-spawned Downs component. In North Sea herring, the dominant processes impacting larval growth and survival appear to have shifted in time and space highlighting how environmental forcing, ecosystem state and other factors can form a Gordian knot of marine fish recruitment processes. We highlight gaps in process knowledge and recommend specific field, laboratory and modelling studies which, in our opinion, are most likely to unravel the dominant processes and advance predictive capacity of the environmental regulation of recruitment in autumn and winter-spawned fishes in temperate areas such as herring in the North Sea.

  7. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  8. Input-decomposition balance of heterotrophic processes in a warm-temperate mixed forest in Japan

    NASA Astrophysics Data System (ADS)

    Jomura, M.; Kominami, Y.; Ataka, M.; Makita, N.; Dannoura, M.; Miyama, T.; Tamai, K.; Goto, Y.; Sakurai, S.

    2010-12-01

    Carbon accumulation in forest ecosystem has been evaluated using three approaches. One is net ecosystem exchange (NEE) estimated by tower flux measurement. The second is net ecosystem production (NEP) estimated by biometric measurements. NEP can be expressed as the difference between net primary production and heterotrophic respiration. NEP can also be expressed as the annual increment in the plant biomass (ΔW) plus soil (ΔS) carbon pools defined as follows; NEP = ΔW+ΔS The third approach needs to evaluate annual carbon increment in soil compartment. Soil carbon accumulation rate could not be measured directly in a short term because of the small amount of annual accumulation. Soil carbon accumulation rate can be estimated by a model calculation. Rothamsted carbon model is a soil organic carbon turnover model and a useful tool to estimate the rate of soil carbon accumulation. However, the model has not sufficiently included variations in decomposition processes of organic matters in forest ecosystems. Organic matter in forest ecosystems have a different turnover rate that creates temporal variations in input-decomposition balance and also have a large variation in spatial distribution. Thus, in order to estimate the rate of soil carbon accumulation, temporal and spatial variation in input-decomposition balance of heterotrophic processes should be incorporated in the model. In this study, we estimated input-decomposition balance and the rate of soil carbon accumulation using the modified Roth-C model. We measured respiration rate of many types of organic matters, such as leaf litter, fine root litter, twigs and coarse woody debris using a chamber method. We can illustrate the relation of respiration rate to diameter of organic matters. Leaf and fine root litters have no diameter, so assumed to be zero in diameter. Organic matters in small size, such as leaf and fine root litter, have high decomposition respiration. It could be caused by the difference in structure of organic matter. Because coarse woody debris has shape of cylinder, microbes decompose from the surface of it. Thus, respiration rate of coarse woody debris is lower than that of leaf and fine root litter. Based on this result, we modified Roth-C model and estimate soil carbon accumulation rate in recent years. Based on the results from a soil survey, the forest soil stored 30tC ha-1 in O and A horizon. We can evaluate the modified model using this result. NEP can be expressed as the annual increment in the plant biomass plus soil carbon pools. So if we can estimate NEP using this approach, then we can evaluate NEP estimated by micrometeorological and ecological approaches and reduce uncertainty of NEP estimation.

  9. Changes in food web structure under scenarios of overfishing in the southern Benguela: Comparison of the Ecosim and OSMOSE modelling approaches

    NASA Astrophysics Data System (ADS)

    Travers, M.; Watermeyer, K.; Shannon, L. J.; Shin, Y.-J.

    2010-01-01

    Ecosystem models provide a platform allowing exploration into the possible responses of marine food webs to fishing pressure and various potential management decisions. In this study we investigate the particular effects of overfishing on the structure and function of the southern Benguela food web, using two models with different underlying assumptions: the spatialized, size-based individual-based model, OSMOSE, and the trophic mass-balance model, Ecopath with Ecosim (EwE). Starting from the same reference state of the southern Benguela upwelling ecosystem during the 1990s, we compare the response of the food web to scenarios of overfishing using these two modelling approaches. A scenario of increased fishing mortality is applied to two distinct functional groups: i) two species of Cape hake, representing important target predatory fish, and ii) the forage species anchovy, sardine and redeye. In these simulations, fishing mortality on the selected functional groups is doubled for 10 years, followed by 10 years at the initial fishing mortality. We compare the food web states before the increase of fishing mortality, after 10 years of overfishing and after a further 10 years during which fishing was returned to initial levels. In order to compare the simulated food web structures with the reference state, and between the two modelling approaches, we use a set of trophic indicators: the mean trophic level of the community and in catches, the trophic pyramid (biomass per discrete trophic level), and the predatory/forage fish biomass ratio. OSMOSE and EwE present globally similar results for the trophic functioning of the ecosystem under fishing pressure: the biomass of targeted species decreases whereas that of their potential competitors increases. The reaction of distant species is more diverse, depending on the feeding links between the compartments. The mean trophic level of the community does not vary enough to be used for assessing ecosystem impacts of fishing, and the mean trophic level in the catch displays a surprising increase due to the short period of overfishing. The trophic pyramids behave in an unexpected way compared to trophic control theory, because at least two food chains with different dynamics are intertwined within the food web. We emphasize the importance of biomass information at the species level for interpreting dynamics in aggregated indicators, and we highlight the importance of competitive groups when looking at ecosystem functioning under fishing disturbance. Finally, we discuss the results within the scope of differences between models, in terms of the way they are formulated, spatial dimensions, predation formulations and the representation of fish life cycles.

  10. Keynote address: sustaining people and ecosystems in the 21st Century

    Treesearch

    Perry Brown

    2000-01-01

    In its various forms we have been talking about and discovering the principles of ecosystem-based management for over a decade and yet we still are in very early stages of uncovering its many dimensions and implications. This is not surprising since ecosystem-based management is a radical departure from the model of natural resource management that evolved over the...

  11. Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes.

    PubMed

    Carrara, Francesco; Rinaldo, Andrea; Giometto, Andrea; Altermatt, Florian

    2014-01-01

    Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.

  12. EcoPAD, an interactive platform for near real-time ecological forecasting by assimilating data into model

    NASA Astrophysics Data System (ADS)

    MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.

    2017-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.

  13. PICUS v1.6 - enhancing the water cycle within a hybrid ecosystem model to assess the provision of drinking water in a changing climate

    NASA Astrophysics Data System (ADS)

    Schimmel, A.; Rammer, W.; Lexer, M. J.

    2012-04-01

    The PICUS model is a hybrid ecosystem model which is based on a 3D patch model and a physiological stand level production model. The model includes, among others, a submodel of bark beetle disturbances in Norway spruce and a management module allowing any silvicultural treatment to be mimicked realistically. It has been tested intensively for its ability to realistically reproduce tree growth and stand dynamics in complex structured mixed and mono-species temperate forest ecosystems. In several applications the models capacity to generate relevant forest related attributes which were subsequently fed into indicator systems to assess sustainable forest management under current and future climatic conditions has been proven. However, the relatively coarse monthly temporal resolution of the driving climate data as well as the process resolution of the major water relations within the simulated ecosystem hampered the inclusion of more detailed physiologically based assessments of drought conditions and water provisioning ecosystem services. In this contribution we present the improved model version PICUS v1.6 focusing on the newly implemented logic for the water cycle calculations. Transpiration, evaporation from leave surfaces and the forest floor, snow cover and snow melt as well as soil water dynamics in several soil horizons are covered. In enhancing the model overarching goal was to retain the large-scale applicability by keeping the input requirements to a minimum while improving the physiological foundation of water related ecosystem processes. The new model version is tested against empirical time series data. Future model applications are outlined.

  14. Virioplankton 'pegylation': use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems.

    PubMed

    Colombet, J; Robin, A; Lavie, L; Bettarel, Y; Cauchie, H M; Sime-Ngando, T

    2007-12-01

    We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.

  15. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  16. Are more complex physiological models of forest ecosystems better choices for plot and regional predictions?

    Treesearch

    Wenchi Jin; Hong S. He; Frank R. Thompson

    2016-01-01

    Process-based forest ecosystem models vary from simple physiological, complex physiological, to hybrid empirical-physiological models. Previous studies indicate that complex models provide the best prediction at plot scale with a temporal extent of less than 10 years, however, it is largely untested as to whether complex models outperform the other two types of models...

  17. Secondary Students' Dynamic Modeling Processes: Analyzing, Reasoning About, Synthesizing, and Testing Models of Stream Ecosystems.

    ERIC Educational Resources Information Center

    Stratford, Steven J.; Krajeik, Joseph; Soloway, Elliot

    This paper presents the results of a study of the cognitive strategies in which ninth-grade science students engaged as they used a learner-centered dynamic modeling tool (called Model-It) to make original models based upon stream ecosystem scenarios. The research questions were: (1) In what Cognitive Strategies for Modeling (analyzing, reasoning,…

  18. A preliminary aboveground live biomass model for understory hardwoods from Arkansas, Louisiana, and Mississippi

    Treesearch

    Don C. Bragg; D. Andrew. Scott

    2014-01-01

    Hardwood understories can contribute significantly to total ecosystem biomass and fuel loads, but few models are available to directly quantify this component. In part, this is due to the small size of the hardwoods. Many understory trees simply do not reach the height required to determine diameter at breast height (d.b.h.), so conventional models (e.g., the National...

  19. A Numerical Study of the Effect of Periodic Nutrient Supply on Pathways of Carbon in a Coastal Upwelling Regime

    NASA Technical Reports Server (NTRS)

    Carr, Mary-Elena

    1998-01-01

    A size-based ecosystem model was modified to include periodic upwelling events and used to evaluate the effect of episodic nutrient supply on the standing stock, carbon uptake, and carbon flow into mesozooplankton grazing and sinking flux in a coastal upwelling regime. Two ecosystem configurations were compared: a single food chain made up of net phytoplankton and mesozooplankton (one autotroph and one heterotroph, A1H1), and three interconnected food chains plus bacteria (three autotrophs and four heterotrophs, A3H4). The carbon pathways in the A1H1 simulations were under stronger physical control than those of the A3H4 runs, where the small size classes are not affected by frequent upwelling events. In the more complex food web simulations, the microbial pathway determines the total carbon uptake and grazing rates, and regenerated nitrogen accounts for more than half of the total primary production for periods of 20 days or longer between events. By contrast, new production, export of carbon through sinking and mesozooplankton grazing are more important in the A1H1 simulations. In the A3H4 simulations, the turnover time scale of the autotroph biomass increases as the period between upwelling events increases, because of the larger contribution of slow-growing net phytoplankton. The upwelling period was characterized for three upwelling sites from the alongshore wind speed measured by the NASA Scatterometer (NSCAT) and the corresponding model output compared with literature data. This validation exercise for three upwelling sites and a downstream embayment suggests that standing stock, carbon uptake and size fractionation were best supported by the A3H4 simulations, while the simulated sinking fluxes are not distinguishable in the two configurations.

  20. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process

    PubMed Central

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.

    2016-01-01

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562

  1. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process.

    PubMed

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F

    2016-05-27

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.

  2. CLIMATIC EFFECTS ON TUNDRA CARBON STORAGE INFERRED FROM EXPERIMENTAL DATA AND A MODEL

    EPA Science Inventory

    We used a process-based model of ecosystem carbon (C) and nitrogen (N)dynamics, MBL-GEM (Marine Biological Laboratory General Ecosystem Model), to integrated and analyze the results of several experiments that examined the response of arctic tussock tundra to manipulations of CO2...

  3. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  4. Simulating fire-induced ecological succession with the dynamically coupled fire-vegetation model, ED-SPIFTIRE

    NASA Astrophysics Data System (ADS)

    Spessa, A.; Fisher, R.

    2009-04-01

    The simulation of fire-vegetation feedbacks is crucial for determining fire-induced changes to ecosystem structure and function, and emissions of trace gases and aerosols under future climate change. A new global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within DGVM frameworks (Thonicke et al. 2008). SPITFIRE has been applied in coupled mode globally (Thonicke et al. 2008) and northern Australia (Spessa et al. unpubl.) as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa (Lehsten et al. 2008) as part of the LPJ-GUESS vegetation model (Smith et al. 2001). Recently, Spessa & Fisher (unpubl.) completed the coupling of SPIFTIRE to the Ecosystem Demography (ED) model (Moorecroft et al. 2001), which has been globalised by Dr R. Fisher as part of the development of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). In contrast to the LPJ DGVM, ED is a ‘size and age structured' approximation of an individual based gap model. The major innovation of the ED-SPITFIRE model compared with LPJ-SPITFIRE is the categorisation of each climatic grid cell into a series of non-spatially contiguous patches which are defined by a common ‘age since last disturbance'. In theory, the age-class structure of ED facilitates ecologically realistic processes of succession and re-growth to be represented. By contrast, LPJ DGVM adopts an ‘area-based approach' that implicitly averages individual and patch differences across a wider area and across ‘populations' of PFTs. This presentation provides an overview of SPITFIRE, and provides preliminary results from ED-SPITFIRE applied to northern Australian savanna ecosystems which, due to spatio-temporal variation in fire disturbance, comprise a patchwork of grasses and trees at different stages of post-fire succession. Comparisons with similar simulations undertaken with LPJ-SPITFIRE are also presented.

  5. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  6. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    PubMed

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  7. [Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BIOME-BGC model and tree-ring data].

    PubMed

    He, Jun-Jie; Peng, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Zhang, Xian-Liang; Zhou, Chang-Hong

    2012-07-01

    Based on BIOME-BGC model and tree-ring data, a modeling study was conducted to estimate the dynamic changes of the net primary productivity (NPP) of Pinus tabulaeformis forest ecosystem in North China in 1952-2008, and explore the responses of the radial growth and NPP to regional climate warming as well as the dynamics of the NPP in the future climate change scenarios. The simulation results indicated the annual NPP of the P. tabulaeformis ecosystem in 1952-2008 fluctuated from 244.12 to 645.31 g C x m(-2) x a(-1), with a mean value of 418.6 g C x m(-2) x a(-1) The mean air temperature in May-June and the precipitation from previous August to current July were the main factors limiting the radial growth of P. tabulaeformis and the NPP of P. tabulaeformis ecosystem. In the study period, both the radial growth and the NPP presented a decreasing trend due to the regional warming and drying climate condition. In the future climate scenarios, the NPP would have positive responses to the increase of air temperature, precipitation, and their combination. The elevated CO2 would benefit the increase of the NPP, and the increment would be about 16.1% due to the CO2 fertilization. At both ecosystem and regional scales, the tree-ring data would be an ideal proxy to predict the ecosystem dynamic change, and could be used to validate and calibrate the process-based ecosystem models including BIOME-BGC.

  8. Using an ecosystem service decision support tool to support ridge to reef management: An example of sediment reduction in west Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.

    2016-12-01

    Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.

  9. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects.

    PubMed

    Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation.

  10. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects

    PubMed Central

    Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation. PMID:28481897

  11. Adventures in holistic ecosystem modelling: the cumberland basin ecosystem model

    NASA Astrophysics Data System (ADS)

    Gordon, D. C.; Keizer, P. D.; Daborn, G. R.; Schwinghamer, P.; Silvert, W. L.

    A holistic ecosystem model has been developed for the Cumberland Basin, a turbid macrotidal estuary at the head of Canada's Bay of Fundy. The model was constructed as a group exercise involving several dozen scientists. Philosophy of approach and methods were patterned after the BOEDE Ems-Dollard modelling project. The model is one-dimensional, has 3 compartments and 3 boundaries, and is composed of 3 separate submodels (physical, pelagic and benthic). The 28 biological state variables cover the complete estuarine ecosystem and represent broad functional groups of organisms based on trophic relationships. Although still under development and not yet validated, the model has been verified and has reached the stage where most state variables provide reasonable output. The modelling process has stimulated interdisciplinary discussion, identified important data gaps and produced a quantitative tool which can be used to examine ecological hypotheses and determine critical environmental processes. As a result, Canadian scientists have a much better understanding of the Cumberland Basin ecosystem and are better able to provide competent advice on environmental management.

  12. Body size distributions signal a regime shift in a lake ...

    EPA Pesticide Factsheets

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  13. Nutrient Dynamics In Flooded Wetlands. I: Model Development

    EPA Science Inventory

    Wetlands are rich ecosystems recognized for ameliorating floods, improving water quality and providing other ecosystem benefits. In this part of a two-paper sequel, we present a relatively detailed process-based model for nitrogen and phosphorus retention, cycling and removal in...

  14. Disentangling the effects of climate variability and functional change on ecosystem carbon dynamics using semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.

    2012-04-01

    The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).

  15. Sea Level Driven Marsh Expansion in a Coupled Model of Marsh Erosion, Forest Retreat, and Human Impacts

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Walters, D. C.; Reay, W.; Carr, J.

    2016-12-01

    Salt marsh ecosystem services depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here, we present a simple model of marsh migration into adjacent uplands, and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how connectivity between adjacent ecosystems influences marsh size and response to sea level rise. We find that ecogeomorphic feedbacks tend to stabilize soil elevations relative to sea level rise so that changes in marsh size are determined mostly by the competition between ecological transitions at the upland boundary, and physical erosion at the seaward boundary. Salt marsh loss and natural flood protection is nearly inevitable under rapid sea level rise rates where topographic and anthropogenic barriers limit marsh migration into uplands. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. Together, this behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise, and emphasizes the disparity between coastal response to climate change with and without human intervention. Analysis of 19th century maps and modern photographs from the Chesapeake Bay region confirm that migration rates are more sensitive to sea level rise than erosion rate, and indicate that transgression has thus far allowed marshes to survive the fastest rates of relative sea level rise on the Atlantic Coast. This work suggests that the flux of organisms and sediment across adjacent ecosystems leads to an increase in system resilience that could not be inferred from studies that consider individual components of landscape change.

  16. Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints

    Treesearch

    Andrew D. Richardson; Mathew Williams; David Y. Hollinger; David J.P. Moore; D. Bryan Dail; Eric A. Davidson; Neal A. Scott; Robert S. Evans; Holly. Hughes

    2010-01-01

    We conducted an inverse modeling analysis, using a variety of data streams (tower-based eddy covariance measurements of net ecosystem exchange, NEE, of CO2, chamber-based measurements of soil respiration, and ancillary ecological measurements of leaf area index, litterfall, and woody biomass increment) to estimate parameters and initial carbon (C...

  17. Dependence of spectral characteristics on parameters describing CO2 exchange between crop species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Uździcka, Bogna; Stróżecki, Marcin; Urbaniak, Marek; Juszczak, Radosław

    2017-07-01

    The aim of this paper is to demonstrate that spectral vegetation indices are good indicators of parameters describing the intensity of CO2 exchange between crops and the atmosphere. Measurements were conducted over 2011-2013 on plots of an experimental arable station on winter wheat, winter rye, spring barley, and potatoes. CO2 fluxes were measured using the dynamic closed chamber system, while spectral vegetation indices were determined using SKYE multispectral sensors. Based on spectral data collected in 2011 and 2013, various models to estimate net ecosystem productivity and gross ecosystem productivity were developed. These models were then verified based on data collected in 2012. The R2 for the best model based on spectral data ranged from 0.71 to 0.83 and from 0.78 to 0.92, for net ecosystem productivity and gross ecosystem productivity, respectively. Such high R2 values indicate the utility of spectral vegetation indices in estimating CO2 fluxes of crops. The effects of the soil background turned out to be an important factor decreasing the accuracy of the tested models.

  18. A bottom-up perspective on ecosystem change in Mesozoic oceans

    PubMed Central

    Follows, Michael J.

    2016-01-01

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. PMID:27798303

  19. A bottom-up perspective on ecosystem change in Mesozoic oceans.

    PubMed

    Knoll, Andrew H; Follows, Michael J

    2016-10-26

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. © 2016 The Authors.

  20. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  1. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  2. Simulating carbon stocks and fluxes of an African tropical montane forest with an individual-based forest model.

    PubMed

    Fischer, Rico; Ensslin, Andreas; Rutten, Gemma; Fischer, Markus; Schellenberger Costa, David; Kleyer, Michael; Hemp, Andreas; Paulick, Sebastian; Huth, Andreas

    2015-01-01

    Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha(-1) yr(-1). Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.

  3. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics. ?? 2010 by the Ecological Society of America.

  4. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services

    PubMed Central

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-01-01

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382

  5. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    PubMed

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  6. Retrievals of aerosol microphysics from simulations of spaceborne multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Pérez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2018-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 μm is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  7. Retrievals of Aerosol Microphysics from Simulations of Spaceborne Multiwavelength Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Perez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2017-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 microns is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  8. The robustness of ecosystems to the species loss of community

    NASA Astrophysics Data System (ADS)

    Cai, Qing; Liu, Jiming

    2016-10-01

    To study the robustness of ecosystems is crucial to promote the sustainable development of human society. This paper aims to analyze the robustness of ecosystems from an interesting viewpoint of the species loss of community. Unlike the existing definitions, we first introduce the notion of a community as a population of species belonging to the same trophic level. We then put forward a novel multiobjective optimization model which can be utilized to discover community structures from arbitrary unipartite networks. Because an ecosystem is commonly represented as a multipartite network, we further introduce a mechanism of competition among species whereby a multipartite network is transformed into a unipartite signed network without loss of species interaction information. Finally, we examine three strategies to test the robustness of an ecosystem. Our experiments indicate that ecosystems are robust to random species loss of community but fragile to target ones. We also investigate the relationships between the robustness of an ecosystem and that of its community composed network both to species loss. Our experiments indicate that the robustness analysis of a large-scale ecosystem to species loss may be akin to that of its community composed network which is usually small in size.

  9. Anthropogenic and climatic controls on carbon and nitrogen exports from Mississippi river basin to Gulf of Mexico during 1800 - 2100: Implications for hypoxia and ocean acidification

    NASA Astrophysics Data System (ADS)

    Tian, H.; Yang, J.; Zhang, B.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Xue, Z. G.; Lu, C.; Ren, W.; Huang, W. J.; Yao, Y.

    2016-02-01

    The enlarged size of dead zone in the Gulf of Mexico in 2015, resulting from high summer precipitation and nutrient runoff from agriculture and other human activities in Mississippi river basin, has aroused plenty of scientific attentions and public concerns. Although recent-decade patterns of water/carbon/nitrogen exports from the US land to Gulf of Mexico have been intensively investigated through gauge station monitoring and empirical-based modeling, our understanding of its historical and future long-term trends and the underlying mechanisms is still limited. Climate variability and change, land cover/land use change (e.g., cropland shift from eastern US to Midwest US) and evolving land management practices (e.g., nitrogen fertilizer use in corn belt) are all important drivers regulating interannual, decadal and century-long variability in riverine carbon and nitrogen exports. In this study, we explore river discharge and carbon/nitrogen exports from US drainage basins in a 300-year period covering both historical and future eras (1800 - 2100) and further quantify the contributions of climate, land use, nitrogen fertilizer use, and atmospheric chemistry by using a process-based land ecosystem model (DLEM) with networked river system incorporated. The results indicate that spatial distribution and shift of agricultural land is of critical importance in shaping land-to-aquatic mass flow and coastal water quality. Historical pattern and future scenarios of climate variability and change play an important role in the trend of water yield and enhanced inter-annual variations of river discharge and carbon/nitrogen exports. Atmospheric nitrogen deposition and agricultural nitrogen fertilizer uses in land ecosystem largely contributed to land-to-aquatic nitrogen exports. Our sensitivity analyses with DLEM suggest that precipitation in the basin as well as nitrogen fertilizer use in US corn belt are important determinants of nutrient export and hence the size of dead zone in the Gulf of Mexico. These findings imply that we need to consider both climate and anthropogenic changes taking place in land ecosystems for better developing land management strategies in mitigating hypoxia and ocean acidification.

  10. Managing for resilience: an information theory-based ...

    EPA Pesticide Factsheets

    Ecosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple models which have limited utility when evaluating real ecosystems, particularly because drivers are often unknown. We discuss some common univariate and multivariate approaches for detecting critical transitions in ecosystems and demonstrate their capabilities via case studies. Synthesis and applications. We illustrate the utility of an information theory-based index for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt and gradual transitions in ecosystems. In response to the need to identify leading indicators of regime shifts in ecosystems, our research compares traditional indicators and Fisher information, an information theory based method, by examining four case study systems. Results demonstrate the utility of methods and offers great promise for quantifying and managing for resilience.

  11. [Ecosystem services evaluation based on geographic information system and remote sensing technology: a review].

    PubMed

    Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min

    2011-12-01

    Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.

  12. Using stable isotopes of albacore tuna and predictive models to characterize bioregions and examine ecological change in the SW Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Pethybridge, Heidi R.; Young, Jock W.; Kuhnert, Petra M.; Farley, Jessica H.

    2015-05-01

    Broad-scale food web inferences of 534 albacore tuna, Thunnus alalunga, in the south-west Pacific Ocean in 2009 and 2010 were made using bulk nitrogen (δ15N) and carbon (δ13C) stable isotopes. Condition was also examined for the same fish using C:N ratios. A Generalized Additive Modeling (GAM) approach was used to analyze spatio-temporal, biological and environmental drivers that impact the distribution of tuna isotopes and to create oceanographic maps. Based on model formulations, five bioregions with distinct isotopic signatures were identified and were related to known biological, nutrient cycling and oceanographic (temperature, primary productivity and eddy) features associated with the East Australian Current. δ15N values showed a large-scale, uniform latitudinal gradient decreasing from the south to north, in a region encompassing oligotrophic waters in the Coral Sea. In contrast, δ13C values were lower in the nutrient rich Tasman Sea waters and offshore East Australia. C:N ratios suggested that albacore occupying southern and offshore waters were in better condition. Ontogenetic trends in all three biochemical parameters were identified and related to differences in size distribution. Regional-specific temporal variations were detected including similar monthly changes for both isotopes and significantly less enriched δ13C (by 1.9‰) than in previous work undertaken in 2006, potentially signifying a substantial shift in the carbon cycle that supports food webs off central east Australia. Our results showed that isotopic measurements in tuna and the GAM framework provide powerful tools to assess ecosystem functioning and change by linking sources of nutrients and organic matter to local food web assembly. Such knowledge is vital to support an ecosystem based approach to fisheries management including biogeochemical whole-of-ecosystem models and monitoring programs at regional and landscape-scales.

  13. The Lagrangian Ensemble metamodel for simulating plankton ecosystems

    NASA Astrophysics Data System (ADS)

    Woods, J. D.

    2005-10-01

    This paper presents a detailed account of the Lagrangian Ensemble (LE) metamodel for simulating plankton ecosystems. It uses agent-based modelling to describe the life histories of many thousands of individual plankters. The demography of each plankton population is computed from those life histories. So too is bio-optical and biochemical feedback to the environment. The resulting “virtual ecosystem” is a comprehensive simulation of the plankton ecosystem. It is based on phenotypic equations for individual micro-organisms. LE modelling differs significantly from population-based modelling. The latter uses prognostic equations to compute demography and biofeedback directly. LE modelling diagnoses them from the properties of individual micro-organisms, whose behaviour is computed from prognostic equations. That indirect approach permits the ecosystem to adjust gracefully to changes in exogenous forcing. The paper starts with theory: it defines the Lagrangian Ensemble metamodel and explains how LE code performs a number of computations “behind the curtain”. They include budgeting chemicals, and deriving biofeedback and demography from individuals. The next section describes the practice of LE modelling. It starts with designing a model that complies with the LE metamodel. Then it describes the scenario for exogenous properties that provide the computation with initial and boundary conditions. These procedures differ significantly from those used in population-based modelling. The next section shows how LE modelling is used in research, teaching and planning. The practice depends largely on hindcasting to overcome the limits to predictability of weather forecasting. The scientific method explains observable ecosystem phenomena in terms of finer-grained processes that cannot be observed, but which are controlled by the basic laws of physics, chemistry and biology. What-If? Prediction ( WIP), used for planning, extends hindcasting by adding events that describe natural or man-made hazards and remedial actions. Verification is based on the Ecological Turing Test, which takes account of uncertainties in the observed and simulated versions of a target ecological phenomenon. The rest of the paper is devoted to a case study designed to show what LE modelling offers the biological oceanographer. The case study is presented in two parts. The first documents the WB model (Woods & Barkmann, 1994) and scenario used to simulate the ecosystem in a mesocosm moored in deep water off the Azores. The second part illustrates the emergent properties of that virtual ecosystem. The behaviour and development of an individual plankton lineage are revealed by an audit trail of the agent used in the computation. The fields of environmental properties reveal the impact of biofeedback. The fields of demographic properties show how changes in individuals cumulatively affect the birth and death rates of their population. This case study documents the virtual ecosystem used by Woods, Perilli and Barkmann (2005; hereafter WPB); to investigate the stability of simulations created by the Lagrangian Ensemble metamodel. The Azores virtual ecosystem was created and analysed on the Virtual Ecology Workbench (VEW) which is described briefly in the Appendix.

  14. Estimates of natural salinity and hydrology in a subtropical estuarine ecosystem: implications for Greater Everglades restoration

    USGS Publications Warehouse

    Marshall, Frank E.; Wingard, G. Lynn; Pitts, Patrick A.

    2014-01-01

    Disruption of the natural patterns of freshwater flow into estuarine ecosystems occurred in many locations around the world beginning in the twentieth century. To effectively restore these systems, establishing a pre-alteration perspective allows managers to develop science-based restoration targets for salinity and hydrology. This paper describes a process to develop targets based on natural hydrologic functions by coupling paleoecology and regression models using the subtropical Greater Everglades Ecosystem as an example. Paleoecological investigations characterize the circa 1900 CE (pre-alteration) salinity regime in Florida Bay based on molluscan remains in sediment cores. These paleosalinity estimates are converted into time series estimates of paleo-based salinity, stage, and flow using numeric and statistical models. Model outputs are weighted using the mean square error statistic and then combined. Results indicate that, in the absence of water management, salinity in Florida Bay would be about 3 to 9 salinity units lower than current conditions. To achieve this target, upstream freshwater levels must be about 0.25 m higher than indicated by recent observed data, with increased flow inputs to Florida Bay between 2.1 and 3.7 times existing flows. This flow deficit is comparable to the average volume of water currently being diverted from the Everglades ecosystem by water management. The products (paleo-based Florida Bay salinity and upstream hydrology) provide estimates of pre-alteration hydrology and salinity that represent target restoration conditions. This method can be applied to any estuarine ecosystem with available paleoecologic data and empirical and/or model-based hydrologic data.

  15. Metabolic and physiochemical responses to a whole-lake experimental increase in dissolved organic carbon in a north-temperate lake

    USGS Publications Warehouse

    Zwart, Jacob A.; Craig, Nicola; Kelly, Patrick T.; Sebestyen, Stephen D.; Solomon, Christopher T.; Weidel, Brian C.; Jones, Stuart E.

    2016-01-01

    Over the last several decades, many lakes globally have increased in dissolved organic carbon (DOC), calling into question how lake functions may respond to increasing DOC. Unfortunately, our basis for making predictions is limited to spatial surveys, modeling, and laboratory experiments, which may not accurately capture important whole-ecosystem processes. In this article, we present data on metabolic and physiochemical responses of a multiyear experimental whole-lake increase in DOC concentration. Unexpectedly, we observed an increase in pelagic gross primary production, likely due to a small increase in phosphorus as well as a surprising lack of change in epilimnetic light climate. We also speculate on the importance of lake size modifying the relationship between light climate and elevated DOC. A larger increase in ecosystem respiration resulted in an increased heterotrophy for the treatment basin. The magnitude of the increase in heterotrophy was extremely close to the excess DOC load to the treatment basin, indicating that changes in heterotrophy may be predictable if allochthonous carbon loads are well-constrained. Elevated DOC concentration also reduced thermocline and mixed layer depth and reduced whole-lake temperature. Results from this experiment were quantitatively different, and sometimes even in the opposite direction, from expectations based on cross-system surveys and bottle experiments, emphasizing the importance of whole-ecosystem experiments in understanding ecosystem response to environmental change.

  16. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui

    2016-07-01

    The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.

  17. Complex systems approach to fire dynamics and climate change impacts

    NASA Astrophysics Data System (ADS)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire sizes are also well fitted by a power law. A possible interpretation is that the spatial structure of fire in savannas is strongly constrained by the spatial structure of their environment. Instead of resulting from ecosystem self-organization as in the model, in this case the scale invariance in fire events would be just a reflection of scale invariance in the environment in which the ecosystem lives. These results suggest at least three major types of fire dynamics: endogenous scaling, percolating, and exogenous scaling, in addition to intermediate options. The world's biomes can be classified based on the type of dynamics that is most likely to apply in each of them, and forecasts can be carried out with the tools developed for each of these types.

  18. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Johnson, Gary W.; Voigt, Brian; Villa, Ferdinando

    2013-01-01

    Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks” (SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service's rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the benefit is supplied by an ecosystem's provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches them. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning.

  19. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    NASA Astrophysics Data System (ADS)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  20. Jamaican Maritime Security. What are the Capability Gaps that Limit the Jamaica Defence Force in the Execution of its Roles in Maritime Security

    DTIC Science & Technology

    2017-06-09

    revenue was generated from living resources such as fish, non-living resources such as oil, and ecosystems and ecosystem processes such as tourism ...however, based on the size of Jamaica’s tourism industry and other ocean economy related industries it is reasonable to conclude that it is a...and other marine resources eventually leads to damaged beaches and coastlines, and ultimately damages tourism and other industries. Though Jamaicans

  1. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    USGS Publications Warehouse

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  2. Evaluation of CH4 and N2O Budget of Natural Ecosystems and Croplands in Asia with a Process-based Model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2017-12-01

    Terrestrial ecosystems are important sink of carbon dioxide (CO2) but significant sources of other greenhouse gases such as methane (CH4) and nitrous oxide (N2O). To resolve the role of terrestrial biosphere in the climate system, we need to quantify total greenhouse gas budget with an adequate accuracy. In addition to top-down evaluation on the basis of atmospheric measurements, model-based approach is required for integration and up-scaling of filed data and for prediction under changing environment and different management practices. Since the early 2000s, we have developed a process-based model of terrestrial biogeochemical cycles focusing on atmosphere-ecosystem exchange of trace gases: Vegetation Integrated SImulator for Trace gases (VISIT). The model includes simple and comprehensive schemes of carbon and nitrogen cycles in terrestrial ecosystems, allowing us to capture dynamic nature of greenhouse gas budget. Beginning from natural ecosystems such as temperate and tropical forests, the models is now applicable to croplands by including agricultural practices such as planting, harvest, and fertilizer input. Global simulation results have been published from several papers, but model validation and benchmarking using up-to-date observations are remained for works. The model is now applied to several practical issues such as evaluation of N2O emission from bio-fuel croplands, which are expected to accomplish the mitigation target of the Paris Agreement. We also show several topics about basic model development such as revised CH4 emission affected by dynamic water-table and refined N2O emission from nitrification.

  3. Investigating the effect of chemical stress and resource ...

    EPA Pesticide Factsheets

    Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Herein, we develop a density dependent matrix population model for Atlantic killifish that analyzes both size-structure and age class-structure of the population so that we could readily incorporate output from a dynamic energy budget (DEB) model currently under development. This population modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to chemical stress to adverse outcomes in whole organisms and populations. We applied the model using data for killifish exposed to dioxin-like compounds, taken from a previously published study. Specifically, the model was used to investigate population trajectories for Atlantic killifish with dietary exposures to 112, 296, and 875 pg/g of dioxin with effects on fertility and survival rates. All effects were expressed relative to control fish. Further, the population model was employed to examine age and size distributions of a population exposed to resource limitation in addition to chemical stress. For each dietary exposure concentration o

  4. Soil Carbon Residence Time in the Arctic - Potential Drivers of Past and Future Change

    NASA Astrophysics Data System (ADS)

    Huntzinger, D. N.; Fisher, J.; Schwalm, C. R.; Hayes, D. J.; Stofferahn, E.; Hantson, W.; Schaefer, K. M.; Fang, Y.; Michalak, A. M.; Wei, Y.

    2017-12-01

    Carbon residence time is one of the most important factors controlling carbon cycling in ecosystems. Residence time depends on carbon allocation and conversion among various carbon pools and the rate of organic matter decomposition; all of which rely on environmental conditions, primarily temperature and soil moisture. As a result, residence time is an emergent property of models and a strong determinant of terrestrial carbon storage capacity. However, residence time is poorly constrained in process-based models due, in part, to the lack of data with which to benchmark global-scale models in order to guide model improvements and, ultimately, reduce uncertainty in model projections. Here we focus on improving the understanding of the drivers to observed and simulated carbon residence time in the Arctic-Boreal region (ABR). Carbon-cycling in the ABR represents one of the largest sources of uncertainty in historical and future projections of land-atmosphere carbon dynamics. This uncertainty is depicted in the large spread of terrestrial biospheric model (TBM) estimates of carbon flux and ecosystem carbon pool size in this region. Recent efforts, such as the Arctic-Boreal Vulnerability Experiment (ABoVE), have increased the availability of spatially explicit in-situ and remotely sensed carbon and ecosystem focused data products in the ABR. Together with simulations from Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we use these observations to evaluate the ability of models to capture soil carbon stocks and changes in the ABR. Specifically, we compare simulated versus observed soil carbon residence times in order to evaluate the functional response and sensitivity of modeled soil carbon stocks to changes in key environmental drivers. Understanding how simulated carbon residence time compares with observations and what drives these differences is critical for improving projections of changing carbon dynamics in the ABR and globally.

  5. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Zeng, Fanjiang; Mao, Donglei; Zhang, Zhiwei

    2017-11-01

    There is an increasing consensus on the importance of coupling ecosystem services (ES) into integrated water resource management (IWRM), due to a wide range of benefits to human from the ES. This paper proposes an ES-based IWRM framework within which a participatory Bayesian network (BN) model is developed to assist with the coupling between ES and IWRM. The framework includes three steps: identifying water-related services of ecosystems; analysis of the tradeoff and synergy among users of water; and ES-based IWRM implementation using the participatory BN model. We present the development, evaluation and application of the participatory BN model with the involvement of four participant groups (stakeholders, water manager, water management experts, and research team) in Qira oasis area, Northwest China. As a typical catchment-scale region, the Qira oasis area is facing severe water competition between the demands of human activities and natural ecosystems. Results demonstrate that the BN model developed provides effective integration of ES into a quantitative IWMR framework via public negotiation and feedback. The network results, sensitivity evaluation, and management scenarios are broadly accepted by the participant groups. The intervention scenarios from the model conclude that any water management measure remains unable to sustain the ecosystem health in water-related ES. Greater cooperation among the stakeholders is highly necessary for dealing with such water conflicts. In particular, a proportion of the agricultural water saved through improving water-use efficiency should be transferred to natural ecosystems via water trade. The BN model developed is appropriate for areas throughout the world in which there is intense competition for water between human activities and ecosystems.

  6. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  7. When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing.

    PubMed

    Galic, Nika; Sullivan, Lauren L; Grimm, Volker; Forbes, Valery E

    2018-04-01

    Ecosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co-occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams. We simulated impacts of hypothetical stressors, individually and in pairwise combinations that target the individuals' feeding, maintenance, growth and reproduction. Impacts were quantified by examining responses at three levels of biological organisation: individual-level body sizes and cumulative reproduction, population-level abundance and biomass and ecosystem-level leaf litter decomposition. Interactive effects of multiple stressors at the individual level were mostly antagonistic, that is, less negative than expected. Most population- and ecosystem-level responses to multiple stressors were stronger than expected from an additive model, that is, synergistic. Our results suggest that across levels of biological organisation responses to multiple stressors are rarely only additive. We suggest methods for efficiently quantifying impacts of multiple stressors at different levels of biological organisation. © 2018 John Wiley & Sons Ltd/CNRS.

  8. Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model

    PubMed Central

    Bianchi, Daniele; Galbraith, Eric D.

    2017-01-01

    Human exploitation of marine resources is profoundly altering marine ecosystems, while climate change is expected to further impact commercially-harvested fish and other species. Although the global fishery is a highly complex system with many unpredictable aspects, the bioenergetic limits on fish production and the response of fishing effort to profit are both relatively tractable, and are sure to play important roles. Here we describe a generalized, coupled biological-economic model of the global marine fishery that represents both of these aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS) model. BOATS predicts fish production according to size spectra as a function of net primary production and temperature, and dynamically determines harvest spectra from the biomass density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish biomass is determined by the economic forcings of catchability, ex-vessel price and cost per unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a large ensemble of idealized simulations with observational databases, focusing on historical biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem parameters, rule out most parameter combinations, and select an optimal ensemble of model variants. Compared to the prior distributions, model variants with lower values of the mortality rate, trophic efficiency, and allometric constant agree better with observations. For most acceptable parameter combinations, natural mortality rates are more strongly affected by temperature than growth rates, suggesting different sensitivities of these processes to climate change. These results highlight the utility of adopting large-scale, aggregated data constraints to reduce model parameter uncertainties and to better predict the response of fisheries to human behaviour and climate change. PMID:28103280

  9. Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model.

    PubMed

    Carozza, David A; Bianchi, Daniele; Galbraith, Eric D

    2017-01-01

    Human exploitation of marine resources is profoundly altering marine ecosystems, while climate change is expected to further impact commercially-harvested fish and other species. Although the global fishery is a highly complex system with many unpredictable aspects, the bioenergetic limits on fish production and the response of fishing effort to profit are both relatively tractable, and are sure to play important roles. Here we describe a generalized, coupled biological-economic model of the global marine fishery that represents both of these aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS) model. BOATS predicts fish production according to size spectra as a function of net primary production and temperature, and dynamically determines harvest spectra from the biomass density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish biomass is determined by the economic forcings of catchability, ex-vessel price and cost per unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a large ensemble of idealized simulations with observational databases, focusing on historical biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem parameters, rule out most parameter combinations, and select an optimal ensemble of model variants. Compared to the prior distributions, model variants with lower values of the mortality rate, trophic efficiency, and allometric constant agree better with observations. For most acceptable parameter combinations, natural mortality rates are more strongly affected by temperature than growth rates, suggesting different sensitivities of these processes to climate change. These results highlight the utility of adopting large-scale, aggregated data constraints to reduce model parameter uncertainties and to better predict the response of fisheries to human behaviour and climate change.

  10. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Treesearch

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  11. Fluvial gravel stabilization by net-spinning Hydropsychid caddisflies: exploring the magnitude and geographic scope of ecosystem engineering effect and evaluating resistance to anthropogenic stresses

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.

    2017-12-01

    Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.

  12. Variability of Lekanesphaera monodi metabolic rates with habitat trophic status

    NASA Astrophysics Data System (ADS)

    Vignes, Fabio; Fedele, Marialaura; Pinna, Maurizio; Mancinelli, Giorgio; Basset, Alberto

    2012-05-01

    Regulation of metabolism is a common strategy used by individuals to respond to a changing environment. The mechanisms underlying the variability of metabolic rates in macroinvertebrates are of primary importance in studying benthic-pelagic energy transfer in transitional water ecosystems. Lekanesphaera monodi is an isopod endemic to transitional water ecosystems that can modify its metabolic rate in response to environmental changes. Therefore it is a useful model in studying the influence of environmental factors on metabolism. This study focused on the interpopulation variability of standard metabolic rates (SMR) in L. monodi populations sampled in three transitional water ecosystems differing in their trophic status. The standard metabolic rates of L. monodi individuals across the same range of body size spectra were inferred from oxygen consumption measurements in a flow-through respirometer in the three populations and a body condition index was assessed for each population. Habitat trophic status was evaluated by monthly measurement of the basic physical-chemical parameters of the water column in the ecosystems for one year. Standard metabolic rates showed high variability, ranging from 0.27 to 10.14 J d-1. Body size accounted for more than 38% of total variability. In terms of trophic status, individuals from the eutrophic ecosystem had significantly higher standard metabolic rates than individuals from the other ecosystems (SMR = 2.3 J d-1 in Spunderati Sud vs. 1.36 J d-1 in Alimini and 0.69 J d-1 in Acquatina). The body conditions index was also higher in the population from the eutrophic ecosystem. Results show that standard metabolic rates and growth rates are directly related to habitat productivity in accordance with the expectations of the food habits hypothesis. A possible extension of this hypothesis to benthic invertebrates is proposed.

  13. Terrestrial Ecosystems of the Conterminous United States

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Cress, Jill; Warner, Harumi

    2010-01-01

    The U.S. Geological Survey (USGS), with support from NatureServe, has modeled the potential distribution of 419 terrestrial ecosystems for the conterminous United States using a comprehensive biophysical stratification approach that identifies distinct biophysical environments and associates them with known vegetation distributions (Sayre and others, 2009). This standardized ecosystem mapping effort used an ecosystems classification developed by NatureServe (Comer and others, 2003). The ecosystem mapping methodology was developed for South America (Sayre and others, 2008) and is now being implemented globally (Sayre and others, 2007). The biophysical stratification approach is based on mapping the major structural components of ecosystems (land surface forms, topographic moisture potential, surficial lithology, isobioclimates and biogeographic regions) and then spatially combining them to produce a set of unique biophysical environments. These physically distinct areas are considered as the fundamental structural units ('building blocks') of ecosystems, and are subsequently aggregated and labeled using the NatureServe classification. The structural footprints were developed from the geospatial union of several base layers including biogeographic regions, isobioclimates (Cress and others, 2009a), land surface forms (Cress and others, 2009b), topographic moisture potential (Cress and others, 2009c), and surficial lithology (Cress and others, in press). Among the 49,168 unique structural footprint classes that resulted from the union, 13,482 classes met a minimum pixel count threshold (20,000 pixels) and were aggregated into 419 NatureServe ecosystems using a semiautomated labeling process based on rule-set formulations for attribution of each ecosystem. The resulting ecosystems are those that are expected to occur based on the combination of the bioclimate, biogeography, and geomorphology. Where land use by humans has not altered land cover, natural vegetation assemblages are expected to occur, and these are described in the ecosystems classification. The map does not show the distribution of urban and agricultural areas - these will be masked out in subsequent analyses to depict the current land cover in addition to the potential distribution of natural ecosystems. This map depicts the smoothed and generalized image of the terrestrial ecosystems dataset. Additional information about this map and any data developed for the ecosystems modeling of the conterminous United States is available online at: http://rmgsc.cr.usgs.gov/ecosystems/.

  14. Holistic assessment of Chwaka Bay's multi-gear fishery - Using a trophic modeling approach

    NASA Astrophysics Data System (ADS)

    Rehren, Jennifer; Wolff, Matthias; Jiddawi, Narriman

    2018-04-01

    East African coastal communities highly depend on marine resources for not just income but also protein supply. The multi-species, multi-gear nature of East African fisheries makes this type of fishery particularly difficult to manage, as there is a trade-off between maximizing total catch from all gears and species and minimizing overfishing of target species and the disintegration of the ecosystem. The use and spatio-temporal overlap of multiple gears in Chwaka Bay (Zanzibar) has led to severe conflicts between fishermen. There is a general concern of overfishing in the bay because of the widespread use of small mesh sizes and destructive gears such as dragnets and spear guns. We constructed an Ecopath food web model to describe the current trophic flow structure and fishing pattern of the bay. Based on this model, we explored the impact of different gears on the ecosystem and the fishing community in order to give advice for gear based management in the bay. Results indicate that Chwaka bay is a productive, shallow water system, with biomass concentrations around the first and second trophic level. The system is greatly bottom-up driven and dominated by primary producers and invertebrates. The trophic and network indicators as well as the community energetics characterize Chwaka Bay as relatively mature. Traps and dragnets have the strongest impact on the ecosystem and on the catches obtained by other gears. Both gears potentially destabilize the ecosystem by reducing the biomass of top-down controlling key species (including important herbivores of macroalgae). The dragnet fishery is the least profitable, but provides most jobs for the fishing community. Thus, a complete ban of dragnets in the bay would require the provision of alternative livelihoods. Due to the low resource biomass of fish in the bay and the indication of a loss of structural control of certain fish groups, Chwaka Bay does not seem to provide scope for further expansion of the fishery. Instead, we recommend an effort control of traps and a reduction in the use of dragnets, partially by redistributing them to the more profitable and less impacting gears (e.g. longlines, gillnets, handlines).

  15. A Sulfur-based Glacial Ecosystem as a Model for the Habitability of Europa and Mars

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Gleeson, D. F.; Williamson, C.; Grasby, S. E.; Spear, J.; Pappalardo, R. T.; Templeton, A. S.

    2010-04-01

    Identifying the sulfur redox reactions and dominant microbial organisms in a sulfur-based glacial microbial ecosystem provides insights into the type of metabolisms that might exist on other planetary bodies, and the biosignatures they may present.

  16. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  17. An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Frid, Leonardo; Zhu, Zhiliang

    2015-01-01

    Increased land-use intensity (e.g. clearing of forests for cultivation, urbanization), often results in the loss of ecosystem carbon storage, while changes in productivity resulting from climate change may either help offset or exacerbate losses. However, there are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this we developed the Land Use and Carbon Scenario Simulator (LUCAS) to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux within a scenario-based framework. We have combined a state-and-transition simulation model (STSM) of land change with a stock and flow model of carbon dynamics. Land-change projections downscaled from the Intergovernmental Panel on Climate Change’s (IPCC) Special Report on Emission Scenarios (SRES) were used to drive changes within the STSM, while the Integrated Biosphere Simulator (IBIS) ecosystem model was used to derive input parameters for the carbon stock and flow model. The model was applied to the Sierra Nevada Mountains ecoregion in California, USA, a region prone to large wildfires and a forestry sector projected to intensify over the next century. Three scenario simulations were conducted, including a calibration scenario, a climate-change scenario, and an integrated climate- and land-change scenario. Based on results from the calibration scenario, the LUCAS age-structured carbon accounting model was able to accurately reproduce results obtained from the process-based biogeochemical model. Under the climate-only scenario, the ecoregion was projected to be a reliable net sink of carbon, however, when land use and disturbance were introduced, the ecoregion switched to become a net source. This research demonstrates how an integrated approach to carbon accounting can be used to evaluate various drivers of ecosystem carbon change in a robust, yet transparent modeling environment.

  18. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science Teaching (NARST) Zangori, L., & Forbes, C. T. (2015). Exploring 3rd-grade student model-based explanations about plant process interactions within the hydrosphere Portions of this paper are based on that work.

  19. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation.

    PubMed

    Cord, Anna F; Brauman, Kate A; Chaplin-Kramer, Rebecca; Huth, Andreas; Ziv, Guy; Seppelt, Ralf

    2017-06-01

    Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services. We argue that the full potential of Earth observation is not yet realized in ecosystem service studies. To provide guidance for priority setting and to spur research in this area, we propose five priorities to advance the capabilities of Earth observation-based monitoring of ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mega-fire Recovery in Dry Conifer Forests of the Interior West

    NASA Astrophysics Data System (ADS)

    Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.

    2015-12-01

    Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.

  1. Capturing heterogeneity: The role of a study area's extent for estimating mean throughfall

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Voss, Sebastian; Metzger, Johanna Clara; Hildebrandt, Anke; Zimmermann, Beate

    2016-11-01

    The selection of an appropriate spatial extent of a sampling plot is one among several important decisions involved in planning a throughfall sampling scheme. In fact, the choice of the extent may determine whether or not a study can adequately characterize the hydrological fluxes of the studied ecosystem. Previous attempts to optimize throughfall sampling schemes focused on the selection of an appropriate sample size, support, and sampling design, while comparatively little attention has been given to the role of the extent. In this contribution, we investigated the influence of the extent on the representativeness of mean throughfall estimates for three forest ecosystems of varying stand structure. Our study is based on virtual sampling of simulated throughfall fields. We derived these fields from throughfall data sampled in a simply structured forest (young tropical forest) and two heterogeneous forests (old tropical forest, unmanaged mixed European beech forest). We then sampled the simulated throughfall fields with three common extents and various sample sizes for a range of events and for accumulated data. Our findings suggest that the size of the study area should be carefully adapted to the complexity of the system under study and to the required temporal resolution of the throughfall data (i.e. event-based versus accumulated). Generally, event-based sampling in complex structured forests (conditions that favor comparatively long autocorrelations in throughfall) requires the largest extents. For event-based sampling, the choice of an appropriate extent can be as important as using an adequate sample size.

  2. Early Triassic Marine Biotic Recovery: The Predators' Perspective

    PubMed Central

    Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent. PMID:24647136

  3. Global carbon assimilation system using a local ensemble Kalman filter with multiple ecosystem models

    NASA Astrophysics Data System (ADS)

    Zhang, Shupeng; Yi, Xue; Zheng, Xiaogu; Chen, Zhuoqi; Dan, Bo; Zhang, Xuanze

    2014-11-01

    In this paper, a global carbon assimilation system (GCAS) is developed for optimizing the global land surface carbon flux at 1° resolution using multiple ecosystem models. In GCAS, three ecosystem models, Boreal Ecosystem Productivity Simulator, Carnegie-Ames-Stanford Approach, and Community Atmosphere Biosphere Land Exchange, produce the prior fluxes, and an atmospheric transport model, Model for OZone And Related chemical Tracers, is used to calculate atmospheric CO2 concentrations resulting from these prior fluxes. A local ensemble Kalman filter is developed to assimilate atmospheric CO2 data observed at 92 stations to optimize the carbon flux for six land regions, and the Bayesian model averaging method is implemented in GCAS to calculate the weighted average of the optimized fluxes based on individual ecosystem models. The weights for the models are found according to the closeness of their forecasted CO2 concentration to observation. Results of this study show that the model weights vary in time and space, allowing for an optimum utilization of different strengths of different ecosystem models. It is also demonstrated that spatial localization is an effective technique to avoid spurious optimization results for regions that are not well constrained by the atmospheric data. Based on the multimodel optimized flux from GCAS, we found that the average global terrestrial carbon sink over the 2002-2008 period is 2.97 ± 1.1 PgC yr-1, and the sinks are 0.88 ± 0.52, 0.27 ± 0.33, 0.67 ± 0.39, 0.90 ± 0.68, 0.21 ± 0.31, and 0.04 ± 0.08 PgC yr-1 for the North America, South America, Africa, Eurasia, Tropical Asia, and Australia, respectively. This multimodel GCAS can be used to improve global carbon cycle estimation.

  4. A framework for the resilience of seagrass ecosystems.

    PubMed

    Unsworth, Richard K F; Collier, Catherine J; Waycott, Michelle; Mckenzie, Len J; Cullen-Unsworth, Leanne C

    2015-11-15

    Seagrass ecosystems represent a global marine resource that is declining across its range. To halt degradation and promote recovery over large scales, management requires a radical change in emphasis and application that seeks to enhance seagrass ecosystem resilience. In this review we examine how the resilience of seagrass ecosystems is becoming compromised by a range of local to global stressors, resulting in ecological regime shifts that undermine the long-term viability of these productive ecosystems. To examine regime shifts and the management actions that can influence this phenomenon we present a conceptual model of resilience in seagrass ecosystems. The model is founded on a series of features and modifiers that act as interacting influences upon seagrass ecosystem resilience. Improved understanding and appreciation of the factors and modifiers that govern resilience in seagrass ecosystems can be utilised to support much needed evidence based management of a vital natural resource. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Double Trouble at High Density: Cross-Level Test of Resource-Related Adaptive Plasticity and Crowding-Related Fitness

    PubMed Central

    Gergs, André; Preuss, Thomas G.; Palmqvist, Annemette

    2014-01-01

    Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross-level testing of different hypotheses, we explored how well the sub-models fit individual level data and also how well they predict population dynamics under different conditions of resource availability. Only operating resource-related and crowding-related hypotheses together enabled accurate model predictions of D. magna population dynamics and size structure. Whereas this study showed that various mechanisms might play a role in the negative feedback between population density and individual life history, it also indicated that different density levels might instigate the onset of the different mechanisms. This study provides an example of how the integration of dynamic energy budget theory and individual-based modelling can facilitate the exploration of mechanisms behind the regulation of population size. Such understanding is important for assessment, management and the conservation of populations and thereby biodiversity in ecosystems. PMID:24626228

  6. Non-Deterministic Modelling of Food-Web Dynamics

    PubMed Central

    Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam

    2014-01-01

    A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as ‘null models of food-webs’ as originally advocated. PMID:25299245

  7. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M; Miteva, Daniela A; Nelson, Joanna L; Pattanayak, Subhrendu K; Nolte, Christoph; Sims, Katharine R E

    2015-06-16

    Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds.

  8. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation

    PubMed Central

    Ferraro, Paul J.; Hanauer, Merlin M.; Miteva, Daniela A.; Nelson, Joanna L.; Pattanayak, Subhrendu K.; Nolte, Christoph; Sims, Katharine R. E.

    2015-01-01

    Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds. PMID:26082549

  9. The PEcAn Project: Model-Data Ecoinformatics for the Observatory Era

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; LeBauer, D. S.; Davidson, C. D.; Desai, A. R.; Kooper, R.; McHenry, K.; Mulrooney, P.

    2011-12-01

    The fundamental questions about how terrestrial ecosystems will respond to climate change are straightforward and well known, yet a small number of important gaps separate the information we have gathered from the understanding required to inform policy and management. A critical gap is that no one data source provides a complete picture of the terrestrial biosphere, and therefore multiple data sources must be integrated in a sensible manner. Process-based models represent an ideal framework for this synthesis, but to date model-data synthesize has only made use of a subset of the available data types, and remains inaccessible to much of the scientific community, largely due to the daunting ecoinformatics challenges. The Predictive Ecosystem Analyzer (PEcAn) is an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates formal data assimilation, and enables more effective feedbacks between models and field research. PEcAn makes complex analyses transparent, repeatable, and accessible to a diverse array of researchers. PEcAn is not model specific, but rather encapsulates any ecosystem model within a set of standardized input and output modules. Herein we demonstrate PEcAn's ability to automate many of the tasks involved in modeling by gathering and processing a diverse arrays of data sets, initiating ensembles of model runs, visualizing output, and comparing models to observations. PEcAn employs a fully Bayesian approach to model parameterization and the estimation of ecosystem pools and fluxes that allows a straightforward propagation of uncertainties into analyses and forecasts. This approach also makes possible the synthesis of a diverse array of data types operating at different spatial and temporal scales and to easily update predictions as new information becomes available. We also demonstrate PEcAn's ability to iteratively synthesize information for literature trait databases, ground observations, eddy-covariance towers and quantify the reductions in overall uncertainty as each new dataset is added. PEcAn also automates a number of model analyses, such as sensitivity analyses, ensemble prediction, and variance decomposition which collectively allow the system to partition and ascribe uncertainties to different model parameters and processes. PEcAn provides a direct feedback to field research by further automating the estimation of sample sizes and sampling distributions required to reduce model uncertainties, enabling further measurements to be targeted and optimized. Finally, we will present the PEcAn development plan and timeline, including new features such as the synthesis of remotely sensed data, regional-scale data assimilation, and real-time forecasting. Ultimately, PEcAn aims to make ecosystem modeling and data assimilation routine tools for answering scientific questions and informing policy and management.

  10. Evaluating EFSA protection goals for honey bees (Apis mellifera): what do they mean for pollination?

    PubMed

    Croft, Simon; Brown, Mike; Wilkins, Selwyn; Hart, Andy; Smith, Graham C

    2018-06-20

    In recent years there has been growing concern regarding the sudden and unexplained failure of honeybee (Apis mellifera) colonies. Several factors have been suggested including pesticides. In an effort to regulate their impact guidance has been published by the European Food Safety Authority (EFSA) recommending that the magnitude of effects on exposed colonies should not exceed 7% reduction in colony size after 2 brood cycles. However, fears have been raised regarding the practicality of measuring such a loss in the field. It is also unclear how this protection goal relates to maintaining the ecosystem services provided by bees, which we argue should be a primary objective for regulators. Here, we evaluate what these protection goals mean in relation to ecosystems performance using a computational colony model incorporating mechanisms to simulate both lethal and sub-lethal pesticide effects. To these simulations we apply a testing regime similar to that commonly used in field trials to produce standard assessment metrics. By relating these measures to losses in forager activity we aim to identify which could be used as effective indicators of reduced ecoservice and to quantify acceptable limits below which performance can be maintained. Our findings show that loss of colony size is the best indicator of reduced ecoservice. Metrics which focus on specific colony functions such as increased brood or forager mortality are ineffective indicators for all types of simulated pesticide effects. At the levels of colony loss recommended by EFSA, using our default parameterisation, we predict a loss of ecosystems performance of 3-4%. However, based on an extensive sensitivity analysis it is clear that this estimate is subject to substantial uncertainty with losses under alternative parameterisations of up to 14%. Nevertheless, our model provides a valuable framework for assessing protection goals, allowing regulators to test relevant impacts and quantify their magnitude. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Habitat restoration from an ecosystem goods and services perspective: Application of a spatially explicit individual-based model

    EPA Science Inventory

    Estuarine ecosystems provide many services to humans, but these ecosystems are also under pressure from human development, which has led to large investments in habitat protection and restoration. Restoration in estuaries is typically focused on emergent and submerged vegetation ...

  12. An ecological basis for ecosystem management

    Treesearch

    M. R. Kaufmann; R. T. Graham; D. A. Boyce; W. H. Moir; L. Perry; R. T. Reynolds; R. L. Bassett; P. Mehlhop; C. B. Edminster; W. M. Block; P. S. Corn

    1994-01-01

    Guiding principles based on conservation biology are applied in assessing ecosystem needs. Ecosystem, economic, and social needs are integrated in a decision model in which the guiding principles are used as a primary filter for evaluating proposed actions. Management practices consistent with the guiding principles are likely to lead to ecological, economic, and...

  13. ENVIRONMENTAL CONSEQUENCES OF LAND USE CHANGE: ACCOUNTING FOR COMPLEXITY WITH AGENT-BASED MODELS

    EPA Science Inventory

    The effects of people on ecosystems and the impacts of ecosystem services on human well-being are being viewed increasingly as an integrated system. Demographic and economic pressures change a variety of ecological indicators, which can then result in reduced quality of ecosystem...

  14. An individual-based process model to simulate landscape-scale forest ecosystem dynamics

    Treesearch

    Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies

    2012-01-01

    Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...

  15. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5–8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors. PMID:26672983

  16. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5-8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors.

  17. Diversity, Adaptability and Ecosystem Resilience

    NASA Astrophysics Data System (ADS)

    Keribin, Rozenn; Friend, Andrew

    2013-04-01

    Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.

  18. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems.

    PubMed

    Perring, Michael P; Hedin, Lars O; Levin, Simon A; McGroddy, Megan; de Mazancourt, Claire

    2008-02-12

    Inputs of available nitrogen (N) to ecosystems have grown over the recent past. There is limited general understanding of how increased N inputs affect the cycling and retention of other potentially limiting nutrients. Using a plant-soil nutrient model, and by explicitly coupling N and phosphorus (P) in plant biomass, we examine the impact of increasing N supply on the ecosystem cycling and retention of P, assuming that the main impact of N is to increase plant growth. We find divergent responses in the P cycle depending on the specific pathway by which nutrients are lost from the ecosystem. Retention of P is promoted if the relative propensity for loss of plant available P is greater than that for the loss of less readily available organic P. This is the first theoretical demonstration that the coupled response of ecosystem-scale nutrient cycles critically depends on the form of nutrient loss. P retention might be lessened, or reversed, depending on the kinetics and size of a buffering reactive P pool. These properties determine the reactive pool's ability to supply available P. Parameterization of the model across a range of forest ecosystems spanning various environmental and climatic conditions indicates that enhanced plant growth due to increased N should trigger increased P conservation within ecosystems while leading to more dissolved organic P loss. We discuss how the magnitude and direction of the effect of N may also depend on other processes.

  19. Linkage of a Physically Based Distributed Watershed Model and a Dynamic Plant Growth Model

    DTIC Science & Technology

    2006-12-01

    i.e., Universal Soil Loss Equation ( USLE ) factors, K, C, and P). The K, C, and P factors are empiri- cal coefficients with the same conceptual...with general ecosystem models designed to make long-term projections of ecosystem dynamics. This development effort investigated the linkage of soil ...20 EDYS soil module

  20. Response of North American ecosystem models to multi-annual periodicities in temperature and precipitation

    Treesearch

    J. Alan Yeakley; Ron A. Moen; David D. Breshears; Martha K. Nungesser

    1994-01-01

    Ecosystem models typically use input temperature and precipitation data generated stochastically from weather station means and variances. Although the weather station data are based on measurements taken over a few decades, model simulations are usually on the order of centuries. Consequently, observed periodicities in temperature and precipitation at the continental...

  1. Water Quality Is a Poor Predictor of Recreational Hotspots in England

    PubMed Central

    Mullin, Karen; Boeuf, Blandine; Fincham, William; Taylor, Nigel; Villalobos-Jiménez, Giovanna; von Vittorelli, Laura; Wolf, Christine; Fritsch, Oliver; Strauch, Michael; Seppelt, Ralf; Volk, Martin; Beckmann, Michael

    2016-01-01

    Maintaining and improving water quality is key to the protection and restoration of aquatic ecosystems, which provide important benefits to society. In Europe, the Water Framework Directive (WFD) defines water quality based on a set of biological, hydro-morphological and chemical targets, and aims to reach good quality conditions in all river bodies by the year 2027. While recently it has been argued that achieving these goals will deliver and enhance ecosystem services, in particular recreational services, there is little empirical evidence demonstrating so. Here we test the hypothesis that good water quality is associated with increased utilization of recreational services, combining four surveys covering walking, boating, fishing and swimming visits, together with water quality data for all water bodies in eight River Basin Districts (RBDs) in England. We compared the percentage of visits in areas of good water quality to a set of null models accounting for population density, income, age distribution, travel distance, public access, and substitutability. We expect such association to be positive, at least for fishing (which relies on fish stocks) and swimming (with direct contact to water). We also test if these services have stronger association with water quality relative to boating and walking alongside rivers, canals or lakeshores. In only two of eight RBDs (Northumbria and Anglian) were both criteria met (positive association, strongest for fishing and swimming) when comparing to at least one of the null models. This conclusion is robust to variations in dataset size. Our study suggests that achieving the WFD water quality goals may not enhance recreational ecosystem services, and calls for further empirical research on the connection between water quality and ecosystem services. PMID:27875562

  2. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    PubMed Central

    Westerling, Anthony L.; Turner, Monica G.; Smithwick, Erica A. H.; Romme, William H.; Ryan, Michael G.

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495

  3. Ecosystem-based fisheries management requires a change to the selective fishing philosophy

    PubMed Central

    Zhou, Shijie; Smith, Anthony D. M.; Punt, André E.; Richardson, Anthony J.; Gibbs, Mark; Fulton, Elizabeth A.; Pascoe, Sean; Bulman, Catherine; Bayliss, Peter; Sainsbury, Keith

    2010-01-01

    Globally, many fish species are overexploited, and many stocks have collapsed. This crisis, along with increasing concerns over flow-on effects on ecosystems, has caused a reevaluation of traditional fisheries management practices, and a new ecosystem-based fisheries management (EBFM) paradigm has emerged. As part of this approach, selective fishing is widely encouraged in the belief that nonselective fishing has many adverse impacts. In particular, incidental bycatch is seen as wasteful and a negative feature of fishing, and methods to reduce bycatch are implemented in many fisheries. However, recent advances in fishery science and ecology suggest that a selective approach may also result in undesirable impacts both to fisheries and marine ecosystems. Selective fishing applies one or more of the “6-S” selections: species, stock, size, sex, season, and space. However, selective fishing alters biodiversity, which in turn changes ecosystem functioning and may affect fisheries production, hindering rather than helping achieve the goals of EBFM. We argue here that a “balanced exploitation” approach might alleviate many of the ecological effects of fishing by avoiding intensive removal of particular components of the ecosystem, while still supporting sustainable fisheries. This concept may require reducing exploitation rates on certain target species or groups to protect vulnerable components of the ecosystem. Benefits to society could be maintained or even increased because a greater proportion of the entire suite of harvested species is used. PMID:20435916

  4. Ecosystem-based fisheries management requires a change to the selective fishing philosophy.

    PubMed

    Zhou, Shijie; Smith, Anthony D M; Punt, André E; Richardson, Anthony J; Gibbs, Mark; Fulton, Elizabeth A; Pascoe, Sean; Bulman, Catherine; Bayliss, Peter; Sainsbury, Keith

    2010-05-25

    Globally, many fish species are overexploited, and many stocks have collapsed. This crisis, along with increasing concerns over flow-on effects on ecosystems, has caused a reevaluation of traditional fisheries management practices, and a new ecosystem-based fisheries management (EBFM) paradigm has emerged. As part of this approach, selective fishing is widely encouraged in the belief that nonselective fishing has many adverse impacts. In particular, incidental bycatch is seen as wasteful and a negative feature of fishing, and methods to reduce bycatch are implemented in many fisheries. However, recent advances in fishery science and ecology suggest that a selective approach may also result in undesirable impacts both to fisheries and marine ecosystems. Selective fishing applies one or more of the "6-S" selections: species, stock, size, sex, season, and space. However, selective fishing alters biodiversity, which in turn changes ecosystem functioning and may affect fisheries production, hindering rather than helping achieve the goals of EBFM. We argue here that a "balanced exploitation" approach might alleviate many of the ecological effects of fishing by avoiding intensive removal of particular components of the ecosystem, while still supporting sustainable fisheries. This concept may require reducing exploitation rates on certain target species or groups to protect vulnerable components of the ecosystem. Benefits to society could be maintained or even increased because a greater proportion of the entire suite of harvested species is used.

  5. Assemblages of braconidae (Hymenoptera) at agricultural and secondary forest ecosystem

    NASA Astrophysics Data System (ADS)

    Razali, Rabibah; Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah

    2016-11-01

    Braconids are parasitoid insects which parasitize other insects by injecting their eggs into the larvae and eventually killing the hosts. Due to this character, braconids play an important role in stabilizing the natural and human-made environment. The objective of this study was to evaluate the diversity and distribution of braconids in two ecosystems. Nine Malaise traps were installed in each ecosystem for 30 days at five sampling sites, namely Bukit Rupa (BR), Bukit Fraser (BF), Ladang Zamrud (LZ), Felda Lui Muda (FLM) and Cherating (Ch). Samples were collected and kept in 75% alcohol for identification process. Two types of ecosystem were selected namely forest (secondary forest) and agricultural (oil palm plantation, star fruit orchard) ecosystems. A total of 1201 individuals were collected in 18 subfamilies and 137 morphospecies. From the results, BR showed the highest H', as it was a natural habitat for the braconids. FLM and LZ also showed high H' values, while Ch was the lowest. Based on the cluster analysis, the clade was divided into two groups; the oil palm plantation (LZ, FLM) and forest ecosystem (BF, BR). Ch was considered an outgroup because the braconid spesies found there were specific to Bactocera spp. Based on the rarefaction curve, LZ had the most stable curve compared to the others due to high sample size.

  6. Ecosystem shifts under climate change - a multi-model analysis from ISI-MIP

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Beerling, David; Clark, Douglas; Friend, Andrew; Ito, Akihito; Kahana, Ron; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Lucht, Wolfgang; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Tito Rademacher, Tim; Schaphoff, Sibyll

    2013-04-01

    Dramatic ecosystem shifts, relating to vegetation composition and water and carbon stocks and fluxes, are potential consequences of climate change in the twenty-first century. Shifting climatic conditions, resulting in changes in biogeochemical properties of the ecosystem, will render it difficult for endemic plant and animal species to continue to survive in their current habitat. The potential for major shifts in biomes globally will also have severe consequences for the humans who rely on vital ecosystem services. Here we employ a novel metric of ecosystem shift to quantify the magnitude and uncertainty in these shifts at different levels of global warming, based on the response of seven biogeochemical Earth models to different future climate scenarios, in the context of the Intersectoral Impact Model Intercomparison Project (ISI-MIP). Based on this ensemble, 15% of the Earth's land surface will experience severe ecosystem shifts at 2°C degrees of global warming above 1980-2010 levels. This figure rises monotonically with global mean temperature for all models included in this study, reaching a median value of 60% of the land surface in a 4°C warmer world. At both 2°C and 4°C of warming, the most pronounced shifts occur in south-eastern India and south-western China, large swathes of the northern lattitudes above 60°N, the Amazon region and sub-Saharan Africa. Where dynamic vegetation composition is modelled, these shifts correspond to significant reductions in the land surface of vunerable vegetation types. We show that global mean temperature is a robust predictor of ecosystem shifts, whilst the spread across impact models is the greatest contributor to uncertainty.

  7. Evaluating the Potential of Southampton Carbon Flux Model (SCARF) for Monitoring Terrestrial Gross Primary Productivity Across African Ecosystems

    NASA Astrophysics Data System (ADS)

    Chiwara, P.; Dash, J.; Ardö, J.; Ogutu, B. O.; Milton, E. J.; Saunders, M. J.; Nicolini, G.

    2016-12-01

    Accurate knowledge about the amount and dynamics of terrestrial gross primary productivity is an important component for understanding of ecosystem functioning and processes. Recently a new diagnostic model, Southampton Carbon Flux (SCARF), was developed to predict terrestrial gross primary productivity at regional to global scale based on a chlorophyll index derived from MERIS data. The model aims at mitigating some shortcomings in traditional light-use-efficiency based models by (i) using the fraction of photosynthetic active radiation absorbed only by the photosynthetic components of the canopy (FAPARps) and (ii) using the intrinsic quantum yields of C3 and C4 photosynthesis thereby reducing errors from land cover misclassification. Initial evaluation of the model in northern higher latitude ecosystems shows good agreement with in situ measurements. The current study calibrated and validated the model for a diversity of vegetation types across Africa in order to test its performance over a water limiting environment. The validation was based on GPP measurements from seven eddy flux towers across Africa. Sensitivity and uncertainty analyses were also performed to determine the importance of key biophysical and meteorological input parameters.Overall, modelled GPP values show good agreement with in situ measured GPP at most sites except tropical rainforest site. Mean daily GPP varied significantly across sites depending on the vegetation types and climate; from a minimum of -0.12 gC m2 day-1 for the semi-arid savannah to a maximum of 7.30 gC m2 day-1 for tropical rain forest ecosystems at Ankasa (Ghana). The model results have modest to very strong positive agreement with observed GPP at most sites (R2 values ranging from 0.60 for Skukuza in South Africa) and 0.85 for Mongu in Zambia) except tropical rain forest ecosystem (R2=0.34). Overall, the model has a stronger across-site coefficient of determination (R2=0.78) than MOD17 GPP product (R2=0.68). PAR and VPD are the parameters that propagate much variation in model output at most sites especially in semi-arid and sub-humid ecosystems. The results demonstrate that the SCARF model can improve prediction of GPP across a wide range of African ecosystems..Key words: GPP, climate change, diagnostic model, photosynthetic quantum yield, C3/C4 photosynthesis

  8. Using Ecosystem Experiments to Improve Vegetation Models

    DOE PAGES

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; ...

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less

  9. Scaling in Ecosystems and the Linkage of Macroecological Laws

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.

    2007-12-01

    Are there predictable linkages among macroecological laws regulating size and abundance of organisms that are ubiquitously supported by empirical observations and that ecologists treat traditionally as independent? Do fragmentation of habitats, or reduced supply of energy and matter, result in predictable changes on whole ecosystems as a function of their size? Using a coherent theoretical framework based on scaling theory, it is argued that the answer to both these questions is affirmative. The concern of the talk is with the comparatively simple situation of the steady state behavior of a fully developed ecosystem in which, over evolutionary time, resources are exploited in full, individual and collective metabolic needs are met and enough time has elapsed to produce a rough balance between speciation and extinction and ecological fluxes. While ecological patterns and processes often show great variation when viewed at different scales of space, time, organismic size and organizational complexity, there is also widespread evidence for the existence of scaling regularities as embedded in macroecological "laws" or rules. These laws have commanded considerable attention from the ecological community. Indeed they are central to ecological theory as they describe the features of complex adaptive systems shown by a number of biological systems, and perhaps for the investigation of the dynamic origin of scale invariance of natural forms in general. The species-area and relative species-abundance relations, the scaling of community and species' size spectra, the scaling of population densities with their mean body mass and the scaling of the largest organism with ecosystem size are examples of such laws. Borrowing heavily from earlier successes in physics, it will be shown how simple mathematical scaling arguments, following from dimensional and finite-size scaling analyses, provide theoretical predictions of the inter- relationships among the species abundance relationship, the species-area relationship and community size spectra, in excellent accord with empirical data. The main conclusion is that the proposed scaling framework, along with the questions and predictions it provides, serves as a starting point for a novel approach to macroecological analysis.

  10. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  11. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model

    PubMed Central

    Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J.; Scharlemann, Jörn P. W.; Purves, Drew W.

    2014-01-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures. PMID:24756001

  12. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model.

    PubMed

    Harfoot, Michael B J; Newbold, Tim; Tittensor, Derek P; Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J; Scharlemann, Jörn P W; Purves, Drew W

    2014-04-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.

  13. Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks

    NASA Astrophysics Data System (ADS)

    Woyessa, Yali E.; Welderufael, Worku A.

    2012-10-01

    A functioning ecological system results in ecosystem goods and services which are of direct value to human beings. Ecosystem services are the conditions and processes which sustain and fulfil human life, and maintain biodiversity and the production of ecosystem goods. However, human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threatens to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the provision of ecosystem services and how they change under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting landuse changes. Recently, the focus has shifted away from using mathematically oriented models to agent-based modeling (ABM) approach to simulate land use scenarios. The agent-based perspective, with regard to land-use cover change, is centered on the general nature and rules of land-use decision making by individuals. A conceptual framework is developed to investigate the possibility of incorporating the human dimension of land use decision and climate change model into a hydrological model in order to assess the impact of future land use scenario and climate change on the ecological system in general and water resources in particular.

  14. Integrated web system of geospatial data services for climate research

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  15. Biodiversity conservation in an anthropized landscape: Trees, not patch size drive, bird community composition in a low-input agro-ecosystem.

    PubMed

    Mellink, Eric; Riojas-López, Mónica E; Cárdenas-García, Melinda

    2017-01-01

    One of the most typical agro-ecosystems in the Llanos de Ojuelos, a semi-arid region of central Mexico, is that of fruit-production orchards of nopales (prickly pear cacti). This perennial habitat with complex vertical structure provides refuge and food for at least 112 species of birds throughout the year. Nopal orchards vary in their internal structure, size and shrub/tree composition, yet these factors have unknown effects on the animals that use them. To further understand the conservation potential of this agro-ecosystem, we evaluated the effects of patch-size and the presence of trees on bird community composition, as well as several habitat variables, through an information-theoretical modelling approach. Community composition was obtained through a year of census transects in 12 orchards. The presence of trees in the orchards was the major driver of bird communities followed by seasonality; bird communities are independent of patch size, except for small orchard patches that benefit black-chin sparrows, which are considered a sensitive species. At least 55 species of six trophic guilds (insectivores, granivores, carnivores, nectivores, omnivores, and frugivores) used the orchards. Orchards provide adequate habitat and food resources for several sensitive species of resident and migratory sparrows. The attributes that make orchards important for birds: trees, shrubs, herb seeds, and open patches can be managed to maintain native biodiversity in highly anthropized regions with an urgent need to find convergence between production and biological conservation.

  16. Biodiversity conservation in an anthropized landscape: Trees, not patch size drive, bird community composition in a low-input agro-ecosystem

    PubMed Central

    Mellink, Eric; Cárdenas-García, Melinda

    2017-01-01

    One of the most typical agro-ecosystems in the Llanos de Ojuelos, a semi-arid region of central Mexico, is that of fruit-production orchards of nopales (prickly pear cacti). This perennial habitat with complex vertical structure provides refuge and food for at least 112 species of birds throughout the year. Nopal orchards vary in their internal structure, size and shrub/tree composition, yet these factors have unknown effects on the animals that use them. To further understand the conservation potential of this agro-ecosystem, we evaluated the effects of patch-size and the presence of trees on bird community composition, as well as several habitat variables, through an information-theoretical modelling approach. Community composition was obtained through a year of census transects in 12 orchards. The presence of trees in the orchards was the major driver of bird communities followed by seasonality; bird communities are independent of patch size, except for small orchard patches that benefit black-chin sparrows, which are considered a sensitive species. At least 55 species of six trophic guilds (insectivores, granivores, carnivores, nectivores, omnivores, and frugivores) used the orchards. Orchards provide adequate habitat and food resources for several sensitive species of resident and migratory sparrows. The attributes that make orchards important for birds: trees, shrubs, herb seeds, and open patches can be managed to maintain native biodiversity in highly anthropized regions with an urgent need to find convergence between production and biological conservation. PMID:28686608

  17. Forest-management modelling

    Treesearch

    Mark J. Twery; Aaron R. Weiskittel

    2013-01-01

    Forests are complex and dynamic ecosystems comprising individual trees that can vary in both size and species. In comparison to other organisms, trees are relatively long lived (40-2000 years), quite plastic in terms of their morphology and ecological niche, and adapted to a wide variety of habitats, which can make predicting their behaviour exceedingly difficult....

  18. A trait database for marine copepods

    NASA Astrophysics Data System (ADS)

    Brun, Philipp; Payne, Mark R.; Kiørboe, Thomas

    2017-02-01

    The trait-based approach is gaining increasing popularity in marine plankton ecology but the field urgently needs more and easier accessible trait data to advance. We compiled trait information on marine pelagic copepods, a major group of zooplankton, from the published literature and from experts and organized the data into a structured database. We collected 9306 records for 14 functional traits. Particular attention was given to body size, feeding mode, egg size, spawning strategy, respiration rate, and myelination (presence of nerve sheathing). Most records were reported at the species level, but some phylogenetically conserved traits, such as myelination, were reported at higher taxonomic levels, allowing the entire diversity of around 10 800 recognized marine copepod species to be covered with a few records. Aside from myelination, data coverage was highest for spawning strategy and body size, while information was more limited for quantitative traits related to reproduction and physiology. The database may be used to investigate relationships between traits, to produce trait biogeographies, or to inform and validate trait-based marine ecosystem models. The data can be downloaded from PANGAEA, doi:10.1594/PANGAEA.862968.

  19. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    EPA Science Inventory

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  20. Spatial perspectives in state-and-transition models: A missing link to land management?

    USDA-ARS?s Scientific Manuscript database

    Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...

  1. From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health.

    PubMed

    Fock, Heino O; Kraus, Gerd

    2016-01-01

    Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems.

  2. From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health

    PubMed Central

    Kraus, Gerd

    2016-01-01

    Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems. PMID:27509185

  3. When micro meets macro: microbial lipid analysis and ecosystem ecology

    NASA Astrophysics Data System (ADS)

    Balser, T.; Gutknecht, J.

    2008-12-01

    There is growing interest in linking soil microbial community composition and activity with large-scale field studies of nutrient cycling or plant community response to disturbances. And while analysis of microbial communities has moved rapidly in the past decade from culture-based to non-culture based techniques, still it must be asked what have we gained from the move? How well does the necessarily micro-scale of microbial analysis allow us to address questions of interest at the macro-scale? Several challenges exist in bridging the scales, and foremost is the question of methodological feasibility. Past microbiological methodologies have not been readily adaptable to the large sample sizes necessary for ecosystem-scale research. As a result, it has been difficult to generate compatible microbial and ecosystem data sets. We describe the use of a modified lipid extraction method to generate microbial community data sets that allow us to match landscape-scale or long-term ecological studies with microbial community data. We briefly discuss the challenges and advantages associated with lipid analysis as an approach to addressing ecosystem ecological studies, and provide examples from our research in ecosystem restoration and recovery following disturbance and climate change.

  4. An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii

    NASA Astrophysics Data System (ADS)

    Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.

    2014-12-01

    Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.

  5. Disturbance Distance: Combining a process based ecosystem model and remote sensing data to map the vulnerability of U.S. forested ecosystems to potentially altered disturbance rates

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.

    2015-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.

  6. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    PubMed

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future water and watershed management of the Wei River basin, or even the Yellow River basin.

  7. Prototyping an online wetland ecosystem services model using open model sharing standards

    USGS Publications Warehouse

    Feng, M.; Liu, S.; Euliss, N.H.; Young, Caitlin; Mushet, D.M.

    2011-01-01

    Great interest currently exists for developing ecosystem models to forecast how ecosystem services may change under alternative land use and climate futures. Ecosystem services are diverse and include supporting services or functions (e.g., primary production, nutrient cycling), provisioning services (e.g., wildlife, groundwater), regulating services (e.g., water purification, floodwater retention), and even cultural services (e.g., ecotourism, cultural heritage). Hence, the knowledge base necessary to quantify ecosystem services is broad and derived from many diverse scientific disciplines. Building the required interdisciplinary models is especially challenging as modelers from different locations and times may develop the disciplinary models needed for ecosystem simulations, and these models must be identified and made accessible to the interdisciplinary simulation. Additional difficulties include inconsistent data structures, formats, and metadata required by geospatial models as well as limitations on computing, storage, and connectivity. Traditional standalone and closed network systems cannot fully support sharing and integrating interdisciplinary geospatial models from variant sources. To address this need, we developed an approach to openly share and access geospatial computational models using distributed Geographic Information System (GIS) techniques and open geospatial standards. We included a means to share computational models compliant with Open Geospatial Consortium (OGC) Web Processing Services (WPS) standard to ensure modelers have an efficient and simplified means to publish new models. To demonstrate our approach, we developed five disciplinary models that can be integrated and shared to simulate a few of the ecosystem services (e.g., water storage, waterfowl breeding) that are provided by wetlands in the Prairie Pothole Region (PPR) of North America.

  8. Ecological evaluation of the abundance and effects of elk herbivory in Rocky Mountain National Park, Colorado, 1994-1999

    USGS Publications Warehouse

    Singer, Francis J.; Zeigenfuss, Linda C.

    2002-01-01

    Several National Park Service units in the Intermountain region possess a number of closely related management needs relative to the abundance of wild ungulates and their herbivory effects on plants and ecosystem processes. In 1993, the then National Biological Service (NBS) - now U.S. Geological Survey, Biological Resources Discipline (USGS, BRD)­ initiated a series of research studies in four park units in the Intermountain West., into the abundance and effects of ungulates on park ecosystems. Each of these parks received a number of similar research study elements including: (a) a number of new ungulate grazing exclosures (n = 12-21 exclosures per park); (b) aerial survey sightability models to estimate population sizes of ungulates; (e) measures of biomass production and consumption rates near the exclosures and across the landscape; (d) studies of the effects of the grazing on plant abundance, species diversity, and ecosystem effects; and (e) computer model simulations (SAVANNA) of the effects on the ecosystem and plant resources of different ungulate management scenarios. One park unit, Rocky Mountain National Park, Colorado, received funding from the U.S. Geological Survey (USGS, BRD) and parallel funding from NPS for an intensive research study of the effects of elk on the park ecosystems.

  9. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  10. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  11. Landscape Level Carbon and Water Balances and Agricultural Production in Mountainous Terrain of the Haean Basin, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, B.; Geyer, R.; Seo, B.; Lindner, S.; Walther, G.; Tenhunen, J. D.

    2009-12-01

    The process-based spatial simulation model PIXGRO was used to estimate gross primary production, ecosystem respiration, net ecosystem CO2 exchange and water use by forest and crop fields of Haean Basin, South Korea at landscape scale. Simulations are run for individual years from early spring to late fall, providing estimates for dry land crops and rice paddies with respect to carbon gain, biomass and leaf area development, allocation of photoproducts to the belowground ecosystem compartment, and harvest yields. In the case of deciduous oak forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for forest and cropland fluxes via eddy covariance and chamber studies, for soil characteristics by generalization from spatial surveys, for climate drivers by generalizing observations at ca. 20 monitoring stations distributed throughout the basin and along the elevation gradient from 500 to 1000 m, and for incident radiation via modelling of the radiation components in complex terrain. Validation of the model is being carried out at point scale based on comparison of model output at selected locations with observations as well as with known trends in ecosystem response documented in the literature. The resulting modelling tool is useful for estimation of ecosystem services at landscape scale, first expressed as kg ha-1 crop yield, but via future cooperative studies also in terms of monetary gain to individual farms and farming cooperatives applying particular management strategies.

  12. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  13. Warming alters community size structure and ecosystem functioning

    PubMed Central

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M.; Perkins, Daniel M.; Trimmer, Mark; Woodward, Guy

    2012-01-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185

  14. Predator-induced demographic shifts in coral reef fish assemblages

    USGS Publications Warehouse

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  15. Predator-Induced Demographic Shifts in Coral Reef Fish Assemblages

    PubMed Central

    Ruttenberg, Benjamin I.; Hamilton, Scott L.; Walsh, Sheila M.; Donovan, Mary K.; Friedlander, Alan; DeMartini, Edward; Sala, Enric; Sandin, Stuart A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. PMID:21698165

  16. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  17. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGES

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  18. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.

  19. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    PubMed

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  20. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model

    NASA Astrophysics Data System (ADS)

    Sun, Ge; Caldwell, Peter; Noormets, Asko; McNulty, Steven G.; Cohen, Erika; Moore Myers, Jennifer; Domec, Jean-Christophe; Treasure, Emrys; Mu, Qiaozhen; Xiao, Jingfeng; John, Ranjeet; Chen, Jiquan

    2011-09-01

    We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr-1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr-1) and watershed water balance based ET (571 ± 242 mm yr-1). Our mean annual GEP estimates (1362 ± 688 g C m-2 yr-1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m-2 yr-1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25-30%) values than the standard MODIS product (904 ± 467 g C m-2 yr-1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (-353 ± 298 g C m-2 yr-1) predicted by this study was 60% higher than EC-MOD's estimate (-220 ± 225 g C m-2 yr-1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment.

  1. Multiple ecosystem services in a working landscape

    PubMed Central

    Eastburn, Danny J.; O’Geen, Anthony T.; Tate, Kenneth W.; Roche, Leslie M.

    2017-01-01

    Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services—specifically agricultural production, biodiversity and habitat, and soil health—across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments. PMID:28301475

  2. Multiple ecosystem services in a working landscape.

    PubMed

    Eastburn, Danny J; O'Geen, Anthony T; Tate, Kenneth W; Roche, Leslie M

    2017-01-01

    Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services-specifically agricultural production, biodiversity and habitat, and soil health-across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments.

  3. Modelling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties

    USGS Publications Warehouse

    Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.

    2000-01-01

    We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.

  4. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    NASA Astrophysics Data System (ADS)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil ‘habitat’ and ‘carbon’ services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.

  5. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae.

    PubMed

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100μg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.

    PubMed

    Gabrielle, Benoît; Gagnaire, Nathalie; Massad, Raia Silvia; Dufossé, Karine; Bessou, Cécile

    2014-01-01

    The objective of the work reported here was to reduce the uncertainty on the greenhouse gas balances of biofuels using agro-ecosystem modeling at a high resolution over the Ile-de-France region in Northern France. The emissions simulated during the feedstock production stage were input to a life-cycle assessment of candidate biofuel pathways: bioethanol from wheat, sugar-beet and miscanthus, and biodiesel from oilseed rape. Compared to the widely-used methodology based on fixed emission factors, ecosystem modeling lead to 55-70% lower estimates for N2O emissions, emphasizing the importance of regional factors. The life-cycle GHG emissions of first-generation biofuels were 50-70% lower than fossil-based equivalents, and 85% lower for cellulosic ethanol. When including indirect land-use change effects, GHG savings became marginal for biodiesel and wheat ethanol, but were positive due to direct effects for cellulosic ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Body Size Is a Significant Predictor of Congruency in Species Richness Patterns: A Meta-Analysis of Aquatic Studies

    PubMed Central

    Velghe, Katherine; Gregory-Eaves, Irene

    2013-01-01

    Biodiversity losses over the next century are predicted to result in alterations of ecosystem functions that are on par with other major drivers of global change. Given the seriousness of this issue, there is a need to effectively monitor global biodiversity. Because performing biodiversity censuses of all taxonomic groups is prohibitively costly, indicator groups have been studied to estimate the biodiversity of different taxonomic groups. Quantifying cross-taxon congruence is a method of evaluating the assumption that the diversity of one taxonomic group can be used to predict the diversity of another. To improve the predictive ability of cross-taxon congruence in aquatic ecosystems, we evaluated whether body size, measured as the ratio of average body length between organismal groups, is a significant predictor of their cross-taxon biodiversity congruence. To test this hypothesis, we searched the published literature and screened for studies that used species richness correlations as their metric of cross-taxon congruence. We extracted 96 correlation coefficients from 16 studies, which encompassed 784 inland water bodies. With these correlation coefficients, we conducted a categorical meta-analysis, grouping data based on the body size ratio of organisms. Our results showed that cross-taxon congruence is variable among sites and between different groups (r values ranging between −0.53 to 0.88). In addition, our quantitative meta-analysis demonstrated that organisms most similar in body size showed stronger species richness correlations than organisms which differed increasingly in size (radj 2 = 0.94, p = 0.02). We propose that future studies applying biodiversity indicators in aquatic ecosystems consider functional traits such as body size, so as to increase their success at predicting the biodiversity of taxonomic groups where cost-effective conservation tools are needed. PMID:23468903

  8. Eco-logical : an ecosystem approach to developing infrastructure projects

    DOT National Transportation Integrated Search

    1996-01-01

    This is a summary of a workshop on performance-based regulations for truck size and weight (TS&W) organized by the U.S. Department of Transportation's Federal Highway Administration. The workshop was held on June 30, 1995, at the Chrysler Center in A...

  9. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected response ratio to elevated CO2 at the AmazonFACE site and identify priorities for experimental work and model development.

  10. Implementation of the century ecosystem model for an eroding hillslope in Mississippi

    USGS Publications Warehouse

    Sharpe, Jodie; Harden, Jennifer W.; Dabney, Seth M.; Ojima, Dennis; Parton, William

    1998-01-01

    The objective of this study was to parameterize and implement the Century ecosystem model for an eroding, cultivated site near Senatobia, in Panola County, Mississippi, in order to understand the loss and replacement of soil organic carbon on an eroding cropland. The sites chosen for this study are located on highly eroded loess soils where USDA has conducted studies on rates of soil erosion. We used USDA sediment data from the study site and historical erosion estimates from the nearby area as model input for soil loss; in addition, inputs for parametization include particle-size data, climate data, and rainfall/runoff data that were collected and reported in companion papers. A cropping scenario was implemented to simulate a research site at the USDA watershed 2 at the Nelson Farm. Model output was compiled for comparison with data collected and reported in companion reports; interpretive comparisons are reported in Harden et al, in press.

  11. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    PubMed

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  12. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation.

    PubMed

    Rogers, Alice; Blanchard, Julia L; Newman, Steven P; Dryden, Charlie S; Mumby, Peter J

    2018-02-01

    Refuge availability and fishing alter predator-prey interactions on coral reefs, but our understanding of how they interact to drive food web dynamics, community structure and vulnerability of different trophic groups is unclear. Here, we apply a size-based ecosystem model of coral reefs, parameterized with empirical measures of structural complexity, to predict fish biomass, productivity and community structure in reef ecosystems under a broad range of refuge availability and fishing regimes. In unfished ecosystems, the expected positive correlation between reef structural complexity and biomass emerges, but a non-linear effect of predation refuges is observed for the productivity of predatory fish. Reefs with intermediate complexity have the highest predator productivity, but when refuge availability is high and prey are less available, predator growth rates decrease, with significant implications for fisheries. Specifically, as fishing intensity increases, predators in habitats with high refuge availability exhibit vulnerability to over-exploitation, resulting in communities dominated by herbivores. Our study reveals mechanisms for threshold dynamics in predators living in complex habitats and elucidates how predators can be food-limited when most of their prey are able to hide. We also highlight the importance of nutrient recycling via the detrital pathway, to support high predator biomasses on coral reefs. © 2018 by the Ecological Society of America.

  13. Disturbance Distance: Using a process based ecosystem model to estimate and map potential thresholds in disturbance rates that would give rise to fundamentally altered ecosystems

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Hurtt, G. C.; Fisk, J.; Flanagan, S.; LePage, Y.; Sahajpal, R.

    2014-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. As recent studies highlight novel disturbance regimes resulting from pollution, invasive pests and climate change, there is a need to include these alterations in predictions of future forest function and structure. The Ecosystem Demography (ED) model is a mechanistic model of forest ecosystem dynamics in which individual-based forest dynamics can be efficiently implemented over regional to global scales due to advanced scaling methods. We utilize ED to characterize the sensitivity of potential vegetation structure and function to changes in rates of density independent mortality. Disturbance rate within ED can either be altered directly or through the development of sub-models. Disturbance sub-models in ED currently include fire, land use and hurricanes. We use a tiered approach to understand the sensitivity of North American ecosystems to changes in background density independent mortality. Our first analyses were conducted at half-degree spatial resolution with a constant rate of disturbance in space and time, which was altered between runs. Annual climate was held constant at the site level and the land use and fire sub-models were turned off. Results showed an ~ 30% increase in non-forest area across the US when disturbance rates were changed from 0.6% a year to 1.2% a year and a more than 3.5 fold increase in non-forest area when disturbance rates doubled again from 1.2% to 2.4%. Continued runs altered natural background disturbance rates with the existing fire and hurricane sub models turned on as well as historic and future land use. By quantify differences between model outputs that characterize ecosystem structure and function related to the carbon cycle across the US, we are identifying areas and characteristics that display higher sensitivities to change in disturbance rates.

  14. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  15. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    PubMed

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because functional roles are dynamic and will change with shifts in the stage structure of the species. In general this emphasizes the importance of accounting for functional diversity below the species level to predict how natural and anthropogenic changes alter the functioning of natural ecosystems.

  16. Modeling Temporal and Spatial Flows of Ecosystem Services in Chittenden County, VT

    NASA Astrophysics Data System (ADS)

    Voigt, B. G.; Bagstad, K.; Johnson, G.; Villa, F.

    2010-12-01

    This paper documents the integration of ARIES (ARtificial Intelligence for Ecosystem Services) with the land use change model UrbanSim to explore the impacts of current and future land use patterns on flood protection and water provision services in Chittenden County, VT. ARIES, an open source modeling platform, is particularly well-suited for measuring, mapping, and modeling the temporal and spatial flows of ecosystem services across the landscape, linking the areas of provision (sources) with human beneficiaries (users) through a spatially explicit agent-based modeling approach. UrbanSim is an open source agent-based land use model designed to facilitate a wide-range of scenarios based on user-specified behavioral assumptions, zoning regulations, and demographic, economic, and infrastructure (e.g. transportation, water, sewer, etc.) parameters. Ecosystem services travel through time and space and are susceptible to disruption and destruction from both natural and anthropogenic perturbations. The conversion of forested or agricultural land to urbanizing uses is replete with a long history of hydrologic impairment, habitat fragmentation, and the degradation of sensitive landscapes. Development decisions are predicated on the presence of landscape characteristics that meet the needs of developers and satisfy the desires of consumers, with minimal consideration of access to or effect on the provision of ecosystem services. The County houses nearly 25% of the state’s population and several employment centers that draw labor from throughout the region. Additionally, the County is expected to maintain modest residential and employment growth over the next 30 years, and will continue to serve as the state’s population and employment center. Expected future growth is likely to adversely affect the remaining farm and forest land in the County in the absence of policies to support sustainable development. We demonstrate how ARIES can be used to quantify changes in ecosystem service provision based on the outcomes of alternative land use change model scenarios. Stakeholder workshops were hosted to develop scenarios relevant to planning for future growth in the County, including alternative zoning regulations, road network improvements, and a range of future population projections. The results of the land use change simulations were passed to ARIES to model flood protection and water provision services for each of the alternative scenarios. We present Bayesian models of the ecosystem services as individual source, sink, and use components coupled with models of temporal and spatial flows of services across the landscape. Specific beneficiaries include homeowners, farmers, and other business property owners. The location choice decisions of residential and non-residential agents under the alternative scenarios resulted in varying access to ecosystem services depending on development density, habitat fragmentation, and the degree of hydrological impairment, among other factors. Modeled outputs include maps depicting flow paths (linking sources to beneficiaries), changes in land use, hotspot locations that are critical to sustain the flow of services across the landscape, and the demand for and supply of the modeled services.

  17. A landscape based, systems dynamic model for assessing impacts of urban development on water quality for sustainable seagrass growth in Tampa Bay, Florida

    EPA Science Inventory

    We present an integrated assessment model to predict potential unintended consequences of urban development on the sustainability of seagrasses and preservation of ecosystem services, such as catchable fish, in Tampa Bay. Ecosystem services are those ecological functions and pro...

  18. Ecosystem dynamics and disturbance in mountain wildernesses: assessing vulnerability of natural resources to change

    Treesearch

    Daniel B. Fagre; David L. Peterson

    2000-01-01

    An integrated program of ecosystem modeling and extensive field studies at Glacier and Olympic National Parks has quantified many of the ecological processes affected by climatic variability and disturbance. Models have successfully estimated snow distribution, annual watershed discharge, and stream temperature variation based on seven years of monitoring. Various...

  19. Challenges and opportunities for integrating lake ecosystem modelling approaches

    USGS Publications Warehouse

    Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.

  20. Synthetic Constraint of Ecosystem C Models Using Radiocarbon and Net Primary Production (NPP) in New Zealand Grazing Land

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.

    2011-12-01

    Time-series radiocarbon measurements have substantial ability to constrain the size and residence time of the soil C pools commonly represented in ecosystem models. Radiocarbon remains unique in the ability to constrain the large stabilized C pool with decadal residence times. Radiocarbon also contributes usefully to constraining the size and turnover rate of the passive pool, but typically struggles to constrain pools with residence times less than a few years. Overall, the number of pools and associated turnover rates that can be constrained depends upon the number of time-series samples available, the appropriateness of chemical or physical fractions to isolate unequivocal pools, and the utility of additional C flux data to provide additional constraints. In New Zealand pasture soils, we demonstrate the ability to constrain decadal turnover times with in a few years for the stabilized pool and reasonably constrain the passive fraction. Good constraint is obtained with two time-series samples spaced 10 or more years apart after 1970. Three or more time-series samples further improve the level of constraint. Work within this context shows that a two-pool model does explain soil radiocarbon data for the most detailed profiles available (11 time-series samples), and identifies clear and consistent differences in rates of C turnover and passive fraction in Andisols vs Non-Andisols. Furthermore, samples from multiple horizons can commonly be combined, yielding consistent residence times and passive fraction estimates that are stable with, or increase with, depth in different sites. Radiocarbon generally fails to quantify rapid C turnover, however. Given that the strength of radiocarbon is estimating the size and turnover of the stabilized (decadal) and passive (millennial) pools, the magnitude of fast cycling pool(s) can be estimated by subtracting the radiocarbon-based estimates of turnover within stabilized and passive pools from total estimates of NPP. In grazing land, these estimates can be derived primarily from measured aboveground NPP and calculated belowground NPP. Results suggest that only 19-36% of heterotrophic soil respiration is derived from the soil C with rapid turnover times. A final logical step in synthesis is the analysis of temporal variation in NPP, primarily due to climate, as driver of changes in plant inputs and resulting in dynamic changes in rapid and decadal soil C pools. In sites with good time series samples from 1959-1975, we examine the apparent impacts of measured or modelled (Biome-BGC) NPP on soil Δ14C. Ultimately, these approaches have the ability to empirically constrain, and provide limited verification, of the soil C cycle as commonly depicted ecosystem biogeochemistry models.

  1. [Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter].

    PubMed

    Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu

    2016-12-01

    LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.

  2. Can we infer plant facilitation from remote sensing? A test across global drylands

    PubMed Central

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H.; Maestre, Fernando T.; Soliveres, Santiago; Berdugo, Miguel; Kéfi, Sonia; Marquet, Pablo A.; Abades, Sebastian; Scheffer, Marten

    2016-01-01

    Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant-plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely-sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely-sensed images freely available through Google Earth™ with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant-plant interactions. Most of the patterns found from the remotely-sensed images were more right-skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth™ images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely-sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. PMID:26552256

  3. Idiosyncratic species effects confound size-based predictions of responses to climate change.

    PubMed

    Twomey, Marion; Brodte, Eva; Jacob, Ute; Brose, Ulrich; Crowe, Tasman P; Emmerson, Mark C

    2012-11-05

    Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change.

  4. Regeneration of a keystone semiarid shrub over its range in Spain: habitat degradation overrides the positive effects of plant-animal mutualisms.

    PubMed

    Rey, Pedro J; Cancio, Inmaculada; Manzaneda, Antonio J; González-Robles, Ana; Valera, Francisco; Salido, Teresa; Alcántara, Julio M

    2018-06-22

    Global change drivers are currently affecting semiarid ecosystems. Because these ecosystems differ from others in biotic and abiotic filters, cues for plant regeneration and management derived from elsewhere may not be applicable to semiarid ecosystems. We sought to determine the extent to which regional variation in regeneration prospects of a long-lived semiarid keystone shrub depends on anthropogenic habitat degradation, plant-animal interactions and climate determinants. We investigated the regeneration ability (via population size structure, juvenile density and juvenile/adult ratio), fruit set and seed dispersal of Ziziphus lotus in 25 localities spanning the range of its threatened habitats in Spain. We dissected the relative contribution of different regeneration determinants using multiple regression and structural equation modelling. Population regeneration was extremely poor, and size structures were biased towards large classes and low juvenile densities and juvenile/adult ratios. Poor regeneration was often coincident with seed dispersal collapse. However, the positive effect of seed dispersal on population regeneration disappeared after considering its relationship with habitat degradation. Protected areas did have juveniles. Together, these data suggest that habitat degradation directly impacts juvenile establishment. Our results provide insights into habitat and species management at the regional level. Z. lotus populations are currently driven by persistence-based dynamics through the longevity of the species. Nonetheless, collapsed seed dispersal, poor regeneration and the removal of adults from their habitats forecast extinction of Z. lotus in many remnants. The extreme longevity of Z. lotus grants opportunities for the recovery of its populations and habitats through effective enforcement of regulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-22

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  6. Simulating Carbon Stocks and Fluxes of an African Tropical Montane Forest with an Individual-Based Forest Model

    PubMed Central

    Fischer, Rico; Ensslin, Andreas; Rutten, Gemma; Fischer, Markus; Schellenberger Costa, David; Kleyer, Michael; Hemp, Andreas; Paulick, Sebastian; Huth, Andreas

    2015-01-01

    Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances. PMID:25915854

  7. Conversion of woodlands changes soil related ecosystem services in Subsaharan Africa

    NASA Astrophysics Data System (ADS)

    Groengroeft, Alexander; Landschreiber, Lars; Luther-Mosebach, Jona; Masamba, Wellington; Zimmermann, Ibo; Eschenbach, Annette

    2015-04-01

    In remote areas of Subsaharan Africa, growing population, changes in consumption patterns and increasing global influences are leading to a strong pressure on the land resources. Smallholders convert woodlands by fire, grazing and clearing in different intensities thus changing soil properties and their ecosystem functioning. As the extraction of ecosystem services forms the basis of local wellbeing for many communities, the role of soils in providing ecosystem services is of high importance. Since 2010, "The Future Okavango" project investigates the quantification of ecosystem functions and services at four core research sites along the Okavango river basin (Angola, Namibia, Botswana, see http://www.future-okavango.org/). These research sites have an extent of 100 km2 each. Within our subproject the soil functions underlying ecosystem services are studied: The amount and spatial variation of soil nutrient reserves in woodland and their changes by land use activities, the water storage function as a basis for plant growth, and their effect on groundwater recharge and the carbon storage function. The scientific framework consists of four major parts including soil survey and mapping, lab analysis, field measurements and modeling approaches on different scales. A detailed soil survey leads to a measure of the spatial distribution, extent and heterogeneity of soil types for each research site. For generalization purposes, geomorphological and pedological characteristics are merged to derive landscape units. These landscape units have been overlaid by recent land use types to stratify the research site for subsequent soil sampling. On the basis of field and laboratory analysis, spatial distribution of soil properties as well as boundaries between neighboring landscape units are derived. The parameters analysed describe properties according to grain size distribution, organic carbon content, saturated and unsaturated hydraulic conductivity as well as pore space distribution. At nine selected sites, soil water contents and pressure heads are logged throughout the year with a 12 hour resolution in depth of 10 to 160 cm. This monitoring gives information about soil water dynamics at point scale and the database is used to evaluate model outputs of soil water balances later on. To derive point scale soil water balances for each landscape unit the one dimensional and physically based model SWAP 3.2 is applied. The presentation will demonstrate the conceptual framework, exemplary results and will discuss, if the ecosystem service approach can help to avoid future land degradation. Key word: Okavango catchment, soil functions, conceptual approach

  8. Trends and causes of severity, size, and number of fires in northwestern California, USA

    Treesearch

    J. D. Miller; Carl Skinner; H. D. Safford; Eric E. Knapp; C. M. Ramirez

    2012-01-01

    Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire...

  9. Retention of contaminants in constructed and semi-natural wetland soils in urban river systems

    NASA Astrophysics Data System (ADS)

    Kalinski, Kira; Gröngröft, Alexander; Eschenbach, Annette

    2017-04-01

    The retention of floods is one of the most relevant ecosystem function of urban floodplains, which is often improved by the construction of retention ponds and other water management measures. Retention ponds are connected to the river in a direct or a parallel arrangement and can be constructed as dry or wet retention pond under normal run-off conditions. Further important ecosystem functions provided by the floodplains soils are carbon sequestration, nutrient and contaminant regulation and recreation. However, with ongoing urbanization these ecosystem functions are significantly endangered. In our study we analyze the soil-based ecosystem functions of two river catchments in the City of Hamburg. The presentation will focus on the retention of contaminants in soils and sediments of eleven retention ponds within one catchment. The amount and concentrations of contaminants will be analyzed for controlling factors like grain size distribution, land-use within the headwaters and others.

  10. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  11. The role of climate in the global patterns of ecosystem carbon turnover rates - contrasts between data and models

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Migliavacca, M.; Thurner, M.; Beer, C.; Jung, M.; Mu, M.; Randerson, J. T.; Saatchi, S. S.; Santoro, M.; Reichstein, M.

    2012-12-01

    The turnover rates of carbon in terrestrial ecosystems and their sensitivity to climate are instrumental properties for diagnosing the interannual variability and forecasting trends of biogeochemical processes and carbon-cycle-climate feedbacks. We propose to globally look at the spatial distribution of turnover rates of carbon to explore the association between bioclimatic regimes and the rates at which carbon cycles in terrestrial ecosystems. Based on data-driven approaches of ecosystem carbon fluxes and data-based estimates of ecosystem carbon stocks it is possible to build fully observationally supported diagnostics. These data driven diagnostics support the benchmarking of CMIP5 model outputs (Coupled Model Intercomparison Project Phase 5) with observationally based estimates. The models' performance is addressed by confronting spatial patterns of carbon fluxes and stocks with data, as well as the global and regional sensitivities of turnover rates to climate. Our results show strong latitudinal gradients globally, mostly controlled by temperature, which are not always paralleled by CMIP5 simulations. In northern colder regions is also where the largest difference in temperature sensitivity between models and data occurs. Interestingly, there seem to be two different statistical populations in the data (some with high, others with low apparent temperature sensitivity of carbon turnover rates), where the different models only seem to describe either one or the other population. Additionally, the comparisons within bioclimatic classes can even show opposite patterns between turnover rates and temperature in water limited regions. Overall, our analysis emphasizes the role of finding patterns and intrinsic properties instead of plain magnitudes of fluxes for diagnosing the sensitivities of terrestrial biogeochemical cycles to climate. Further, our regional analysis suggests a significant gap in addressing the partial influence of water in the ecosystem carbon turnover rates especially in very cold or water limited regions.

  12. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific

    NASA Astrophysics Data System (ADS)

    Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro

    2018-06-01

    Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.

  13. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, S. H.; Jansson, P.-E.

    2012-05-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  14. A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C

    PubMed Central

    Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.

    2009-01-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022

  15. Structural development and web service based sensitivity analysis of the Biome-BGC MuSo model

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Balogh, János; Churkina, Galina; Haszpra, László; Horváth, Ferenc; Ittzés, Péter; Ittzés, Dóra; Ma, Shaoxiu; Nagy, Zoltán; Pintér, Krisztina; Barcza, Zoltán

    2014-05-01

    Studying the greenhouse gas exchange, mainly the carbon dioxide sink and source character of ecosystems is still a highly relevant research topic in biogeochemistry. During the past few years research focused on managed ecosystems, because human intervention has an important role in the formation of the land surface through agricultural management, land use change, and other practices. In spite of considerable developments current biogeochemical models still have uncertainties to adequately quantify greenhouse gas exchange processes of managed ecosystem. Therefore, it is an important task to develop and test process-based biogeochemical models. Biome-BGC is a widely used, popular biogeochemical model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems. Biome-BGC was originally developed by the Numerical Terradynamic Simulation Group (NTSG) of University of Montana (http://www.ntsg.umt.edu/project/biome-bgc), and several other researchers used and modified it in the past. Our research group developed Biome-BGC version 4.1.1 to improve essentially the ability of the model to simulate carbon and water cycle in real managed ecosystems. The modifications included structural improvements of the model (e.g., implementation of multilayer soil module and drought related plant senescence; improved model phenology). Beside these improvements management modules and annually varying options were introduced and implemented (simulate mowing, grazing, planting, harvest, ploughing, application of fertilizers, forest thinning). Dynamic (annually varying) whole plant mortality was also enabled in the model to support more realistic simulation of forest stand development and natural disturbances. In the most recent model version separate pools have been defined for fruit. The model version which contains every former and new development is referred as Biome-BGC MuSo (Biome-BGC with multi-soil layer). Within the frame of the BioVeL project (http://www.biovel.eu) an open source and domain independent scientific workflow management system (http://www.taverna.org.uk) are used to support 'in silico' experimentation and easy applicability of different models including Biome-BGC MuSo. Workflows can be built upon functionally linked sets of web services like retrieval of meteorological dataset and other parameters; preparation of single run or spatial run model simulation; desk top grid technology based Monte Carlo experiment with parallel processing; model sensitivity analysis, etc. The newly developed, Monte Carlo experiment based sensitivity analysis is described in this study and results are presented about differences in the sensitivity of the original and the developed Biome-BGC model.

  16. NED-IIS: An Intelligent Information System for Forest Ecosystem Management

    Treesearch

    W.D. Potter; S. Somasekar; R. Kommineni; H.M. Rauscher

    1999-01-01

    We view Intelligent Information System (IIS) as composed of a unified knowledge base, database, and model base. The model base includes decision support models, forecasting models, and cvsualization models for example. In addition, we feel that the model base should include domain specific porblems solving modules as well as decision support models. This, then,...

  17. Use of an ecosystem model for testing ecosystem response to inaccuracies of root and microflora productivity estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, H.; O'Neill, R.V.; Gardner, R.H.

    1984-01-01

    A seventy-compartment model for a Danish beech forest ecosystem is described in outline. The unmodified model predicts considerable accumulation of wood litter and decreasing accumulation through secondary to final decomposition products. Increment rates are similar for all components of the detritus based food chain. Modification of fine root production rate produces strong, positive response for root litter, and less, but still significant, response for detritus, humus and the components of the decomposer food chain. Increase of microbial biomass with adjustments of metabolism and production causes reduced accumulation of detritus and humus. The soil organisms respond according to food source. Themore » use of the model for testing the sensitivity of the ecosystem to inaccuracies of rroot- and microflora estimates is discussed. 21 references, 3 figures, 1 table.« less

  18. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  19. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  20. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  1. Walk on the wild side: estimating the global magnitude of visits to protected areas.

    PubMed

    Balmford, Andrew; Green, Jonathan M H; Anderson, Michael; Beresford, James; Huang, Charles; Naidoo, Robin; Walpole, Matt; Manica, Andrea

    2015-02-01

    How often do people visit the world's protected areas (PAs)? Despite PAs covering one-eighth of the land and being a major focus of nature-based recreation and tourism, we don't know. To address this, we compiled a globally-representative database of visits to PAs and built region-specific models predicting visit rates from PA size, local population size, remoteness, natural attractiveness, and national income. Applying these models to all but the very smallest of the world's terrestrial PAs suggests that together they receive roughly 8 billion (8 x 109) visits/y-of which more than 80% are in Europe and North America. Linking our region-specific visit estimates to valuation studies indicates that these visits generate approximately US $600 billion/y in direct in-country expenditure and US $250 billion/y in consumer surplus. These figures dwarf current, typically inadequate spending on conserving PAs. Thus, even without considering the many other ecosystem services that PAs provide to people, our findings underscore calls for greatly increased investment in their conservation.

  2. Walk on the Wild Side: Estimating the Global Magnitude of Visits to Protected Areas

    PubMed Central

    Balmford, Andrew; Green, Jonathan M. H.; Anderson, Michael; Beresford, James; Huang, Charles; Naidoo, Robin; Walpole, Matt; Manica, Andrea

    2015-01-01

    How often do people visit the world’s protected areas (PAs)? Despite PAs covering one-eighth of the land and being a major focus of nature-based recreation and tourism, we don’t know. To address this, we compiled a globally-representative database of visits to PAs and built region-specific models predicting visit rates from PA size, local population size, remoteness, natural attractiveness, and national income. Applying these models to all but the very smallest of the world’s terrestrial PAs suggests that together they receive roughly 8 billion (8 x 109) visits/y—of which more than 80% are in Europe and North America. Linking our region-specific visit estimates to valuation studies indicates that these visits generate approximately US $600 billion/y in direct in-country expenditure and US $250 billion/y in consumer surplus. These figures dwarf current, typically inadequate spending on conserving PAs. Thus, even without considering the many other ecosystem services that PAs provide to people, our findings underscore calls for greatly increased investment in their conservation. PMID:25710450

  3. Physiological-based modelling of marine fish early life stages provides process knowledge on climate impacts

    NASA Astrophysics Data System (ADS)

    Peck, M. A.

    2016-02-01

    Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.

  4. Understanding the individual to implement the ecosystem approach to fisheries management.

    PubMed

    Ward, Taylor D; Algera, Dirk A; Gallagher, Austin J; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S; McKenzie, David J; Metcalfe, Julian D; Peck, Myron A; Vu, Maria; Cooke, Steven J

    2016-01-01

    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.

  5. Understanding the individual to implement the ecosystem approach to fisheries management

    PubMed Central

    Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S.; McKenzie, David J.; Metcalfe, Julian D.; Peck, Myron A.; Vu, Maria; Cooke, Steven J.

    2016-01-01

    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management. PMID:27293757

  6. Long-term spatial distributions and trends of the latent heat fluxes over the global cropland ecosystem using multiple satellite-based models

    PubMed Central

    Feng, Fei; Yao, Yunjun; Liu, Meng

    2017-01-01

    Estimating cropland latent heat flux (LE) from continental to global scales is vital to modeling crop production and managing water resources. Over the past several decades, numerous LE models were developed, such as the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing-based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL) and the modified satellite-based Priestley-Taylor LE algorithm (MS-PT). However, these LE models have not been directly compared over the global cropland ecosystem using various algorithms. In this study, we evaluated the performances of these four LE models using 34 eddy covariance (EC) sites. The results showed that mean annual LE for cropland varied from 33.49 to 58.97 W/m2 among the four models. The interannual LE slightly increased during 1982–2009 across the global cropland ecosystem. All models had acceptable performances with the coefficient of determination (R2) ranging from 0.4 to 0.7 and a root mean squared error (RMSE) of approximately 35 W/m2. MS-PT had good overall performance across the cropland ecosystem with the highest R2, lowest RMSE and a relatively low bias. The reduced performances of MOD16 and RRS, with R2 ranging from 0.4 to 0.6 and RMSEs from 30 to 39 W/m2, might be attributed to empirical parameters in the structure algorithms and calibrated coefficients. PMID:28837704

  7. Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities

    NASA Astrophysics Data System (ADS)

    Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong

    2017-08-01

    Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

  8. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Carozza, D. A.; Bianchi, D.; Galbraith, E. D.

    2015-12-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.

  9. The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Carozza, David Anthony; Bianchi, Daniele; Galbraith, Eric Douglas

    2016-04-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.

  10. Large Aquatic Ecosystem Restoration Monitoring for Decision Makers: Monitoring to Target and Evaluate Success of Ecosystem Restoration

    EPA Science Inventory

    Monitoring ecosystem restoration at various scales in LAEs can be challenging, frustrating and rewarding. Some of the major ecosystem restoration monitoring occurring in LAEs include: seagrass expansion/contraction; dead zone sizes; oyster reefs; sea turtle nesting; toxic and nu...

  11. Revisiting the Holy Grail: using plant functional traits to understand ecological processes.

    PubMed

    Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin

    2017-05-01

    One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.

  12. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  13. Evaluating simulated functional trait patterns and quantifying modelled trait diversity effects on simulated ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Schimel, D.

    2014-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. First, we compare simulated present-day geographical patterns of functional traits with empirical trait observations (in-situ and from airborne imaging spectroscopy). The observed trait patterns are then used to improve the tradeoff parameterizations of JeDi-DGVM. Finally, focusing primarily on the simulated leaf traits, we run the model with various amounts of trait diversity. We quantify the effects of these modeled biodiversity manipulations on simulated ecosystem fluxes and stocks for both present-day conditions and transient climate change scenarios. The simulation results reveal that the coarse treatment of plant functional traits by current PFT-based vegetation models may contribute substantial uncertainty regarding carbon-climate feedbacks. Further development of trait-based models and further investment in global in-situ and spectroscopic plant trait observations are needed.

  14. Implementation of marine spatial planning in shellfish aquaculture management: modeling studies in a Norwegian fjord.

    PubMed

    Filgueira, Ramon; Grant, Jon; Strand, Øivind

    2014-06-01

    Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.

  15. A biologically-based individual tree model for managing the longleaf pine ecosystem

    Treesearch

    Rick Smith; Greg Somers

    1998-01-01

    Duration: 1995-present Objective: Develop a longleaf pine dynamics model and simulation system to define desirable ecosystem management practices in existing and future longleaf pine stands. Methods: Naturally-regenerated longleaf pine trees are being destructively sampled to measure their recent growth and dynamics. Soils and climate data will be combined with the...

  16. Lynx conservation in an ecosystem management context [Chapter 15

    Treesearch

    Kevin S. McKelvey; Keith B. Aubry; James K. Agee; Steven W. Buskirk; Leonard F. Ruggiero; Gary M. Koehler

    2000-01-01

    In an ecosystem management context, management for lynx must occur in the context of the needs of other species, watershed health, and a variety of products, outputs, and uses. This chapter presents a management model based on the restoration of historical patterns and processes. We argue that this model is sustainable in a formal sense, practical, and likely...

  17. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems

    Treesearch

    Changsheng Li; Jianbo Cui

    2004-01-01

    A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...

  18. Spiraling down the river continuum: stream ecology and the U-shaped curve

    Treesearch

    Jackson R. Webster

    2007-01-01

    The spiraling concept provides an explicit approach to modeling the longitudinal linkages within a river continuum. I developed a spiraling-based model for particulate organic C dynamics in the Little Tennessee River to synthesize existing data and to illustrate our current understanding of ecosystem processes in river ecosystems. The Little Tennessee River is a medium...

  19. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    USGS Publications Warehouse

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.

  20. Landscape modeling for Everglades ecosystem restoration

    USGS Publications Warehouse

    DeAngelis, D.L.; Gross, L.J.; Huston, M.A.; Wolff, W.F.; Fleming, D.M.; Comiskey, E.J.; Sylvester, S.M.

    1998-01-01

    A major environmental restoration effort is under way that will affect the Everglades and its neighboring ecosystems in southern Florida. Ecosystem and population-level modeling is being used to help in the planning and evaluation of this restoration. The specific objective of one of these modeling approaches, the Across Trophic Level System Simulation (ATLSS), is to predict the responses of a suite of higher trophic level species to several proposed alterations in Everglades hydrology. These include several species of wading birds, the snail kite, Cape Sable seaside sparrow, Florida panther, white-tailed deer, American alligator, and American crocodile. ATLSS is an ecosystem landscape-modeling approach and uses Geographic Information System (GIS) vegetation data and existing hydrology models for South Florida to provide the basic landscape for these species. A method of pseudotopography provides estimates of water depths through time at 28 ?? 28-m resolution across the landscape of southern Florida. Hydrologic model output drives models of habitat and prey availability for the higher trophic level species. Spatially explicit, individual-based computer models simulate these species. ATLSS simulations can compare the landscape dynamic spatial pattern of the species resulting from different proposed water management strategies. Here we compare the predicted effects of one possible change in water management in South Florida with the base case of no change. Preliminary model results predict substantial differences between these alternatives in some biotic spatial patterns. ?? 1998 Springer-Verlag.

  1. Natural and human impacts on ecosystem services in Guanzhong - Tianshui economic region of China.

    PubMed

    Li, Jing; Zhou, Z X

    2016-04-01

    Due to the accelerated growth of society, the gaps between the capacity of ecosystems to provide services and human needs are steadily widening. Natural, semi-natural, or managed ecosystems had been able to provide ecosystem services to meet the needs of social development. Four agricultural ecosystem services (net primary production (NPP), carbon sequestration and oxygen production (CSOP), water interception, soil conservation and agriculture production) were quantified in Guanzhong-Tianshui economic region. Estimates of ecosystem services were obtained from the analysis of satellite imagery and the use of well-known models. Based on the ecological services in Guanzhong-Tianshui economic region, this study mainly analysed the driving mechanism of the changes from the two aspects of natural drivers and human drivers. Natural drivers (climate, soil, elevation, land cover) had incentive to the ecological services. Human activity was quantified by an integrated human activity index (HAI) based on population density, farmland ratio, and the influence of road networks and residential areas. We found relationships between ecosystem services, human activities and many natural factors, however these varied according to the service studied. Human activities were mostly negatively related to each ecosystem services, while population and residential land ware positively related to agricultural production. Land use change had made a contribution to ecosystem services. Based on the selected ecosystem services and HAI, we provided sustainable ecosystem management suggestions.

  2. Prey risk allocation in a grazing ecosystem.

    PubMed

    Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred

    2006-02-01

    Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.

  3. Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters

    PubMed Central

    Hussey, Nigel E.; Christiansen, Heather M.; Smale, Malcolm J.; Nkabi, Nomfundo; Cliff, Geremy; Wintner, Sabine P.

    2017-01-01

    Knowledge of the diet and trophic ecology of apex predators is key for the implementation of effective ecosystem as well as species-based management initiatives. Using a combination of stomach content data and stable isotope analysis (δ15N and δ13C) the current study provides information on size-based and sex-specific variations in diet, trophic position (TP) and foraging habitat of tiger sharks (Galeocerdo cuvier) caught in the KwaZulu-Natal Sharks Board bather protection program. This study presents the longest time-series and most detailed analysis of stomach content data for G. cuvier worldwide. Prey identified from 628 non-empty stomachs revealed a size-based shift in diet. Reptiles, birds, mysticetes, and large shark species increased in dietary importance with G. cuvier size, concomitant with a decrease in smaller prey such as batoids and teleosts. Seasonal and decadal shifts in diet driven primarily by changes in the importance of elasmobranchs and mammal (cetacean) prey were recorded for medium sized (150–220 cm) G. cuvier. Both stomach content and stable isotope analysis indicated that G. cuvier is a generalist feeder at the population level. Size-based δ13C profiles indicated a movement to offshore foraging habitats by larger G. cuvier. Calculated TP varied by method ranging from 4.0 to 5.0 (TPSCA for stomach contents) and from 3.6 to 4.5 (TPscaled and TPadditive for δ15N). Large (> 220 cm) G. cuvier did not feed at discrete trophic levels, but rather throughout the food web. These data provide key information on the ecological role of G. cuvier to improve the accuracy of regional food web modelling. This will enable a better understanding of the ecological impacts related to changes in the abundance of this predator. PMID:28594833

  4. Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?

    NASA Astrophysics Data System (ADS)

    Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne

    2017-08-01

    Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.

  5. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  6. Whitebark Pine, Population Density, and Home-Range Size of Grizzly Bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354

  7. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    PubMed

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  8. Influence of biotic variables on invertebrate size structure and diversity in coastal wetlands of Southeastern Spain

    NASA Astrophysics Data System (ADS)

    Antón-Pardo, María; Armengol, Xavier

    2016-10-01

    Biomass and size-based estimations provide relevant information regarding ecosystem functioning and biotic interactions. Our aims were to study the effect of fish and macrophytes on the size structure of invertebrate assemblages (from rotifers to insects) in a set of coastal water bodies, estimating the biomass (total and main invertebrate groups), the biomass-size spectra (model of Pareto) and size diversity. In fishless ponds, cladoceran and ostracod biomass were higher, and they presented greater size diversity. In fish ponds, rotifer biomass presented greater proportion; while in fishless ponds, cladocerans were usually the most abundant taxa and the largest organisms. The biomass size spectra showed more irregularities in fishless ponds, due to the low densities of small taxa (rotifers and copepod juveniles) and big taxa (malacostraceans or insects). Differences is size structure and diversity were also observed between spring and summer, suggesting a higher recruitment of juveniles in spring, and thus, a higher predation pressure upon zooplankton at that moment. Macrophyte cover did not apparently influence those parameters, except for the biomass of ostracods, copepods, and insects. Therefore, predation by fish strongly affected invertebrate biomass, reflecting their selective feeding, and allowing high densities of small taxa. Predation pressure decreased size diversity, by limiting the abundance of vulnerable taxa of specific size. Seasonal changes were likely related to the spring recruitment of fish juveniles. The presence of small fish and invertebrate predator taxa among the macrophytes, restrict their role as refuges for prey invertebrates.

  9. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River

    PubMed Central

    Rosi, Emma J.; Post, David M.

    2017-01-01

    The annual migration of ∼1.2 million wildebeest (Connochaetes taurinus) through the Serengeti Mara Ecosystem is the largest remaining overland migration in the world. One of the most iconic portions of their migration is crossing of the Mara River, during which thousands drown annually. These mass drownings have been noted, but their frequency, size, and impact on aquatic ecosystems have not been quantified. Here, we estimate the frequency and size of mass drownings in the Mara River and model the fate of carcass nutrients through the river ecosystem. Mass drownings (>100 individuals) occurred in at least 13 of the past 15 y; on average, 6,250 carcasses and 1,100 tons of biomass enter the river each year. Half of a wildebeest carcass dry mass is bone, which takes 7 y to decompose, thus acting as a long-term source of nutrients to the Mara River. Carcass soft tissue decomposes in 2–10 wk, and these nutrients are mineralized by consumers, assimilated by biofilms, transported downstream, or moved back into the terrestrial ecosystem by scavengers. These inputs comprise 34–50% of the assimilated diet of fish when carcasses are present and 7–24% via biofilm on bones after soft tissue decomposition. Our results show a terrestrial animal migration can have large impacts on a river ecosystem, which may influence nutrient cycling and river food webs at decadal time scales. Similar mass drownings may have played an important role in rivers throughout the world when large migratory herds were more common features of the landscape. PMID:28630330

  10. End-to-end modeling as part of an integrated research program in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Punt, André E.; Ortiz, Ivonne; Aydin, Kerim Y.; Hunt, George L.; Wiese, Francis K.

    2016-12-01

    Traditionally, the advice provided to fishery managers has focused on the trade-offs between short- and long-term yields, and between future resource size and expected future catches. The harvest control rules that are used to provide management advice consequently relate catches to stock biomass levels expressed relative to reference biomass levels. There are, however, additional trade-offs. Ecosystem-based fisheries management (EBFM) aims to consider fish and fisheries in their ecological context, taking into account physical, biological, economic, and social factors. However, making EBFM operational remains challenging. It is generally recognized that end-to-end modeling should be a key part of implementing EBFM, along with harvest control rules that use information in addition to estimates of stock biomass to provide recommendations for management actions. Here we outline the process for selecting among alternative management strategies in an ecosystem context and summarize a Field-integrated End-To-End modeling program, or FETE, intended to implement this process as part of the Bering Sea Project. A key aspect of this project was that, from the start, the FETE included a management strategy evaluation component to compare management strategies. Effective use of end-to-end modeling requires that the models developed for a system are indeed integrated across climate drivers, lower trophic levels, fish population dynamics, and fisheries and their management. We summarize the steps taken by the program managers to promote integration of modeling efforts by multiple investigators and highlight the lessons learned during the project that can be used to guide future use and design of end-to-end models.

  11. Controlled Environments Enable Adaptive Management in Aquatic Ecosystems Under Altered Environments

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2016-01-01

    Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.

  12. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems.

    PubMed

    Nielsen, Uffe N; Ball, Becky A

    2015-04-01

    Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model. © 2014 John Wiley & Sons Ltd.

  13. Impacts of Diffuse Radiation on Light Use Efficiency across Terrestrial Ecosystems Based on Eddy Covariance Observation in China

    PubMed Central

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629

  14. Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on Eddy covariance observation in China.

    PubMed

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24 ≤ R(2) ≤ 0.85), especially at the Changbaishan temperate forest ecosystem (R(2) = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction.

  15. Simulating galactic dust grain evolution on a moving mesh

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  16. Fishing down nutrients on coral reefs.

    PubMed

    Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A

    2016-08-16

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.

  17. Modelling food-web mediated effects of hydrological variability and environmental flows.

    PubMed

    Robson, Barbara J; Lester, Rebecca E; Baldwin, Darren S; Bond, Nicholas R; Drouart, Romain; Rolls, Robert J; Ryder, Darren S; Thompson, Ross M

    2017-11-01

    Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Linking hydrology, ecosystem function, and livelihood sustainability in African papyrus wetlands using a Bayesian Network Model

    NASA Astrophysics Data System (ADS)

    van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.

    2011-12-01

    Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was reduced to about 40% and in the wet season increased to about 85%. Both ecosystem functions and livelihood sustainability were most sensitive to flooding and the human pressure, notably the area of crop conversion, grazing pressure, and papyrus harvest. Flooded conditions limit cropping, livestock herding and vegetation harvesting but have a strong positive effect on ecosystem function. Preliminary results suggest that the effects of economic and policy development on ecosystem function and livelihood sustainability were negligible, but more data on these aspects will be included in further model development. The advantage of this modeling approach, which integrates data from hydrological, ecological, and socio-economic studies, is that it highlights the relative effect of hydrologic conditions and socio-economic pressures on ecosystem function. This model is static, however, with long-term changes in climate and exploitation levels superimposed on seasonal hydrology dynamics. Further work should address this issue as well as further constrain probabilities at each node as field research continues.

  19. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies.

    PubMed

    Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V

    2012-12-01

    Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.

  20. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Piao, Shilong; Huang, Mengtian

    Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less

  1. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models

    DOE PAGES

    Sun, Yan; Piao, Shilong; Huang, Mengtian; ...

    2015-12-23

    Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less

  2. Nitrogen Effects on Organic Dynamics and Soil Communities in Forest and Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Grandy, S.; Neff, J.; Sinsabaugh, B.; Wickings, K.

    2008-12-01

    Human activities have doubled the global flux of biologically available N to terrestrial ecosystems but the effects of N on soil organic matter dynamics and soil communities remain difficult to predict. We examined soil organic matter chemistry and enzyme kinetics in three soil fractions (>250, 63-250, and <63 μm) following six years of simulated atmospheric N deposition in two forest ecosystems with contrasting litter biochemistry (sugar maple/basswood and black oak/white oak). Ambient and simulated atmospheric N deposition (80 kg nitrate-N/ha/y) were studied in three replicate stands in each ecosystem type. Using pyrolysis-gas chromatography/mass spectroscopy, we found striking, ecosystem-specific effects of N deposition on carbohydrate abundance. Furfural, the dominant pyrolysis product of polysaccharides, was significantly decreased by simulated N deposition in the sugar maple/basswood system (15.87 versus 4.99%) but increased by N in the black oak/white oak system (8.83 versus 24.01%). There were ca. 3-fold increases in the ratio of total lignin derivatives to total polysaccharides in the >250 μm fraction of the sugar maple/basswood system but there were no changes in other size classes or in the black oak/white oak system. We also measured significant increases in the ratio of lignin derivatives to N-bearing compounds in the 63-250 and >250 μm fractions in both ecosystems but not in the <63 μm fraction. We compare these results to a study looking at changes in enzyme activities and soil communities along a N fertilizer gradient in a corn-based cropping system. Our results demonstrate that changes in soil organic matter chemistry resulting from atmospheric N deposition or fertilization are directly linked to variation in enzyme responses to increased N availability across ecosystems and soil size fractions.

  3. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.

    PubMed

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-05-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.

  4. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

    PubMed Central

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-01-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance. PMID:26140206

  5. Landscape controls on dissolved organic carbon export from watersheds of the British Columbia outer-coast

    NASA Astrophysics Data System (ADS)

    Giesbrecht, I.; Tank, S. E.; Frazer, G. W.; Gonzalez Arriola, S.; Korver, M.; Floyd, B. C.; Oliver, A. A.; Lertzman, K. P.

    2016-12-01

    Global models suggest that the Pacific Coastal Temperate Rainforest of North America (PCTR) exports significant quantities of dissolved organic carbon (DOC) to the coastal ocean. This aquatic flux from land to sea has implications for marine ecosystems and regional carbon budgets. However, DOC concentrations and flux estimates vary substantially across watersheds and drivers of spatial variation are poorly described for this region. For an outer-coast area of the PCTR, with among the highest per unit area DOC yields in the world (Oliver et al. in prep.), we describe and model landscape controls on DOC exports to the coastal ocean. In 2015 we collected three rounds of synoptic samples on Calvert Island, observing a nine-fold variation in DOC concentration (3.8 - 34.3 mg/L) across 59 watersheds that range in size from 0.26 to 21.12 km2 and reach a maximum elevation of 1012 m. We use standard ecosystem maps (Province of BC), LiDAR and other remote sensing data to measure watershed attributes. We use freshwater cation concentrations to explore geochemical signals of bedrock and surficial deposits that may be poorly represented by available geospatial data. We examine the role of topography, climate, waterbodies, geology and the local ecosystem mosaic in controlling DOC concentration and flux. An improved model of spatial controls on freshwater DOC export from the outer-coast of the PCTR will inform regional carbon modeling efforts and enhance our understanding of ecosystem processes at the coastal margin.

  6. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2016-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers high impact, policy relevant ecosystem services at a Continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) with willow, poplar, eucalyptus and other broadleaf species and Short Rotation Forestry (SRF), is currently being modelled using ECOSSE, DayCent, SalixFor and MiscanFor, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on above named ecosystem services, impact on food security, land management practices and impacts from climate change. We will present results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and with different climate warming scenarios. Further, we will show modelled yield maps for Miscanthus, Salix and Poplar in Europe and will present constraint/opportunity maps for Europe based on yield modelled and other factors e.g. total economic value, technical potential, current land use, trade off and synergies, and so on. All this will be complemented by the presentation of a matrix including the factors and ecosystem services influenced by land use change to bioenergy crop production under different climate change scenarios.

  7. Normalization and microbial differential abundance strategies depend upon data characteristics.

    PubMed

    Weiss, Sophie; Xu, Zhenjiang Zech; Peddada, Shyamal; Amir, Amnon; Bittinger, Kyle; Gonzalez, Antonio; Lozupone, Catherine; Zaneveld, Jesse R; Vázquez-Baeza, Yoshiki; Birmingham, Amanda; Hyde, Embriette R; Knight, Rob

    2017-03-03

    Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses. Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate. These findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study.

  8. A model of growth and carbon storage in Eriophorum Vaginatum L.

    NASA Astrophysics Data System (ADS)

    Curasi, S. R.; Rocha, A. V.; Bolster, D.; Fetcher, N.; Parker, T.

    2016-12-01

    Eriophorum Vaginatum L. is a rhizomatous, tussock forming, perennial sedge commonly found in Arctic tundra environments. Tussocks are well suited to harsh nutrient poor environments and tussock tundra is common in Alaska, Canada and Northeastern Russia accounting for 24% of Arctic land area. Tussocks play important roles in Arctic ecosystem biogeochemistry and C storage. However, the environmental and biological factors controlling their size, distribution across the landscape and growth are poorly understood as a result of their growth form and slow growth rate ( 150 years). In order to better understand the role of tussocks in tussock tundra ecosystem C stocks and the potential impacts of climate change on tussock tundra we amassed data from a core site at Toolik field station in North Slope Alaska as well as other Arctic locations. Using this information we constructed a model of carbon storage and growth in E. Vaginatum. We conclude that environmental conditions and the physical properties of the tussock growth form control the rate of tussock growth and retention of C. This work highlights the role of plant growth forms in the retention of tundra ecosystem C stocks. It also has broader applicability to those interested in predicating the impacts of climate change and shifts in vegetation species composition on C storage and fuel loading as well as broader vegetation modeling efforts in tundra ecosystems.

  9. A comparison of tools for modeling freshwater ecosystem services.

    PubMed

    Vigerstol, Kari L; Aukema, Juliann E

    2011-10-01

    Interest in ecosystem services has grown tremendously among a wide range of sectors, including government agencies, NGO's and the business community. Ecosystem services entailing freshwater (e.g. flood control, the provision of hydropower, and water supply), as well as carbon storage and sequestration, have received the greatest attention in both scientific and on-the-ground applications. Given the newness of the field and the variety of tools for predicting water-based services, it is difficult to know which tools to use for different questions. There are two types of freshwater-related tools--traditional hydrologic tools and newer ecosystem services tools. Here we review two of the most prominent tools of each type and their possible applications. In particular, we compare the data requirements, ease of use, questions addressed, and interpretability of results among the models. We discuss the strengths, challenges and most appropriate applications of the different models. Traditional hydrological tools provide more detail whereas ecosystem services tools tend to be more accessible to non-experts and can provide a good general picture of these ecosystem services. We also suggest gaps in the modeling toolbox that would provide the greatest advances by improving existing tools. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. EwE-F 1.0: an implementation of Ecopath with Ecosim in Fortran 95/2003 for coupling and integration with other models

    NASA Astrophysics Data System (ADS)

    Akoglu, E.; Libralato, S.; Salihoglu, B.; Oguz, T.; Solidoro, C.

    2015-08-01

    Societal and scientific challenges foster the implementation of the ecosystem approach to marine ecosystem analysis and management, which is a comprehensive means of integrating the direct and indirect effects of multiple stressors on the different components of ecosystems, from physical to chemical and biological and from viruses to fishes and marine mammals. Ecopath with Ecosim (EwE) is a widely used software package, which offers capability for a dynamic description of the multiple interactions occurring within a food web, and, potentially, a crucial component of an integrated platform supporting the ecosystem approach. However, being written for the Microsoft .NET framework, seamless integration of this code with Fortran-based physical and/or biogeochemical oceanographic models is technically not straightforward. In this work we release a re-coding of EwE in Fortran (EwE-F). We believe that the availability of a Fortran version of EwE is an important step towards setting up coupled/integrated modelling schemes utilising this widely adopted software because it (i) increases portability of the EwE models and (ii) provides additional flexibility towards integrating EwE with Fortran-based modelling schemes. Furthermore, EwE-F might help modellers using the Fortran programming language to get close to the EwE approach. In the present work, first fundamentals of EwE-F are introduced, followed by validation of EwE-F against standard EwE utilising sample models. Afterwards, an end-to-end (E2E) ecological representation of the Gulf of Trieste (northern Adriatic Sea) ecosystem is presented as an example of online two-way coupling between an EwE-F food web model and a biogeochemical model. Finally, the possibilities that having EwE-F opens up are discussed.

  11. Getting quantitative about consequences of cross-ecosystem resource subsidies on recipient consumers

    USGS Publications Warehouse

    Richardson, John S.; Wipfli, Mark S.

    2016-01-01

    Most studies of cross-ecosystem resource subsidies have demonstrated positive effects on recipient consumer populations, often with very large effect sizes. However, it is important to move beyond these initial addition–exclusion experiments to consider the quantitative consequences for populations across gradients in the rates and quality of resource inputs. In our introduction to this special issue, we describe at least four potential models that describe functional relationships between subsidy input rates and consumer responses, most of them asymptotic. Here we aim to advance our quantitative understanding of how subsidy inputs influence recipient consumers and their communities. In the papers following, fish were either the recipient consumers or the subsidy as carcasses of anadromous species. Advancing general, predictive models will enable us to further consider what other factors are potentially co-limiting (e.g., nutrients, other population interactions, physical habitat, etc.) and better integrate resource subsidies into consumer–resource, biophysical dynamics models.

  12. Process-Driven Ecological Modeling for Landscape Change Analysis

    NASA Astrophysics Data System (ADS)

    Altman, S.; Reif, M. K.; Swannack, T. M.

    2013-12-01

    Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.

  13. Modeling nonstructural carbohydrate reserve dynamics in forest trees

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Keenan, Trevor; Carbone, Mariah; Pederson, Neil

    2013-04-01

    Understanding the factors influencing the availability of nonstructural carbohydrate (NSC) reserves is essential for predicting the resilience of forests to climate change and environmental stress. However, carbon allocation processes remain poorly understood and many models either ignore NSC reserves, or use simple and untested representations of NSC allocation and pool dynamics. Using model-data fusion techniques, we combined a parsimonious model of forest ecosystem carbon cycling with novel field sampling and laboratory analyses of NSCs. Simulations were conducted for an evergreen conifer forest and a deciduous broadleaf forest in New England. We used radiocarbon methods based on the 14C "bomb spike" to estimate the age of NSC reserves, and used this to constrain the mean residence time of modeled NSCs. We used additional data, including tower-measured fluxes of CO2, soil and biomass carbon stocks, woody biomass increment, and leaf area index and litterfall, to further constrain the model's parameters and initial conditions. Incorporation of fast- and slow-cycling NSC pools improved the ability of the model to reproduce the measured interannual variability in woody biomass increment. We show how model performance varies according to model structure and total pool size, and we use novel diagnostic criteria, based on autocorrelation statistics of annual biomass growth, to evaluate the model's ability to correctly represent lags and memory effects.

  14. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    PubMed

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  16. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  17. Sediment Ecosystem Assessment Protocol (SEAP): An Accurate and Integrated Weight-of-Evidence Based System

    DTIC Science & Technology

    2011-01-01

    polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions ...involved 96 h exposures in aqueous solutions , followed by a 1-2 hour (depending on size) feeding period on Artemia (brine shrimp) nauplii in clean seawater...EC50) based on post- exposure feeding of the polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions . Metric (µg/L) Worm age

  18. Could Tyrannosaurus rex have been a scavenger rather than a predator? An energetics approach.

    PubMed

    Ruxton, Graeme D; Houston, David C

    2003-04-07

    Arguments on whether Tyrannosaurus rex was likely to have been an active predator or a scavenger have been based on evidence from jaw morphology and/or dentition. Here, we adopt an entirely novel approach, using energetic arguments to estimate the minimum productivity that would be required for an ecosystem to support a scavenger of the size of T. rex. We argue that an ecosystem as productive as the current Serengeti would provide sufficient carrion for such a scavenger. Hence, T. rex need not have been an active predator and could have found sufficient food purely by scavenging.

  19. A decision framework for identifying models to estimate forest ecosystem services gains from restoration

    USGS Publications Warehouse

    Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael

    2016-01-01

    Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.

  20. A comparative assessment of tools for ecosystem services quantification and valuation

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Semmens, Darius; Waage, Sissel; Winthrop, Robert

    2013-01-01

    To enter widespread use, ecosystem service assessments need to be quantifiable, replicable, credible, flexible, and affordable. With recent growth in the field of ecosystem services, a variety of decision-support tools has emerged to support more systematic ecosystem services assessment. Despite the growing complexity of the tool landscape, thorough reviews of tools for identifying, assessing, modeling and in some cases monetarily valuing ecosystem services have generally been lacking. In this study, we describe 17 ecosystem services tools and rate their performance against eight evaluative criteria that gauge their readiness for widespread application in public- and private-sector decision making. We describe each of the tools′ intended uses, services modeled, analytical approaches, data requirements, and outputs, as well time requirements to run seven tools in a first comparative concurrent application of multiple tools to a common location – the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. Based on this work, we offer conclusions about these tools′ current ‘readiness’ for widespread application within both public- and private-sector decision making processes. Finally, we describe potential pathways forward to reduce the resource requirements for running ecosystem services models, which are essential to facilitate their more widespread use in environmental decision making.

  1. A new map of standardized terrestrial ecosystems of Africa

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Hak, Jon; Josse, Carmen; Bow, Jacquie; Warner, Harumi; Larwanou, Mahamane; Kelbessa, Ensermu; Bekele, Tamrat; Kehl, Harald; Amena, Ruba; Andriamasimanana, Rado; Ba, Taibou; Benson, Laurence; Boucher, Timothy; Brown, Matthew; Cress, Jill J.; Dassering, Oueddo; Friesen, Beverly A.; Gachathi, Francis; Houcine, Sebei; Keita, Mahamadou; Khamala, Erick; Marangu, Dan; Mokua, Fredrick; Morou, Boube; Mucina, Ladislav; Mugisha, Samuel; Mwavu, Edward; Rutherford, Michael; Sanou, Patrice; Syampungani, Stephen; Tomor, Bojoi; Vall, Abdallahi Ould Mohamed; Vande Weghe, Jean Pierre; Wangui, Eunice; Waruingi, Lucy

    2013-01-01

    Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new continental datasets for several key physical environment datalayers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar datalayers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. The vegetation types and ecosystems were then mapped across the continent using a classification and regression tree (CART) inductive model, which predicted the potential distribution of vegetation types from a suite of biophysical environmental attributes including bioclimate region, biogeographic region, surficial lithology, landform, elevation and land cover. Multi-scale ecosystems were classified and mapped in an increasingly detailed hierarchical framework using vegetation-based concepts of class, subclass, formation, division, and macrogroup levels. The finest vegetation units (macrogroups) classified and mapped in this effort are defined using diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes (FGDC, 2008). The macrogroups are regarded as meso-scale (100s to 10,000s of hectares) ecosystems. A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In addition to creating several rich, new continent-wide biophysical datalayers describing African vegetation and ecosystems, our intention was to explore feasible approaches to rapidly moving this type of standardized, continent-wide, ecosystem classification and mapping effort forward.

  2. Simulating the effects of fire disturbance and vegetation recovery on boreal ecosystem carbon fluxes

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Jones, L. A.; Zhao, M.

    2011-12-01

    Fire related disturbance and subsequent vegetation recovery has a major influence on carbon storage and land-atmosphere CO2 fluxes in boreal ecosystems. We applied a synthetic approach combining tower eddy covariance flux measurements, satellite remote sensing and model reanalysis surface meteorology within a terrestrial carbon model framework to estimate fire disturbance and recovery effects on boreal ecosystem carbon fluxes including gross primary production (GPP), ecosystem respiration and net CO2 exchange (NEE). A disturbance index based on MODIS land surface temperature and NDVI was found to coincide with vegetation recovery status inferred from tower chronosequence sites. An empirical algorithm was developed to track ecosystem recovery status based on the disturbance index and used to nudge modeled net primary production (NPP) and surface soil organic carbon stocks from baseline steady-state conditions. The simulations were conducted using a satellite based terrestrial carbon flux model driven by MODIS NDVI and MERRA reanalysis daily surface meteorology inputs. The MODIS (MCD45) burned area product was then applied for mapping recent (post 2000) regional disturbance history, and used with the disturbance index to define vegetation disturbance and recovery status. The model was then applied to estimate regional patterns and temporal changes in terrestrial carbon fluxes across the entire northern boreal forest and tundra domain. A sensitivity analysis was conducted to assess the relative importance of fire disturbance and recovery on regional carbon fluxes relative to assumed steady-state conditions. The explicit representation of disturbance and recovery effects produces more accurate NEE predictions than the baseline steady-state simulations and reduces uncertainty regarding the purported missing carbon sink in the high latitudes.

  3. Repackaging precipitation into fewer, larger storms reduces ecosystem exchanges of CO2 and H2O in a semiarid steppe

    USDA-ARS?s Scientific Manuscript database

    Global circulation models predict that precipitation patterns will become more extreme, i.e. seasonal rainfall events tend to be larger in size, but fewer in number. Studies in North American grasslands have shown that above-ground net primary productivity (ANPP) was enhanced by such repackaging of ...

  4. Temperature-dependence of biomass accumulation rates during secondary succession.

    PubMed

    Anderson, Kristina J; Allen, Andrew P; Gillooly, James F; Brown, James H

    2006-06-01

    Rates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm-dominated communities than in gymnosperm-dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature-dependence of photosynthesis to the rate of whole-ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem-level rate processes can be predicted based on the kinetics of individual metabolic rate.

  5. Detecting ecosystem performance anomalies for land management in the upper colorado river basin using satellite observations, climate data, and ecosystem models

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, B.K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.

  6. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.

  7. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel ( Mytilus galloprovincialis) farm

    NASA Astrophysics Data System (ADS)

    Brigolin, Daniele; Maschio, Gabriele Dal; Rampazzo, Federico; Giani, Michele; Pastres, Roberto

    2009-04-01

    The fluxes of carbon, nitrogen and phosphorus through an off-shore long-line Mytilus galloprovincialis farm during a typical rearing cycle were estimated by combining a simple population dynamic model, based on a new individual model, and a set of field data, concerning the composition of the seston, as well as that of mussel meat and faeces. The individual model, based on an energy budget, was validated against a set of original field data, which were purposely collected from July 2006 to May 2007 in the North-Western Adriatic Sea (Italy) and was further tested using historical data. The model was upscaled to the population level by means of a set of Monte Carlo simulations, which were used for estimating the size structure of the population. The daily fluxes of C, N and P associated with mussel filtration, excretion and faeces and pseudo-faeces production were integrated over the 10-month-long rearing cycle and compared with the total amount of C, N and P removed by harvesting. The results indicate that the individual model compares well with an existing literature model and provides reliable estimations of the growth of mussel specimen over a range of trophic conditions which are typical of the Northern Adriatic Sea coastal area. The results of the budget calculation indicate that, even though the harvest represents a net removal of phosphorus and nitrogen from the ecosystem, the mussel farm increases the retention time of both nutrients in the coastal area, via the deposition of faeces and pseudo-faeces on the sea-bed. In fact, the amount of nitrogen associated with deposition is approximately twice the harvested one and the amount of phosphorus is approximately five times higher. These findings are in qualitative agreement with the results of literature budget and model calculations carried out in a temperate coastal embayment. This agreement suggests that the proper assessment of the overall effect of long-line mussel farming on both the benthic and pelagic ecosystem asks for an integrated modelling approach, which should include the dynamic of early diagenesis processes, as well as of that of nutrients released from the surface sediment.

  8. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    PubMed

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  9. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems

    PubMed Central

    Bode, Michael; Atkinson, Scott; Klein, Carissa J.; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P.

    2017-01-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions—protection on land, protection in the ocean, restoration on land, or restoration in the ocean—to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social–ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land–ocean systems can proceed without complex modelling. PMID:28877168

  10. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, S. H.; Jansson, P.-E.

    2013-02-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  11. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  12. Treating powerless minorities through an ecosystem approach.

    PubMed

    Chung, W S; Pardeck, J T

    1997-01-01

    An ecological approach to social work practice for a minority based on an ecosystem-oriented assessment-intervention model is presented. Strengths and limitations of the ecological perspective for practice are emphasized (in the context of power dynamics). A case study is presented.

  13. Ecosystem stewardship: good idea, but how?

    USDA-ARS?s Scientific Manuscript database

    Ecosystem stewardship and resilience-based management are admirable concepts that remain largely conceptual. Beyond a suite of general ideas, including linkages among ecological models, monitoring, stakeholder engagement, and social learning, there is not a replicable method to use the ideas in the ...

  14. Temporal distribution and weather correlates of Norway rat (Rattus norvegicus) infestations in the city of Madrid, Spain.

    PubMed

    Tamayo Uria, Ibon; Mateu Mahiques, Jorge; Mughini Gras, Lapo

    2013-06-01

    Urban Norway rats are challenging pests, posing significant health and economic threats. Implementing ecologically based integrated rodent management (EBIRM) programmes relies primarily on the understanding of ecological relationships between rodents and their environments, with emphasis on the processes influencing rodent populations in the target ecosystem. We investigated the temporal distribution of urban Norway rat infestations in Madrid, Spain, and tested for the association of such infestations with temperature, relative humidity and precipitation by fitting a multivariate Poisson generalized linear model to a 3-year (2006-2008) daily time series of 4,689 Norway rat sightings. Norway rat infestations showed a marked seasonality, peaking in the summer. Most Norway rat sightings were reported on Mondays. Minimum temperature and relative humidity were positively associated with Norway rat infestation, whereas the association with precipitation was negative. The time series was adequately explained by the model. We identified previously unrecognized time periods that are more prone to Norway rat infestation than others and generated hypotheses about the association between weather, human outdoor activity, resource availability, rodent activity and population size. This provided local authorities engaged in preserving urban ecosystem health with basic research information to predict future rodent outbreaks and support the implementation of EBIRM programmes in urban areas.

  15. Testing effects of consumer richness, evenness and body size on ecosystem functioning.

    PubMed

    Reiss, Julia; Bailey, R A; Perkins, Daniel M; Pluchinotta, Angela; Woodward, Guy

    2011-11-01

    1. Numerous studies have revealed (usually positive) relationships between biodiversity and ecosystem functioning (B-EF), but the underpinning drivers are rarely addressed explicitly, hindering the development of a more predictive understanding. 2. We developed a suite of statistical models (where we combined existing models with novel ones) to test for richness and evenness effects on detrital processing in freshwater microcosms. Instead of using consumer species as biodiversity units, we used two size classes within three species (six types). This allowed us to test for diversity effects and also to focus on the role of body size and biomass. 3. Our statistical models tested for (i) whether performance in polyculture was more than the sum of its parts (non-additive effects), (ii) the effects of specific type combinations (assemblage identity effects) and (iii) whether types behaved differently when their absolute or relative abundances were altered (e.g. because type abundance in polyculture was lower compared with monoculture). The latter point meant we did not need additional density treatments. 4. Process rates were independent of richness and evenness and all types performed in an additive fashion. The performance of a type was mainly driven by the consumers' metabolic requirements (connected to body size). On an assemblage level, biomass explained a large proportion of detrital processing rates. 5. We conclude that B-EF studies would benefit from widening their statistical approaches. Further, they need to consider biomass of species assemblages and whether biomass is comprised of small or large individuals, because even if all species are present in the same biomass, small species (or individuals) will perform better. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  16. Developing and testing a global-scale regression model to quantify mean annual streamflow

    NASA Astrophysics Data System (ADS)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  17. An Ecohydrological Approach to the Resiliency and Stability of Ecosystems

    NASA Astrophysics Data System (ADS)

    Peña Alzate, S.; Canon Barriga, J. E.

    2013-12-01

    We introduce a simplified ecohydrological model to quantitatively assess the resiliency and stability of ecosystems. The proposed model couples a hydrological soil moisture balance with a set of spatiotemporal dynamics of systems and agent-based algorithms to represent the interactions among several plant populations in a gridded area under different water, soil and temperature constraints. The model also allows disturbances, representing mostly the effects of deforestation practices. The simulated ecosystem, composed by a set of plant populations, includes allometric rules (i.e., power laws for generational and reproductive times, linear approximations for water and temperature gains, losses and optimal values and a set of intra and interspecific interaction rules based on high, optimal and low competition responses among the populations). Disturbances are determined by a clearance of populations in a defined area within the model's domain. The effects of climate variability can be also incorporated through precipitation and temperature time series that exhibit trends and heteroskedasticity. Resiliency and stability are calculated with modified indices that are used in hydrology, in this case to determine the ability of the ecosystem to recover from a disturbance. The model represents different types of plant phenotypes showing exponential growth in the first steps of the simulations. The indices, evaluated on each population and over the structure of the entire ecosystem, show how different populations respond differently to disturbances, following behaviors similar to those expected in nature, like high reproduction rates on gregarious plants with short generation times, and low densities in plants with high generations times. The selection of plant populations was mainly focused on the concept of biodiversity with emphasis on tropical regions. The model can represent the spatial and temporal succession of the ecosystem after being disturbed. The model also shows the differences between a disturbed and undisturbed ecosystem in a temporal scale, and how the differences in the phenotypical characteristics of plant populations can be advantageous or disadvantageous when they are disturbed. This ecohydrological model is intended to be used as an aid for making decisions about restoration and conservation practices, and also to help understanding resilience and stability of ecosystems, especially in tropical forests under climate change scenarios. Acknowledgements: authors thank the financial support of COLCIENCIAS (program Jovenes Investigadores e innovadores 2012), GAIA group and Universidad de Antioquia through its Sustainability Program 2011-2012.

  18. Particle Number Concentrations for HI-SCALE Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hering, Susanne V

    In support of the Holistic Interactions of Shallow Clouds, Aerosols, and Ecosystems (HI-SCALE) project to study new particle formation in the atmosphere, a pair of custom water condensation particle counters were provided to the second intensive field campaign, from mid-August through mid-September 2017, at the U.S. Department of Energy Southern Great Plains Atmospheric Radiation Measurement (ARM) Climate Research Facility observatory. These custom instruments were developed by Aerosol Dynamics, Inc. (Hering et al. 2017) to detect particles into the nanometer size range. Referred to as “versatile water condensation particle counter (vWCPC)”, they are water-based, laminar-flow condensational growth instruments whose lower particlemore » size threshold can be set based on user-selected operating temperatures. For HI-SCALE, the vWCPCs were configured to measure airborne particle number concentrations in the size range from approximately 2nm to 2μm. Both were installed in the particle sizing system operated by Chongai Kuang of Brookhaven National Laboratory (BNL). One of these was operated in parallel to a TSI Model 3776, upstream of the mobility particle sizing system, to measure total ambient particle concentrations. The airborne particle concentration data from this “total particle number vWCPC” (Ntot-vWCPC) system has been reported to the ARM database. The data are reported with one-second resolution. The second vWCPC was operated in parallel with the BNL diethylene glycol instrument to count particles downstream of a separate differential mobility size analyzer. Data from this “DMA-vWCPC” system was logged by BNL, and will eventually be provided by that laboratory.« less

  19. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    NASA Astrophysics Data System (ADS)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.

  20. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    USGS Publications Warehouse

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

Top