Sample records for sizes temporal stability

  1. Temporal and spatial stability of red-tailed hawk territories in the Luquillo Experimental Forest, Puerto Rico

    USGS Publications Warehouse

    Boal, C.W.; Snyder, H.A.; Bibles, Brent D.; Estabrook, T.S.

    2003-01-01

    We mapped Red-tailed Hawk (Buteo jamaicensis) territories in the Luquillo Experimental Forest (LEF) of Puerto Rico in 1998. We combined our 1998 data with that collected during previous studies of Red-tailed Hawks in the LEF to examine population numbers and spatial stability of territorial boundaries over a 26-yr period. We also investigated potential relationships between Red-tailed Hawk territory sizes and topographic and climatic factors. Mean size of 16 defended territories during 1998 was 124.3 ?? 12.0 ha, which was not significantly different from our calculations of mean territory sizes derived from data collected in 1974 and 1984. Aspect and slope influenced territory size with the smallest territories having high slope and easterly aspects. Territory size was small compared to that reported for other parts of the species' range. In addition, there was remarkably little temporal change in the spatial distribution, area, and boundaries of Red-tailed Hawk territories among the study periods. Further, there was substantial boundary overlap (21-27%) between defended territories among the different study periods. The temporal stability of the spatial distribution of Red-tailed Hawk territories in the study area leads us to believe the area might be at or near saturation.

  2. Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707

  3. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  4. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    USDA-ARS?s Scientific Manuscript database

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  5. Temporal Stability of Multiple Response Systems to 7.5% Carbon Dioxide Challenge

    PubMed Central

    Roberson-Nay, Roxann; Gorlin, Eugenia I.; Beadel, Jessica R.; Cash, Therese; Vrana, Scott; Teachman, Bethany A.

    2017-01-01

    Self-reported anxiety, and potentially physiological response, to maintained inhalation of carbon dioxide (CO2) enriched air shows promise as a putative marker of panic reactivity and vulnerability. Temporal stability of response systems during low-dose, steady-state CO2 breathing challenge is lacking. Outcomes on multiple levels were measured two times, one week apart, in 93 individuals. Stability was highest during the CO2 breathing phase compared to pre-CO2 and recovery phases, with anxiety ratings, respiratory rate, skin conductance level, and heart rate demonstrating good to excellent temporal stability (ICCs ≥ 0.71). Cognitive symptoms tied to panic were somewhat less stable (ICC = 0.58) than physical symptoms (ICC = 0.74) during CO2 breathing. Escape/avoidance behaviors and DSM-5 panic attacks were not stable. Large effect sizes between task phases also were observed. Overall, results suggest good-excellent levels of temporal stability for multiple outcomes during respiratory stimulation via 7.5% CO2. PMID:28163046

  6. Beyond Group-Threat: Temporal Dynamics of International Migration and Linkages to Anti-Foreigner Sentiment.

    PubMed

    DeWaard, Jack

    2015-07-01

    Prior research on the association between country-level patterns of international migration and anti-foreigner sentiment shows that larger foreign-born concentrations increase perceptions of threat among native-born individuals in receiving countries, which, in turn, give rise to exclusionary preferences. While recent work has assembled a list of limiting conditions that shape the strength of this association, I argue that these efforts are premature because they are based on a narrow way of conceptualising and measuring international migration. In contrast to concepts and measures privileging the size of the foreign-born population in receiving countries, I draw from other literatures highlighting the temporal dynamics of migration. In considering the role of the temporal dynamics of international migration in explaining variation in anti-foreigner sentiment, the question is whether and how the temporal stability of the foreign-born population in receiving countries matters. My results suggest that it does. The size and temporal stability of the foreign-born population play opposing roles in aggravating and ameliorating anti-foreigner sentiment, respectively, with each operating via different pathways at the individual level. My work thus breaks new ground by challenging existing theoretical constructs and operationalisations in the group-threat literature.

  7. Beyond Group-Threat: Temporal Dynamics of International Migration and Linkages to Anti-Foreigner Sentiment

    PubMed Central

    DeWaard, Jack

    2014-01-01

    Prior research on the association between country-level patterns of international migration and anti-foreigner sentiment shows that larger foreign-born concentrations increase perceptions of threat among native-born individuals in receiving countries, which, in turn, give rise to exclusionary preferences. While recent work has assembled a list of limiting conditions that shape the strength of this association, I argue that these efforts are premature because they are based on a narrow way of conceptualising and measuring international migration. In contrast to concepts and measures privileging the size of the foreign-born population in receiving countries, I draw from other literatures highlighting the temporal dynamics of migration. In considering the role of the temporal dynamics of international migration in explaining variation in anti-foreigner sentiment, the question is whether and how the temporal stability of the foreign-born population in receiving countries matters. My results suggest that it does. The size and temporal stability of the foreign-born population play opposing roles in aggravating and ameliorating anti-foreigner sentiment, respectively, with each operating via different pathways at the individual level. My work thus breaks new ground by challenging existing theoretical constructs and operationalisations in the group-threat literature. PMID:26146481

  8. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  9. Asynchrony among local communities stabilises ecosystem function of metacommunities.

    PubMed

    Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai

    2017-12-01

    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  10. Phenotypic selection in natural populations: what limits directional selection?

    PubMed

    Kingsolver, Joel G; Diamond, Sarah E

    2011-03-01

    Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.

  11. Temporal stability of novelty exploration in mice exposed to different open field tests.

    PubMed

    Kalueff, Allan V; Keisala, Tiina; Minasyan, Anna; Kuuslahti, Marianne; Tuohimaa, Pentti

    2006-03-01

    We investigated behavioural activity and temporal distribution (patterning) of mouse exploration in different open field (OF) arenas. Mice of 129S1 (S1) strain were subjected in parallel to three different OF arenas (Experiment 1), two different OF arenas in two trials (Experiment 2) or two trials of the same OF test (Experiment 3). Overall, mice demonstrated a high degree of similarity in the temporal profile of novelty-induced horizontal and vertical exploration (regardless of the size, colour and shape of the OF), which remained stable in subsequent OF exposures. In Experiments 4 and 5, we tested F1 hybrid mice (BALB/c-S1; NMRI-S1), and Vitamin D receptor knockout mice (generated on S1 genetic background), again showing strikingly similar temporal patterns of their OF exploration, despite marked behavioural strain differences in anxiety and activity. These results suggest that mice are characterised by stability of temporal organization of their exploration in different OF novelty situations.

  12. Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)

    NASA Astrophysics Data System (ADS)

    Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.

    2013-12-01

    Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.

  13. Life-history strategies associated with local population variability confer regional stability.

    PubMed

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  14. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Composition and temporal stability of turf sediments on inner-shelf coral reefs.

    PubMed

    Gordon, Sophie E; Goatley, Christopher H R; Bellwood, David R

    2016-10-15

    Elevated sediment loads within the epilithic algal matrix (EAM) of coral reefs can increase coral mortality and inhibit herbivory. Yet the composition, distribution and temporal variability of EAM sediment loads are poorly known, especially on inshore reefs. This study quantified EAM sediment loads (including organic particulates) and algal length across the reef profile of two bays at Orpheus Island (inner-shelf Great Barrier Reef) over a six month period. We examined the total sediment mass, organic load, carbonate and silicate content, and the particle sizes of EAM sediments. Throughout the study period, all EAM sediment variables exhibited marked variation among reef zones. However, EAM sediment loads and algal length were consistent between bays and over time, despite major seasonal variation in climate including a severe tropical cyclone. This study provides a comprehensive description of EAM sediments on inshore reefs and highlights the exceptional temporal stability of EAM sediments on coral reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae).

    PubMed

    Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice

    2018-06-15

    The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.

  17. Spatial and temporal structure of a mesocarnivore guild in midwestern north America

    Treesearch

    Damon B. Lesmeister; Clayton K. Nielsen; Eric M. Schauber; Eric C. Hellgren

    2015-01-01

    Carnivore guilds play a vital role in ecological communities by cascading trophic effects, energy and nutrient transfer, and stabilizing or destabilizing food webs. Consequently, the structure of carnivore guilds can be critical to ecosystem patterns. Body size is a crucial influence on intraguild interactions, because it affects access to prey resources, effectiveness...

  18. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest

    PubMed Central

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  19. Temporal Stability and Authenticity of Self-Representations in Adulthood

    PubMed Central

    Diehl, Manfred; Jacobs, Laurie M.; Hastings, Catherine T.

    2008-01-01

    The temporal stability of role-specific self-representations was examined in a sample of 188 young, middle-aged, and older adults. Considerable stability was observed for all self-representations. Central self-descriptors showed significantly greater temporal stability than peripheral self-descriptors. Temporal stability of self-representations was positively associated with self-concept clarity, self-esteem, and positive affect (PA). Age differences were obtained for three of the five self-representations, with older adults showing significantly lower stabilities for self with family, self with friend, and self with significant other compared to young and middle-aged adults. Assessment of the authenticity of adults’ role-specific self-representations showed that greater authenticity tended to be associated with greater temporal stability. Authenticity and the number of positive daily events were significant positive predictors of the stability of self-representations. PMID:18820732

  20. An in situ USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy.

    PubMed

    Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-06-01

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.

  1. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less

  2. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy1

    PubMed Central

    Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-01-01

    Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039

  3. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy

    DOE PAGES

    Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan; ...

    2017-05-30

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less

  4. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

    NASA Astrophysics Data System (ADS)

    Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.

    2018-01-01

    Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

  5. Characteristics of a dynamic holographic sensor for shape control of a large reflector

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Cox, David E.

    1991-01-01

    Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.

  6. Stabilization of beta-catenin impacts pancreas growth.

    PubMed

    Heiser, Patrick W; Lau, Janet; Taketo, Makoto M; Herrera, Pedro L; Hebrok, Matthias

    2006-05-01

    A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.

  7. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity

    USDA-ARS?s Scientific Manuscript database

    Aboveground net primary productivity (ANPP) varies in response to temporal fluctuations in weather. Temporal stability (mean/standard deviation) of community ANPP may be increased, on average, by increasing plant species richness, but stability also may differ widely at a given richness level imply...

  8. Conservation Genetics of Threatened Hippocampus guttulatus in Vulnerable Habitats in NW Spain: Temporal and Spatial Stability of Wild Populations with Flexible Polygamous Mating System in Captivity

    PubMed Central

    López, Almudena; Vera, Manuel; Planas, Miquel; Bouza, Carmen

    2015-01-01

    This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes. PMID:25646777

  9. Full-frame video stabilization with motion inpainting.

    PubMed

    Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung

    2006-07-01

    Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.

  10. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Temporal stability of an endemic Mexican treefrog

    PubMed Central

    Cruz-Ruiz, Griselda; Venegas-Barrera, Crystian S.; Sanchez-Sanchez, Hermilo

    2015-01-01

    The demographic characteristics of an amphibian population fluctuate independently over time, mainly in response to the temporal variation of environmental factors, especially precipitation and temperature. These temporal fluctuations may contribute to the size of an amphibian population and could be used to determine the current conservation status of a species. During a five year (2004–2008) period, we studied the relative abundance, sex ratio, and age-sex structure of a population of metamorphosed individuals of the endemic treefrog Hyla eximia in Central Mexico. We also studied the species’ relationship with climatic variables such as temperature and precipitation. We found an interannual constant abundance during the study period. However, interannual differences were observed in the population structure by age-sex category (males, females, or juveniles), with decreased abundance of males and juveniles during the rainy months (August–November). The annual abundance of H. eximia was positively correlated with rainfall, but negatively with monthly temperature. We found the sex ratio was male-biased (2:1), except for year 2008. Also, differences in snout-vent length (SVL) were found between years, suggesting changes in recruitment of new individuals. We conclude that variations in abundance, and frequencies by age-sex category, of H. eximia are related to seasonal variations in temperature and precipitation characteristics of temperate zones. However, this temporal stability may suggest that anurans have an unusual capacity to persist even in the face of human-induced habitat change. PMID:26421242

  12. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    NASA Astrophysics Data System (ADS)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  13. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.

    PubMed

    Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M

    2016-06-01

    The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control. Copyright © 2016. Published by Elsevier B.V.

  14. Mediator of moderators: temporal stability of intention and the intention-behavior relation.

    PubMed

    Sheeran, Paschal; Abraham, Charles

    2003-02-01

    Intention certainty, past behavior, self-schema, anticipated regret, and attitudinal versus normative control all have been found to moderate intention-behavior relations. It is argued that moderation occurs because these variables produce "strong" intentions. Stability of intention over time is a key index of intention strength. Consequently, it was hypothesized that temporal stability of intention would mediate moderation by these other moderators. Participants (N = 185) completed questionnaire measures of theory of planned behavior constructs and moderator variables at two time points and subsequently reported their exercise behavior. Findings showed that all of the moderators, including temporal stability, were associated with significant improvements in consistency between intention and behavior. Temporal stability also mediated the effects of the other moderators, supporting the study hypothesis. Copyright 2003 Society for Personality and Social Psychology, Inc.

  15. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  16. The use of genetics for the management of a recovering population: temporal assessment of migratory peregrine falcons in North America

    USGS Publications Warehouse

    Johnson, Jeff A.; Talbot, Sandra L.; Sage, George K.; Burnham, Kurt K.; Brown, Joseph W.; Maechtle, Tom L.; Seegar, William S.; Yates, Michael A.; Anderson, Bud; Mindell, David P.

    2010-01-01

    Background:Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (FST and DEST), and effective population size (Ne). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these measures provide a metric by which we can gauge our progress and help make important management decisions. Methodology/Principal Findings:The peregrine falcon in North America (Falco peregrinus tundrius and anatum) was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci, including those from Brown et al. (2007), suggest no differentiation and warrant delineation of a subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985-2007), no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean Ne were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods. These results, including those from simulations to assess the power of each method to estimate Ne, suggest a stable population consistent with data from field-based monitoring indicating that this species is stable or continuing to increase in abundance. Therefore, historic and continuing efforts to prevent the extinction of the peregrine falcon in North America appear successful, further highlighting the importance of archiving samples for continual assessment of population recovery and long-term viability.

  17. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona.

    PubMed

    Piella, Jordi; Bastús, Neus G; Puntes, Víctor

    2017-01-18

    Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.

  18. A Cellular Automata Model for the Study of Landslides

    NASA Astrophysics Data System (ADS)

    Liucci, Luisa; Suteanu, Cristian; Melelli, Laura

    2016-04-01

    Power-law scaling has been observed in the frequency distribution of landslide sizes in many regions of the world, for landslides triggered by different factors, and in both multi-temporal and post-event datasets, thus indicating the universal character of this property of landslides and suggesting that the same mechanisms drive the dynamics of mass wasting processes. The reasons for the scaling behavior of landslide sizes are widely debated, since their understanding would improve our knowledge of the spatial and temporal evolution of this phenomenon. Self-Organized Critical (SOC) dynamics and the key role of topography have been suggested as possible explanations. The scaling exponent of the landslide size-frequency distribution defines the probability of landslide magnitudes and it thus represents an important parameter for hazard assessment. Therefore, another - still unanswered - important question concerns the factors on which its value depends. This paper investigates these issues using a Cellular Automata (CA) model. The CA uses a real topographic surface acquired from a Digital Elevation Model to represent the initial state of the system, where the states of cells are defined in terms of altitude. The stability criterion is based on the slope gradient. The system is driven to instability through a temporal decrease of the stability condition of cells, which may be thought of as representing the temporal weakening of soil caused by factors like rainfall. A transition rule defines the way in which instabilities lead to discharge from unstable cells to the neighboring cells, deciding upon the landslide direction and the quantity of mass involved. Both the direction and the transferred mass depend on the local topographic features. The scaling properties of the area-frequency distributions of the resulting landslide series are investigated for several rates of weakening and for different time windows, in order to explore the response of the system to model parameters, and its temporal behavior. Results show that the model reproduces the scaling behavior of real landslide areas; while the value of the scaling exponent is stable over time, it linearly decreases with increasing rate of weakening. This suggests that it is the intensity of the triggering mechanism rather than its duration that affects the probability of landslide magnitudes. A quantitative relationship between the scaling exponent of the area frequency distribution of the generated landslides, on one hand, and the changes regarding the topographic surface affected by landslides, on the other hand, is established. The fact that a similar behavior could be observed in real systems may have useful implications in the context of landslide hazard assessment. These results support the hypotheses that landslides are driven by SOC dynamics, and that topography plays a key role in the scaling properties of their size distribution.

  19. Elevated CO2 and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability.

    PubMed

    Dijkstra, Feike A; Carrillo, Yolima; Blumenthal, Dana M; Mueller, Kevin E; LeCain, Dan R; Morgan, Jack A; Zelikova, Tamara J; Williams, David G; Follett, Ronald F; Pendall, Elise

    2018-05-01

    Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO 2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change. © 2018 John Wiley & Sons Ltd/CNRS.

  20. Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity®.

    PubMed

    Shekhar, Himanshu; Smith, Nathaniel J; Raymond, Jason L; Holland, Christy K

    2018-02-01

    Physical characterization of an ultrasound contrast agent (UCA) aids in its safe and effective use in diagnostic and therapeutic applications. The goal of this study was to investigate the impact of temperature on the size distribution, shell properties, and stability of Definity ® , a U.S. Food and Drug Administration-approved UCA used for left ventricular opacification. A Coulter counter was modified to enable particle size measurements at physiologic temperatures. The broadband acoustic attenuation spectrum and size distribution of Definity ® were measured at room temperature (25 °C) and physiologic temperature (37 °C) and were used to estimate the viscoelastic shell properties of the agent at both temperatures. Attenuation and size distribution was measured over time to assess the effect of temperature on the temporal stability of Definity ® . The attenuation coefficient of Definity ® at 37 °C was as much as 5 dB higher than the attenuation coefficient measured at 25 °C. However, the size distributions of Definity ® at 25 °C and 37 °C were similar. The estimated shell stiffness and viscosity decreased from 1.76 ± 0.18 N/m and 0.21 × 10 -6  ± 0.07 × 10 -6 kg/s at 25 °C to 1.01 ± 0.07 N/m and 0.04 × 10 -6  ± 0.04 × 10 -6 kg/s at 37 °C, respectively. Size-dependent differences in dissolution rates were observed within the UCA population at both 25 °C and 37 °C. Additionally, cooling the diluted UCA suspension from 37 °C to 25 °C accelerated the dissolution rate. These results indicate that although temperature affects the shell properties of Definity ® and can influence the stability of Definity ® , the size distribution of this agent is not affected by a temperature increase from 25 °C to 37 °C. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  1. Performance assessment and beamline diagnostics based on evaluation of temporal information from infrared spectral datasets by means of R Environment for statistical analysis.

    PubMed

    Banas, Krzysztof; Banas, Agnieszka; Gajda, Mariusz; Kwiatek, Wojciech M; Pawlicki, Bohdan; Breese, Mark B H

    2014-07-15

    Assessment of the performance and up-to-date diagnostics of scientific equipment is one of the key components in contemporary laboratories. Most reliable checks are performed by real test experiments while varying the experimental conditions (typically, in the case of infrared spectroscopic measurements, the size of the beam aperture, the duration of the experiment, the spectral range, the scanner velocity, etc.). On the other hand, the stability of the instrument response in time is another key element of the great value. Source stability (or easy predictable temporal changes, similar to those observed in the case of synchrotron radiation-based sources working in non top-up mode), detector stability (especially in the case of liquid nitrogen- or liquid helium-cooled detectors) should be monitored. In these cases, recorded datasets (spectra) include additional variables such as time stamp when a particular spectrum was recorded (in the case of time trial experiments). A favorable approach in evaluating these data is building hyperspectral object that consist of all spectra and all additional parameters at which these spectra were recorded. Taking into account that these datasets could be considerably large in size, there is a need for the tools for semiautomatic data evaluation and information extraction. A comprehensive R archive network--the open-source R Environment--with its flexibility and growing potential, fits these requirements nicely. In this paper, examples of practical implementation of methods available in R for real-life Fourier transform infrared (FTIR) spectroscopic data problems are presented. However, this approach could easily be adopted to many various laboratory scenarios with other spectroscopic techniques.

  2. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  3. Optimal exploitation of spatially distributed trophic resources and population stability

    USGS Publications Warehouse

    Basset, A.; Fedele, M.; DeAngelis, D.L.

    2002-01-01

    The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness and long-term population stability. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGES

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  5. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  6. Optimal design of tweezer control for chimera states

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  7. The relation between circadian asynchrony, functional redundancy, and trophic performance in tropical ant communities.

    PubMed

    Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian

    2016-01-01

    The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem.

  8. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  9. Temporal Stability of the Ford Insomnia Response to Stress Test (FIRST).

    PubMed

    Jarrin, Denise C; Chen, Ivy Y; Ivers, Hans; Drake, Christopher L; Morin, Charles M

    2016-10-15

    The Ford Insomnia Response to Stress Test (FIRST) is a self-report tool that measures sleep reactivity (i.e., vulnerability to experience situational insomnia under stressful conditions). Sleep reactivity has been termed a "trait-like" vulnerability; however, evidence of its long-term stability is lacking. The main objective of the current psychometric study was to investigate the temporal stability of the FIRST over two 6-mo intervals in a population-based sample of adults with and without insomnia. The temporal stability of the FIRST was also compared with the temporal stability of other scales associated with insomnia (trait-anxiety, arousability). Participants included 1,122 adults (mean age = 49.9 y, standard deviation = 14.8; 38.8% male) presenting with an insomnia syndrome (n = 159), insomnia symptoms (n = 152), or good sleep (n = 811). Participants completed the FIRST, the State-Trait Anxiety Inventory (trait-anxiety), and the Arousal Predisposition Scale (arousability) on three different occasions: baseline and at 6- and 12-mo follow-up. Intraclass correlation coefficients (ICCs) were computed for all scales (baseline to 6 mo and 6 to 12 mo). The FIRST yielded strong temporal stability from baseline to 6 mo among those with insomnia syndrome (ICC = 0.81), symptoms (ICC = 0.78), and good sleep (ICC = 0.81). Similar results were observed for 6 to 12 mo among those with insomnia syndrome (ICC = 0.74), insomnia symptoms (ICC = 0.82), and good sleep (ICC = 0.84). The stability of the FIRST was not comparable with the stability of trait-anxiety, but was somewhat comparable with the stability of arousability. Overall, the FIRST is a temporally reliable stable scale over 6-mo intervals. Future research is needed to corroborate the stability and trait-like measures of sleep reactivity with physiological, behavioural and personality measures. © 2016 American Academy of Sleep Medicine

  10. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly

    PubMed Central

    Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka

    2015-01-01

    Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888

  11. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    NASA Astrophysics Data System (ADS)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  12. Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms

    PubMed Central

    Nikkilä, Janne; Immonen, Outi; Kekkonen, Riina; Lahti, Leo; Palva, Airi; de Vos, Willem M.

    2011-01-01

    Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut. PMID:21829582

  13. Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe.

    PubMed

    Ren, Haiyan; Taube, Friedhelm; Stein, Claudia; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin

    2018-01-01

    Many biodiversity experiments have demonstrated that plant diversity can stabilize productivity in experimental grasslands. However, less is known about how diversity-stability relationships are mediated by grazing. Grazing is known for causing species losses, but its effects on plant functional groups (PFGs) composition and species asynchrony, which are closely correlated with ecosystem stability, remain unclear. We conducted a six-year grazing experiment in a semi-arid steppe, using seven levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep per hectare) and two grazing systems (i.e., a traditional, continuous grazing system during the growing period (TGS), and a mixed one rotating grazing and mowing annually (MGS)), to examine the effects of grazing system and grazing intensity on the abundance and composition of PFGs and diversity-stability relationships. Ecosystem stability was similar between mixed and continuous grazing treatments. However, within the two grazing systems, stability was maintained through different pathways, that is, along with grazing intensity, persistence biomass variations in MGS, and compensatory interactions of PFGs in their biomass variations in TGS. Ecosystem temporal stability was not decreased by species loss but rather remain unchanged by the strong compensatory effects between PFGs, or a higher grazing-induced decrease in species asynchrony at higher diversity, and a higher grazing-induced increase in the temporal variation of productivity in diverse communities. Ecosystem stability of aboveground net primary production was not related to species richness in both grazing systems. High grazing intensity weakened the temporal stabilizing effects of diversity in this semi-arid grassland. Our results demonstrate that the productivity of dominant PFGs is more important than species richness for maximizing stability in this system. This study distinguishes grazing intensity and grazing system from diversity effects on the temporal stability, highlighting the need to better understand how grazing regulates ecosystem stability, plant diversity, and their synergic relationships.

  14. Temporal Variability and Stability in Infant-Directed Sung Speech: Evidence for Language-Specific Patterns

    ERIC Educational Resources Information Center

    Falk, Simone

    2011-01-01

    In this paper, sung speech is used as a methodological tool to explore temporal variability in the timing of word-internal consonants and vowels. It is hypothesized that temporal variability/stability becomes clearer under the varying rhythmical conditions induced by song. This is explored cross-linguistically in German--a language that exhibits a…

  15. Biodiversity and ecosystem stability in a decade-long grassland experiment.

    PubMed

    Tilman, David; Reich, Peter B; Knops, Johannes M H

    2006-06-01

    Human-driven ecosystem simplification has highlighted questions about how the number of species in an ecosystem influences its functioning. Although biodiversity is now known to affect ecosystem productivity, its effects on stability are debated. Here we present a long-term experimental field test of the diversity-stability hypothesis. During a decade of data collection in an experiment that directly controlled the number of perennial prairie species, growing-season climate varied considerably, causing year-to-year variation in abundances of plant species and in ecosystem productivity. We found that greater numbers of plant species led to greater temporal stability of ecosystem annual aboveground plant production. In particular, the decadal temporal stability of the ecosystem, whether measured with intervals of two, five or ten years, was significantly greater at higher plant diversity and tended to increase as plots matured. Ecosystem stability was also positively dependent on root mass, which is a measure of perenniating biomass. Temporal stability of the ecosystem increased with diversity, despite a lower temporal stability of individual species, because of both portfolio (statistical averaging) and overyielding effects. However, we found no evidence of a covariance effect. Our results indicate that the reliable, efficient and sustainable supply of some foods (for example, livestock fodder), biofuels and ecosystem services can be enhanced by the use of biodiversity.

  16. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert

    USGS Publications Warehouse

    Guo, Q.; Brown, J.H.; Valone, T.J.

    2002-01-01

    Using 15 years of census data from permanent quadrats, this paper compared the characteristics and temporal dynamics of these two distinct, spatially coexistent but temporally segregated communities. Although the total number of summer annual species recorded during our 15 years observation was higher than winter annuals, the average number of species observed each year was higher in the winter community. The winter community exhibited lower temporal variation in total plant abundance and populations of individual species, lower species turnover rate and higher evenness than the summer community. The higher seasonal species diversity (i.e., number of species observed in each season) in winters rather than the overall special pool (over 15 yrs) may be responsible for the greater community stability of winter annuals. The difference in long-term community dynamics between the two communities of annuals plants are likely due to the differences in total species pool, life history traits (e.g., seed size), and seasonal climatic regimes.

  17. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    PubMed Central

    2011-01-01

    Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141

  18. Temporal Stability and the Effect of Transgenerational Transfer on Fecal Microbiota Structure in a Long Distance Migratory Bird

    PubMed Central

    Kreisinger, Jakub; Kropáčková, Lucie; Petrželková, Adéla; Adámková, Marie; Tomášek, Oldřich; Martin, Jean-François; Michálková, Romana; Albrecht, Tomáš

    2017-01-01

    Animal bodies are inhabited by a taxonomically and functionally diverse community of symbiotic and commensal microorganisms. From an ecological and evolutionary perspective, inter-individual variation in host-associated microbiota contributes to physiological and immune system variation. As such, host-associated microbiota may be considered an integral part of the host’s phenotype, serving as a substrate for natural selection. This assumes that host-associated microbiota exhibits high temporal stability, however, and that its composition is shaped by trans-generational transfer or heritable host-associated microbiota modulators encoded by the host genome. Although this concept is widely accepted, its crucial assumptions have rarely been tested in wild vertebrate populations. We performed 16S rRNA metabarcoding on an extensive set of fecal microbiota (FM) samples from an insectivorous, long-distance migratory bird, the barn swallow (Hirundo rustica). Our data revealed clear differences in FM among juveniles and adults as regards taxonomic and functional composition, diversity and co-occurrence network complexity. Multiple FM samples from the same juvenile or adult collected within single breeding seasons exhibited higher similarity than expected by chance, as did adult FM samples over two consecutive years. Despite low effect sizes for FM stability over time at the community level, we identified an adult FM subset with relative abundances exhibiting significant temporal consistency, possibly inducing long-term effects on the host phenotype. Our data also indicate a slight maternal (but not paternal) effect on FM composition in social offspring, though this is unlikely to persist into adulthood. We discuss our findings in the context of both evolution and ecology of microbiota vs. host interactions and barn swallow biology. PMID:28220109

  19. The Use of Genetics for the Management of a Recovering Population: Temporal Assessment of Migratory Peregrine Falcons in North America

    PubMed Central

    Johnson, Jeff A.; Talbot, Sandra L.; Sage, George K.; Burnham, Kurt K.; Brown, Joseph W.; Maechtle, Tom L.; Seegar, William S.; Yates, Michael A.; Anderson, Bud; Mindell, David P.

    2010-01-01

    Background Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (F ST and D EST), and effective population size (N e). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these genetic measures provide a metric by which we can gauge our progress and help make important management decisions. Methodology/Principal Findings The peregrine falcon in North America (Falco peregrinus tundrius and anatum) was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci suggest limited differentiation that can be attributed to an isolation by distance relationship and warrant no delineation of these two subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985–2007), no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean N e were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods. Conclusions/Significance These results, including those from simulations to assess the power of each method to estimate N e, suggest a stable or growing population, which is consistent with ongoing field-based monitoring surveys. Therefore, historic and continuing efforts to prevent the extinction of the peregrine falcon in North America appear successful with no indication of recent decline, at least from the northern latitude range-wide perspective. The results also further highlight the importance of archiving samples and their use for continual assessment of population recovery and long-term viability. PMID:21124969

  20. Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands.

    PubMed

    Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M; Weisser, Wolfgang W; Wilcke, Wolfgang; Schmid, Bernhard

    2010-10-13

    The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.

  1. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.

  2. Temporal Stability of DSM-5 Posttraumatic Stress Disorder Criteria in a Problem Drinking Sample

    PubMed Central

    Keane, Terence M.; Rubin, Amy; Lachowicz, Mark; Brief, Deborah; Enggasser, Justin L.; Roy, Monica; Hermos, John; Helmuth, Eric; Rosenbloom, David

    2014-01-01

    The Diagnostic and Statistical Manual-5 (DSM-5) reformulated Posttraumatic Stress Disorder (PTSD) based partially on research showing there were four main factors that underlie the symptoms of the disorder. The primary aim of this study was to examine the temporal stability of the DSM-5 factors as measured by the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5; Weathers et al., 2010). Confirmatory factor analyses were conducted to examine the structure of DSM-5 PTSD, and temporal stability over three time points was examined to determine if the measure reflects a consistent construct over time. Our sample was 507 combat-exposed veterans of Iraq and Afghanistan who enrolled in an online intervention for problem drinking and combat-related stress (masked for review). We administered the PCL-5 at baseline, 8-week post intervention, and 3-month follow-up assessments. The DSM-5 model provided an adequate fit to the data at baseline. Tests of equality of form and equality of factor loadings demonstrated stability of the factor structure over time, indicating temporal stability. This study confirms the results of previous research supporting the DSM-5 model of PTSD symptoms (Elhai et al., 2012; Miller et al., 2012). This is the first study to demonstrate the temporal stability of the PCL-5, indicating its use in longitudinal studies will measure the same construct over time. PMID:24932642

  3. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties.

    PubMed

    Salorinne, Kirsi; Man, Renee W Y; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M

    2017-05-22

    NHC-Au I complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching of the particles after 24 h; however larger plasmonic particles showed greater resistance to thiol treatment. These water-soluble, bio-compatible nanoparticles are promising candidates for use in photoacoustic imaging, with even the smallest nanoparticles giving reliable photoacoustic signals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands

    PubMed Central

    Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L.; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A.; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M.; Weisser, Wolfgang W.; Wilcke, Wolfgang; Schmid, Bernhard

    2010-01-01

    The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands. PMID:20967213

  5. Analysis of Faint Glints from Stabilized GEO Satellites

    NASA Astrophysics Data System (ADS)

    Hall, D.; Kervin, P.

    2013-09-01

    Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.

  6. Temporal Stability and Convergent Validity of the Behavior Assessment System for Children.

    ERIC Educational Resources Information Center

    Merydith, Scott P.

    2001-01-01

    Assesses the temporal stability and convergent validity of the Behavioral Assessment System for Children (BASC). Teachers and parents rated kindergarten and first-grade students using BASC. Teachers were more stable in rating children's externalizing behaviors and attention problems. Discusses results in terms of the accuracy of information…

  7. Biodiversity, productivity and the temporal stability of productivity: patterns and processes

    USDA-ARS?s Scientific Manuscript database

    Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identify the mechanisms i...

  8. Temporal (In)Stability of Employee Preferences for Rewards

    ERIC Educational Resources Information Center

    Wine, Byron; Gilroy, Shawn; Hantula, Donald A.

    2012-01-01

    This study examined the temporal stability of employee preferences for rewards over seven monthly evaluations. Participants completed a ranking stimulus preference assessment monthly, and the latter six monthly assessments were compared to the initial assessment. Correlations of preferences from month to month ranged from r = -0.89 to 0.99.…

  9. New body mass estimates of British Pleistocene wolves: Palaeoenvironmental implications and competitive interactions

    NASA Astrophysics Data System (ADS)

    Flower, L. O. H.

    2016-10-01

    Body mass was reconstructed for early Middle Pleistocene Canis mosbachensis and late Middle to Late Pleistocene Canis lupus from key assemblages in Britain, to explore the presence of temporal size variability and whether size fluctuations were related to changes in climate and environment or to differences in Pleistocene carnivore community structure. Using the well-known body mass predictor of lower carnassial (m1) tooth length, combined with an extant canid dataset incorporating 25 species, least squares regression was used to assess allometric scaling prior to modelling the relationship between body mass and m1 length, producing a new predictive equation of Pleistocene canid body mass. The medium-sized C. mosbachensis had relatively stable body mass, with remarkable consistency in size compared to populations in the late Early Pleistocene of Europe. Periodical fluctuations in climatic conditions had a minimal effect on C. mosbachensis size over time, with the terrestrial connection between Britain and mainland Europe at this time key in promoting body mass stability by enabling movement away from less favourable conditions and to follow prey into refugia. Overall changes in carnivore guild structure were of minimal influence to C. mosbachensis in Britain, as the continued predominance of larger carnivores, in particular a larger canid, effectively constrained C. mosbachensis. In contrast, the body mass of larger-sized C. lupus was highly temporally varied, with an increasing size trend evident into the Devensian. Similar body size in the penultimate interglacial (MIS 7) and Middle Devensian (MIS 3) populations likely reflects palaeoenvironmental similarity and comparable carnivore community and prey spectrums, with larger predators effectively constraining C. lupus. However, the severely cold conditions of the Early Devensian (MIS 5a) may have caused a Bergmannian response in wolves, leading to their comparatively much larger size, with C. lupus further ecologically "liberated" by an absence of larger multiple larger predators at this time.

  10. Stabilizing effects in temporal fluctuations: management, traits, and species richness in high-diversity communities.

    PubMed

    Lepš, Jan; Májeková, Maria; Vítová, Alena; Doležal, Jiří; de Bello, Francesco

    2018-02-01

    The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its effect remaining significant also after accounting for fertilization. The weakening of the portfolio effect with species richness decline is a crucial driver of community destabilization. However, the positive effect of species richness on temporal stability of total biomass was not due to increased compensatory dynamics, since synchrony increased with species richness. This shows that the negative effect of eutrophication on community stability does not operate through increasing synchrony, but through the reduction of diversity. © 2017 by the Ecological Society of America.

  11. A real-world size organization of object responses in occipito-temporal cortex

    PubMed Central

    Konkle, Talia; Oliva, Aude

    2012-01-01

    SUMMARY While there are selective regions of occipito-temporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g. table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, infero-temporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity, and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation. PMID:22726840

  12. Temporal Stability of Strength-Based Assessments: Test-Retest Reliability of Student and Teacher Reports

    ERIC Educational Resources Information Center

    Romer, Natalie; Merrell, Kenneth W.

    2013-01-01

    This study focused on evaluating the temporal stability of self-reported and teacher-reported perceptions of students' social and emotional skills and assets. We used a test-retest reliability procedure over repeated administrations of the child, adolescent, and teacher versions of the "Social-Emotional Assets and Resilience Scales".…

  13. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes

    PubMed Central

    Bansal, Arjun K.; Singer, Jedediah M.; Anderson, William S.; Golby, Alexandra; Madsen, Joseph R.

    2012-01-01

    The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces. PMID:22956795

  14. CO2 convective dissolution controlled by temporal changes in free-phase CO2 properties

    NASA Astrophysics Data System (ADS)

    Jafari Raad, S. M.; Emami-Meybodi, H.; Hassanzadeh, H.

    2017-12-01

    Understanding the factors that control CO2 convective dissolution, which is one of the permanent trapping mechanisms, in the deep saline aquifer is crucial in the long-term fate of the injected CO2. The present study investigates the effects of temporal changes in the solubility of CO2 at the free-phase CO2/brine interface on the onset of natural convection and the subsequent convective mixing by conducting linear stability analyses (LSA) and direct numerical simulations (DNS). A time-dependent concentration boundary is considered for the free-phase CO2/brine interface where the CO2 concentration first decreases with the time and then remains constant. The LSA results show that the temporal variation in the concentration increases the onset of natural convection up to two orders of magnitude. In addition, the critical Rayleigh number significantly increases as CO2 concentration decreases. In other words, size and pressure of the injected CO2 affect the commencement of convective mixing. Based on LSA results, several scaling relations are proposed to correlate critical Rayleigh number, critical time, and its corresponding wavenumbers with time-dependent boundary's parameters, such as concentration decline rate and equilibrium concentration ratio. The DNS results reveal that the convective fingering patterns are significantly influenced by the variation of CO2 concentration at the interface. These findings improve our understanding of CO2 solubility trapping and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening. Keywords: CO2 sequestration; natural convection; solubility trapping; time-dependent boundary condition; numerical simulation; stability analysis

  15. Operating characteristics of HTS power supply for and improving temporal stability of coated conductor magnet in liquid helium

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Kim, Y. J.; Yang, S. E.; Kwon, N. Y.; Lee, H. G.; Ko, T. K.

    2009-10-01

    High temperature superconducting (HTS) magnets have been studied for insert coils of high field nuclear magnetic resonance (NMR) magnets but the temporal stability required for NMR is hard to achieve due to low index value and high joint resistance. In this research, the HTS power supply with magnets using coated conductor (CC) was investigated and tested in helium cryogenic system. All joints were conducted by soldering after etching stabilizer of the CC to minimize joint resistance. The pumping rate was determined by current amplitude and timing sequential control of heaters and the electromagnet. Operating characteristics were analyzed to enhance charging efficiency and the feasibility of temporally stable CC magnet during persistent mode was studied.

  16. Quantifying auditory temporal stability in a large database of recorded music.

    PubMed

    Ellis, Robert J; Duan, Zhiyan; Wang, Ye

    2014-01-01

    "Moving to the beat" is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical "energy") in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file's temporal structure (e.g., "average tempo", "time signature"), none has sought to quantify the temporal stability of a series of detected beats. Such a method--a "Balanced Evaluation of Auditory Temporal Stability" (BEATS)--is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications.

  17. The site, size, spatial stability, and energetics of an X-ray flare kernel

    NASA Technical Reports Server (NTRS)

    Petrasso, R.; Gerassimenko, M.; Nolte, J.

    1979-01-01

    The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.

  18. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability

    PubMed Central

    Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852

  19. Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad

    2013-01-01

    This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237

  20. Stable Size Distribution of Amyloid Plaques Over the Course of Alzheimer Disease

    PubMed Central

    Serrano-Pozo, Alberto; Mielke, Matthew L.; Muzitansky, Alona; Gómez-Isla, Teresa; Growdon, John H.; Bacskai, Brian J.; Betensky, Rebecca A.; Frosch, Matthew P.; Hyman, Bradley T.

    2012-01-01

    Amyloid-β plaques are a key pathological feature of Alzheimer disease (AD), but whether plaque sizes increase or stabilize over the course of AD is unknown. We measured the size distribution of total immunoreactive (10D5-positive) and dense-core (Thioflavine-S-positive) plaques in the temporal neocortex of a large group of AD and plaque-bearing age-matched non-demented subjects to test the hypothesis that amyloid plaques continue to grow along with the progression of the disease. The size of amyloid-β (10D5)-positive plaques did not differ between groups whereas dense-core plaques from the AD group were slightly larger than those in the non-demented group (~25%–30%, p = 0.01). Within the AD group, dense-core plaque size did not independently correlate with duration of clinical disease (from 4 to 21 years, p = 0.68), whereas 10D5-positive plaque size correlated negatively with disease duration (p = 0.01). By contrast, an earlier age of symptom onset strongly predicted a larger postmortem plaque size; this effect was independent of disease duration and the presence of the APOEε4 allele (p = 0.0001). We conclude that plaques vary in size among patients, with larger size distributions correlating with an earlier age of onset, but plaques do not substantially increase in size over the clinical course of the disease. PMID:22805771

  1. The efficacy of a panel study for assessing the temporal stability of hunting participation and constraints

    Treesearch

    Ellen B. Drogin Rodgers; Brett A. Wright; Kenneth F. Backman

    2003-01-01

    The intent of this study of Virginia hunters/nonhunters was to test the efficacy of panel research for assessing the temporal stability of hunting participation and constraints. Findings suggest that participation/nonparticipation patterns were stable across time periods for the population, yet dynamic at the individual level. Although the structure of perceived...

  2. Examination of the Psychometric Properties of the Adult Manifest Anxiety Scale-Elderly Version Scores

    ERIC Educational Resources Information Center

    Lowe, Patricia A.; Reynolds, Cecil R.

    2006-01-01

    The psychometric properties of the Adult Manifest Anxiety Scale-Elderly Version (AMAS-E) scores were evaluated in two studies. In Study 1, the temporal stability and construct validity of the AMAS-E test scores were examined in a group of 226 older adults, aged 60 years and older. Results indicated adequate to excellent temporal stability (2-week…

  3. The Structure and Temporal Stability of the Child and Adolescent Perfectionism Scale

    ERIC Educational Resources Information Center

    O'Connor, Rory C.; Dixon, Diane; Rasmussen, Susan

    2009-01-01

    In this study, the authors examined the factor structure and temporal stability of the Child and Adolescent Perfectionism Scale (CAPS; G. L. Flett, P. L. Hewitt, D. J. Boucher, L. A. Davidson, & Y. Munro, 1997) in 2 samples of adolescents (15-16 years old). In Sample 1 (n = 624), confirmatory factor analysis did not support a 2-factor structure…

  4. Psychometric Properties of Eating Disorder Instruments in Black and White Young Women: Internal Consistency, Temporal Stability, and Validity

    ERIC Educational Resources Information Center

    Bardone-Cone, Anna M.; Boyd, Clarissa A.

    2007-01-01

    Most of the major instruments in the eating disorder field have documented psychometric support only in predominantly White samples. The current study examined the internal consistency, temporal stability, and convergent and discriminant validity of a variety of eating disorder measures in Black (n = 97) and White (n = 179) female undergraduates.…

  5. Attention-Deficit/Hyperactivity Disorder and Sluggish Cognitive Tempo throughout Childhood: Temporal Invariance and Stability from Preschool through Ninth Grade

    ERIC Educational Resources Information Center

    Leopold, Daniel R.; Christopher, Micaela E.; Burns, G. Leonard; Becker, Stephen P.; Olson, Richard K.; Willcutt, Erik G.

    2016-01-01

    Background: Although multiple cross-sectional studies have shown symptoms of sluggish cognitive tempo (SCT) and attention-deficit/hyperactivity disorder (ADHD) to be statistically distinct, studies have yet to examine the temporal stability and measurement invariance of SCT in a longitudinal sample. To date, only six studies have assessed SCT…

  6. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  7. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  8. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  9. High nutrient availability reduces the diversity and stability of the equine caecal microbiota

    PubMed Central

    Hansen, Naja C. K.; Avershina, Ekaterina; Mydland, Liv T.; Næsset, Jon A.; Austbø, Dag; Moen, Birgitte; Måge, Ingrid; Rudi, Knut

    2015-01-01

    Background It is well known that nutrient availability can alter the gut microbiota composition, while the effect on diversity and temporal stability remains largely unknown. Methods Here we address the equine caecal microbiota temporal stability, diversity, and functionality in response to diets with different levels of nutrient availability. Hay (low and slower nutrient availability) versus a mixture of hay and whole oats (high and more rapid nutrient availability) were used as experimental diets. Results We found major effects on the microbiota despite that the caecal pH was far from sub-clinical acidosis. We found that the low nutrient availability diet was associated with a higher level of both diversity and temporal stability of the caecal microbiota than the high nutrient availability diet. These observations concur with general ecological theories, suggesting a stabilising effect of biological diversity and that high nutrient availability has a destabilising effect through reduced diversity. Conclusion Nutrient availability does not only change the composition but also the ecology of the caecal microbiota. PMID:26246403

  10. Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception.

    PubMed

    Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark

    2016-08-01

    An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.

  11. Phase stabilization of multidimensional amplification architectures for ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Müller, M.; Kienel, M.; Klenke, A.; Eidam, T.; Limpert, J.; Tünnermann, A.

    2015-03-01

    The active phase stabilization of spatially and temporally combined ultrashort pulses is investigated theoretically and experimentally. Particularly, considering a combining scheme applying 2 amplifier channels and 4 divided-pulse replicas a bistable behavior is observed. The reason is mutual influence of the optical error signals that is intrinsic to temporal polarization beam combining. A successful mitigation strategy is proposed and is analyzed theoretically and experimentally.

  12. On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    NASA Astrophysics Data System (ADS)

    Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-12-01

    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.

  13. Home ranges of lions in the Kalahari, Botswana exhibit vast sizes and high temporal variability.

    PubMed

    Zehnder, André; Henley, Stephen; Weibel, Robert

    2018-06-01

    The central Kalahari region in Botswana is one of the few remaining ecosystems with a stable lion population. Yet, relatively little is known about the ecology of the lions there. As an entry point, home range estimations provide information about the space utilization of the studied animals. The home ranges of eight lions in this region were determined to investigate their spatial overlaps and spatiotemporal variations. We found that, except for MCP, all home range estimators yielded comparable results regarding size and shape. The home ranges of all individuals were located predominantly inside the protected reserves. Their areas were among the largest known for lions with 1131 - 4314km 2 (95%), with no significant differences between males and females. Numerous overlaps between lions of different sexes were detected, although these originate from different groups. A distance chart confirmed that most of these lions directly encountered each other once or several times. Strong temporal variations of the home ranges were observed that did not match a seasonal pattern. The exceptionally large home ranges are likely to be caused by the sparse and dynamic prey populations. Since the ungulates in the study area move in an opportunistic way, too, strong spatiotemporal home range variations emerge. This can lead to misleading home ranges. We therefore recommend clarifying the stability of the home ranges by applying several levels of temporal aggregation. The lack of strict territoriality is likely an adaptation to the variable prey base and the high energetic costs associated with defending a large area. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities

    PubMed Central

    Jiddawi, Narriman S.; Eklöf, Johan S.

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231

  15. Perspectives on the geographic stability and mobility of people in cities

    PubMed Central

    Hanson, Susan

    2005-01-01

    A class of questions in the human environment sciences focuses on the relationship between individual or household behavior and local geographic context. Central to these questions is the nature of people's geographic mobility as well as the duration of their locational stability at varying spatial and temporal scales. The problem for researchers is that the processes of mobility/stability are temporally and spatially dynamic and therefore difficult to measure. Whereas time and space are continuous, analysts must select levels of aggregation for both length of time in place and spatial scale of place that fit with the problem in question. Previous work has emphasized mobility and suppressed stability as an analytic category. I focus here on stability and show how analyzing individuals' stability requires also analyzing their mobility. Through an empirical example centered on the relationship between entrepreneurship and place, I demonstrate how a spotlight on stability illuminates a resolution to the measurement problem by highlighting the interdependence between the time and space dimensions of stability/mobility. PMID:16230616

  16. On the sub-model errors of a generalized one-way coupling scheme for linking models at different scales

    NASA Astrophysics Data System (ADS)

    Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong

    2017-11-01

    Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.

  17. Feasibility study of basic characterization of MAGAT polymer gel using CBCT attached in linear accelerator: Preliminary study

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, P.; Samuel, E. James jebaseelan

    2018-01-01

    The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.

  18. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  19. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer's disease through 3D motion capture.

    PubMed

    Rucco, Rosaria; Agosti, Valeria; Jacini, Francesca; Sorrentino, Pierpaolo; Varriale, Pasquale; De Stefano, Manuela; Milan, Graziella; Montella, Patrizia; Sorrentino, Giuseppe

    2017-02-01

    Alzheimer's disease (AD) and behavioral variant of Frontotemporal Dementia (bvFTD) are characterized respectively by atrophy in the medial temporal lobe with memory loss and prefrontal and anterior temporal degeneration with dysexecutive syndrome. In this study, we hypothesized that specific gait patterns are induced by either frontal or temporal degeneration. To test this hypothesis, we studied the gait pattern in bvFTD (23) and AD (22) patients in single and dual task ("motor" and "cognitive") conditions. To detect subtle alterations, we performed motion analysis estimating both spatio-temporal parameters and joint excursions. In the single task condition, the bvFTD group was more unstable and slower compared to healthy subjects, while only two stability parameters were compromised in the AD group. During the motor dual task, both velocity and stability parameters worsened further in the bvFTD group. In the same experimental conditions, AD patients showed a significantly lower speed and stride length than healthy subjects. During the cognitive dual task, a further impairment of velocity and stability parameters was observed in the bvFTD group. Interestingly, during the cognitive dual task, the gait performance of the AD group markedly deteriorated, as documented by the impairment of more indices of velocity and stability. Finally, the kinematic data of thigh, knee, and ankle were more helpful in revealing gait impairment than the spatio-temporal parameters alone. In conclusion, our data showed that the dysexecutive syndrome induces specific gait alterations. Furthermore, our results suggest that the gait worsens in the AD patients when the cognitive resources are stressed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Temporal dynamics of different cases of bi-stable figure-ground perception.

    PubMed

    Kogo, Naoki; Hermans, Lore; Stuer, David; van Ee, Raymond; Wagemans, Johan

    2015-01-01

    Segmentation of a visual scene in "figure" and "ground" is essential for perception of the three-dimensional layout of a scene. In cases of bi-stable perception, two distinct figure-ground interpretations alternate over time. We were interested in the temporal dynamics of these alternations, in particular when the same image is presented repeatedly, with short blank periods in-between. Surprisingly, we found that the intermittent presentation of Rubin's classical "face-or-vase" figure, which is frequently taken as a standard case of bi-stable figure-ground perception, often evoked perceptual switches during the short presentations and stabilization was not prominent. Interestingly, bi-stable perception of Kanizsa's anomalous transparency figure did strongly stabilize across blanks. We also found stabilization for the Necker cube, which we used for comparison. The degree of stabilization (and the lack of it) varied across stimuli and across individuals. Our results indicate, against common expectation, that the stabilization phenomenon cannot be generally evoked by intermittent presentation. We argue that top-down feedback factors such as familiarity, semantics, expectation, and perceptual bias contribute to the complex processes underlying the temporal dynamics of bi-stable figure-ground perception. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data

    USGS Publications Warehouse

    Roberts, James H.; Hitt, Nathaniel P.

    2010-01-01

    Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.

  2. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    PubMed Central

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080

  3. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    PubMed

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.

  4. Explaining young adults' drinking behaviour within an augmented Theory of Planned Behaviour: temporal stability of drinker prototypes.

    PubMed

    van Lettow, Britt; de Vries, Hein; Burdorf, Alex; Conner, Mark; van Empelen, Pepijn

    2015-05-01

    Prototypes (i.e., social images) predict health-related behaviours and intentions within the context of the Theory of Planned Behaviour (TPB). This study tested the moderating role of temporal stability of drinker prototype perceptions on prototype-intentions and prototype-behaviour relationships, within an augmented TPB. The study examined abstainer, moderate drinker, heavy drinker, tipsy, and drunk prototypes. An online prospective study with 1-month follow-up was conducted among 410 young adults (18-25 years old, Mage = 21.0, SD = 2.14, 21.7% male). Assessed were prototype perceptions (favourability and similarity, T1, T2), stability of prototype perceptions, TPB variables (T1), intentions (T2), and drinking behaviour (T2). Intention analyses were corrected for baseline behaviour; drinking behaviour analyses were corrected for intentions and baseline behaviour. Hierarchical regressions showed that prototype stability moderated the relationships of drunk and abstainer prototype similarity with intentions. Similarity to the abstainer prototype explained intentions to drink sensibly more strongly among individuals with stable perceptions than among those with unstable perceptions. Conversely, intentions were explained stronger among individuals with stable perceptions of dissimilarity to the drunk prototype than among those with unstable perceptions. No moderation effects were found for stability of favourability or for relationships with behaviour. Stable prototype similarity perceptions were more predictive of intentions than unstable perceptions. These perceptions were most relevant in enhancing the explanation of young adults' intended drinking behaviour. Specifically, young adults' health intentions seem to be guided by the dissociation from the drunk prototype and association with the abstainer prototype. Statement of contribution What is already known on this subject? Prototypes have augmented the Theory of Planned Behaviour in explaining risk behaviour. Temporal stability has been shown to successfully extend the TPB in explaining intentions. Temporal stability of TPB variables can moderate the relationships with behaviour and intentions. What does this study add? Stability of prototype perceptions moderates the prototype-intentions relationship. Stability of abstainer and drunk prototype similarity enhances the explanation of (intentional) drinking. Stable prototype perceptions are more explanatory than unstable perceptions. © 2014 The British Psychological Society.

  5. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  6. Long-term stability of tidal and diel-related patterns in mangrove creek fish assemblages in North Brazil

    NASA Astrophysics Data System (ADS)

    Castellanos-Galindo, G. A.; Krumme, U.

    2014-08-01

    Intertidal fish assemblages are thought to respond to tidal and diel rhythms although the assumption that these patterns are stable over long time scales (>1 year) is largely untested. Testing the validity of this assumption is necessary to assess whether short-term temporal patterns, once established, can be extrapolated over time and give a better understanding of the temporal dynamics of fish assemblages in coastal habitats. Here, we compare the fish assemblage structure from two intertidal mangrove creeks in North Brazil (Bragança Peninsula, Caeté estuary) sampled with the same sampling methodology (block nets), effort (two lunar cycles) and design (accounting for the combination of tidal and diel cycle) in the rainy seasons of 1999 and 2012 to evaluate the persistence, stability and recurrence of short-term patterns in the fish community organization. The interaction of tidal and diel cycles (inundations at spring tide-night, spring tide-day, neap tide-night, neap tide-day), found to be stable after 13 years, resulted in recurrent and stable intertidal mangrove fish assemblage compositions. The intertidal mangrove creek fish assemblage consisted of a persistent number of dominant species (seven). However, there were notable changes in fish catch mass, abundance and species dominance between 1999 and 2012. The most severe drought in North Brazil in 30 years, linked to lower precipitation and river runoff in the rainy season of 2012, may have resulted in (1) lower abundance of small juveniles of several dominant species in this assemblage (especially Ariidae - Cathorops agassizii and Sciades herzbergii) and (2) increased dominance of large-sized specimens of the tetraodontid Colomesus psittacus. Our findings highlight: (1) the overriding importance and stability of the interactive pulse of the tidal and diel cycles in determining short-term temporal patterns in intertidal mangrove fish assemblages in neotropical macrotidal estuaries despite the occurrence of extreme events (i.e. major decrease in rainfall) and (2) the large-scale influence that these extreme events can exert on recruitment processes in tropical estuarine fish assemblages.

  7. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems.

    PubMed

    De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol

    2014-07-01

    Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained. © 2013 John Wiley & Sons Ltd.

  8. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  9. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics.

    PubMed

    Ramirez-San-Juan, J C; Mendez-Aguilar, E; Salazar-Hermenegildo, N; Fuentes-Garcia, A; Ramos-Garcia, R; Choi, B

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.

  10. After the fall of the Berlin Wall: perceptions and consequences of stability and change among middle-aged and older East and West Germans.

    PubMed

    Westerhof, Gerben J; Keyes, Corey L M

    2006-09-01

    This study empirically tested the self-systems theory of subjective change in light of the rapid change after the fall of the Berlin Wall. The theory predicts that individuals have a tendency to perceive stability and that perceived stability exerts a strong positive effect on subjective well-being. We would expect perceptions of decline and, to a lesser extent, perceptions of improvement to be related to lower levels of subjective well-being. Data were from respondents aged 40-85 years who participated in the German Aging Survey. We used measures of well-being and temporal comparisons during the past 10 years (1986-1996). West Germans reported more stability than East Germans, in particular in the public domain and in older age groups. Compared with perceptions of stability, perceptions of decline were related to less life satisfaction and more negative affect, and perceptions of growth to more negative affect. Temporal comparisons were unrelated to positive affect. Our findings both confirm and reject the self-systems theory of subjective change as it relates to the fall of the Berlin Wall. Studying temporal comparisons is important in understanding the effects of historical events and their timing within an individual life course.

  11. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2014-01-01

    To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702

  12. Community temporal variability increases with fluctuating resource availability

    PubMed Central

    Li, Wei; Stevens, M. Henry H.

    2017-01-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs. PMID:28345592

  13. Community temporal variability increases with fluctuating resource availability

    NASA Astrophysics Data System (ADS)

    Li, Wei; Stevens, M. Henry H.

    2017-03-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs.

  14. Morphometric changes in Yellow-headed Blackbirds during summer in central North Dakota

    USGS Publications Warehouse

    Twedt, D.J.; Linz, G.M.

    2002-01-01

    Temporal stability of morphometric measurements is desirable when using avian morphology as a predictor of geographic origin. Therefore, to assess their temporal stability, we examined changes in morphology of Yellow-headed Blackbirds (Xanthocephalus xanthocephalus) from central North Dakota during summer. Measurements differed among age classes and between sexes. As expected, due to growth and maturation, measurements on hatching-year birds increased over summer. Measurements of adult plumage fluctuated with prebasic molt and exhibited age-specific discontinuities. Body mass of adult birds increased over summer, whereas both culmen length and skull length decreased. Only body length and length of internal skeletal elements were temporally stable in adult Yellow-headed Blackbirds.

  15. Comparison of the Local Tolerability to 5 Long-acting Drug Nanosuspensions with Different Stabilizing Excipients, Following a Single Intramuscular Administration in the Rat.

    PubMed

    Chamanza, Ronnie; Darville, Nicolas; van Heerden, Marjolein; De Jonghe, Sandra

    2018-01-01

    To investigate the effects of common nanosuspension-stabilizing excipients on the nature and temporal evolution of histopathological changes at intramuscular (i.m.) administration sites, 5 groups of 39 male rats per group received a single injection of 1 of the 5 analogous crystalline drug nanosuspensions containing 200 mg/ml of an antiviral compound with particle sizes of ±200 nm and identical vehicle compositions, except for the type of nanosuspension stabilizer. The investigated stabilizers were poloxamer 338, poloxamer 407, d-α-tocopherol polyethylene glycol 1,000-succinate (TPGS), polysorbate 80, and polysorbate 80 combined with egg phosphatidylglycerol. Histopathology and immunohistochemistry revealed progressive inflammatory changes at the i.m. administration sites and the draining lymph nodes that differed according to the time point of sacrifice and the type of stabilizer. Although the overall time course of inflammatory changes was similar across the groups, differences in the nature, severity, and timing of the inflammatory response were observed between animals injected with poloxamer- or TPGS-containing nanosuspensions and those injected with formulations containing polysorbate 80. A more severe and prolonged active inflammatory phase, the presence of multinucleate giant cells, prolonged macrophage infiltration of the formulation depot, and more persistent histiocytic infiltrates in the lymph nodes were observed in the polysorbate 80-containing nanosuspension groups. Such vehicle-mediated effects could influence the overall tolerability profile of long-acting nanosuspensions.

  16. Does DOM properties or the amount of DOC induces iron reduction in topsoil porewater?

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Perényi, Katalin; Jakab, Gergely

    2017-04-01

    Iron content of porewater in hydromorphic soils shows high temporal variability. This usually correlates with dissolved organic carbon (DOC) content, but the correlation can be weak in some cases. Some studies suggest that ferrous iron stabilizes organic carbon in dissolved state. On the contrary, other papers report about dissolved iron stabilization by dissolved organic matter (DOM). Present study focuses on this apparent contradiction and on the interaction of organic carbon and iron in hydromorphic soils. Studied gleyic Phaeozems (3 profiles) and mollic Gleysols (3 profiles) are located in Geresdi-dombság (Hungary) and in Danube-Tisza Interfluve (Hungary) respectively. Dynamics of porewater pH, EH, have been recorded by field stations at 20, 40 and 100 cm depth during the growing season with 10 min temporal resolution. Porewater occasionally have also been sampled in each depth. The presence of ferrous iron was detected by dipyridil field test. DOC, dissolved nitrogen (DN) and iron were measured by TOC analyser and fl-AAS. Molecular size and molecular weight were measured by photon correlation spectroscope (DLS and SLS). Textural and mineralogical properties of studied soils were also determined. Relationships among studied parameters were tested by Spearman's rank correlation. The seasonal dynamics of redox potential is primarily controlled by saturation, but spatial differences are also driven by vegetation. The environment is usually reductive for iron oxides between March and July, but intensive daily redox fluctuations could be measured in June and July in some topsoils. Short term temporal variability of redox conditions is depended on the physiological activity of plants. Most of the papers published a range between +100 and +50 mV for iron reduction in aquatic systems. Topsoil porewater measurements show three redox ranges where concentration of dissolved iron has been increased: +320 to +200, +80 to +20 and below-160 mV. These ranges were identified independently from each other in various topsoils and subsoils. DOC was correlated with dissolved iron only in the most oxidative topsoils. Therefore we did not find correlation between DOC and dissolved iron in the studied topsoils of Gleysols. Molecular size and molecular weight of DOM have correlated with dissolved iron in all topsoils. We did not find any relationship between dissolved iron and any other properties at 100 cm depth. Presence of colour reaction and the colour intensity of dipyridil test also did not show correlation with measured dissolved iron in all studied topsoils. High ratio of dithionite and oxalate extractable iron of the solid phase and the molecular size measurements suggest that this observation can be explained by an intensive complex formation of ferric iron with low molecular size DOM. This research was supported by Hungarian Scientific Research Fund (OTKA K100180) and Gergely Jakab was supported by János Bolyai Fellowship of the MTA.

  17. a Simple Spatially Weighted Measure of Temporal Stability for Data with Limited Temporal Observations

    NASA Astrophysics Data System (ADS)

    Piburn, J.; Stewart, R.; Morton, A.

    2017-10-01

    Identifying erratic or unstable time-series is an area of interest to many fields. Recently, there have been successful developments towards this goal. These new developed methodologies however come from domains where it is typical to have several thousand or more temporal observations. This creates a challenge when attempting to apply these methodologies to time-series with much fewer temporal observations such as for socio-cultural understanding, a domain where a typical time series of interest might only consist of 20-30 annual observations. Most existing methodologies simply cannot say anything interesting with so few data points, yet researchers are still tasked to work within in the confines of the data. Recently a method for characterizing instability in a time series with limitedtemporal observations was published. This method, Attribute Stability Index (ASI), uses an approximate entropy based method tocharacterize a time series' instability. In this paper we propose an explicitly spatially weighted extension of the Attribute StabilityIndex. By including a mechanism to account for spatial autocorrelation, this work represents a novel approach for the characterizationof space-time instability. As a case study we explore national youth male unemployment across the world from 1991-2014.

  18. Stimulus-response correspondence effect as a function of temporal overlap between relevant and irrelevant information processing.

    PubMed

    Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany

    2016-01-01

    The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.

  19. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  20. Medications influencing central cholinergic pathways affect fixation stability, saccadic response time and associated eye movement dynamics during a temporally-cued visual reaction time task.

    PubMed

    Naicker, Preshanta; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Modenese, Luca; Kavanagh, Justin J

    2017-02-01

    Anticholinergic medications largely exert their effects due to actions on the muscarinic receptor, which mediates the functions of acetylcholine in the peripheral and central nervous systems. In the central nervous system, acetylcholine plays an important role in the modulation of movement. This study investigated the effects of over-the-counter medications with varying degrees of central anticholinergic properties on fixation stability, saccadic response time and the dynamics associated with this eye movement during a temporally-cued visual reaction time task, in order to establish the significance of central cholinergic pathways in influencing eye movements during reaction time tasks. Twenty-two participants were recruited into the placebo-controlled, human double-blind, four-way crossover investigation. Eye tracking technology recorded eye movements while participants reacted to visual stimuli following temporally informative and uninformative cues. The task was performed pre-ingestion as well as 0.5 and 2 h post-ingestion of promethazine hydrochloride (strong centrally acting anticholinergic), hyoscine hydrobromide (moderate centrally acting anticholinergic), hyoscine butylbromide (anticholinergic devoid of central properties) and a placebo. Promethazine decreased fixation stability during the reaction time task. In addition, promethazine was the only drug to increase saccadic response time during temporally informative and uninformative cued trials, whereby effects on response time were more pronounced following temporally informative cues. Promethazine also decreased saccadic amplitude and increased saccadic duration during the temporally-cued reaction time task. Collectively, the results of the study highlight the significant role that central cholinergic pathways play in the control of eye movements during tasks that involve stimulus identification and motor responses following temporal cues.

  1. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services.

    PubMed

    Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael

    2017-07-01

    The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.

  2. The relationship between PSD-95 clustering and spine stability in vivo.

    PubMed

    Cane, Michele; Maco, Bohumil; Knott, Graham; Holtmaat, Anthony

    2014-02-05

    The appearance and disappearance of dendritic spines, accompanied by synapse formation and elimination may underlie the experience-dependent reorganization of cortical circuits. The exact temporal relationship between spine and synapse formation in vivo remains unclear, as does the extent to which synapse formation enhances the stability of newly formed spines and whether transient spines produce synapses. We used in utero electroporation of DsRedExpress- and eGFP-tagged postsynaptic density protein 95 (PSD-95) to investigate the relationship between spine and PSD stability in mouse neocortical L2/3 pyramidal cells in vivo. Similar to previous studies, spines and synapses appeared and disappeared, even in naive animals. Cytosolic spine volumes and PSD-95-eGFP levels in spines covaried over time, suggesting that the strength of many individual synapses continuously changes in the adult neocortex. The minority of newly formed spines acquired PSD-95-eGFP puncta. Spines that failed to acquire a PSD rarely survived for more than a day. Although PSD-95-eGFP accumulation was associated with increased spine lifetimes, most new spines with a PSD did not convert into persistent spines. This indicates that transient spines may serve to produce short-lived synaptic contacts. Persistent spines that were destined to disappear showed, on average, reduced PSD-95-eGFP levels well before the actual pruning event. Altogether, our data indicate that the PSD size relates to spine stability in vivo.

  3. Stability of discrete memory states to stochastic fluctuations in neuronal systems

    PubMed Central

    Miller, Paul; Wang, Xiao-Jing

    2014-01-01

    Noise can degrade memories by causing transitions from one memory state to another. For any biological memory system to be useful, the time scale of such noise-induced transitions must be much longer than the required duration for memory retention. Using biophysically-realistic modeling, we consider two types of memory in the brain: short-term memories maintained by reverberating neuronal activity for a few seconds, and long-term memories maintained by a molecular switch for years. Both systems require persistence of (neuronal or molecular) activity self-sustained by an autocatalytic process and, we argue, that both have limited memory lifetimes because of significant fluctuations. We will first discuss a strongly recurrent cortical network model endowed with feedback loops, for short-term memory. Fluctuations are due to highly irregular spike firing, a salient characteristic of cortical neurons. Then, we will analyze a model for long-term memory, based on an autophosphorylation mechanism of calcium/calmodulin-dependent protein kinase II (CaMKII) molecules. There, fluctuations arise from the fact that there are only a small number of CaMKII molecules at each postsynaptic density (putative synaptic memory unit). Our results are twofold. First, we demonstrate analytically and computationally the exponential dependence of stability on the number of neurons in a self-excitatory network, and on the number of CaMKII proteins in a molecular switch. Second, for each of the two systems, we implement graded memory consisting of a group of bistable switches. For the neuronal network we report interesting ramping temporal dynamics as a result of sequentially switching an increasing number of discrete, bistable, units. The general observation of an exponential increase in memory stability with the system size leads to a trade-off between the robustness of memories (which increases with the size of each bistable unit) and the total amount of information storage (which decreases with increasing unit size), which may be optimized in the brain through biological evolution. PMID:16822041

  4. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  5. The hierarchical stability of the seven known large size ratio triple asteroids using the empirical stability parameters.

    PubMed

    Liu, Xiaodong; Baoyin, Hexi; Marchis, Franck

    In this study, the hierarchical stability of the seven known large size ratio triple asteroids is investigated. The effect of the solar gravity and primary's J 2 are considered. The force function is expanded in terms of mass ratios based on the Hill's approximation and the large size ratio property. The empirical stability parameters are used to examine the hierarchical stability of the triple asteroids. It is found that the all the known large size ratio triple asteroid systems are hierarchically stable. This study provides useful information for future evolutions of the triple asteroids.

  6. Bankruptcy risk model and empirical tests

    PubMed Central

    Podobnik, Boris; Horvatic, Davor; Petersen, Alexander M.; Urošević, Branko; Stanley, H. Eugene

    2010-01-01

    We analyze the size dependence and temporal stability of firm bankruptcy risk in the US economy by applying Zipf scaling techniques. We focus on a single risk factor—the debt-to-asset ratio R—in order to study the stability of the Zipf distribution of R over time. We find that the Zipf exponent increases during market crashes, implying that firms go bankrupt with larger values of R. Based on the Zipf analysis, we employ Bayes’s theorem and relate the conditional probability that a bankrupt firm has a ratio R with the conditional probability of bankruptcy for a firm with a given R value. For 2,737 bankrupt firms, we demonstrate size dependence in assets change during the bankruptcy proceedings. Prepetition firm assets and petition firm assets follow Zipf distributions but with different exponents, meaning that firms with smaller assets adjust their assets more than firms with larger assets during the bankruptcy process. We compare bankrupt firms with nonbankrupt firms by analyzing the assets and liabilities of two large subsets of the US economy: 2,545 Nasdaq members and 1,680 New York Stock Exchange (NYSE) members. We find that both assets and liabilities follow a Pareto distribution. The finding is not a trivial consequence of the Zipf scaling relationship of firm size quantified by employees—although the market capitalization of Nasdaq stocks follows a Pareto distribution, the same distribution does not describe NYSE stocks. We propose a coupled Simon model that simultaneously evolves both assets and debt with the possibility of bankruptcy, and we also consider the possibility of firm mergers. PMID:20937903

  7. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs

    USGS Publications Warehouse

    Campbell, Kate M.; Kouris, Angela; England, Whitney; Anderson, Rika E.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Whitaker, Rachel J.

    2017-01-01

    Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.

  8. Relaxation time: a proton NMR-based approach as a metric to measure reactivity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Paruthi, Archini; Misra, Superb K.

    2017-08-01

    The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.

  9. Long-term effective population size dynamics of an intensively monitored vertebrate population

    PubMed Central

    Mueller, A-K; Chakarov, N; Krüger, O; Hoffman, J I

    2016-01-01

    Long-term genetic data from intensively monitored natural populations are important for understanding how effective population sizes (Ne) can vary over time. We therefore genotyped 1622 common buzzard (Buteo buteo) chicks sampled over 12 consecutive years (2002–2013 inclusive) at 15 microsatellite loci. This data set allowed us to both compare single-sample with temporal approaches and explore temporal patterns in the effective number of parents that produced each cohort in relation to the observed population dynamics. We found reasonable consistency between linkage disequilibrium-based single-sample and temporal estimators, particularly during the latter half of the study, but no clear relationship between annual Ne estimates () and census sizes. We also documented a 14-fold increase in between 2008 and 2011, a period during which the census size doubled, probably reflecting a combination of higher adult survival and immigration from further afield. Our study thus reveals appreciable temporal heterogeneity in the effective population size of a natural vertebrate population, confirms the need for long-term studies and cautions against drawing conclusions from a single sample. PMID:27553455

  10. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control.

    PubMed

    Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.

  11. Socio-Economic Instability and the Scaling of Energy Use with Population Size

    PubMed Central

    DeLong, John P.; Burger, Oskar

    2015-01-01

    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system. PMID:26091499

  12. Socio-Economic Instability and the Scaling of Energy Use with Population Size.

    PubMed

    DeLong, John P; Burger, Oskar

    2015-01-01

    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system.

  13. A spatiotemporal structure: common to subatomic systems, biological processes, and economic cycles

    NASA Astrophysics Data System (ADS)

    Naitoh, Ken

    2012-03-01

    A theoretical model derived based on a quasi-stability concept applied to momentum conservation (Naitoh, JJIAM, 2001, Artificial Life Robotics, 2008, 2010) has revealed the spatial structure of various systems. This model explains the reason why particles such as biological cells, nitrogenous bases, and liquid droplets have bimodal size ratios of about 2:3 and 1:1. This paper shows that the same theory holds true for several levels of parcels from baryons to stars in the cosmos: specifically, at the levels of nuclear force, van der Waals force, surface tension, and the force of gravity. A higher order of analysis clarifies other asymmetric ratios related to the halo structure seen in atoms and amino acids. We will also show that our minimum hypercycle theory for explaining the morphogenetic cycle (Naitoh, Artificial Life Robotics, 2008) reveals other temporal cycles such as those of economic systems and the circadian clock as well as the fundamental neural network pattern (topological pattern). Finally, a universal equation describing the spatiotemporal structure of several systems will be derived, which also leads to a general concept of quasi-stability.

  14. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  15. Temporal Stability of the NDVI-LAI Relationship in a Napa Valley Vineyard

    NASA Technical Reports Server (NTRS)

    Johnson, L. F.

    2003-01-01

    Remotely sensed normalized difference vegetation index (NDVI) values, derived from high-resolution satellite images, were compared with ground measurements of vineyard leaf area index (LAI) periodically during the 2001 growing season. The two variables were strongly related at six ground calibration sites on each of four occasions (r squared = 0.91 to 0.98). Linear regression equations relating the two variables did not significantly differ by observation date, and a single equation accounted for 92 percent of the variance in the combined dataset. Temporal stability of the relationship opens the possibility of transforming NDVI maps to LAI in the absence of repeated ground calibration fieldwork. In order to take advantage of this circumstance, however, steps should be taken to assure temporal consistency in spectral data values comprising the NDVI.

  16. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert

    USGS Publications Warehouse

    Guo, Q.; Brown, J.H.; Valone, T.J.

    2002-01-01

    Winter and summer annuals in the Chihuahuan Desert have been intensively studied in recent years but little is known about the similarities and differences in the dynamics between these two communities. Using 15 yr of census data from permanent quadrats, this paper compared the characteristics and temporal dynamics of these two distinct, spatially co-existent but temporally segregated communities. Although the total number of summer annual species recorded during our 15 yr of observation was higher than winter annuals, the mean number of species observed each year was higher in the winter community. The winter community exhibited lower temporal variation in total plant abundance and populations of individual species, lower species turnover rate and higher evenness than the summer community. The rank abundances of species in winter were significantly positively correlated for a period of up to 7 yr while in summer significant positive correlations in rank abundance disappeared after 2 to 3 yr. The higher seasonal species diversity (i.e. number of species observed in each season) in winter rather than the overall special pool (over 15 yr) may be responsible for the greater community stability of winter annuals. The difference in long-term community dynamics between the two communities of annual plants are likely due to the differences in total species pool, life history traits (e.g. seed size), and seasonal climatic regimes.

  17. Stability of Synchronization Clusters and Seizurability in Temporal Lobe Epilepsy

    PubMed Central

    Palmigiano, Agostina; Pastor, Jesús; García de Sola, Rafael; Ortega, Guillermo J.

    2012-01-01

    Purpose Identification of critical areas in presurgical evaluations of patients with temporal lobe epilepsy is the most important step prior to resection. According to the “epileptic focus model”, localization of seizure onset zones is the main task to be accomplished. Nevertheless, a significant minority of epileptic patients continue to experience seizures after surgery (even when the focus is correctly located), an observation that is difficult to explain under this approach. However, if attention is shifted from a specific cortical location toward the network properties themselves, then the epileptic network model does allow us to explain unsuccessful surgical outcomes. Methods The intraoperative electrocorticography records of 20 patients with temporal lobe epilepsy were analyzed in search of interictal synchronization clusters. Synchronization was analyzed, and the stability of highly synchronized areas was quantified. Surrogate data were constructed and used to statistically validate the results. Our results show the existence of highly localized and stable synchronization areas in both the lateral and the mesial areas of the temporal lobe ipsilateral to the clinical seizures. Synchronization areas seem to play a central role in the capacity of the epileptic network to generate clinical seizures. Resection of stable synchronization areas is associated with elimination of seizures; nonresection of synchronization clusters is associated with the persistence of seizures after surgery. Discussion We suggest that synchronization clusters and their stability play a central role in the epileptic network, favoring seizure onset and propagation. We further speculate that the stability distribution of these synchronization areas would differentiate normal from pathologic cases. PMID:22844524

  18. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  19. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  20. An Expanded Model of the Temporal Stability of Condom Use Intentions: Gender-Specific Predictors among High-Risk Adolescents

    PubMed Central

    Schmiege, Sarah J.; Bryan, Angela D.

    2011-01-01

    Background Adolescents involved with the criminal justice system are at particularly high-risk for the Human Immunodeficiency Virus and sexually transmitted infections. Purpose The purpose of this study was to longitudinally examine gender-specific models of condom use, incorporating temporal stability of intentions. Methods Adolescents on probation (N=728) were recruited to complete longitudinal surveys including measures of Theory of Planned Behavior and gender-specific constructs, relationship length, and condom use. Results Gender-specific models of condom use behavior suggested by previous research were mostly replicated. For young women, the effect of baseline intentions on subsequent condom use behavior was stronger when intentions were either stable or increasing. For young men, more stable, increasing intentions were directly associated with more condom use. There was preliminary evidence to suggest an association between temporal stability of intentions and decreasing condom use in stable relationships. Conclusions Intervention efforts should be tailored by gender and aim to forestall decreasing intentions and condom use over time by addressing difficulties in maintaining condom use. PMID:21347619

  1. One-year temporal stability and predictive and incremental validity of the body, eating, and exercise comparison orientation measure (BEECOM) among college women.

    PubMed

    Fitzsimmons-Craft, Ellen E; Bardone-Cone, Anna M

    2014-01-01

    This study examined the one-year temporal stability and the predictive and incremental validity of the Body, Eating, and Exercise Comparison Measure (BEECOM) in a sample of 237 college women who completed study measures at two time points about one year apart. One-year temporal stability was high for the BEECOM total and subscale (i.e., Body, Eating, and Exercise Comparison Orientation) scores. Additionally, the BEECOM exhibited predictive validity in that it accounted for variance in body dissatisfaction and eating disorder symptomatology one year later. These findings held even after controlling for body mass index and existing measures of social comparison orientation. However, results regarding the incremental validity of the BEECOM, or its ability to predict change in these constructs over time, were more mixed. Overall, this study demonstrated additional psychometric properties of the BEECOM among college women, further establishing the usefulness of this measure for more comprehensively assessing eating disorder-related social comparison. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    PubMed

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  3. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers.

    PubMed

    Dai, Lei; Korolev, Kirill S; Gore, Jeff

    2015-08-11

    Shifting patterns of temporal fluctuations have been found to signal critical transitions in a variety of systems, from ecological communities to human physiology. However, failure of these early warning signals in some systems calls for a better understanding of their limitations. In particular, little is known about the generality of early warning signals in different deteriorating environments. In this study, we characterized how multiple environmental drivers influence the dynamics of laboratory yeast populations, which was previously shown to display alternative stable states [Dai et al., Science, 2012]. We observed that both the coefficient of variation and autocorrelation increased before population collapse in two slowly deteriorating environments, one with a rising death rate and the other one with decreasing nutrient availability. We compared the performance of early warning signals across multiple environments as "indicators for loss of resilience." We find that the varying performance is determined by how a system responds to changes in a specific driver, which can be captured by a relation between stability (recovery rate) and resilience (size of the basin of attraction). Furthermore, we demonstrate that the positive correlation between stability and resilience, as the essential assumption of indicators based on critical slowing down, can break down in this system when multiple environmental drivers are changed simultaneously. Our results suggest that the stability-resilience relation needs to be better understood for the application of early warning signals in different scenarios.

  4. Investigation into the temporal stability of aqueous standard solutions of psilocin and psilocybin using high performance liquid chromatography.

    PubMed

    Anastos, N; Barnett, N W; Pfeffer, F M; Lewis, S W

    2006-01-01

    This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.

  5. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  6. Temporal production and visuospatial processing.

    PubMed

    Benuzzi, Francesca; Basso, Gianpaolo; Nichelli, Paolo

    2005-12-01

    Current models of prospective timing hypothesize that estimated duration is influenced either by the attentional load or by the short-term memory requirements of a concurrent nontemporal task. In the present study, we addressed this issue with four dual-task experiments. In Exp. 1, the effect of memory load on both reaction time and temporal production was proportional to the number of items of a visuospatial pattern to hold in memory. In Exps. 2, 3, and 4, a temporal production task was combined with two visual search tasks involving either pre-attentive or attentional processing. Visual tasks interfered with temporal production: produced intervals were lengthened proportionally to the display size. In contrast, reaction times increased with display size only when a serial, effortful search was required. It appears that memory and perceptual set size, rather than nonspecific attentional or short-term memory load, can influence prospective timing.

  7. Modeling of Particle Agglomeration in Nanofluids

    NASA Astrophysics Data System (ADS)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (<100nm in diameter) in dispersion mediums. They are of great interest in industrial applications as heat transfer fluids owing to their enhanced thermal conductivities. Stability of nanofluids is a major problem hindering their industrial application. Agglomeration and then sedimentation are some reasons, which drastically decrease the shelf life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  8. Investigation of the stability of Platinum nanoparticles incorporated in mesoporous silica with different pore sizes.

    PubMed

    Yano, Kazuhisa; Zhang, Shuyi; Pan, Xiaoqing; Tatsuda, Narihito

    2014-05-01

    The effect of the pore size of mesoporous silica on the stability of Pt nanoparticles (NPs) has been investigated. TEM observation and XRD measurement were conducted in situ for Pt loaded mesoporous silica with different mesopore sizes. It turns out that smaller pores are more effective to stabilize Pt NPs below 600 °C. However, aggregation of Pt NPs on the surface of particles is not fully suppressed more than 1000 °C in ambient atmosphere even though smaller mesopore size is applied. The type of precursor does not affect the stability of Pt NPs. Copyright © 2014. Published by Elsevier Inc.

  9. Spatial and temporal variability of throughfall and soil moisture in a deciduous forest in the low mountain ranges (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin

    2017-04-01

    Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.

  10. Quantifying Auditory Temporal Stability in a Large Database of Recorded Music

    PubMed Central

    Ellis, Robert J.; Duan, Zhiyan; Wang, Ye

    2014-01-01

    “Moving to the beat” is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical “energy”) in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file’s temporal structure (e.g., “average tempo”, “time signature”), none has sought to quantify the temporal stability of a series of detected beats. Such a method-a “Balanced Evaluation of Auditory Temporal Stability” (BEATS)–is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications. PMID:25469636

  11. Soil Communities Promote Temporal Stability and Species Asynchrony in Experimental Grassland Communities

    PubMed Central

    Pellkofer, Sarah; van der Heijden, Marcel G. A.; Schmid, Bernhard; Wagg, Cameron

    2016-01-01

    Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities, yet little is known about whether soil communities also play a role in stabilizing the productivity of an ecosystem. Methodology/Principal Findings Here we use microcosms to assess the effects of the presence of soil communities on plant community dynamics and stability over a one-year time span. Microcosms were filled with sterilized soil and inoculated with either unaltered field soil or field soil sterilized to eliminate the naturally occurring soil biota. Eliminating the naturally occurring soil biota not only resulted in lower plant productivity, and reduced plant species diversity, and evenness, but also destabilized the net aboveground productivity of the plant communities over time, which was largely driven by changes in abundance of the dominant grass Lolium perenne. In contrast, the grass and legumes contributed more to net aboveground productivity of the plant communities in microcosms where soil biota had been inoculated. Additionally, the forbs exhibited compensatory dynamics with grasses and legumes, thus lowering temporal variation in productivity in microcosms that received the unaltered soil inocula. Overall, asynchrony among plant species was higher in microcosms where an unaltered soil community had been inoculated, which lead to higher temporal stability in community productivity. Conclusions/Significance Our results suggest that soil communities increase plant species asynchrony and stabilize plant community productivity by equalizing the performance among competing plant species through potential antagonistic and facilitative effects on individual plant species. PMID:26829481

  12. Temporal stability of E. coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    There are about nine millions ponds in USA, and many of them serve as an important agricultural surface water source. E. coli concentrations are commonly used as indicator organisms to evaluate microbial water quality for irrigation and recreation. Our hypothesis was that there exists a temporally ...

  13. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  14. Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems.

    PubMed

    Wardle, David A; Jonsson, Micael; Kalela-Brundin, Maarit; Lagerström, Anna; Bardgett, Richard D; Yeates, Gregor W; Nilsson, Marie-Charlotte

    2012-03-01

    Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.

  15. Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans.

    PubMed

    Zhang, Yichun; Payne, Jonathan L

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275-260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade.

  16. Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans

    PubMed Central

    Zhang, Yichun; Payne, Jonathan L.

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade. PMID:22685590

  17. Evaluation of the temporal structure of postural sway fluctuations based on a comprehensive set of analysis tools

    NASA Astrophysics Data System (ADS)

    Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.

    2012-10-01

    The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.

  18. Long-Term Follow-Up of Flap Prefabrication in Facial Reconstruction.

    PubMed

    Wang, Weixin; Zhao, Muxin; Tang, Yong; Chen, Wen; Yang, Zhe; Ma, Ning; Xu, Lisi; Feng, Jun; Li, Yangqun

    2017-07-01

    Flap prefabrication is to turn a random flap into an axial flap by transferring a vascular pedicle. In the past 13 years, we have prefabricated 20 flaps in 20 patients by the superficial temporal artery and its concomitant veins. Typically, a 50- to 800-mL tissue expander was implanted in the donor site. After flap maturation, the prefabricated flap was raised and transferred locally to cover the large defect on the face. All the cases were followed up regularly. The patients' age were between 3 and 27 years, the size of the flaps were between 3.5 × 5.5 cm and 13 × 15 cm, the superficial temporal artery length was between 10 and 15 cm. All flaps were transferred successfully: 10 of the flaps had venous congestion, partial epidermis exfoliation and flap necrosis occurred in 4 flaps. All cases were followed up for at least 1 year, the longest follow-up period was 9 years. Long-term follow-up results showed the prefabricated flap survived in good condition and had a satisfactory outcome. Because flap prefabrication is practical, and long-term follow-ups have proved its preferable characters and stability, it is a fine method for large area facial reconstructions.

  19. Patterns of resource exploitation in four coexisting globeflower fly species ( Chiastocheta sp.)

    NASA Astrophysics Data System (ADS)

    Pompanon, François; Pettex, Emeline; Després, Laurence

    2006-03-01

    Life history and spatio-temporal patterns of resource utilisation were characterised in four Chiastocheta (Diptera: Anthomyiidae) species, whose larvae compete as seed predators on Trollius europaeus fruits. Interspecific co-occurrence was observed in 80% of the resource patches (= Trollius fruits) in the two communities studied. Isolated larvae from all species had a similar food intake, but differed in development time and size at emergence. Different species exhibit contrasting resource exploitation strategies with specific mining patterns and a partial temporal shift. Two species exhibited particularly singular strategies. C. rotundiventris escaped from strong interactions with other species because it was the first species to develop and the only one to exploit the central pith of Trollius fruits. The key role of this species as the main pollinator of the host-plant appears to be a by-product of constraints imposed by occupying a restricted niche. Although the resource is ephemeral due to seed dispersal, C. dentifera, the last species to oviposit, is not disadvantaged because it has a short development time and rapid food intake. The different patterns can partly explain the stability of Chiastocheta communities, but do not prevent competition to occur at high larval densities.

  20. Temporal Stability of Gifted Children's Intelligence.

    ERIC Educational Resources Information Center

    Spangler, Robert S.; Sabatino, David A.

    1995-01-01

    The longitudinal stability of the Wechsler Intelligence Scale for Children-Revised was examined for consistency in determining eligibility for gifted programs among 66 elementary children. All subtest scales except one remained extremely stable, producing less than one scale score point difference across three test administrations. Children…

  1. A study of the temporal stability of multiple cell vortices

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.

    1989-01-01

    The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.

  2. Characterization of the dimensional stability of advanced metallic materials using an optical test bench structure

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng; O'Donnell, Timothy P.

    1991-01-01

    The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.

  3. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent.

    PubMed

    Cardinale, Bradley J; Gross, Kevin; Fritschie, Keith; Flombaum, Pedro; Fox, Jeremy W; Rixen, Christian; van Ruijven, Jasper; Reich, Peter B; Scherer-Lorenzen, Michael; Wilsey, Brian J

    2013-08-01

    To predict the ecological consequences of biodiversity loss, researchers have spent much time and effort quantifying how biological variation affects the magnitude and stability of ecological processes that underlie the functioning of ecosystems. Here we add to this work by looking at how biodiversity jointly impacts two aspects of ecosystem functioning at once: (1) the production of biomass at any single point in time (biomass/area or biomass/ volume), and (2) the stability of biomass production through time (the CV of changes in total community biomass through time). While it is often assumed that biodiversity simultaneously enhances both of these aspects of ecosystem functioning, the joint distribution of data describing how species richness regulates productivity and stability has yet to be quantified. Furthermore, analyses have yet to examine how diversity effects on production covary with diversity effects on stability. To overcome these two gaps, we reanalyzed the data from 34 experiments that have manipulated the richness of terrestrial plants or aquatic algae and measured how this aspect of biodiversity affects community biomass at multiple time points. Our reanalysis confirms that biodiversity does indeed simultaneously enhance both the production and stability of biomass in experimental systems, and this is broadly true for terrestrial and aquatic primary producers. However, the strength of diversity effects on biomass production is independent of diversity effects on temporal stability. The independence of effect sizes leads to two important conclusions. First, while it may be generally true that biodiversity enhances both productivity and stability, it is also true that the highest levels of productivity in a diverse community are not associated with the highest levels of stability. Thus, on average, diversity does not maximize the various aspects of ecosystem functioning we might wish to achieve in conservation and management. Second, knowing how biodiversity affects productivity gives no information about how diversity affects stability (or vice versa). Therefore, to predict the ecological changes that occur in ecosystems after extinction, we will need to develop separate mechanistic models for each independent aspect of ecosystem functioning.

  4. Combustion stability with baffles, absorbers and velocity sensitive combustion. [liquid propellant rocket combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.

    1980-01-01

    Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.

  5. Temporal Dynamics of the Human Vaginal Microbiota

    PubMed Central

    Gajer, Pawel; Brotman, Rebecca M.; Bai, Guoyun; Sakamoto, Joyce; Schütte, Ursel M.E.; Zhong, Xue; Koenig, Sara S.K.; Fu, Li; Ma, Zhanshan; Zhou, Xia; Abdo, Zaid; Forney, Larry J.; Ravel, Jacques

    2012-01-01

    Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition and sexual activity. The women studied are healthy, thus it appears that neither variation in community composition per se, nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis, in which there is microbial imbalance accompanied by symptoms. PMID:22553250

  6. Are long-term widespread avian body size changes related to food availability? A test using contemporaneous changes in carotenoid-based color.

    PubMed

    Little, Roellen; Gardner, Janet L; Amano, Tatsuya; Delhey, Kaspar; Peters, Anne

    2017-05-01

    Recent changes in global climate have been linked with changes in animal body size. While declines in body size are commonly explained as an adaptive thermoregulatory response to climate warming, many species do not decline in size, and alternative explanations for size change exist. One possibility is that temporal changes in animal body size are driven by changes in environmental productivity and food availability. This hypothesis is difficult to test due to the lack of suitable estimates that go back in time. Here, we use an alternative, indirect, approach and assess whether continent-wide changes over the previous 100 years in body size in 15 species of Australian birds are associated with changes in their yellow carotenoid-based plumage coloration. This type of coloration is strongly affected by food availability because birds cannot synthesize carotenoids and need to ingest them, and because color expression depends on general body condition. We found significant continent-wide intraspecific temporal changes in body size (wing length) and yellow carotenoid-based color (plumage reflectance) for half the species. Direction and magnitude of changes were highly variable among species. Meta-analysis indicated that neither body size nor yellow plumage color showed a consistent temporal trend and that changes in color were not correlated with changes in size over the past 100 years. We conclude that our data provide no evidence that broad-scale variation in food availability is a general explanation for continent-wide changes in body size in this group of species. The interspecific variability in temporal changes in size as well as color suggests that it might be unlikely that a single factor drives these changes, and more detailed studies of museum specimens and long-term field studies are required to disentangle the processes involved.

  7. The fall and rise of the Icelandic Arctic fox (Vulpes lagopus): a 50-year demographic study on a non-cyclic Arctic fox population.

    PubMed

    Unnsteinsdottir, E R; Hersteinsson, P; Pálsson, S; Angerbjörn, A

    2016-08-01

    In territorial species, observed density dependence is often manifest in lowered reproductive output at high population density where individuals have fewer resources or are forced to inhabit low-quality territories. The Arctic fox (Vulpes lagopus) in Iceland is territorial throughout the year and feeds mostly on birds, since lemmings are absent from the country. Thus, the population does not exhibit short-term population cycles that are evident in most of the species' geographical range. The population has, however, gone through a major long-term fluctuation in population size. Because of the stability in hunting effort and reliable hunting records since 1958, the total number of adult foxes killed annually can be used as an index of population size (N t ). An index of carrying capacity (K) from population growth data for five separate time blocks during 1958-2007 revealed considerable variation in K and allowed a novel definition of population density in terms of K, or N t /K. Correlation analysis suggested that the reproductive rate was largely determined by the proportion of territorial foxes in the population. Variation in litter size and cub mortality was, on the other hand, related to climatic variation. Thus, Arctic foxes in Iceland engage in typical contest competition but can adapt their territory sizes in response to both temporal and spatial variation in carrying capacity, resulting in surprisingly little variation in litter size.

  8. Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup

    NASA Astrophysics Data System (ADS)

    Braun, A.; Neukum, C.; Azzam, R.

    2011-12-01

    The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is increasing with electrolyte concentration. Depending on the dispersing medium the results show that TiO2 nanoparticles tend to form aggregates between 100-200 nm in diameter while the primary particle size is given as 21 nm by the manufacturer. Aggregate sizes are increasing with time. The particle size distribution of the silver nanoparticle samples is quite uniform in each medium. The fresh samples show aggregate sizes between 40 and 45 nm while the primary particle size is 15 nm according to the manufacturer. Aggregate size is only slightly increasing with time during the sedimentation experiments. These results are used as a reference when analyzing the effluent of column experiments.

  9. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    PubMed

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  10. Effect of Cavity Size of Mesoporous Silica on Short DNA Duplex Stability.

    PubMed

    Masuda, Tsubasa; Shibuya, Yuuta; Arai, Shota; Kobayashi, Sayaka; Suzuki, Sotaro; Kijima, Jun; Itoh, Tetsuji; Sato, Yusuke; Nishizawa, Seiichi; Yamaguchi, Akira

    2018-05-15

    We studied the stabilities of short (4- and 3-bp) DNA duplexes within silica mesopores modified with a positively charged trimethyl aminopropyl (TMAP) monolayer (BJH pore diameter 1.6-7.4 nm). The DNA fragments with fluorescent dye were introduced into the pores, and their fluorescence resonance energy transfer (FRET) response was measured to estimate the structuring energies of the short DNA duplexes under cryogenic conditions (temperature 233-323 K). The results confirmed the enthalpic stability gain of the duplex within size-matched pores (1.6 and 2.3 nm). The hybridization equilibrium constants found for the size-matched pores were 2 orders of magnitude larger than those for large pores (≥3.5 nm), and this size-matching effect for the enhanced duplex stability was explained by a tight electrostatic interaction between the duplex and the surface TMAP groups. These results indicate the requirement of the precise regulation of mesopore size to ensure the stabilization of hydrogen-bonded supramolecular assemblies.

  11. Acute effects of anesthetic lumbar spine injections on temporal spatial parameters of gait in individuals with chronic low back pain: A pilot study.

    PubMed

    Herndon, Carl L; Horodyski, MaryBeth; Vincent, Heather K

    2017-10-01

    This study examined whether epidural injection-induced anesthesia acutely and positively affected temporal spatial parameters of gait in patients with chronic low back pain (LBP) due to lumbar spinal stenosis. Twenty-five patients (61.7±13.6years) who were obtaining lumbar epidural injections for stenosis-related LBP participated. Oswestry Disability Index (ODI) scores, Medical Outcomes Short Form (SF-36) scores, 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained prior to, and 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained after the injection. Gait parameters were measured using an instrumented gait mat. Patients received transforaminal epidural injections in the L1-S1 vertebral range (1% lidocaine, corticosteroid) under fluoroscopic guidance. Patients with post-injection NRS pain ratings of "0" or values greater than "0" were stratified into two groups: 1) full pain relief, or 2) partial pain relief, respectively. Post-injection, 48% (N=12) of patients reported full pain relief. ODI scores were higher in patients with full pain relief (55.3±21.4 versus 33.7 12.8; p=0.008). Post-injection, stride length and step length variability were significantly improved in the patients with full pain relief compared to those with partial pain relief. Effect sizes between full and partial pain relief for walking velocity, step length, swing time, stride and step length variability were medium to large (Cohen's d>0.50). Patients with LBP can gain immediate gait improvements from complete pain relief from transforaminal epidural anesthetic injections for LBP, which could translate to better stability and lower fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  13. Allometric and temporal scaling of movement characteristics in Galapagos tortoises

    USGS Publications Warehouse

    Bastille-Rousseau, Guillaume; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Freddy; Blake, Stephen

    2016-01-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs.We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour – giant Galapagos tortoises (Chelonoidis spp.) – to test how movement metrics estimated on a monthly basis scaled with body size.We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex.Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates.Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one-dimensional scaling of movement, but also generates valuable insights into the movement ecology of iconic yet poorly understood Galapagos giant tortoises.

  14. Allometric and temporal scaling of movement characteristics in Galapagos tortoises.

    PubMed

    Bastille-Rousseau, Guillaume; Yackulic, Charles B; Frair, Jacqueline L; Cabrera, Freddy; Blake, Stephen

    2016-09-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs. We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour - giant Galapagos tortoises (Chelonoidis spp.) - to test how movement metrics estimated on a monthly basis scaled with body size. We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex. Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates. Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one-dimensional scaling of movement, but also generates valuable insights into the movement ecology of iconic yet poorly understood Galapagos giant tortoises. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  15. Effect of Fuel Particle Size on the Stability of Swirl Stabilized Flame in a Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil

    2015-05-01

    Combustion stability is examined in a swirl stabilized aero gas turbine combustor using computational fluid dynamics. A 22.5° sector of an annular combustor is modeled for the study. Unstructured tetrahedral meshes comprising 1.2 × 106 elements are employed in the model where the governing equations are solved using CFD flow solver CFX using eddy dissipation combustion model. The effect of fuel particle size on the combustion and its stability has been studied at steady state and transient conditions. The time for complete evaporation is increased exponentially when drop size increases. It delays heating up the mixture and subsequent ignition. This strongly affects the stability of the combustion flame as the incoming fresh mixture will have a quenching effect on the existing temperature field. Transient analysis at low fuel-air ratio and high particle size shows that there is a series of flame extinction and re-ignition prior to complete extinction which is observed from the fluctuation of gas temperature in the primary zone.

  16. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  17. Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position.

    PubMed

    Sotoma, Shingo; Terada, Daiki; Segawa, Takuya F; Igarashi, Ryuji; Harada, Yoshie; Shirakawa, Masahiro

    2018-04-03

    The development of sensors to estimate physical properties, and their temporal and spatial variation, has been a central driving force in scientific breakthroughs. In recent years, nanosensors based on quantum measurements, such as nitrogen-vacancy centres (NVCs) in nanodiamonds, have been attracting much attention as ultrastable, sensitive, accurate and versatile physical sensors for quantitative cellular measurements. However, the nanodiamonds currently available for use as sensors have diameters of several tens of nanometres, much larger than the usual size of a protein. Therefore, their actual applications remain limited. Here we show that NVCs in an aggregation of 5-nm-sized detonation-synthesized nanodiamond treated by Krüger's surface reduction (termed DND-OH) retains the same characteristics as observed in larger diamonds. We show that the negative charge at the NVC are stabilized, have a relatively long T 2 spin relaxation time of up to 4 μs, and are applicable to thermosensing, one-degree orientation determination and nanometric super-resolution imaging. Our results clearly demonstrate the significant potential of DND-OH as a physical sensor. Thus, DND-OH will raise new possibilities for spatiotemporal monitoring of live cells and dynamic biomolecules in individual cells at single-molecule resolution.

  18. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Test Score Stability and Construct Validity of the Adult Manifest Anxiety Scale-College Version Scores among College Students: A Brief Report

    ERIC Educational Resources Information Center

    Lowe, Patricia A.; Papanastasiou, Elena C.; DeRuyck, Kimberly A.; Reynolds, Cecil R.

    2005-01-01

    In this study, the authors investigated the temporal stability and construct validity of the Adult Manifest Anxiety Scale-College Version (AMAS-C; C. R. Reynolds, B. O. Richmond, & P. A. Lowe, 2003b) scores. Results indicated that the AMAS-C scores had adequate to excellent test score stability, and evidence supported the construct validity of the…

  20. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization

    PubMed Central

    Bumb, Ambika; Sarkar, Susanta K.; Billington, Neil; Brechbiel, Martin W.; Neuman, Keir C.

    2013-01-01

    Fluorescent nanodiamonds (FNDs) emit in the near infrared and do not photo-bleach or photoblink. These properties make FNDs better suited for numerous imaging applications in comparison to commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here, we present a method to encapsulate nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution. PMID:23581827

  1. Process for preparing a stabilized coal-water slurry

    DOEpatents

    Givens, E.N.; Kang, D.

    1987-06-23

    A process is described for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases. 2 figs.

  2. Process for preparing a stabilized coal-water slurry

    DOEpatents

    Givens, Edwin N.; Kang, Doohee

    1987-01-01

    A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.

  3. Kinematic measures for assessing gait stability in elderly individuals: a systematic review

    PubMed Central

    Hamacher, D.; Singh, N.B.; Van Dieën, J.H.; Heller, M.O.; Taylor, W.R.

    2011-01-01

    Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot time series during gait seem to hold predictive ability in distinguishing healthy from fall-prone elderly adults. In conclusion, biomechanical measurements offer promise for identifying individuals at risk of falling and can be obtained with relatively low-cost tools. Incorporation of the most promising measures in combined retrospective and prospective studies for understanding fall risk and designing preventive strategies is warranted. PMID:21880615

  4. Kinematic measures for assessing gait stability in elderly individuals: a systematic review.

    PubMed

    Hamacher, D; Singh, N B; Van Dieën, J H; Heller, M O; Taylor, W R

    2011-12-07

    Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot time series during gait seem to hold predictive ability in distinguishing healthy from fall-prone elderly adults. In conclusion, biomechanical measurements offer promise for identifying individuals at risk of falling and can be obtained with relatively low-cost tools. Incorporation of the most promising measures in combined retrospective and prospective studies for understanding fall risk and designing preventive strategies is warranted.

  5. Climate change and body size trends in aquatic and terrestrial endotherms: Does habitat matter?

    PubMed

    Naya, Daniel E; Naya, Hugo; Cook, Joseph

    2017-01-01

    Several studies have claimed that reduction in body size comprises a nearly universal response to global warming; however, doubts about the validity of this pattern for endothermic species have been raised recently. Accordingly, we assessed temporal changes in body mass for 27 bird and 17 mammal species, to evaluate if a reduction in body size during the 20th century is a widespread phenomenon among endothermic vertebrates. In addition, we tested if there are differences in the temporal change in size between birds and mammals, aquatic and terrestrial species, and the first and second half of the 20th century. Overall, six species increased their body mass, 21 species showed no significant changes in size, and 17 species decreased their body mass during the 20th century. Temporal changes in body mass were similar for birds and mammals, but strongly differ between aquatic and terrestrial species: while most of the aquatic species increased or did not change in body mass, most terrestrial species decreased in size. In addition, we found that, at least in terrestrial birds, the mean value of the correlation between body mass and year of collection differs between the first half and the second half of the 20th century, being close to zero for the former period but negative for the later one. To our knowledge, this is the first study showing that temporal changes in body mass differ between aquatic and terrestrial species in both mammals and birds.

  6. Climate change and body size trends in aquatic and terrestrial endotherms: Does habitat matter?

    PubMed Central

    Naya, Hugo; Cook, Joseph

    2017-01-01

    Several studies have claimed that reduction in body size comprises a nearly universal response to global warming; however, doubts about the validity of this pattern for endothermic species have been raised recently. Accordingly, we assessed temporal changes in body mass for 27 bird and 17 mammal species, to evaluate if a reduction in body size during the 20th century is a widespread phenomenon among endothermic vertebrates. In addition, we tested if there are differences in the temporal change in size between birds and mammals, aquatic and terrestrial species, and the first and second half of the 20th century. Overall, six species increased their body mass, 21 species showed no significant changes in size, and 17 species decreased their body mass during the 20th century. Temporal changes in body mass were similar for birds and mammals, but strongly differ between aquatic and terrestrial species: while most of the aquatic species increased or did not change in body mass, most terrestrial species decreased in size. In addition, we found that, at least in terrestrial birds, the mean value of the correlation between body mass and year of collection differs between the first half and the second half of the 20th century, being close to zero for the former period but negative for the later one. To our knowledge, this is the first study showing that temporal changes in body mass differ between aquatic and terrestrial species in both mammals and birds. PMID:28813491

  7. Linking body mass and group dynamics in an obligate cooperative breeder.

    PubMed

    Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H

    2014-11-01

    Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  8. The relationship between the spatial scaling of biodiversity and ecosystem stability

    PubMed Central

    Delsol, Robin; Loreau, Michel; Haegeman, Bart

    2018-01-01

    Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225

  9. Bundle Adjustment-Based Stability Analysis Method with a Case Study of a Dual Fluoroscopy Imaging System

    NASA Astrophysics Data System (ADS)

    Al-Durgham, K.; Lichti, D. D.; Detchev, I.; Kuntze, G.; Ronsky, J. L.

    2018-05-01

    A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system's calibration parameters. This is essential to validate the repeatability of the parameters' estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system - for a single camera analysis - was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors' best knowledge that this work is the first to address the topic of DF stability analysis.

  10. Earthworms are associated with subpopulations of Gammaproteobacteria irrespective of the total soil microbiota composition and stability.

    PubMed

    Fjøsne, Trine; Myromslien, Frøydis D; Wilson, Robert C; Rudi, Knut

    2018-05-01

    Soil represents one of the most complex microbial ecosystems on earth. It is well-known that invertebrates such as earthworms have a major impact on transformations of organic material in soil, while their effect on the soil microbiota remains largely unknown. The aim of our work was therefore to investigate the association of earthworms with temporal stability, composition and diversity in two soil microbiota experimental series. We found that earthworms were consistently associated with an increase in subgroups of Gammaproteobacteria, despite major differences in microbiota composition and temporal stability across the experimental series. Our results therefore suggest that earthworms can affect subpopulation dynamics in the soil microbiota, irrespective of the total microbiota composition. If the soil microbiota is comprised of independent microbiota components, this can contribute to our general understanding of the complexity of the soil microbiota.

  11. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    NASA Astrophysics Data System (ADS)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  12. Studies on spatio-temporal filtering of GNSS-derived coordinates

    NASA Astrophysics Data System (ADS)

    Gruszczynski, Maciej; Bogusz, Janusz; Kłos, Anna; Figurski, Mariusz

    2015-04-01

    The information about lithospheric deformations may be obtained nowadays by analysis of velocity field derived from permanent GNSS (Global Navigation Satellite System) observations. Despite developing more and more reliable models, the permanent stations residuals must still be considered as coloured noise. Meeting the GGOS (Global Geodetic Observing System) requirements, we are obliged to investigate the correlations between residuals, which are the result of common mode error (CME). This type of error may arise from mismodelling of: satellite orbits, the Earth Orientation Parameters, satellite antenna phase centre variations or unmodelling of large scale atmospheric effects. The above described together cause correlations between stochastic parts of coordinate time series obtained at stations located of even few thousands kilometres from each other. Permanent stations that meet the aforementioned terms form the regional (EPN - EUREF Permanent Network) or local sub-networks of global (IGS - International GNSS Service) network. Other authors (Wdowinski et al., 1997; Dong et al., 2006) dealt with spatio-temporal filtering and indicated three major regional filtering approaches: the stacking, the Principal Component Analysis (PCA) based on the empirical orthogonal function and the Karhunen-Loeve expansion. The need for spatio-temporal filtering is evident today, but the question whether the size of the network affects the accuracy of station's position and its velocity still remains unanswered. With the aim to determine the network's size, for which the assumption of spatial uniform distribution of CME is retained, we used stacking approach. We analyzed time series of IGS stations with daily network solutions processed by the Military University of Technology EPN Local Analysis Centre in Bernese 5.0 software and compared it with the JPL (Jet Propulsion Laboratory) PPP (Precice Point Positioning). The method we propose is based on the division of local GNSS networks into concentric ring-shaped areas. Such an approach allows us to specify the maximum size of the network, where the evident uniform spatial response can be still noticed. In terms of reliable CMEs extraction, the local networks have to be up to 500-600 kilometres extent depending on its character (location). In this study we examined three approaches of spatio-temporal filtering based on stacking procedure. First was based on non-weighted (Wdowinski et. al., 1997) and second on weighted average formula, where the weights are formed by the RMS of individual station position in the corresponding epoch (Nikolaidis, 2002). The third stacking approach, proposed here, was previously unused. It combines the weighted stacking together with the distance between the station and network barycentre into one approach. The analysis allowed to determine the optimal size of local GNSS network and to select the appropriate stacking method for obtaining the most stable solutions for e.g. geodynamical studies. The values of L1 and L2 norms, RMS values of time series (describing stability of the time series) and Pearson correlation coefficients were calculated for the North, East and Up components from more than 200 permanent stations twice: before performing the filtration and after weighted stacking approach. We showed the improvement in the quality of time series analysis using MLE (Maximum Likelihood Estimation) to estimate noise parameters. We demonstrated that the relative RMS improvement of 10, 20 and 30% reduces the noise amplitudes of about 20, 35 and 45%, respectively, what causes the velocity uncertainty to be reduced of 0.3 mm/yr (for the assumption of 7-years of data and flicker noise). The relative decrement of spectral index kappa is 25, 35 and 45%, what means lower velocity uncertainty of even 0.2 mm/yr (when assuming 7 years of data and noise amplitude of 15 mm/yr^-kappa/4) . These results refer to the growing demands on the stability of the series due to their use to realize the kinematic reference frames and for geodynamical studies.

  13. Aerobiological Stabilities of Different Species of Gram-Negative Bacteria, Including Well-Known Biothreat Simulants, in Single-Cell Particles and Cell Clusters of Different Compositions

    PubMed Central

    Skogan, Gunnar

    2017-01-01

    ABSTRACT The ability to perform controlled experiments with bioaerosols is a fundamental enabler of many bioaerosol research disciplines. A practical alternative to using hazardous biothreat agents, e.g., for detection equipment development and testing, involves using appropriate model organisms (simulants). Several species of Gram-negative bacteria have been used or proposed as biothreat simulants. However, the appropriateness of different bacterial genera, species, and strains as simulants is still debated. Here, we report aerobiological stability characteristics of four species of Gram-negative bacteria (Pantoea agglomerans, Serratia marcescens, Escherichia coli, and Xanthomonas arboricola) in single-cell particles and cell clusters produced using four spray liquids (H2O, phosphate-buffered saline[PBS], spent culture medium[SCM], and a SCM-PBS mixture). E. coli showed higher stability in cell clusters from all spray liquids than the other species, but it showed similar or lower stability in single-cell particles. The overall stability was higher in cell clusters than in single-cell particles. The highest overall stability was observed for bioaerosols produced using SCM-containing spray liquids. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. IMPORTANCE The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. PMID:28687646

  14. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    NASA Astrophysics Data System (ADS)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  15. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.

    PubMed

    Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter

    2016-06-01

    Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys

    PubMed Central

    Jousimo, Jussi; Ovaskainen, Otso

    2016-01-01

    Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683

  17. Enhanced temporal stability of cholinergic hippocampal gamma oscillations following respiratory alkalosis in vitro.

    PubMed

    Stenkamp, K; Palva, J M; Uusisaari, M; Schuchmann, S; Schmitz, D; Heinemann, U; Kaila, K

    2001-05-01

    The decrease in brain CO(2) partial pressure (pCO(2)) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO(2) at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pH(o) and pH(i), respectively). Hypocapnia from 5 to 1% CO(2) led to a stable monophasic increase of 0.5 and 0.2 units in pH(o) and pH(i), respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pH(i) evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO(2) was related to the rise in pH(o). In 1% CO(2), the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO(2) can have a strong influence on the temporal modulation of gamma rhythms.

  18. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  19. On sample size and different interpretations of snow stability datasets

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Mitterer, C.; Schweizer, J.

    2009-04-01

    Interpretations of snow stability variations need an assessment of the stability itself, independent of the scale investigated in the study. Studies on stability variations at a regional scale have often chosen stability tests such as the Rutschblock test or combinations of various tests in order to detect differences in aspect and elevation. The question arose: ‘how capable are such stability interpretations in drawing conclusions'. There are at least three possible errors sources: (i) the variance of the stability test itself; (ii) the stability variance at an underlying slope scale, and (iii) that the stability interpretation might not be directly related to the probability of skier triggering. Various stability interpretations have been proposed in the past that provide partly different results. We compared a subjective one based on expert knowledge with a more objective one based on a measure derived from comparing skier-triggered slopes vs. slopes that have been skied but not triggered. In this study, the uncertainties are discussed and their effects on regional scale stability variations will be quantified in a pragmatic way. An existing dataset with very large sample sizes was revisited. This dataset contained the variance of stability at a regional scale for several situations. The stability in this dataset was determined using the subjective interpretation scheme based on expert knowledge. The question to be answered was how many measurements were needed to obtain similar results (mainly stability differences in aspect or elevation) as with the complete dataset. The optimal sample size was obtained in several ways: (i) assuming a nominal data scale the sample size was determined with a given test, significance level and power, and by calculating the mean and standard deviation of the complete dataset. With this method it can also be determined if the complete dataset consists of an appropriate sample size. (ii) Smaller subsets were created with similar aspect distributions to the large dataset. We used 100 different subsets for each sample size. Statistical variations obtained in the complete dataset were also tested on the smaller subsets using the Mann-Whitney or the Kruskal-Wallis test. For each subset size, the number of subsets were counted in which the significance level was reached. For these tests no nominal data scale was assumed. (iii) For the same subsets described above, the distribution of the aspect median was determined. A count of how often this distribution was substantially different from the distribution obtained with the complete dataset was made. Since two valid stability interpretations were available (an objective and a subjective interpretation as described above), the effect of the arbitrary choice of the interpretation on spatial variability results was tested. In over one third of the cases the two interpretations came to different results. The effect of these differences were studied in a similar method as described in (iii): the distribution of the aspect median was determined for subsets of the complete dataset using both interpretations, compared against each other as well as to the results of the complete dataset. For the complete dataset the two interpretations showed mainly identical results. Therefore the subset size was determined from the point at which the results of the two interpretations converged. A universal result for the optimal subset size cannot be presented since results differed between different situations contained in the dataset. The optimal subset size is thus dependent on stability variation in a given situation, which is unknown initially. There are indications that for some situations even the complete dataset might be not large enough. At a subset size of approximately 25, the significant differences between aspect groups (as determined using the whole dataset) were only obtained in one out of five situations. In some situations, up to 20% of the subsets showed a substantially different distribution of the aspect median. Thus, in most cases, 25 measurements (which can be achieved by six two-person teams in one day) did not allow to draw reliable conclusions.

  20. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.

    PubMed

    Aditya, N P; Yang, Hanjoo; Kim, Saehoon; Ko, Sanghoon

    2015-03-01

    Curcumin has low aqueous stability and solubility in its native form. It also has a low bioavailability which presents a major barrier to its use in fortifying food products. The aim of this work was to reduce the size of curcumin crystals to the nanoscale and subsequently stabilize them in an amorphous form. To this end, amorphous curcumin nanosuspensions were fabricated using the antisolvent precipitation method with β-lactoglobulin (β-lg) as a stabilizer. The resulting amorphous curcumin nanosuspensions were in the size range of 150-175 nm with unimodal size distribution. The curcumin particles were amorphous and were molecularly dispersed within the β-lg as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The solubility of the amorphous curcumin nanosuspension was enhanced ∼35-fold due to the reduced size and lower crystallinity. Among the formulations, the amorphous curcumin nanosuspensions stabilized with β-lg and prepared at pH 3.4 (β-lg-cur 3.4), showed maximum aqueous stability which was >90% after 30 days. An in vitro study using Caco-2 cell lines showed a significant increase in curcumin bioavailability after stabilization with β-lg. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  2. Postnatal temporal bone ontogeny in Pan, Gorilla, and Homo, and the implications for temporal bone ontogeny in Australopithecus afarensis.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2013-08-01

    Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.

  3. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  4. The Intertemporal Stability of Teacher Effect Estimates. Working Paper 2008-22

    ERIC Educational Resources Information Center

    McCaffrey, Daniel F.; Sass, Tim R.; Lockwood, J.R.

    2008-01-01

    Recently, a number of school districts have begun using measures of teachers' contributions to student test scores or teacher "value added" to determine salaries and other monetary rewards. In this paper we investigate the precision of value-added measures by analyzing their inter-temporal stability. We find that these measures of…

  5. Stability of radiomic features in CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Bogowicz, M.; Riesterer, O.; Bundschuh, R. A.; Veit-Haibach, P.; Hüllner, M.; Studer, G.; Stieb, S.; Glatz, S.; Pruschy, M.; Guckenberger, M.; Tanadini-Lang, S.

    2016-12-01

    This study aimed to identify a set of stable radiomic parameters in CT perfusion (CTP) maps with respect to CTP calculation factors and image discretization, as an input for future prognostic models for local tumor response to chemo-radiotherapy. Pre-treatment CTP images of eleven patients with oropharyngeal carcinoma and eleven patients with non-small cell lung cancer (NSCLC) were analyzed. 315 radiomic parameters were studied per perfusion map (blood volume, blood flow and mean transit time). Radiomics robustness was investigated regarding the potentially standardizable (image discretization method, Hounsfield unit (HU) threshold, voxel size and temporal resolution) and non-standardizable (artery contouring and noise threshold) perfusion calculation factors using the intraclass correlation (ICC). To gain added value for our model radiomic parameters correlated with tumor volume, a well-known predictive factor for local tumor response to chemo-radiotherapy, were excluded from the analysis. The remaining stable radiomic parameters were grouped according to inter-parameter Spearman correlations and for each group the parameter with the highest ICC was included in the final set. The acceptance level was 0.9 and 0.7 for the ICC and correlation, respectively. The image discretization method using fixed number of bins or fixed intervals gave a similar number of stable radiomic parameters (around 40%). The potentially standardizable factors introduced more variability into radiomic parameters than the non-standardizable ones with 56-98% and 43-58% instability rates, respectively. The highest variability was observed for voxel size (instability rate  >97% for both patient cohorts). Without standardization of CTP calculation factors none of the studied radiomic parameters were stable. After standardization with respect to non-standardizable factors ten radiomic parameters were stable for both patient cohorts after correction for inter-parameter correlations. Voxel size, image discretization, HU threshold and temporal resolution have to be standardized to build a reliable predictive model based on CTP radiomics analysis.

  6. Space-time VMS computation of wind-turbine rotor and tower aerodynamics

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; McIntyre, Spenser; Kostov, Nikolay; Kolesar, Ryan; Habluetzel, Casey

    2014-01-01

    We present the space-time variational multiscale (ST-VMS) computation of wind-turbine rotor and tower aerodynamics. The rotor geometry is that of the NREL 5MW offshore baseline wind turbine. We compute with a given wind speed and a specified rotor speed. The computation is challenging because of the large Reynolds numbers and rotating turbulent flows, and computing the correct torque requires an accurate and meticulous numerical approach. The presence of the tower increases the computational challenge because of the fast, rotational relative motion between the rotor and tower. The ST-VMS method is the residual-based VMS version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method, and is also called "DSD/SST-VMST" method (i.e., the version with the VMS turbulence model). In calculating the stabilization parameters embedded in the method, we are using a new element length definition for the diffusion-dominated limit. The DSD/SST method, which was introduced as a general-purpose moving-mesh method for computation of flows with moving interfaces, requires a mesh update method. Mesh update typically consists of moving the mesh for as long as possible and remeshing as needed. In the computations reported here, NURBS basis functions are used for the temporal representation of the rotor motion, enabling us to represent the circular paths associated with that motion exactly and specify a constant angular velocity corresponding to the invariant speeds along those paths. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. We name this "ST/NURBS Mesh Update Method (STNMUM)." The STNMUM increases computational efficiency in terms of computer time and storage, and computational flexibility in terms of being able to change the time-step size of the computation. We use layers of thin elements near the blade surfaces, which undergo rigid-body motion with the rotor. We compare the results from computations with and without tower, and we also compare using NURBS and linear finite element basis functions in temporal representation of the mesh motion.

  7. Space-Time VMS Computation of Wind-Turbine Rotor and Tower Aerodynamics

    NASA Astrophysics Data System (ADS)

    McIntyre, Spenser W.

    This thesis is on the space{time variational multiscale (ST-VMS) computation of wind-turbine rotor and tower aerodynamics. The rotor geometry is that of the NREL 5MW offshore baseline wind turbine. We compute with a given wind speed and a specified rotor speed. The computation is challenging because of the large Reynolds numbers and rotating turbulent ows, and computing the correct torque requires an accurate and meticulous numerical approach. The presence of the tower increases the computational challenge because of the fast, rotational relative motion between the rotor and tower. The ST-VMS method is the residual-based VMS version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method, and is also called "DSD/SST-VMST" method (i.e., the version with the VMS turbulence model). In calculating the stabilization parameters embedded in the method, we are using a new element length definition for the diffusion-dominated limit. The DSD/SST method, which was introduced as a general-purpose moving-mesh method for computation of ows with moving interfaces, requires a mesh update method. Mesh update typically consists of moving the mesh for as long as possible and remeshing as needed. In the computations reported here, NURBS basis functions are used for the temporal representation of the rotor motion, enabling us to represent the circular paths associated with that motion exactly and specify a constant angular velocity corresponding to the invariant speeds along those paths. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. We name this "ST/NURBS Mesh Update Method (STNMUM)." The STNMUM increases computational efficiency in terms of computer time and storage, and computational exibility in terms of being able to change the time-step size of the computation. We use layers of thin elements near the blade surfaces, which undergo rigid-body motion with the rotor. We compare the results from computations with and without tower, and we also compare using NURBS and linear finite element basis functions in temporal representation of the mesh motion.

  8. Aggregate stability and water retention near saturation characteristics as affected by soil texture, aggregate size and polyacrylamide application

    USDA-ARS?s Scientific Manuscript database

    Understanding the effects of soil intrinsic properties and extrinsic conditions on aggregate stability is essential for the development of effective soil and water conservation practices. Our objective was to evaluate the combined role of soil texture, aggregate size and application of a stabilizing...

  9. The effects of surfactant and electrolyte concentrations on the size of nanochitosan during storage

    NASA Astrophysics Data System (ADS)

    Primaningtyas, Annisa; Budhijanto, Wiratni; Fahrurrozi, Mohammad; Kusumastuti, Yuni

    2017-05-01

    The nano-sized particle of chitosan (nanochitosan) is a potential natural preservative agent for fresh fish and fish product preservation. Theoretically, nano-sized particles exert strong van der Waals force to each other so that the problem associated with nanochitosan is agglomeration that leads to size instability during storage. Size stability is of importance in the application of nanochitosan as an antimicrobial agent because it considerably affects the antimicrobial activity of chitosan. In this study, the formulation of nanochitosan was optimized with respect to the two major factors in colloid dispersion theory, which were the presence of surfactant and electrolyte. Polysorbate-80 was chosen as the representative of food grade surfactant while NaCl was used as the electrolyte. The purposes of this study were to evaluate the effect of polysorbate-80 concentration and to determine the effect of NaCl ions on the particle size of nanochitosan for at least one month storage period. Data were analyzed using Analysis of Variance (ANOVA) to identify the factors significantly affect the size stability. The dynamics of particle size distribution during storage was measured by Particle Size Analyzer (PSA). The result showed that surfactant did not significantly affect the particle size stability. On the other hand, the addition of electrolyte into the colloidal dispersion of nanochitosan consistently stabilized and also narrowed the particle size distribution during storage in the range of 175-391 nm.

  10. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  11. Body size phenology in a regional bee fauna: a temporal extension of Bergmann's rule.

    PubMed

    Osorio-Canadas, Sergio; Arnan, Xavier; Rodrigo, Anselm; Torné-Noguera, Anna; Molowny, Roberto; Bosch, Jordi

    2016-12-01

    Bergmann's rule originally described a positive relationship between body size and latitude in warm-blooded animals. Larger animals, with a smaller surface/volume ratio, are better enabled to conserve heat in cooler climates (thermoregulatory hypothesis). Studies on endothermic vertebrates have provided support for Bergmann's rule, whereas studies on ectotherms have yielded conflicting results. If the thermoregulatory hypothesis is correct, negative relationships between body size and temperature should occur in temporal in addition to geographical gradients. To explore this possibility, we analysed seasonal activity patterns in a bee fauna comprising 245 species. In agreement with our hypothesis of a different relationship for large (endothermic) and small (ectothermic) species, we found that species larger than 27.81 mg (dry weight) followed Bergmann's rule, whereas species below this threshold did not. Our results represent a temporal extension of Bergmann's rule and indicate that body size and thermal physiology play an important role in structuring community phenology. © 2016 John Wiley & Sons Ltd/CNRS.

  12. One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities

    DTIC Science & Technology

    2010-01-01

    groups for further coupling to target molecules. Since the classic citrate reduction of aurate to prepare citrate - stabilized AuNPs was pioneered by the...reduced stability against excess salts and changes in solution pH (e.g., citrate -stabilized NPs); (2) the inability to prepare nanocrystals over a wide...size regime ( citrate reduction usually producesAuNPs smaller than 10 nm, but larger sizes require additional refluxing in the presence of sodium citrate

  13. Body-force-driven multiplicity and stability of combined free and forced convection in rotating curved ducts: Coriolis force

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, L.

    A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.

  14. Validation of prediction models: examining temporal and geographic stability of baseline risk and estimated covariate effects

    PubMed Central

    Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.

    2018-01-01

    Background Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable property of clinical prediction models. However, this issue has received little attention in the methodological literature. Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and predictor effects in prediction models. Methods We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects (regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized for heart failure. We used random effects logistic regression models for the 14,857 patients. Results The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals. Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time for predictor variables, only one had a modestly significant P value (0.03). Conclusions This study illustrates how temporal and geographic heterogeneity of prediction models can be assessed in settings with a large sample of patients from a large number of centers at different time periods. PMID:29350215

  15. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure.

    PubMed

    Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn

    2016-06-01

    Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  17. Temporal variations in early developmental decisions: an engine of forebrain evolution.

    PubMed

    Bielen, H; Pal, S; Tole, S; Houart, C

    2017-02-01

    Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and, hence, providing physical protection of C. Oxalate extractable amorphous and poorly crystalline minerals are correlated to C, especially for the more recalcitrant C fractions, but only at the depositional site. However, decreasing contents of oxalate extractable elements with depth indicate a temporal limitation of this stabilization mechanism and this is also supported by the results of our lignin extraction. Non-expandable clay minerals experience a relative enrichment at the depositional site while expandable clay minerals experience the same at the eroding site. These changes in clay mineralogy along the slope are partly responsible for the abundance of silt and clay associated C. The changes in soil mineralogy and micro-scale environmental conditions led to an adaptation of the microbial community in comparison to sites not affected by soil redistribution.

  19. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment.

    PubMed

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-12-31

    Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Artificial wetlands as tools for frog conservation: stability and variability of reproduction characteristics in Sahara frog populations in Tunisian man-made lakes.

    PubMed

    Bellakhal, Meher; Neveu, André; Fertouna-Bellakhal, Mouna; Aleya, Lotfi

    2017-12-01

    Amphibian populations are in decline principally due to climate change, environmental contaminants, and the reduction in wetlands. Even though data concerning current population trends are scarce, artificial wetlands appear to play a vital role in amphibian conservation. This study concerns the reproductive biology of the Sahara frog over a 2-year period in four Tunisian man-made lakes. Each month, gonad state (parameters: K, GSI, LCI), fecundity, and fertility of females (using 1227 clutches) were evaluated in the field under controlled conditions. Clutches were present for 110-130 days at two of the sites, but only for 60-80 days at the other two. Maximum egg laying occurred in May, corresponding to the highest point in the gonad somatic index. Clutch densities were higher in the smaller lakes. Female fecundity was in relation to body size; mean clutch fecundity attained 1416 eggs, with no differences observed according to site. Egg fertility varied over a 1-year period, with a maximum in May followed by a decrease when water temperature was at its highest. Eggs were smaller at the beginning of spawning; maximum size was in May, which might explain the higher fertility, but no maternal influence was detected. Embryonic development was strictly dependent on temperature. The population at each site appeared as a small patch within a metapopulation in overall good health, as shown by the relative temporal stability in reproduction variables. Constructed wetlands may therefore play an important role in the conservation of amphibians, especially in semi-arid zones.

  1. Algorithm for Stabilizing a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  2. Role of Temperature and SiCP Parameters in Stability and Quality of Al-Si-Mg/SiC Foams

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, N. V.; Gokhale, Amol A.

    2018-06-01

    Composites of Al-Si-Mg (A356) alloy with silicon carbide particles were synthesized in-house and foamed by melt processing using titanium hydride as foaming agent. The effects of the SiCP size and content, and foaming temperature on the stability and quality of the foam were explored. It was observed that the foam stability depended on the foaming temperature alone but not on the particle size or volume percent within the studied ranges. Specifically, foam stability was poor at 670°C. Among the stable foams obtained at 640°C, cell soundness (absence of/low defects, and collapse) was seen to vary depending on the particle size and content; For example, for finer size, lower particle contents were sufficient to obtain sound cell structure. It is possible to determine a foaming process window based on material and process parameters for good expansion, foam stability, and cell structure.

  3. Economic agglomerations and spatio-temporal cycles in a spatial growth model with capital transport cost

    NASA Astrophysics Data System (ADS)

    Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.

    2018-03-01

    In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.

  4. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  5. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis

    PubMed

    Jones; Diddams; Ranka; Stentz; Windeler; Hall; Cundiff

    2000-04-28

    We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.

  6. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants

    PubMed Central

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  7. Towards Intravenous Drug Delivery: Augmenting the Stability and Dispersity of Bis-Demethoxy Curcumin Analog by Bottom-Up Strategy.

    PubMed

    Francis, Arul Prakash; Ramaprabhu, Sundara; Devasena, Thiyagarajan

    2016-01-01

    Intravenous route is the best strategy to accomplish fastest and highest delivery of drugs. Hydrophobic drugs like curcumin and its analog exhibit disadvantages like low bioavailability, poor absorption and rapid precipitation on intravenous delivery, all leading to its poor therapeutic value. These can be by-passed by enhancing the dispersity, stability and decreasing the size of the drug by nanotization. Thus, with an intention to deliver bis-demethoxy curcumin analog via intravenous route, we have studied the effect of DMSO, ethanol and acetone on the size, size distribution, stability and yield and identified the best solvent in terms of smallest size, narrow size distribution, more stability and high yield of nano bis-demethoxy curcumin analog (NBDMCA). NBDMCA prepared using DMSO showed the lowest mean particle size cum polydispersity index and highest zeta potential when compared to ethanol and acetone. Hence the DMSO based formulation can provide prolonged action and better efficacy at minimal doses. Thus, the DMSO based NBDMCA can emerge as an ideal therapeutic tool for human use.

  8. Unreliability and error in the military's "gold standard" measure of sexual harassment by education and gender.

    PubMed

    Murdoch, Maureen; Pryor, John B; Griffin, Joan M; Ripley, Diane Cowper; Gackstetter, Gary D; Polusny, Melissa A; Hodges, James S

    2011-01-01

    The Department of Defense's "gold standard" sexual harassment measure, the Sexual Harassment Core Measure (SHCore), is based on an earlier measure that was developed primarily in college women. Furthermore, the SHCore requires a reading grade level of 9.1. This may be higher than some troops' reading abilities and could generate unreliable estimates of their sexual harassment experiences. Results from 108 male and 96 female soldiers showed that the SHCore's temporal stability and alternate-forms reliability was significantly worse (a) in soldiers without college experience compared to soldiers with college experience and (b) in men compared to women. For men without college experience, almost 80% of the temporal variance in SHCore scores was attributable to error. A plain language version of the SHCore had mixed effects on temporal stability depending on education and gender. The SHCore may be particularly ill suited for evaluating population trends of sexual harassment in military men without college experience.

  9. Testing the limits of temporal stability: Willingness to pay values among Grand Canyon whitewater boaters across decades

    USGS Publications Warehouse

    Neher, Chris J.; Duffield, John; Bair, Lucas S.; Patterson, David A.; Neher, Katherine

    2017-01-01

    We directly compare trip willingness to pay (WTP) values between 1985 and 2015 stated preference surveys of private party Grand Canyon boaters using identically designed valuation methods. The temporal gap of 30 years between these two studies is well beyond that of any tests of WTP temporal stability in the literature. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow level scenarios. WTP values from the 1985 survey were adjusted to 2015 levels using the consumer price index. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the adjusted Bishop et al. (1987) and the current study mean WTP estimates. Examination of pooled models of the data from the studies suggest that while the estimated WTP values are stable over time, the underlying valuation functions may not be, particularly when the data and models are corrected to account for differing bid structures and possible panel effects.

  10. Testing the Limits of Temporal Stability: Willingness to Pay Values among Grand Canyon Whitewater Boaters Across Decades

    NASA Astrophysics Data System (ADS)

    Neher, Chris; Duffield, John; Bair, Lucas; Patterson, David; Neher, Katherine

    2017-12-01

    We directly compare trip willingness to pay (WTP) values between 1985 and 2015 stated preference surveys of private party Grand Canyon boaters using identically designed valuation methods. The temporal gap of 30 years between these two studies is well beyond that of any tests of WTP temporal stability in the literature. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow level scenarios. WTP values from the 1985 survey were adjusted to 2015 levels using the consumer price index. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the adjusted Bishop et al. (1987) and the current study mean WTP estimates. Examination of pooled models of the data from the studies suggest that while the estimated WTP values are stable over time, the underlying valuation functions may not be, particularly when the data and models are corrected to account for differing bid structures and possible panel effects.

  11. Discordant Temporal Turnovers of Sediment Bacterial and Eukaryotic Communities in Response to Dredging: Nonresilience and Functional Changes.

    PubMed

    Zhang, Na; Xiao, Xian; Pei, Meng; Liu, Xiang; Liang, Yuting

    2017-01-01

    To study the stability and succession of sediment microbial and macrobenthic communities in response to anthropogenic disturbance, a time-series sampling was conducted before, during, and 1 year after dredging in the Guan River in Changzhou, China, which was performed with cutter suction dredgers from 10 April to 20 May 2014. The microbial communities were analyzed by sequencing bacterial 16S rRNA and eukaryotic 18S rRNA gene amplicons with Illumina MiSeq, and the macrobenthic community was identified using a morphological approach simultaneously. The results indicated that dredging disturbance significantly altered the composition and structures of sediment communities. The succession rates of communities were estimated by comparing the slopes of time-decay relationships. The temporal turnover of microeukaryotes (w = 0.3251, P < 0.001 [where w is a measure of the rate of log(species turnover) across log(time)]) was the highest, followed by that of bacteria (w = 0.2450, P < 0.001), and then macrobenthos (w = 0.1273, P < 0.001). During dredging, the alpha diversities of both bacterial and microeukaryotic communities were more resistant, but their beta diversities were less resistant than that of macrobenthos. After recovery for 1 year, all three sediment communities were not resilient and had reached an alternative state. The alterations in sediment community structure and stability resulted in functional changes in nitrogen and carbon cycling in sediments. Sediment pH, dissolved oxygen, redox potential, and temperature were the most important factors influencing the stability of sediment communities and ecosystem multifunctionality. This study suggests that discordant temporal turnovers and nonresilience of sediment communities under dredging resulted in functional changes, which are important for predicting sediment ecosystem functions under anthropogenic disturbances. Understanding the temporal turnover and stability of biotic communities is crucial for predicting the responses of sediment ecosystems to dredging disturbance. Most studies to date focused on the bacterial or macrobenthic community, only at two discontinuous time points, before and after dredging, and hence, it was difficult to analyze the community succession. This study first compared the stabilities and temporal changes of sediment bacterial, microeukaryotic, and macrobenthic communities at a continuous time course. The results showed that discordant responses of the three communities are mainly related to their different biological inherent attributes, and sensitivities to sediment geochemical variables change with dredging, resulting in changes in sediment ecosystem multifunctionality. Copyright © 2016 American Society for Microbiology.

  12. Discordant Temporal Turnovers of Sediment Bacterial and Eukaryotic Communities in Response to Dredging: Nonresilience and Functional Changes

    PubMed Central

    Zhang, Na; Xiao, Xian; Pei, Meng; Liu, Xiang

    2016-01-01

    ABSTRACT To study the stability and succession of sediment microbial and macrobenthic communities in response to anthropogenic disturbance, a time-series sampling was conducted before, during, and 1 year after dredging in the Guan River in Changzhou, China, which was performed with cutter suction dredgers from 10 April to 20 May 2014. The microbial communities were analyzed by sequencing bacterial 16S rRNA and eukaryotic 18S rRNA gene amplicons with Illumina MiSeq, and the macrobenthic community was identified using a morphological approach simultaneously. The results indicated that dredging disturbance significantly altered the composition and structures of sediment communities. The succession rates of communities were estimated by comparing the slopes of time-decay relationships. The temporal turnover of microeukaryotes (w = 0.3251, P < 0.001 [where w is a measure of the rate of log(species turnover) across log(time)]) was the highest, followed by that of bacteria (w = 0.2450, P < 0.001), and then macrobenthos (w = 0.1273, P < 0.001). During dredging, the alpha diversities of both bacterial and microeukaryotic communities were more resistant, but their beta diversities were less resistant than that of macrobenthos. After recovery for 1 year, all three sediment communities were not resilient and had reached an alternative state. The alterations in sediment community structure and stability resulted in functional changes in nitrogen and carbon cycling in sediments. Sediment pH, dissolved oxygen, redox potential, and temperature were the most important factors influencing the stability of sediment communities and ecosystem multifunctionality. This study suggests that discordant temporal turnovers and nonresilience of sediment communities under dredging resulted in functional changes, which are important for predicting sediment ecosystem functions under anthropogenic disturbances. IMPORTANCE Understanding the temporal turnover and stability of biotic communities is crucial for predicting the responses of sediment ecosystems to dredging disturbance. Most studies to date focused on the bacterial or macrobenthic community, only at two discontinuous time points, before and after dredging, and hence, it was difficult to analyze the community succession. This study first compared the stabilities and temporal changes of sediment bacterial, microeukaryotic, and macrobenthic communities at a continuous time course. The results showed that discordant responses of the three communities are mainly related to their different biological inherent attributes, and sensitivities to sediment geochemical variables change with dredging, resulting in changes in sediment ecosystem multifunctionality. PMID:27793828

  13. Historical changes in genotypic frequencies at the Pantophysin locus in Atlantic cod (Gadus morhua) in Icelandic waters: evidence of fisheries-induced selection?

    PubMed Central

    Jakobsdóttir, Klara B; Pardoe, Heidi; Magnússon, Árni; Björnsson, Höskuldur; Pampoulie, Christophe; Ruzzante, Daniel E; Marteinsdóttir, Guðrún

    2011-01-01

    The intense fishing mortality imposed on Atlantic cod in Icelandic waters during recent decades has resulted in marked changes in stock abundance, as well as in age and size composition. Using a molecular marker known to be under selection (Pan I) along with a suite of six neutral microsatellite loci, we analysed an archived data set and revealed evidence of distinct temporal changes in the frequencies of genotypes at the Pan I locus among spawning Icelandic cod, collected between 1948 and 2002, a period characterized by high fishing pressure. Concurrently, temporal stability in the composition of the microsatellite loci was established within the same data set. The frequency of the Pan IBB genotype decreased over a period of six decades, concomitant with considerable spatial and technical changes in fishing effort that resulted in the disappearance of older individuals from the fishable stock. Consequently, these changes have likely led to a change in the genotype frequencies at this locus in the spawning stock of Icelandic cod. The study highlights the value of molecular genetic approaches that combine functional and neutral markers examined in the same set of individuals for investigations of the selective effects of harvesting and reiterates the need for an evolutionary dimension to fisheries management. PMID:25568005

  14. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  15. Continuity of character neurosis from childhood to adulthood. A prospective longitudinal study.

    PubMed

    Parnas, J; Teasdale, T W; Schulsinger, H

    1982-12-01

    In a prospective longitudinal study, stability of personality traits was examined between the age of 15 and the age of 25. Scales, derived from an Adjective Check List, intending to predict obsessive-compulsive character neurosis, anti-aggressive character neurosis and non-neurotic personality have been utilized. Temporal stability of the examined personality traits was demonstrated.

  16. Evaluating a process-based model for use in streambank stabilization and stream restoration: insights on the bank stability and toe erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model ...

  17. In silico selection of expression reference genes with demonstrated stability in barley among a diverse set of tissues and cultivars

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Reference genes are selected based on the assumption of temporal and spatial expression stability and on their widespread use in model species. They are often used in new target species without validation, presumed as stable. For barley, reference gene validation is lacking, bu...

  18. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.

    PubMed

    Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon

    2014-11-01

    Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.

  19. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  20. Electromagnetic eigenmodes of collisional and collisionless plasmas and their stability to stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Pathak, Vishwa Bandhu; Tripathi, V. K.

    2007-02-01

    Nonlinear electromagnetic eigenmodes of collisional and collisionless plasmas, when the temporal extent of the modes is longer than the ambipolar diffusion time, have been investigated. The nonlinearity in a collisionless plasma arises through ponderomotive force, whereas in collisional plasmas Ohmic nonlinearity prevails. The mode structure in both cases, representing a balance between the nonlinearity-induced self-convergence and diffraction-induced divergence, closely resembles Gaussian form. The spot size of the mode decreases with the increasing axial amplitude of the laser, attains a minimum, and then rises very gradually. The modes are susceptible to stimulated Brillouin backscattering. The growth rate of the Brillouin process initially increases with mode amplitude, attains a maximum, and then decreases. The reduction in the growth rate is caused by strong electron evacuation from the axial region by the ponderomotive force and thermal pressure gradient force created by nonuniform Ohmic heating.

  1. Integration of Reference Frames Using VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Smith, David E. (Technical Monitor)

    2001-01-01

    Very Long Baseline Interferometry (VLBI) has the unique potential to integrate the terrestrial and celestial reference frames through simultaneous estimation of positions and velocities of approx. 40 active VLBI stations and a similar number of stations/sites with sufficient historical data, the position and position stability of approx. 150 well-observed extragalactic radio sources and another approx. 500 sources distributed fairly uniformly on the sky, and the time series of the five parameters that specify the relative orientation of the two frames. The full realization of this potential is limited by a number of factors including the temporal and spatial distribution of the stations, uneven distribution of observations over the sources and the sky, variations in source structure, modeling of the solid/fluid Earth and troposphere, logistical restrictions on the daily observing network size, and differing strategies for optimizing analysis for TRF, for CRF and for EOP. The current status of separately optimized and integrated VLBI analysis will be discussed.

  2. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.

  3. Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain.

    PubMed

    Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2018-06-07

    Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.

  4. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers

    PubMed Central

    Dai, Lei; Korolev, Kirill S.; Gore, Jeff

    2015-01-01

    Shifting patterns of temporal fluctuations have been found to signal critical transitions in a variety of systems, from ecological communities to human physiology. However, failure of these early warning signals in some systems calls for a better understanding of their limitations. In particular, little is known about the generality of early warning signals in different deteriorating environments. In this study, we characterized how multiple environmental drivers influence the dynamics of laboratory yeast populations, which was previously shown to display alternative stable states [Dai et al., Science, 2012]. We observed that both the coefficient of variation and autocorrelation increased before population collapse in two slowly deteriorating environments, one with a rising death rate and the other one with decreasing nutrient availability. We compared the performance of early warning signals across multiple environments as “indicators for loss of resilience.” We find that the varying performance is determined by how a system responds to changes in a specific driver, which can be captured by a relation between stability (recovery rate) and resilience (size of the basin of attraction). Furthermore, we demonstrate that the positive correlation between stability and resilience, as the essential assumption of indicators based on critical slowing down, can break down in this system when multiple environmental drivers are changed simultaneously. Our results suggest that the stability–resilience relation needs to be better understood for the application of early warning signals in different scenarios. PMID:26216946

  5. Spatial and temporal variation in size of polar bear (Ursus maritimus) sexual organs and its use in pollution and climate change studies.

    PubMed

    Sonne, Christian; Dietz, Rune; Born, Erik W; Riget, Frank F; Leifsson, Pall S; Bechshøft, Thea Ø; Kirkegaard, Maja

    2007-11-15

    Sexual organs and their development are susceptible to atmospheric transported environmental xenoendocrine pollutants and climate change (food availability). We therefore investigated sexual organs from 55 male and 44 female East Greenland polar bears (Ursus maritimus) to obtain information about growth/size and sexual maturity. Then, the genitalia size was compared with those previously reported from Canadian and Svalbard polar bears. Growth models showed that East Greenland male polar bears reached sexual maturity around 7 years of age and females around 4 years of age. When comparing East Greenland and Svalbard polar bears, the size of baculum and uterus were significantly lower in the East Greenland polar bears (ANOVA: all p < 0.05). Based on previously published baculum mean values from Canadian polar bears, a similar baculum pattern was found for East Greenland vs. Canadian polar bears. It is speculated whether this could be a result of the general high variation in polar bear body size, temporal distribution patterns of anthropogenic long-range transported persistent organic pollutants or climate change (decreasing food availability). The present investigation represents conservation and background data for future spatial and temporal assessments of hunting, pollution and climate change scenarios.

  6. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    PubMed

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics and we show how crucial it is not to overlook size in geometric morphometric analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Power law analysis of the human microbiome.

    PubMed

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  8. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.

    PubMed

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-09-26

    Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.

  9. The ecology of cooperative breeding behaviour.

    PubMed

    Shen, Sheng-Feng; Emlen, Stephen T; Koenig, Walter D; Rubenstein, Dustin R

    2017-06-01

    Ecology is a fundamental driving force for the evolutionary transition from solitary living to breeding cooperatively in groups. However, the fact that both benign and harsh, as well as stable and fluctuating, environments can favour the evolution of cooperative breeding behaviour constitutes a paradox of environmental quality and sociality. Here, we propose a new model - the dual benefits framework - for resolving this paradox. Our framework distinguishes between two categories of grouping benefits - resource defence benefits that derive from group-defended critical resources and collective action benefits that result from social cooperation among group members - and uses insider-outsider conflict theory to simultaneously consider the interests of current group members (insiders) and potential joiners (outsiders) in determining optimal group size. We argue that the different grouping benefits realised from resource defence and collective action profoundly affect insider-outsider conflict resolution, resulting in predictable differences in the per capita productivity, stable group size, kin structure and stability of the social group. We also suggest that different types of environmental variation (spatial vs. temporal) select for societies that form because of the different grouping benefits, thus helping to resolve the paradox of why cooperative breeding evolves in such different types of environments. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Stable abundance, but changing size structure in grenadier fishes (Macrouridae) over a decade (1998-2008) in which deepwater fisheries became regulated

    NASA Astrophysics Data System (ADS)

    Neat, Francis; Burns, Finlay

    2010-03-01

    A ten-year time series (1998-2008) from a trawl survey of the continental slope of the NE Atlantic was analyzed to assess temporal variation in the abundance and length frequency of seven species of deepwater grenadier fish. This period coincided (in 2003) with the regulation of deepwater fisheries in this area. None of the species declined in numbers or biomass over the period, and 2 species significantly increased. This suggests that the declines in abundance of these deepwater species following the onset of fishing in the 1970s may now have stabilized, albeit at much lower levels than the virgin biomass. Although two metrics of body size (mean length and maximum length) did not show any evidence for consistent decrease over time, there were significant changes in the overall length-frequency distributions. The species found in shallower depths (500 m) had a greater number of larger individuals in 2008 whereas those found deeper (1500 m) tended to have a greater number of smaller individuals. This suggests the presence of a lagged indirect effect of fishing on species that live beyond the actual depths that fishing takes place.

  11. Predicting safe sex: Assessment of autoregressive and cross-lagged effects within the Theory of Planned Behavior.

    PubMed

    Eggers, Sander M; Taylor, Myra; Sathiparsad, Reshma; Bos, Arjan Er; de Vries, Hein

    2015-11-01

    Despite its popularity, few studies have assessed the temporal stability and cross-lagged effects of the Theory of Planned Behavior factors: Attitude, subjective norms and self-efficacy. For this study, 298 adolescent learners from KwaZulu-Natal, South Africa, filled out a Theory of Planned Behavior questionnaire on teenage pregnancy at baseline and after 6 months. Structural equation modeling showed that there were considerable cross-lagged effects between attitude and subjective norms. Temporal stability was moderate with test-retest correlations ranging from 0.37 to 0.51 and the model was able to predict intentions to have safe sex (R2 = 0.69) Implications for practice and future research are discussed. © The Author(s) 2013.

  12. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability

    PubMed Central

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  13. Box-Behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: stability assessment.

    PubMed

    Kudarha, Ritu; Dhas, Namdev L; Pandey, Abhijeet; Belgamwar, Veena S; Ige, Pradum P

    2015-01-01

    Bicalutamide (BCM) is an anti-androgen drug used to treat prostate cancer. In this study, nanostructured lipid carriers (NLCs) were chosen as a carrier for delivery of BCM using Box-Behnken (BB) design for optimizing various quality attributes such as particle size and entrapment efficiency which is very critical for efficient drug delivery and high therapeutic efficacy. Stability of formulated NLCs was assessed with respect to storage stability, pH stability, hemolysis, protein stability, serum protein stability and accelerated stability. Hot high-pressure homogenizer was utilized for formulation of BCM-loaded NLCs. In BB response surface methodology, total lipid, % liquid lipid and % soya lecithin was selected as independent variable and particle size and %EE as dependent variables. Scanning electron microscopy (SEM) was done for morphological study of NLCs. Differential scanning calorimeter and X-ray diffraction study were used to study crystalline and amorphous behavior. Analysis of design space showed that process was robust with the particle size less than 200 nm and EE up to 78%. Results of stability studies showed stability of carrier in various storage conditions and in different pH condition. From all the above study, it can be concluded that NLCs may be suitable carrier for the delivery of BCM with respect to stability and quality attributes.

  14. Feedbacks Between Soil Structure and Microbial Activities in Soil

    NASA Astrophysics Data System (ADS)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate formation could alter how we currently treat our predictions of soil biogeochemistry. Current predictions are largely site- or biome-specific; quantitative mechanisms could underpin "rules" that operate at the pore-scale leading to more robust, mechanistic models.

  15. Structural Coherence and Temporal Stability of Psychopathic Personality Features During Emerging Adulthood

    PubMed Central

    Hawes, Samuel W.; Mulvey, Edward P.; Schubert, Carol A.; Pardini, Dustin A.

    2015-01-01

    Psychopathy is a complex personality disorder characterized by affective, interpersonal, and behavioral dimensions. Although features of psychopathy have been extended downwardly to earlier developmental periods, there is a discerning lack of studies that have focused on critically important issues such as longitudinal invariance and stability/change in these features across time. The current study examines these issues using a large sample of male adolescent offenders (N = 1,170) assessed across 7 annual time points during the transition into emerging adulthood (ages ~ 17 to 24 years). Findings demonstrated that features of psychopathy remained longitudinally invariant across this developmental period, and showed temporally consistent and theoretically coherent associations with other measures of personality, psychopathology, and criminal behaviors. Results also demonstrated that mean levels of psychopathic personality features tended to decrease into emerging adulthood and showed relatively modest rank-order stability across assessments with 7-year lags. These findings suggest that reductions in maladaptive personality features seem to parallel the well-documented decreases in offending that occur during the early 20s. PMID:24978692

  16. Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane.

    PubMed

    Velimirovic, Milica; Tosco, Tiziana; Uyttebroek, Maarten; Luna, Michela; Gastone, Francesca; De Boer, Cjestmir; Klaas, Norbert; Sapion, Hans; Eisenmann, Heinrich; Larsson, Per-Olof; Braun, Juergen; Sethi, Rajandrea; Bastiaens, Leen

    2014-08-01

    A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56μm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane

    NASA Astrophysics Data System (ADS)

    Velimirovic, Milica; Tosco, Tiziana; Uyttebroek, Maarten; Luna, Michela; Gastone, Francesca; De Boer, Cjestmir; Klaas, Norbert; Sapion, Hans; Eisenmann, Heinrich; Larsson, Per-Olof; Braun, Juergen; Sethi, Rajandrea; Bastiaens, Leen

    2014-08-01

    A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56 μm-diameter mZVI (~ 70 g L- 1) was suspended in 1.5 m3 of guar gum (~ 7 g L- 1) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5 m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5 m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.

  18. Spatial and temporal variation of body size among early Homo.

    PubMed

    Will, Manuel; Stock, Jay T

    2015-05-01

    The estimation of body size among the earliest members of the genus Homo (2.4-1.5Myr [millions of years ago]) is central to interpretations of their biology. It is widely accepted that Homo ergaster possessed increased body size compared with Homo habilis and Homo rudolfensis, and that this may have been a factor involved with the dispersal of Homo out of Africa. The study of taxonomic differences in body size, however, is problematic. Postcranial remains are rarely associated with craniodental fossils, and taxonomic attributions frequently rest upon the size of skeletal elements. Previous body size estimates have been based upon well-preserved specimens with a more reliable species assessment. Since these samples are small (n < 5) and disparate in space and time, little is known about geographical and chronological variation in body size within early Homo. We investigate temporal and spatial variation in body size among fossils of early Homo using a 'taxon-free' approach, considering evidence for size variation from isolated and fragmentary postcranial remains (n = 39). To render the size of disparate fossil elements comparable, we derived new regression equations for common parameters of body size from a globally representative sample of hunter-gatherers and applied them to available postcranial measurements from the fossils. The results demonstrate chronological and spatial variation but no simple temporal or geographical trends for the evolution of body size among early Homo. Pronounced body size increases within Africa take place only after hominin populations were established at Dmanisi, suggesting that migrations into Eurasia were not contingent on larger body sizes. The primary evidence for these marked changes among early Homo is based upon material from Koobi Fora after 1.7Myr, indicating regional size variation. The significant body size differences between specimens from Koobi Fora and Olduvai support the cranial evidence for at least two co-existing morphotypes in the Early Pleistocene of eastern Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.

    Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less

  20. Bicycle helmet size, adjustment, and stability.

    PubMed

    Thai, Kim T; McIntosh, Andrew S; Pang, Toh Yen

    2015-01-01

    One of the main requirements of a protective bicycle helmet is to provide and maintain adequate coverage to the head. A poorly fitting or fastened helmet may be displaced during normal use or even ejected during a crash. The aims of the current study were to identify factors that influence the size of helmet worn, identify factors that influence helmet position and adjustment, and examine the effects of helmet size worn and adjustment on helmet stability. Recreational and commuter cyclists in Sydney were surveyed to determine how helmet size and/or adjustment affected helmet stability in the real world. Anthropometric characteristics of the head were measured and, to assess helmet stability, a test analogous to the requirements of the Australian bicycle helmet standard was undertaken. Two hundred sixty-seven cyclists were recruited across all age groups and 91% wore an AS/NZS 2063-compliant helmet. The main ethnic group was Europeans (71%) followed by Asians (18%). The circumferences of the cyclists' heads matched well the circumference of the relevant ISO headform for the chosen helmet size, but the head shapes differed with respect to ISO headforms. Age and gender were associated with wearing an incorrectly sized helmet and helmet adjustment. Older males (>55 years) were most likely to wear an incorrectly sized helmet. Adult males in the 35-54 year age group were most likely to wear a correctly adjusted helmet. Using quasistatic helmet stability tests, it was found that the correctness of adjustment, rather than size, head dimensions, or shape, significantly affected helmet stability in all test directions. Bicycle helmets worn by recreational and commuter cyclists are often the wrong size and are often worn and adjusted incorrectly, especially in children and young people. Cyclists need to be encouraged to adjust their helmets correctly. Current headforms used in standards testing may not be representative of cyclists' head shapes. This may create challenges to helmet suppliers if on one hand they optimize the helmet to meet tests on ISO-related headforms while on the other seeking to offer greater range of sizes.

  1. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig

    2008-08-01

    SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.

  2. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig

    2008-01-01

    This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.

  3. Longitudinal Stability of Social Competence Indicators in a Portuguese Sample: Q-Sort Profiles of Social Competence, Measures of Social Engagement, and Peer Sociometric Acceptance

    ERIC Educational Resources Information Center

    Santos, António J.; Vaughn, Brian E.; Peceguina, Inês; Daniel, João R.

    2014-01-01

    This study examines the temporal stability (over 3 years) of individual differences in 3 domains relevant to preschool children's social competence: social engagement/motivation, profiles of behavior and personality attributes characteristic of socially competent young children, and peer acceptance. Each domain was measured with multiple…

  4. Structural stability as a consistent predictor of phenological events.

    PubMed

    Song, Chuliang; Saavedra, Serguei

    2018-06-13

    The timing of the first and last seasonal appearance of a species in a community typically follows a pattern that is governed by temporal factors. While it has been shown that changes in the environment are linked to phenological changes, the direction of this link appears elusive and context-dependent. Thus, finding consistent predictors of phenological events is of central importance for a better assessment of expected changes in the temporal dynamics of ecological communities. Here we introduce a measure of structural stability derived from species interaction networks as an estimator of the expected range of environmental conditions compatible with the existence of a community. We test this measure as a predictor of changes in species richness recorded on a daily basis in a high-arctic plant-pollinator community during two spring seasons. We find that our measure of structural stability is the only consistent predictor of changes in species richness among different ecological and environmental variables. Our findings suggest that measures based on the notion of structural stability can synthesize the expected variation of environmental conditions tolerated by a community, and explain more consistently the phenological changes observed in ecological communities. © 2018 The Author(s).

  5. Spatial-temporal characteristics of lightning flash size in a supercell storm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  6. Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation

    PubMed Central

    Rickman, Jamie; Duellberg, Christian; Cade, Nicholas I.; Griffin, Lewis D.; Surrey, Thomas

    2017-01-01

    Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth. PMID:28280102

  7. Morphosedimentary dynamics of the Madeira River in Brazil

    NASA Astrophysics Data System (ADS)

    Bonthius, C.; Latrubesse, E. M.; Abad, J. D.

    2012-12-01

    The Madeira River, the largest tributary of the Amazon River in terms of water discharge, offers an opportunity to investigate extrinsic and intrinsic controls on channel morphology and pattern. With an average annual discharge of approximately 32,000 m3/s, the Madeira River is a mega-river with a unique anabranching channel pattern, a specific stream power of approximately 20 W/m2, and a width-depth ratio that ranges between 30 and 64 (Latrubesse 2008). Not only of interest for its size and discharge, the Madeira River is also a critical ecological component of the overall Amazon Basin. As the greatest contributor of sediment to the Amazon fluvial system, the Madeira River transports approximately 330 tons/km2 annually, which is about half of the Amazon River's total sediment output (Latrubesse et al 2005). This poster presents analyses of the morphology of the Madeira River and of data collected from a field campaign carried out in summer 2011 on a stretch between Porto Velho and Humaitá in Brazil. Using historical radar and satellite imagery of consistent spatial and temporal resolution, the stability and morphology of in-channel landforms are assessed and quantified. Stretches characterized by vegetated islands demonstrated overall stability; these features were temporally persistent and showed little, if any, change in area over a period of forty years. Sand bars, or un-vegetated sediment, are highly mutable features with numbers that vary between nine and twenty-seven in a same single stretch over time. The main channel also demonstrated stability in its morphology, while the presence and activation of secondary channels varied. Velocity maps and an analysis of secondary currents are presented from data collected from bathymetric surveys and an Acoustic Doppler Current Profiler (ADCP) from Porto Velho and Humaitá. Hydraulic factors in two complex and geologically controlled river reaches, a mainly meandering reach with a tendency to anabranch and a purely anabranching reach, are compared, offering insight into the roles of these intrinsic variables in the fluvial system. Sediment samples collected during the field campaign were analyzed for grain size composition. Connections between median grain size (d50), hydraulic variables, and channel morphology are discussed in context of the resulting channel pattern. These analyses also shed light on differences that exist between the Madeira River and other large fluvial systems. Currently endangered by impoundment with hydroelectric projects expected to be fully operational by January of 2013, the Madeira River is a mega-river that faces irreversible change due to human impact. As a result, the collection and analysis of data of current baseline conditions is of timely and necessary importance to assess geomorphologic and hydrologic changes in the fluvial system, model the river's behavior under a variety of natural and anthropogenic conditions, and inform management plans for the Madeira River and Amazon River basins. References Latrubesse, E.M. 2008. Patterns of anabranching channels: the ultimate end-member adjustment of mega-rivers. Geomorphology, 101, pp. 130-145. Latrubesse, E.M., Stevaux, J.C. and Sinha, R. 2005. Tropical Rivers. Geomorphology, 70, pp. 187-206.

  8. High volcanic seismic b-values: Real or artefacts?

    NASA Astrophysics Data System (ADS)

    Roberts, Nick; Bell, Andrew; Main, Ian G.

    2015-04-01

    The b-value of the Gutenberg-Richter distribution quantifies the relative proportion of large to small magnitude earthquakes in a catalogue, in turn related to the population of fault rupture areas and the average slip or stress drop. Accordingly the b-value is an important parameter to consider when evaluating seismic catalogues as it has the potential to provide insight into the temporal or spatial evolution of the system, such as fracture development or changes in the local stress regime. The b-value for tectonic seismicity is commonly found to be close to 1, whereas much higher b-values are frequently reported for volcanic and induced seismicity. Understanding these differences is important for understanding the processes controlling earthquake occurrence in different settings. However, it is possible that anomalously high b-values could arise from small sample sizes, under-estimated completeness magnitudes, or other poorly applied methodologies. Therefore, it is important to establish a rigorous workflow for analyzing these datasets. Here we examine the frequency-magnitude distributions of volcanic earthquake catalogues in order to determine the significance of apparently high b-values. We first derive a workflow for computing the completeness magnitude of a seismic catalogue, using synthetic catalogues of varying shape, size, and known b-value. We find the best approach involves a combination of three methods: 'Maximum Curvature', 'b-value stability', and the 'Goodness-of-Fit test'. To calculate a reliable b-value with an error ≤0.25, the maximum curvature method is preferred for a 'sharp-peaked' discrete distribution. For a catalogue with a broader peak the b-value stability method is the most reliable with the Goodness-of-Fit test being an acceptable backup if the b-value stability method fails. We apply this workflow to earthquake catalogues from El Hierro (2011-2013) and Mt Etna (1999-2013) volcanoes. In general, we find the b-value to be equal to or slightly greater than 1. However, reliable high b-values of 1.5-2.4 at El Hierro and 1.5-1.8 at Mt Etna are observed for restricted time periods. We argue that many of the almost axiomatically 'high' b-values reported in the literature for volcanic and induced seismicity may be attributable to biases introduced by the methods of inference used and/or the relatively small sample sizes often available.

  9. Can high seismic b-values be explained solely by poorly applied methodology?

    NASA Astrophysics Data System (ADS)

    Roberts, Nick; Bell, Andrew; Main, Ian

    2015-04-01

    The b-value of the Gutenberg-Richter distribution quantifies the relative proportion of large to small magnitude earthquakes in a catalogue, in turn related to the population of fault rupture areas and the average slip or stress drop. Accordingly the b-value is an important parameter to consider when evaluating seismic catalogues as it has the potential to provide insight into the temporal or spatial evolution of the system, such as fracture development or changes in the local stress regime. The b-value for tectonic seismicity is commonly found to be close to 1, whereas much higher b-values are frequently reported for volcanic and induced seismicity. Understanding these differences is important for understanding the processes controlling earthquake occurrence in different settings. However, it is possible that anomalously high b-values could arise from small sample sizes, under-estimated completeness magnitudes, or other poorly applied methodologies. Therefore, it is important to establish a rigorous workflow for analyzing these datasets. Here we examine the frequency-magnitude distributions of volcanic earthquake catalogues in order to determine the significance of apparently high b-values. We first derive a workflow for computing the completeness magnitude of a seismic catalogue, using synthetic catalogues of varying shape, size, and known b-value. We find the best approach involves a combination of three methods: 'Maximum Curvature', 'b-value stability', and the 'Goodness-of-Fit test'. To calculate a reliable b-value with an error ≤0.25, the maximum curvature method is preferred for a 'sharp-peaked' discrete distribution. For a catalogue with a broader peak the b-value stability method is the most reliable with the Goodness-of-Fit test being an acceptable backup if the b-value stability method fails. We apply this workflow to earthquake catalogues from El Hierro (2011-2013) and Mt Etna (1999-2013) volcanoes. In general, we find the b-value to be equal to or slightly greater than 1, however, reliably high b-values are reported in both catalogues. We argue that many of the almost axiomatically 'high' b-values reported in the literature for volcanic and induced seismicity may be attributable to biases introduced by the methods of inference used and/or the relatively small sample sizes often available. This new methodology, although focused towards volcanic catalogues, is applicabale to all seismic catalogues.

  10. Temporal compressive imaging for video

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Zhang, Linxia; Ke, Jun

    2018-01-01

    In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.

  11. Effects of a cognitive dual task on variability and local dynamic stability in sustained repetitive arm movements using principal component analysis: a pilot study.

    PubMed

    Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud

    2018-06-01

    In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.

  12. Flash Nanoprecipitation: Particle Structure and Stability

    PubMed Central

    Pustulka, Kevin M.; Wohl, Adam R.; Lee, Han Seung; Michel, Andrew R.; Han, Jing; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2013-01-01

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nano-sized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and 1H-NMR experiments support a three-layer core-shell-corona nanoparticle structure. PMID:24053447

  13. Phenomenology of spectrally and temporally resolved infrared emissions from bomb detonations

    NASA Astrophysics Data System (ADS)

    Gross, Kevin; Dills, Anthony; Tuttle, Ron; Perram, Glen

    2002-10-01

    The remote sensing of infrared signatures from exothermic reactions during military operations, including missile launches, muzzle flashes, and bomb detonations has been studied using fast FTIR techniques. Battle space characterization includes the ability to classify the munitions type, size, and other characteristics. One possible approach to munitions classification is to understand the spectral and temporal signatures from explosive ordinance. To investigate this possibility, experimental data has been collected remotely from ground-based sensors, processed, and analyzed for several conventional munitions. Field observations of 56 detonation events included a set of aircraft delivered ordnance and a series of static ground detonations for a variety of bomb sizes, types and environmental conditions. The emission is well represented by a gray body with continuously decreasing temperature and characteristic decay times of 1-4 s, providing only limited variability with detonation conditions. However, the fireball size times the emissivity as a function of time can be determined from the spectra without imaging and provides a more sensitive signature. The degree of temporal overlap as a function of frequency for a pair of detonation events provides a very sensitive discriminator for explosion conditions. The temporal overlap decreases with increasing emission frequency for all the observed events, indicating more information content at higher frequencies. Finally, the temporal nature of the emissions has been analyzed, providing a significant reduction in the dimensionality of the data.

  14. Temporal variation of floc size and settling velocity in the Dollard estuary

    NASA Astrophysics Data System (ADS)

    Van der Lee, Willem T. B.

    2000-09-01

    Temporal changes in floc size and settling velocity were measured in the Dollard estuary with an under water video camera. The results show that the flocs in the Dollard are very heterogeneous and that larger flocs have much lower effective densities than smaller flocs. Due to this density decrease, floc settling velocities show only a minor increase with increasing floc size. Floc sizes and settling velocities correlate with the suspended sediment concentration (SSC) on a tidal time scale, but not on a seasonal time scale. On a seasonal time scale floc sizes depend on the binding properties of the sediment, while floc settling velocities show hardly any variation, as an increase in floc size is mainly counterbalanced by a decrease in floc density. Tidal variations in settling velocity occur but cannot be modeled solely as a function of SSC, as the relation between floc size/settling velocity and SSC constantly changes in time and space. Settling velocity variations throughout the tide can however be expressed as a function of tidal phase.

  15. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution, agar dilution plate count, and well-diffusion methods. Results On the basis of the semiquantitative analysis, there was a direct correlation between the reducing agent ratio and the percentage of zerovalent Cu. This was confirmed with the statistical analysis of population of Cu NPs from TEM micrographs. At lower reducing agent ratios, two phases coexist (Cu2O and zerovalent Cu) due to incomplete reduction of copper ions by the reducing agent; however, at higher reducing agent ratios, the Cu NPs consist mainly of zerovalent Cu. Crystallite size and relative particle size of stabilized Cu NPs showed considerable differences in results and tendencies in respect to TEM analysis. However, the relative particle size values obtained from FT of XRD data agreed well with the histograms from the TEM observations. From FT results, the relative particle size and reducing agent ratio of stabilized Cu NPs showed an inverse correlation. The incomplete reduction of copper ions at lower reducing agent ratios was also confirmed by DSC studies. FT-IR and 2D-IR correlation spectra analysis suggested the first event involved in the stabilization of Cu NPs is their electrostatic interaction with –C=O of carboxylate groups of NaAlg, followed by the interaction with the available O–C–O−, and finally with the –OH groups. Bacterial susceptibility to stabilized nanoparticles was found to vary depending on the bacterial strains. The lowest MIC and MBC of stabilized Cu NPs ranged between 2 mg/L and 8 mg/L for all studied strains. Disk-diffusion studies with both E. coli strains revealed greater effectiveness of the stabilized Cu NPs compared to the positive controls (cloxacillin, amoxicillin, and nitrofurantoin). S. aureus showed the highest sensitivity to stabilized Cu NPs compared to the other studied strains. Conclusion Cu NPs were successfully synthesized via chemical reduction assisted with microwave heating. Average particle size, polydispersity, and phase composition of Cu NPs depended mainly on the reducing agent ratio. Likewise, thermal stability and antibacterial activity of stabilized Cu NPs were affected by their phase composition. Because of the carboxylate groups in polymer chains, the structural changes of stabilized Cu NPs are different from those of NaAlg. NaAlg acted as a size controller and stabilizing agent of Cu NPs, due to their ability to bind strongly to the metal surface. Our study on the stabilizing agent–dependent structural changes of stabilized NPs is helpful for wide application of NaAlg as an important biopolymer. PMID:22848180

  16. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  17. Two baselines are better than one: Improving the reliability of computerized testing in sports neuropsychology.

    PubMed

    Bruce, Jared; Echemendia, Ruben; Tangeman, Lindy; Meeuwisse, Willem; Comper, Paul; Hutchison, Michael; Aubry, Mark

    2016-01-01

    Computerized neuropsychological tests are frequently used to assist in return-to-play decisions following sports concussion. However, due to concerns about test reliability, the Centers for Disease Control and Prevention recommends yearly baseline testing. The standard practice that has developed in baseline/postinjury comparisons is to examine the difference between the most recent baseline test and postconcussion performance. Drawing from classical test theory, the present study investigated whether temporal stability could be improved by taking an alternate approach that uses the aggregate of 2 baselines to more accurately estimate baseline cognitive ability. One hundred fifteen English-speaking professional hockey players with 3 consecutive Immediate Postconcussion Assessment and Testing (ImPACT) baseline tests were extracted from a clinical program evaluation database overseen by the National Hockey League and National Hockey League Players' Association. The temporal stability of ImPACT composite scores was significantly increased by aggregating test performance during Sessions 1 and 2 to predict performance during Session 3. Using this approach, the 2-factor Memory (r = .72) and Speed (r = .79) composites of ImPACT showed acceptable long-term reliability. Using the aggregate of 2 baseline scores significantly improves temporal stability and allows for more accurate predictions of cognitive change following concussion. Clinicians are encouraged to estimate baseline abilities by taking into account all of an athlete's previous baseline scores.

  18. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    PubMed

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  19. Sample size considerations using mathematical models: an example with Chlamydia trachomatis infection and its sequelae pelvic inflammatory disease.

    PubMed

    Herzog, Sereina A; Low, Nicola; Berghold, Andrea

    2015-06-19

    The success of an intervention to prevent the complications of an infection is influenced by the natural history of the infection. Assumptions about the temporal relationship between infection and the development of sequelae can affect the predicted effect size of an intervention and the sample size calculation. This study investigates how a mathematical model can be used to inform sample size calculations for a randomised controlled trial (RCT) using the example of Chlamydia trachomatis infection and pelvic inflammatory disease (PID). We used a compartmental model to imitate the structure of a published RCT. We considered three different processes for the timing of PID development, in relation to the initial C. trachomatis infection: immediate, constant throughout, or at the end of the infectious period. For each process we assumed that, of all women infected, the same fraction would develop PID in the absence of an intervention. We examined two sets of assumptions used to calculate the sample size in a published RCT that investigated the effect of chlamydia screening on PID incidence. We also investigated the influence of the natural history parameters of chlamydia on the required sample size. The assumed event rates and effect sizes used for the sample size calculation implicitly determined the temporal relationship between chlamydia infection and PID in the model. Even small changes in the assumed PID incidence and relative risk (RR) led to considerable differences in the hypothesised mechanism of PID development. The RR and the sample size needed per group also depend on the natural history parameters of chlamydia. Mathematical modelling helps to understand the temporal relationship between an infection and its sequelae and can show how uncertainties about natural history parameters affect sample size calculations when planning a RCT.

  20. Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.

    PubMed

    Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas

    2012-01-01

    This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.

  1. Spatiotemporal variation in reproductive parameters of yellow-bellied marmots.

    PubMed

    Ozgul, Arpat; Oli, Madan K; Olson, Lucretia E; Blumstein, Daniel T; Armitage, Kenneth B

    2007-11-01

    Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962-2004) of data from 17 locations and a capture-mark-recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (lambda). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in lambda. Our analysis indicated that lambda was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in lambda.

  2. Impaction grafted bone chip size effect on initial stability in an acetabular model: Mechanical evaluation.

    PubMed

    Holton, Colin; Bobak, Peter; Wilcox, Ruth; Jin, Zhongmin

    2013-01-01

    Acetabular bone defect reconstruction is an increasing problem for surgeons with patients undergoing complex primary or revision total hip replacement surgery. Impaction bone grafting is one technique that has favourable long-term clinical outcome results for patients who undergo this reconstruction method for acetabular bone defects. Creating initial mechanical stability of the impaction bone graft in this technique is known to be the key factor in achieving a favourable implant survival rate. Different sizes of bone chips were used in this technique to investigate if the size of bone chips used affected initial mechanical stability of a reconstructed acetabulum. Twenty acetabular models were created in total. Five control models were created with a cemented cup in a normal acetabulum. Then five models in three different groups of bone chip size were constructed. The three groups had an acetabular protrusion defect reconstructed using either; 2-4 mm(3), 10 mm(3) or 20 mm(3) bone chip size for impaction grafting reconstruction. The models underwent compression loading up to 9500 N and displacement within the acetabular model was measured indicating the initial mechanical stability. This study reveals that, although not statistically significant, the largest (20 mm(3)) bone chip size grafted models have an inferior maximum stiffness compared to the medium (10 mm(3)) bone chip size. Our study suggests that 10 mm(3) size of bone chips provide better initial mechanical stability compared to smaller or larger bone chips. We dismissed the previously held opinion that the biggest practically possible graft is best for acetabular bone graft impaction.

  3. Multiphasic Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.

    2014-01-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362

  4. Multiphasic scaffolds for periodontal tissue engineering.

    PubMed

    Ivanovski, S; Vaquette, C; Gronthos, S; Hutmacher, D W; Bartold, P M

    2014-12-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. © International & American Associations for Dental Research.

  5. The role of discharge variation in scaling of drainage area and food chain length in rivers

    USGS Publications Warehouse

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  6. The role of discharge variation in scaling of drainage area and food chain length in rivers.

    PubMed

    Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M

    2010-11-12

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  7. Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny

    PubMed Central

    Aragón, Pedro; Fitze, Patrick S.

    2014-01-01

    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025

  8. Size-frequency distribution, growth, and mortality of snow crab (Chionoecetes opilio) and arctic lyre crab (Hyas coarctatus) in the chukchi sea from 2009 to 2013

    NASA Astrophysics Data System (ADS)

    Groß, Jasmin; Konar, Brenda; Brey, Thomas; Grebmeier, Jacqueline M.

    2017-10-01

    The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.

  9. Temporal variability and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael

    2015-11-01

    Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.

  10. Test system stability and natural variability of a Lemna gibba L. bioassay.

    PubMed

    Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan

    2008-09-04

    In ecotoxicological and environmental studies Lemna spp. are used as test organisms due to their small size, rapid predominantly vegetative reproduction, easy handling and high sensitivity to various chemicals. However, there is not much information available concerning spatial and temporal stability of experimental set-ups used for Lemna bioassays, though this is essential for interpretation and reliability of results. We therefore investigated stability and natural variability of a Lemna gibba bioassay assessing area-related and frond number-related growth rates under controlled laboratory conditions over about one year. Lemna gibba L. was grown in beakers with Steinberg medium for one week. Area-related and frond number-related growth rates (r(area) and r(num)) were determined with a non-destructive image processing system. To assess inter-experimental stability, 35 independent experiments were performed with 10 beakers each in the course of one year. We observed changes in growth rates by a factor of two over time. These did not correlate well with temperature or relative humidity in the growth chamber. In order to assess intra-experimental stability, we analysed six systematic negative control experiments (nontoxicant tests) with 96 replicate beakers each. Evaluation showed that the chosen experimental set-up was stable and did not produce false positive results. The coefficient of variation was lower for r(area) (2.99%) than for r(num) (4.27%). It is hypothesised that the variations in growth rates over time under controlled conditions are partly due to endogenic periodicities in Lemna gibba. The relevance of these variations for toxicity investigations should be investigated more closely. Area-related growth rate seems to be more precise as non-destructive calculation parameter than number-related growth rate. Furthermore, we propose two new validity criteria for Lemna gibba bioassays: variability of average specific and section-by-section segmented growth rate, complementary to average specific growth rate as the only validity criterion existing in guidelines for duckweed bioassays.

  11. A model of metastable dynamics during ongoing and evoked cortical activity

    NASA Astrophysics Data System (ADS)

    La Camera, Giancarlo

    The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics. NSF IIS-1161852, NIDCD K25-DC013557, NIDCD R01-DC010389.

  12. Test System Stability and Natural Variability of a Lemna Gibba L. Bioassay

    PubMed Central

    Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan

    2008-01-01

    Background In ecotoxicological and environmental studies Lemna spp. are used as test organisms due to their small size, rapid predominantly vegetative reproduction, easy handling and high sensitivity to various chemicals. However, there is not much information available concerning spatial and temporal stability of experimental set-ups used for Lemna bioassays, though this is essential for interpretation and reliability of results. We therefore investigated stability and natural variability of a Lemna gibba bioassay assessing area-related and frond number-related growth rates under controlled laboratory conditions over about one year. Methology/Principal Findings Lemna gibba L. was grown in beakers with Steinberg medium for one week. Area-related and frond number-related growth rates (r(area) and r(num)) were determined with a non-destructive image processing system. To assess inter-experimental stability, 35 independent experiments were performed with 10 beakers each in the course of one year. We observed changes in growth rates by a factor of two over time. These did not correlate well with temperature or relative humidity in the growth chamber. In order to assess intra-experimental stability, we analysed six systematic negative control experiments (nontoxicant tests) with 96 replicate beakers each. Evaluation showed that the chosen experimental set-up was stable and did not produce false positive results. The coefficient of variation was lower for r(area) (2.99%) than for r(num) (4.27%). Conclusions/Significance It is hypothesised that the variations in growth rates over time under controlled conditions are partly due to endogenic periodicities in Lemna gibba. The relevance of these variations for toxicity investigations should be investigated more closely. Area-related growth rate seems to be more precise as non-destructive calculation parameter than number-related growth rate. Furthermore, we propose two new validity criteria for Lemna gibba bioassays: variability of average specific and section-by-section segmented growth rate, complementary to average specific growth rate as the only validity criterion existing in guidelines for duckweed bioassays. PMID:18769541

  13. Coherence properties of the radiation from FLASH

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2016-02-01

    Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  14. Design, fabrication, and operation of hybrid bionanodevices for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tucker, Robert Matthew

    Cells are the fundamental building blocks of life. Despite their simplicity, cells are extremely versatile, performing a variety of functions including detection, signaling, and repair. While current biomedical devices operate at the organ level, the next generation will operate at the cellular level, combining the nanoscale machinery of cells with the mechanical robustness of synthetic materials in the form of new hybrid devices. This thesis presents advances in four topics concerning the development of nanomedical devices: fabrication, stabilization, control, and operation. First, as feature sizes decrease from the milli- and microscale towards the nanoscale, new fabrication methods must be developed. A new rapid prototyping technique using confocal microscopy was used to produce freely-programmable high-resolution protein patterns of functional motor proteins on thermo-responsive polymer surfaces. Second, hybrid device operation should be temperature-independent, but most biological components have strong responses to temperature fluctuations. To counter operational fluctuations, the temperature-dependent enzymatic activity was characterized for two types of molecular motors with the goal of developing a bionanosystem which is stabilized against temperature fluctuations. Third, replacing electromechanical systems consisting of pumps and batteries with proteins that directly convert chemical potential into mechanical energy increases the efficiency and decreases the size of the bionanodevice, but requires new control methods. An enzymatic network was developed in which fuel was photolytically released to activate molecular shuttles, excess fuel was sequestered using an enzyme, and spatial and temporal control of the system was achieved. Finally, chemically powered bionanodevices will require high-precision nano- and microscale actuators. A two-part hybrid actuator was designed, which consists of a molecular motor-coated synthetic macroscale forcer and a microtubule-based stator. Methods to create and characterize the stator were developed, which can be used to optimize the force generation of the device.

  15. Rainfall-Runoff and Slope Failure in a Steep, Tropical Landscape

    NASA Astrophysics Data System (ADS)

    Deane, J.; Freyberg, D. L.

    2016-12-01

    Tropical forests are often located on short, steep slopes with pronounced heterogeneity in vegetation over small distances. Further, they are distinguished from their temperate counterparts by a thinner organic horizon, and large interannual and subseasonal variability in precipitation. However, hydrologic processes in tropical watersheds are difficult to quantify and study because of data scarcity, accessibility difficulties and complex topography. As a result, there has been little work on disentangling the effects of spatial and temporal heterogeneity on flow generation and slope failure on tropical hillslopes. In this work we analyze the connections between terrain properties, subsurface formation, land cover, and precipitation variability in changing water table dynamics at the interface between a thin soil mantle and underlying bedrock. We have developed a fully distributed integrated hydrologic model at two different scales: 1) a 100 m idealized hillslope (1 m model grid size) representative of physiographic regions on tropical islands and 2) a 48 sq. km tropical island watershed in Trinidad and Tobago (30 m model grid size) using ParFlow.CLM. Additionally, we couple Parflow to an infinite slope stability module to investigate the initiation of rainfall induced landslides under different precipitation scenarios. The characteristic hillslopes are used to used to generalize the near subsurface response of a soil-saprolite aquifer to a range of landscape properties. In particular, we investigate the role of mean slope, soil properties and road cuts in altering the partitioning of runoff and infiltration, and increasing slope stability. Moving from the idealized models to the steep tropical watershed, we evaluate the effects of different land cover and precipitation scenarios—consistent with climate change projections—on flooding and hillslope failure incidence.

  16. Stability and sensitivity of ABR flow control protocols

    NASA Astrophysics Data System (ADS)

    Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong

    1998-10-01

    This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.

  17. Characteristics of attention-related body sensations. Temporal stability and associations with measures of body focus, affect, sustained attention, and heart rate variability.

    PubMed

    Tihanyi, Benedek T; Ferentzi, Eszter; Köteles, Ferenc

    2017-09-01

    This study investigated the temporal stability and correlates of attention-related body sensations that emerge without external stimulation during rest and due to focused attention on a body part. To assess attention-related body sensations, participants were asked to focus on a freely chosen body area with closed eyes, and had to report whether the sensation of that area had changed. Self-report questionnaires were used to assess various aspects of body focus (body awareness, body responsiveness, somatosensory amplification, subjective somatic symptoms), and positive and negative affectivity. Previous experiences in body-mind therapies were also measured. PEBL Continuous Performance Test was used to assess sustained attention. Heart rate variability scores were based on a 3-minute long resting heart rate measurement. Fifty-eight university students (22.3 ± 3.95 years; 34 females) participated in the study. The stability of attention-related body sensations was measured 8 weeks later on a randomly chosen sub-group (n = 28). Attention-related body sensations showed a mediocre temporal stability (r ρ  = 0.47, p = 0.012). People reporting attention-related body sensations showed significantly higher body awareness, somatosensory amplification, and resting heart rate; and marginally higher somatic symptoms. No relation was found with body-mind practice, body responsiveness, positive and negative affect, the vagal component of heart rate variability, and performance in the sustained attention task. Attention-related sensations are relatively stable over time. They are connected to some, but not to all of the aspects of body focus. Further studies are needed to elaborate the influencing stable and situational factors.

  18. Does stability in local community composition depend on temporal variation in rates of dispersal and connectivity?

    NASA Astrophysics Data System (ADS)

    Valanko, Sebastian; Norkko, Joanna; Norkko, Alf

    2015-04-01

    In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.

  19. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs.

    PubMed

    Nali, Renato C; Zamudio, Kelly R; Haddad, Célio F B; Prado, Cynthia P A

    2014-12-01

    Sexual size dimorphism (SSD) varies in animals from male biased to female biased. The evolution of SSD is potentially influenced by a number of factors, such as territoriality, fecundity, and temporal breeding patterns (explosive vs. prolonged). In general, frogs show female-biased SSD with broad variance among species. Using comparative methods, we examine how different selective forces affect male and female sizes, and we test hypotheses about size-dependent mechanisms shaping SSD in frogs. Male size was weakly associated with SSD in all size classes, and we found no significant association among SSD, male size, temporal breeding pattern, and male territoriality. In contrast, female size best explained SSD variation across all size classes but especially for small-bodied species. We found a stronger evolutionary association between female body size and fecundity, and this fecundity advantage was highest in explosively breeding species. Our data indicate that the fecundity advantage associated with female body size may not be linear, such that intermediate and large females benefit less with body size increases. Therefore, size-dependent selection in females associated with fecundity and breeding patterns is an important mechanism driving SSD evolution in frogs. Our study underscores the fact that lineage-specific ecology and behavior should be incorporated in comparative analyses of animal SSD.

  20. Temporal Planning for Compilation of Quantum Approximate Optimization Algorithm Circuits

    NASA Technical Reports Server (NTRS)

    Venturelli, Davide; Do, Minh Binh; Rieffel, Eleanor Gilbert; Frank, Jeremy David

    2017-01-01

    We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus our initial experiments on Quantum Approximate Optimization Algorithm (QAOA) circuits that have few ordering constraints and allow highly parallel plans. We report on experiments using several temporal planners to compile circuits of various sizes to a realistic hardware. This early empirical evaluation suggests that temporal planning is a viable approach to quantum circuit compilation.

  1. Organised Motion in a Tall Spruce Canopy: Temporal Scales, Structure Spacing and Terrain Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph; Foken, Thomas

    2007-01-01

    This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L {/s -1} = 8 10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.

  2. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    PubMed

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  3. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less

  4. Fast depth decision for HEVC inter prediction based on spatial and temporal correlation

    NASA Astrophysics Data System (ADS)

    Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi

    2016-07-01

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.

  5. Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter.

    PubMed

    Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A

    2012-12-01

    It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.

  6. A robust measure of HIV-1 population turnover within chronically infected individuals.

    PubMed

    Achaz, G; Palmer, S; Kearney, M; Maldarelli, F; Mellors, J W; Coffin, J M; Wakeley, J

    2004-10-01

    A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be detected for samples separated by about 22 months or more. The performance of the method, which was originally proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations. Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be between 10(3) and 10(4) viruses, which is in agreement with some previous estimates. Using this estimate and a simple measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 x 10(-6) per site per generation in the gag-pol region. The definition and interpretation of estimates of such "effective" population parameters are discussed.

  7. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers.

    PubMed

    Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua

    2018-05-02

    The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.

  8. The relationship between national-level carbon dioxide emissions and population size: an assessment of regional and temporal variation, 1960-2005.

    PubMed

    Jorgenson, Andrew K; Clark, Brett

    2013-01-01

    This study examines the regional and temporal differences in the statistical relationship between national-level carbon dioxide emissions and national-level population size. The authors analyze panel data from 1960 to 2005 for a diverse sample of nations, and employ descriptive statistics and rigorous panel regression modeling techniques. Initial descriptive analyses indicate that all regions experienced overall increases in carbon emissions and population size during the 45-year period of investigation, but with notable differences. For carbon emissions, the sample of countries in Asia experienced the largest percent increase, followed by countries in Latin America, Africa, and lastly the sample of relatively affluent countries in Europe, North America, and Oceania combined. For population size, the sample of countries in Africa experienced the largest percent increase, followed countries in Latin America, Asia, and the combined sample of countries in Europe, North America, and Oceania. Findings for two-way fixed effects panel regression elasticity models of national-level carbon emissions indicate that the estimated elasticity coefficient for population size is much smaller for nations in Africa than for nations in other regions of the world. Regarding potential temporal changes, from 1960 to 2005 the estimated elasticity coefficient for population size decreased by 25% for the sample of Africa countries, 14% for the sample of Asia countries, 6.5% for the sample of Latin America countries, but remained the same in size for the sample of countries in Europe, North America, and Oceania. Overall, while population size continues to be the primary driver of total national-level anthropogenic carbon dioxide emissions, the findings for this study highlight the need for future research and policies to recognize that the actual impacts of population size on national-level carbon emissions differ across both time and region.

  9. Interactive effects of body-size structure and adaptive foraging on food-web stability.

    PubMed

    Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian

    2012-03-01

    Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.

  10. Stability with large step sizes for multistep discretizations of stiff ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Majda, George

    1986-01-01

    One-leg and multistep discretizations of variable-coefficient linear systems of ODEs having both slow and fast time scales are investigated analytically. The stability properties of these discretizations are obtained independent of ODE stiffness and compared. The results of numerical computations are presented in tables, and it is shown that for large step sizes the stability of one-leg methods is better than that of the corresponding linear multistep methods.

  11. On the temporal stability of personality: evidence for differential stability and the role of life experiences.

    PubMed

    Vaidya, Jatin G; Gray, Elizabeth K; Haig, Jeffrey; Watson, David

    2002-12-01

    The authors investigated the stability of personality and trait affect in young adults. In Studies 1 and 2, young adults were retested on a Big Five personality measure and a trait affect inventory over a 2.5-year and a 2-month period, respectively. Results from Study 1 point to positive mean-level changes; participants scored higher on Extraversion, Openness, Agreeableness, and Conscientiousness at Time 2. Affectively, participants experienced less negative affect and more positive affect at Time 2. Results from both retests provide clear evidence of differential stability. Affective traits were consistently less stable than the Big Five. Other analyses suggest that life events influence the stability of affective traits more than the Big Five.

  12. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    PubMed Central

    Kurakula, Mallesh; El-Helw, AM; Sobahi, Tariq R; Abdelaal, Magdy Y

    2015-01-01

    Cationic charged chitosan as stabilizer was evaluated in preparation of nanocrystals using probe sonication method. The influence of cationic charge densities of chitosan (low CSL, medium CSM, high CSH molecular weights) and Labrasol® in solubility enhancement and modifying the release was investigated, using atorvastatin (ATR) as poorly soluble model drug. Compared to CSM and CSH; low cationic charge of CSL acted as both electrostatic and steric stabilizer by significant size reduction to 394 nm with charge of 21.5 meV. Solubility of ATR-CSL increased to 60-fold relative to pure ATR and ATR-L. Nanocrystals were characterized for physiochemical properties. Scanning electron microscopy revealed scaffold-like structures with high surface area. X-ray powder diffractometry and differential scanning calorimetry revealed crystalline to slight amorphous state changes after cationic charge size reduction. Fourier transform-infrared spectra indicated no potent drug-excipient interactions. The enhanced dissolution profile of ATR-CSL indicates that sustained release was achieved compared with ATR-L and Lipitor®. Anti-hyperlipidemic performance was pH dependent where ATR-CSL exhibited 2.5-fold higher efficacy at pH 5 compared to pH 6 and Lipitor®. Stability studies indicated marked changes in size and charge for ATR-L compared to ATR-CSL exemplifying importance of the stabilizer. Therefore, nanocrystals developed with CSL as a stabilizer is a promising choice to enhance dissolution, stability, and in-vivo efficacy of major Biopharmaceutical Classification System II/IV drugs. PMID:25609947

  13. Aggregate stability as an indicator of soil erodibility and soil physical quality: review and perspectives

    NASA Astrophysics Data System (ADS)

    Le Bissonnais, Yves; Chenu, Claire; Darboux, Frédéric; Duval, Odile; Legout, Cédric; Leguédois, Sophie; Gumiere, Silvio

    2010-05-01

    Aggregate breakdown due to water and rain action may cause surface crusting, slumping, a reduction of infiltration and interrill erosion. Aggregate stability determines the capacity of aggregates to resist the effects of water and rainfall. In this paper, we evaluated and reviewed the relevance of an aggregate stability measurement to characterize soil physical properties as well as to analyse the processes involved in these properties. Stability measurement assesses the sensitivity of soil aggregates to various basic disaggregation mechanisms such as slaking, differential swelling, dispersion and mechanical breakdown. It has been showed that aggregate size distributions of structural stability tests matched the size distributions of eroded aggregates under rainfall simulations and that erosion amount was well predicted using aggregate stability indexes. It means stability tests could be used to estimate both the erodibility and the size fractions that are available for crust formation and erosion processes. Several studies showed that organic matter was one of the main soil properties affecting soil stability. However, it has also been showed that aggregate stability of a given soil could vary within a year or between years. The factors controlling such changes have still to be specified. Aggregate stability appears therefore as a complex property, depending both on permanent soil characteristics and on dynamic factors such as the crusting stage, the climate and the biological activity. Despite, and may be, because of this complexity, aggregate stability seems an integrative and powerful indicator of soil physical quality. Future research efforts should look at the causes of short-term changes of structural stability, in order to fully understand all its aspects.

  14. SOSlope: a new slope stability model for vegetated hillslopes

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.

    2016-12-01

    Roots contribute to increase soil strength but forces mobilized by roots depend on soil relative displacement. This effect is not included in models of slope stability. Here we present a new numerical model of shallow landslides for vegetated hillslopes that uses a strain-step loading approach for force redistributions within a soil mass including the effects of root strength in both tension and compression. The hillslope is discretized into a two-dimensional array of blocks connected by bonds. During a rainfall event the blocks's mass increases and the soil shear strength decreases. At each time step, we compute a factor of safety for each block. If the factor of safety of one or more blocks is less than one, those blocks are moved in the direction of the local active force by a predefined amount and the factor of safety is recalculated for all blocks. Because of the relative motion between blocks that have moved and those that remain stationary, mechanical bond forces between blocks that depend on relative displacement change, modifying the force balance. This relative motion triggers instantaneous force redistributions across the entire hillslope similar to a self-organized critical system. Looping over blocks and moving those that are unstable is repeated until all blocks are stable and the system reaches a new equilibrium, or, some blocks have failed causing a landslide. Spatial heterogeneity of vegetation is included by computing the root density and distribution as a function of distance form trees. A simple subsurface hydrological model based on dual permeability concepts is used to compute the temporal evolution of water content, pore-water pressure, suction stress, and soil shear strength. Simulations for a conceptual slope indicates that forces mobilized in tension and compression both contribute to the stability of the slope. However, the maximum tensional and compressional forces imparted by roots do not contribute simultaneously to the stability of the soil mass, in contrast to what is commonly assumed in models. Simulations with different tree sizes (different magnitude of root reinforcement) indicate that there is a threshold in tree spacing (or tree diameter) above (or below) which root density and root sizes no longer provide sufficient reinforcement to keep the slope stable during a rainfall event.

  15. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    NASA Astrophysics Data System (ADS)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.

  16. Body size distributions signal a regime shift in a lake ecosystem

    EPA Science Inventory

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this st...

  17. Gene length as a biological timer to establish temporal transcriptional regulation

    PubMed Central

    Kirkconnell, Killeen S.; Magnuson, Brian; Paulsen, Michelle T.; Lu, Brian; Bedi, Karan; Ljungman, Mats

    2017-01-01

    ABSTRACT Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs. PMID:28055303

  18. The balance between keystone clustering and bed roughness in experimental step-pool stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.

    2016-12-01

    Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.

  19. Colonial, more widely distributed and less abundant bird species undergo wider population fluctuations independent of their population trend

    PubMed Central

    Møller, Anders P.

    2017-01-01

    Understanding temporal variability in population size is important for conservation biology because wide population fluctuations increase the risk of extinction. Previous studies suggested that certain ecological, demographic, life-history and genetic characteristics of species might be related to the degree of their population fluctuations. We checked whether that was the case in a large sample of 231 European breeding bird species while taking a number of potentially confounding factors such as population trends or similarities among species due to common descent into account. When species-specific characteristics were analysed one by one, the magnitude of population fluctuations was positively related to coloniality, habitat, total breeding range, heterogeneity of breeding distribution and natal dispersal, and negatively related to urbanisation, abundance, relative number of subspecies, parasitism and proportion of polymorphic loci. However, when abundance (population size) was included in the analyses of the other parameters, only coloniality, habitat, total breeding range and abundance remained significantly related to population fluctuations. The analysis including all these predictors simultaneously showed that population size fluctuated more in colonial, less abundant species with larger breeding ranges. Other parameters seemed to be related to population fluctuations only because of their association with abundance or coloniality. The unexpected positive relationship between population fluctuations and total breeding range did not seem to be mediated by abundance. The link between population fluctuations and coloniality suggests a previously unrecognized cost of coloniality. The negative relationship between population size and population fluctuations might be explained by at least three types of non-mutually exclusive stochastic processes: demographic, environmental and genetic stochasticity. Measurement error in population indices, which was unknown, may have contributed to the negative relationship between population size and fluctuations, but apparently only to a minor extent. The association between population size and fluctuations suggests that populations might be stabilized by increasing population size. PMID:28253345

  20. Menstrual cycle and the temporal discrimination threshold.

    PubMed

    Mc Govern, Eavan M; O'Connor, Emer; Beiser, Ines; Williams, Laura; Butler, John S; Quinlivan, Brendan; Narasimham, Shruti; Beck, Rebecca; Reilly, Richard B; O'Riordan, Sean; Hutchinson, Michael

    2017-02-01

    The temporal discrimination threshold (TDT) is a proposed pre-clinical biomarker (endophenotype) for adult onset isolated focal dystonia (AOIFD). Age- and sex-related effects on temporal discrimination demonstrate that women, before the age of 40 years, have faster temporal discrimination than men but their TDTs worsen with age at almost three times the rate of men. Thus after 40 years the TDT in women is progressively worse than in men. AOIFD is an increasingly female-predominant disorder after the age of 40; it is not clear whether this age-related sexually-dimorphic difference observed for both the TDT and sex ratio at disease onset in AOIFD is a hormonal or chromosomal effect. The aim of this study was to examine temporal discrimination at weekly intervals during two consecutive menstrual cycles in 14 healthy female volunteers to determine whether physiological hormonal changes affected temporal discrimination. We observed no significant differences in weekly temporal discrimination threshold values during the menstrual cycles and no significant correlation with the menstrual cycle stage. This observed stability of temporal discrimination during cyclical hormonal change raises interesting questions concerning the age-related sexually-dimorphic decline observed in temporal discrimination. Our findings pave the way for future studies exploring potential pathomechanisms for this age-related deterioration.

  1. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  2. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  3. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  4. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE.

    PubMed

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis.

  5. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    PubMed Central

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M.; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis. PMID:28596729

  6. The Adenovirus Genome Contributes to the Structural Stability of the Virion

    PubMed Central

    Saha, Bratati; Wong, Carmen M.; Parks, Robin J.

    2014-01-01

    Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384

  7. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    PubMed Central

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  8. Effects of tree roots on shallow landslides distribution and frequency in the European Alps using a new physically-based discrete element model

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-04-01

    Shallow landslides are hillslope processes that play a key role in shaping landscapes in forested catchments. Shallow landslides are, in some regions, the dominant regulating mechanisms by which soil is delivered from the hillslopes to steep channels and fluvial systems. Several studies have highlighted the importance of roots to better understand mechanisms of root reinforcement and their contributions to the stabilization of hillslopes. In this context, the spatio-temporal distribution of root reinforcement has a major repercussion on the dynamic of sediment transport at the catchment scale and on the availability of productive soils. Here we present a new model for shallow slope stability calculations, SOSlope, that specifically considers the effects of root reinforcement on shallow landslide initiation. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. Tree roots govern tensile and compressive force redistribution and determine the stability of the slope, the timing, location, and dimension of the failure mass. We use SOSlope to quantify the role of protection forest in several localities in the European Alps, making use of detailed field measurements of root densities and root-size distribution, and root tensile and compressive strength for three species common in the Alps (spruce, fir, and beech) to compute landslide distributions and frequency during landslide-triggering rainfall events. We show the mechanisms by which tree roots impart reinforcement to slopes and offer protection against shallow landslides.

  9. Pitch and time, tonality and meter: how do musical dimensions combine?

    PubMed

    Prince, Jon B; Thompson, William F; Schmuckler, Mark A

    2009-10-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  10. X-ray generation using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-01

    Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.

  11. Tear thinning time and topical anesthesia as assessed using the HIRCAL grid and the NCCA.

    PubMed

    Blades, K J; Murphy, P J; Patel, S

    1999-03-01

    The literature contains conflicting reports of the effects of topical anesthetics on tear film stability, with some consensus that unpreserved topical anesthetics are less likely to reduce tear film stability than preserved preparations. This experiment investigated the effect of unpreserved 0.4% benoxinate hydrochloride on tear thinning time (TTT), in parallel with "real time" corneal sensitivity assessment. Tear film stability was assessed (HIRCAL grid) in parallel with real time assessment of the pharmacological activity (NCCA) of unpreserved 0.4% benoxinate hydrochloride in normal eyes. The anesthetic used did not significantly affect tear film stability. This finding is in agreement with previous investigators. Unpreserved 0.4% benoxinate hydrochloride could be used to facilitate tear film stability assessment. The experimental protocol used could also be applied to investigate the temporal relationship between anesthesia and tear film stability with preserved topical anesthetics that have been found to decrease tear film stability.

  12. Synchronisation and stability in river metapopulation networks.

    PubMed

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  13. Long-term stability and temporal trends of organic contaminants in four collections of mussel tissue frozen standard reference materials.

    PubMed

    Schantz, Michele M; Pugh, Rebecca S; Pol, Stacy S Vander; Wise, Stephen A

    2015-04-01

    The stability of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides in frozen mussel tissue Standard Reference Materials (SRMs) stored at -80 °C was assessed by analyzing samples of SRM 1974, SRM 1974a, and SRM 1974b Organics in Mussel Tissue (Mytilus edulis) periodically over 25 y, 20 y, and 12 y, respectively. The most recent analyses were performed during the certification of the fourth release of this material, SRM 1974c. Results indicate the concentrations of these persistent organic pollutants have not changed during storage at -80 °C. In addition, brominated diphenyl ethers (BDEs) were quantified in each of the materials during this study. The stability information is important for on-going monitoring studies collecting large quantities of samples for future analyses (i.e., formally established specimen banking programs). Since all four mussel tissue SRMs were prepared from mussels collected at the same site in Dorchester Bay, MA, USA, the results provide a temporal trend study for these contaminants over a 17 year period (1987 to 2004).

  14. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    PubMed

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Does Repeated Testing Impact Concordance Between Genital and Self-Reported Sexual Arousal in Women?

    PubMed

    Velten, Julia; Chivers, Meredith L; Brotto, Lori A

    2018-04-01

    Women show a substantial variability in their genital and subjective responses to sexual stimuli. The level of agreement between these two aspects of response is termed sexual concordance and has been increasingly investigated because of its implications for understanding models of sexual response and as a potential endpoint in clinical trials of treatments to improve women's sexual dysfunction. However, interpreting changes in sexual concordance may be problematic because, to date, it still is unclear how repeated testing itself influences sexual concordance in women. We are aware of only one study that evaluated temporal stability of concordance in women, and it found no evidence of stability. However, time stability would be necessary for arguing that concordance is a stable individual difference. The main goal of this study was to investigate the test-retest reliability of sexual concordance in a sample of 30 women with sexual difficulties. Using hierarchical linear modeling, we found that sexual concordance was not influenced by repeated testing 12 weeks later, but showed test-retest reliability suggesting temporal stability. Our findings support the hypothesis that sexual concordance is a relatively stable individual difference and that changes in sexual concordance after treatment or experimental conditions could, therefore, be attributed to effects of those conditions.

  16. Soil internal drainage: temporal stability and spatial variability in succession bean-black oat

    NASA Astrophysics Data System (ADS)

    Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.

    2012-04-01

    There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.

  17. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.

  18. Synthetic Constraint of Ecosystem C Models Using Radiocarbon and Net Primary Production (NPP) in New Zealand Grazing Land

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.

    2011-12-01

    Time-series radiocarbon measurements have substantial ability to constrain the size and residence time of the soil C pools commonly represented in ecosystem models. Radiocarbon remains unique in the ability to constrain the large stabilized C pool with decadal residence times. Radiocarbon also contributes usefully to constraining the size and turnover rate of the passive pool, but typically struggles to constrain pools with residence times less than a few years. Overall, the number of pools and associated turnover rates that can be constrained depends upon the number of time-series samples available, the appropriateness of chemical or physical fractions to isolate unequivocal pools, and the utility of additional C flux data to provide additional constraints. In New Zealand pasture soils, we demonstrate the ability to constrain decadal turnover times with in a few years for the stabilized pool and reasonably constrain the passive fraction. Good constraint is obtained with two time-series samples spaced 10 or more years apart after 1970. Three or more time-series samples further improve the level of constraint. Work within this context shows that a two-pool model does explain soil radiocarbon data for the most detailed profiles available (11 time-series samples), and identifies clear and consistent differences in rates of C turnover and passive fraction in Andisols vs Non-Andisols. Furthermore, samples from multiple horizons can commonly be combined, yielding consistent residence times and passive fraction estimates that are stable with, or increase with, depth in different sites. Radiocarbon generally fails to quantify rapid C turnover, however. Given that the strength of radiocarbon is estimating the size and turnover of the stabilized (decadal) and passive (millennial) pools, the magnitude of fast cycling pool(s) can be estimated by subtracting the radiocarbon-based estimates of turnover within stabilized and passive pools from total estimates of NPP. In grazing land, these estimates can be derived primarily from measured aboveground NPP and calculated belowground NPP. Results suggest that only 19-36% of heterotrophic soil respiration is derived from the soil C with rapid turnover times. A final logical step in synthesis is the analysis of temporal variation in NPP, primarily due to climate, as driver of changes in plant inputs and resulting in dynamic changes in rapid and decadal soil C pools. In sites with good time series samples from 1959-1975, we examine the apparent impacts of measured or modelled (Biome-BGC) NPP on soil Δ14C. Ultimately, these approaches have the ability to empirically constrain, and provide limited verification, of the soil C cycle as commonly depicted ecosystem biogeochemistry models.

  19. Metabolic rate and body size are linked with perception of temporal information☆

    PubMed Central

    Healy, Kevin; McNally, Luke; Ruxton, Graeme D.; Cooper, Natalie; Jackson, Andrew L.

    2013-01-01

    Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation. PMID:24109147

  20. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy.

    PubMed

    Jiang, Xiaoyu; Li, Hua; Xie, Jingping; McKinley, Eliot T; Zhao, Ping; Gore, John C; Xu, Junzhong

    2017-07-01

    A temporal diffusion MRI spectroscopy based approach has been developed to quantify cancer cell size and density in vivo. A novel imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) method selects a specific limited diffusion spectral window for an accurate quantification of cell sizes ranging from 10 to 20 μm in common solid tumors. In practice, it is achieved by a combination of a single long diffusion time pulsed gradient spin echo (PGSE) and three low-frequency oscillating gradient spin echo (OGSE) acquisitions. To validate our approach, hematoxylin and eosin staining and immunostaining of cell membranes, in concert with whole slide imaging, were used to visualize nuclei and cell boundaries, and hence, enabled accurate estimates of cell size and cellularity. Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes were obtained in vivo for three types of human colon cancers. The IMPULSED-derived apparent cellularities showed a stronger correlation (r = 0.81; P < 0.0001) with histology-derived cellularities than conventional ADCs (r = -0.69; P < 0.03). The IMPULSED approach samples a specific region of temporal diffusion spectra with enhanced sensitivity to length scales of 10-20 μm, and enables measurements of cell sizes and cellularities in solid tumors in vivo. Magn Reson Med 78:156-164, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Smaller predator-prey body size ratios in longer food chains.

    PubMed Central

    Jennings, Simon; Warr, Karema J

    2003-01-01

    Maximum food-chain length has been correlated with resource availability, ecosystem size, environmental stability and colonization history. Some of these correlations may result from environmental effects on predator-prey body size ratios. We investigate relationships between maximum food-chain length, predator-prey mass ratios, primary production and environmental stability in marine food webs with a natural history of community assembly. Our analyses provide empirical evidence that smaller mean predator-prey body size ratios are characteristic of more stable environments and that food chains are longer when mean predator-prey body size ratios are small. We conclude that environmental effects on predator-prey body size ratios contribute to observed differences in maximum food-chain length. PMID:12965034

  2. Advances in the stability of high precision crystal resonators

    NASA Technical Reports Server (NTRS)

    Ballato, A.; Vig, J. R.

    1979-01-01

    Advances in technology directed toward minimizing the temporal changes in frequency of crystal resonators are described. Specific emphasis is placed on reducing their susceptibility to temperature, acceleration, and other environmental effects.

  3. Felder-Soloman's Index of Learning Styles: internal consistency, temporal stability, and factor structure.

    PubMed

    Hosford, Charles C; Siders, William A

    2010-10-01

    Strategies to facilitate learning include using knowledge of students' learning style preferences to inform students and their teachers. Aims of this study were to evaluate the factor structure, internal consistency, and temporal stability of medical student responses to the Index of Learning Styles (ILS) and determine its appropriateness as an instrument for medical education. The ILS assesses preferences on four dimensions: sensing/intuitive information perceiving, visual/verbal information receiving, active/reflective information processing, and sequential/global information understanding. Students entering the 2002-2007 classes completed the ILS; some completed the ILS again after 2 and 4 years. Analyses of responses supported the ILS's intended structure and moderate reliability. Students had moderate preferences for sensing and visual learning. This study provides evidence supporting the appropriateness of the ILS for assessing learning style preferences in medical students.

  4. Resilience and stability of Cymodocea nodosa seagrass meadows over the last four decades in a Mediterranean lagoon

    NASA Astrophysics Data System (ADS)

    Garrido, Marie; Lafabrie, Céline; Torre, Franck; Fernandez, Catherine; Pasqualini, Vanina

    2013-09-01

    Understanding what controls the capacity of a coastal lagoon ecosystem to recover following climatic and anthropogenic perturbations and how these perturbations can alter this capacity is critical to efficient environmental management. The goal of this study was to examine the resilience and stability of Cymodocea nodosa-dominated seagrass meadows in Urbino lagoon (Corsica, Mediterranean Sea) by characterizing the spatio-temporal dynamics of seagrass meadows over a 40-year period and comparing (anthropogenic and climatic) environmental fluctuations. The spatio-temporal evolution of seagrass meadows was investigated using previous maps (1973, 1979, 1990, 1994, 1996, 1999) and a 2011 map realized by aerial photography-remote sensing combined with GIS technology. Environmental fluctuation was investigated via physical-chemical parameters (rainfall, water temperature, salinity, turbidity, dissolved oxygen) and human-impact changes (aquaculture, artificial channel). The results showed a severe decline (estimated at -49%) in seagrass meadows between 1973 and 1994 followed by a period of strong recovery (estimated to +42%) between 1994 and 2011. Increased turbidity, induced either by rainfall events, dredging or phytoplankton growth, emerged as the most important driver of the spatio-temporal evolution of Cymodocea nodosa-dominated meadows in Urbino lagoon over the last four decades. Climate events associated to increased turbidity and reduced salinity and temperature could heavily impact seagrass dynamics. This study shows that Urbino lagoon, a system relatively untouched by human impact, shelters seagrass meadows that exhibit high resilience and stability.

  5. Polymer Stabilized Nanosuspensions Formed via Flash Nanoprecipitation: Nanoparticle Formation, Formulation, and Stability

    NASA Astrophysics Data System (ADS)

    Zhu, ZhengXi

    Nanoparticles loaded with hydrophobic components (e.g., active pharmaceutical ingredients, medical diagnostic agents, nutritional or personal care chemicals, catalysts, dyes/pigments, and substances with exceptional magnetic/optical/electronic/thermal properties) have tremendous industrial applications. The common desire is to efficiently generate nanoparticles with a desired size, size distribution, and size stability. Recently, Flash NanoPrecipition (FNP) technique with a fast, continuous, and easily scalable process has been developed to efficiently generate hydrophobe-loaded nanoparticles. This dissertation extended this technique, optimized process conditions and material formulations, and gave new insights into the mechanism and kinetics of nanoparticle formation. This dissertation demonstrated successful generation of spherical beta-carotene nanoparticles with an average diameter of 50--100 nm (90 wt% nanoparticles below 200 nm), good size stability (maintained an average diameter below 200 nm for at least one week in saline), and much higher loading (80--90 wt%) than traditional carriers, such as micelles and polymersomes (typically <20 wt%). Moreover, the nanoparticles are amorphous and expected to have a high dissolution rate and bioavailability. To give insights into the mechanism and kinetics of nanoparticle formation, much remarkable evidence supported the kinetically frozen structures of the nanoparticles rather than the thermodynamic equilibrium micelles. Time scales of the particle formation via FNP were proposed. To optimize the material formulations, either polyelectrolytes (i.e., epsilon-polylysine, branched and linear poly(ethylene imine), and chitosan) or amphiphilic diblock copolymers (i.e., polystyrene-b-poly(ethylene glycol) (PS-b-PEG), polycarprolactone-b-poly(ethylene glycol) (PCL-b-PEG), poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)) were selectively screened to study the nanoparticle size, distribution, and stability. The effect of the molecular weight of the polymers and pH were also studied. Chitosan and PLGA-b-PEG best stabilized the beta-carotene nanoparticles. Solubility of the hydrophobic drug solute in the aqueous mixture was considered to dominate the nanoparticle stability (i.e., size and morphology) in terms of Ostwald ripening and recrystallization. The lower solubility the drug is of, the greater stability the nanoparticles have. Chemically bonding drug compounds with cleavable hydrophobic moieties to form prodrugs were used to enhance their hydrophobicity and thus the nanoparticle stability. It opened a generic strategy to enhance the stability of nanoparticles formed via FNP. beta-carotene, paclitaxel, paclitaxel prodrug, betulin, hydrocortisone, and hydrocortisone prodrug as the drugs were studied. Solubility parameter (delta), and octanol/water partition coefficients (LogP), provide hydrophobicity indicators for the compounds. LogP showed a good correlation with the nanoparticle stability. An empirical rule was built to conveniently predict particle stability for randomly selected drugs. To optimize the process conditions, two-stream confined impinging jet mixer (CIJ) and four-stream confined vortex jet mixer were used. The particle size was studied by varying drug and polymer concentrations, and flow rate (corresponding to Reynolds number (Re)). To extend the FNP technique, this dissertation demonstrated successful creation of stabilized nanoparticles by integrating an in-situ reactive coupling of a hydrophilic polymer block with a hydrophobic one with FNP. The kinetics of the fast coupling reaction was studied. This dissertation also introduced polyelectrolytes (i.e., epsilon-polylysine, poly(ethylene imine), and chitosan) into FNP to electrosterically stabilize nanoparticles.

  6. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The date-delay framing effect in temporal discounting depends on substance abuse.

    PubMed

    Klapproth, Florian

    2012-07-01

    In the present study, individuals with substance use disorders (n=30) and non-addicted controls (n=30) were presented with a delay-discounting task with time being described either as dates or as temporal intervals. Three main results were obtained. First, in both groups reward size had a large impact on discounting future rewards, with discount rates becoming larger with smaller reward sizes. Second, participants discounted future rewards less strongly when their time of delivery was presented as a date instead of a temporal distance. Third, whereas discount rates of individuals with substance use disorders varied substantially with regard to the presentation of time in the task, the controls changed their choices depending on time presentation only slightly. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  9. Temporal artery biopsy size does not matter.

    PubMed

    Kaptanis, Sarantos; Perera, Joanne K; Halkias, Constantine; Caton, Nadine; Alarcon, Lida; Vig, Stella

    2014-12-01

    This study aimed to clarify whether positive temporal artery biopsies had a greater sample length than negative biopsies in temporal arteritis. It has been suggested that biopsy length should be at least 1 cm to improve diagnostic accuracy. A retrospective review of 149 patients who had 151 temporal artery biopsies was conducted. Twenty biopsies were positive (13.3%), 124 negative (82.1%) and seven samples were insufficient (4.6%). There was no clinically significant difference in the mean biopsy size between positive (0.7 cm) and negative samples (0.65 cm) (t-test: p = .43 NS). Ninety-four patients fulfilled all three ACR criteria prior to biopsy (62.3%) and four patients (2.6%) changed ACR score from 2 to 3 after biopsy. Treatment should not be delayed in anticipation of the biopsy or withheld in the case of a negative biopsy if the patient's symptoms improve. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Dynamics of morphological evolution in experimental Escherichia coli populations.

    PubMed

    Cui, F; Yuan, B

    2016-08-30

    Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.

  11. Influence of temporal pressure constraint on the biomechanical organization of gait initiation made with or without an obstacle to clear.

    PubMed

    Yiou, Eric; Fourcade, Paul; Artico, Romain; Caderby, Teddy

    2016-06-01

    Many daily motor tasks have to be performed under a temporal pressure constraint. This study aimed to explore the influence of such constraint on motor performance and postural stability during gait initiation. Young healthy participants initiated gait at maximal velocity under two conditions of temporal pressure: in the low-pressure condition, gait was self-initiated (self-initiated condition, SI); in the high-pressure condition, it was initiated as soon as possible after an acoustic signal (reaction-time condition, RT). Gait was initiated with and without an environmental constraint in the form of an obstacle to be cleared placed in front of participants. Results showed that the duration of postural adjustments preceding swing heel-off ("anticipatory postural adjustments", APAs) was shorter, while their amplitude was larger in RT compared to SI. These larger APAs allowed the participants to reach equivalent postural stability and motor performance in both RT and SI. In addition, the duration of the execution phase of gait initiation increased greatly in the condition with an obstacle to be cleared (OBST) compared to the condition without an obstacle (NO OBST), thereby increasing lateral instability and thus involving larger mediolateral APA. Similar effects of temporal pressure were obtained in NO OBST and OBST. This study shows the adaptability of the postural system to temporal pressure in healthy young adults initiating gait. The outcome of this study may provide a basis for better understanding the aetiology of balance impairments with the risk of falling in frail populations while performing daily complex tasks involving a whole-body progression.

  12. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  13. Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2002-01-01

    It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.

  14. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  15. Development of the jugular bulb: a radiologic study.

    PubMed

    Friedmann, David R; Eubig, Jan; McGill, Megan; Babb, James S; Pramanik, Bidyut K; Lalwani, Anil K

    2011-10-01

    Jugular bulb (JB) abnormalities such as JB diverticulum and high-riding JBs of the temporal bone can erode into the inner ear and present with hearing loss, vestibular disturbance, and pulsatile tinnitus. Their cause and potential to progress remain to be studied. This comprehensive radiologic study investigates the postnatal development of the venous system from transverse sinus to internal jugular vein (IJV). Academic medical center. PATIENTS, INTERVENTION, MAIN OUTCOME MEASURE: Measurements of the transverse and sigmoid sinus, the JB, IJV, and carotid artery were made from computed tomographic scans of the neck with intravenous contrast in infants (n = 5), children (n = 13), adults (n = 35), and the elderly (n = 15). Jugular bulbs were not detected in patients younger than 2 years, enlarged in adulthood, and remained stable in the elderly. The venous system was larger in men than in women. From transverse sinus to IJV, the greatest variation in size was just proximal and distal to the JB with greater symmetry observed as blood returned to the heart. Right-sided venous dominance was most common occurring in 70% to 80% of cases. The JB is a dynamic structure that forms after 2 years, and its size stabilizes in adulthood. The determinants in its exact position and size are multifactorial and may be related to blood flow. Improved understanding of this structure's development may help to better understand the cause of the high-riding JB and JB diverticulum, both of which may cause clinical symptoms.

  16. Stabilized wide bandgap MAPbBr xI 3-x perovskite by enhanced grain size and improved crystallinity

    DOE PAGES

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; ...

    2015-12-07

    In this study, the light instability of CH 3NH 3PbI xBr 3–x has been raised one of the biggest challenges for its application in tandem solar cells. Here we show that an improved crystallinity and grain size of CH 3NH 3PbI xBr 3–x films could stabilize these materials under one sun illumination, improving both the efficiency and stability of the wide-bandgap perovskite solar cells.

  17. Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking.

    PubMed

    Chini, Giorgia; Ranavolo, Alberto; Draicchio, Francesco; Casali, Carlo; Conte, Carmela; Martino, Giovanni; Leonardi, Luca; Padua, Luca; Coppola, Gianluca; Pierelli, Francesco; Serrao, Mariano

    2017-02-01

    This study aims to evaluate trunk local stability in a group of patients with degenerative primary cerebellar ataxia and to correlate it with spatio-temporal parameters, clinical variables, and history of falls. Sixteen patients affected by degenerative cerebellar ataxia and 16 gender- and age-matched healthy adults were studied by means of an inertial sensor to measure trunk kinematics and spatio-temporal parameters during over-ground walking. Trunk local dynamic stability was quantified by the maximum Lyapunov exponent with short data series of the acceleration data. According to this index, low values indicate more stable trunk dynamics, while high values denote less stable trunk dynamics. Disease severity was assessed by means of International Cooperative Ataxia Rating Scale (ICARS) according to which higher values correspond to more severe disease, while lower values correspond to less severe disease.Patients displayed a higher short-term maximum Lyapunov exponent than controls in all three spatial planes, which was correlated with the age, onset of the disease, and history of falls. Furthermore, the maximum Lyapunov exponent was negatively correlated with ICARS balance, ICARS posture, and ICARS total scores.These findings indicate that trunk local stability during gait is lower in patients with cerebellar degenerative ataxia than that in healthy controls and that this may increase the risk of falls. Local dynamic stability of the trunk seems to be an important aspect in patients with ataxia and could be a useful tool in the evaluation of rehabilitative and pharmacological treatment outcomes.

  18. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN

    PubMed Central

    Hohmann, Nora; Wolf, Eva M.

    2015-01-01

    The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304

  19. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    PubMed

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears.

  20. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  1. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems.

    PubMed

    Vasconcelos, Teófilo; Marques, Sara; Sarmento, Bruno

    2018-02-01

    Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance. Copyright © 2017. Published by Elsevier B.V.

  2. Thermal Stability of Zone Melting p-Type (Bi, Sb)2Te3 Ingots and Comparison with the Corresponding Powder Metallurgy Samples

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu

    2018-04-01

    During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.

  3. Adaptive correlation filter-based video stabilization without accumulative global motion estimation

    NASA Astrophysics Data System (ADS)

    Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil

    2014-12-01

    We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.

  4. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.

    PubMed

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte

    2018-07-30

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution.

    PubMed

    Beirowski, Jakob; Inghelbrecht, Sabine; Arien, Albertina; Gieseler, Henning

    2011-05-01

    It has been recently reported in the literature that using a fast freezing rate during freeze-drying of drug nanosuspensions is beneficial to preserve the original particle size distribution. All freezing rates studied were obtained by utilizing a custom-made apparatus and were then indirectly related to conventional vial freeze-drying. However, a standard freeze-dryer is only capable of achieving moderate freezing rates in the shelf fluid circulation system. Therefore, it was the purpose of the present study to evaluate the possibility to establish a typical freezing protocol applicable to a standard freeze-drying unit in combination with an adequate choice of cryoprotective excipients and steric stabilizers to preserve the original particle size distribution. Six different drug nanosuspensions containing itraconazole as a drug model were studied using freeze-thaw experiments and a full factorial design to reveal major factors for the stabilization of drug nanosuspensions and the corresponding interactions. In contrast to previous reports, the freezing regime showed no significant influence on preserving the original particle size distribution, suggesting that the concentrations of both the steric stabilizer and the cryoprotective agent are optimized. Moreover, it could be pinpointed that the combined effect of steric stabilizer and cryoprotectant clearly contribute to nanoparticle stability. Copyright © 2010 Wiley-Liss, Inc.

  6. Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality.

    PubMed

    Ramezani-Dakhel, Hadi; Mirau, Peter A; Naik, Rajesh R; Knecht, Marc R; Heinz, Hendrik

    2013-04-21

    Surfactant-stabilized metal nanoparticles have shown promise as catalysts although specific surface features and their influence on catalytic performance have not been well understood. We quantify the thermodynamic stability, the facet composition of the surface, and distinct atom types that affect rates of atom leaching for a series of twenty near-spherical Pd nanoparticles of 1.8 to 3.1 nm size using computational models. Cohesive energies indicate higher stability of certain particles that feature an approximate 60/20/20 ratio of {111}, {100}, and {110} facets while less stable particles exhibit widely variable facet composition. Unique patterns of atom types on the surface cause apparent differences in binding energies and changes in reactivity. Estimates of the relative rate of atom leaching as a function of particle size were obtained by the summation of Boltzmann-weighted binding energies over all surface atoms. Computed leaching rates are in good qualitative correlation with the measured catalytic activity of peptide-stabilized Pd nanoparticles of the same shape and size in Stille coupling reactions. The agreement supports rate-controlling contributions by atom leaching in the presence of reactive substrates. The computational approach provides a pathway to estimate the catalytic activity of metal nanostructures of engineered shape and size, and possible further refinements are described.

  7. Self-associated submicron IgG1 particles for pulmonary delivery: effects of non-ionic surfactants on size, shape, stability, and aerosol performance.

    PubMed

    Srinivasan, Asha R; Shoyele, Sunday A

    2013-03-01

    The ability to produce submicron particles of monoclonal antibodies of different sizes and shapes would enhance their application to pulmonary delivery. Although non-ionic surfactants are widely used as stabilizers in protein formulations, we hypothesized that non-ionic surfactants will affect the shape and size of submicron IgG particles manufactured through precipitation. Submicron particles of IgG1 were produced by a precipitation process which explores the fact that proteins have minimum solubility but maximum precipitation at the isoelectric point. Non-ionic surfactants were used for size and shape control, and as stabilizing agents. Aerosol performance of the antibody nanoparticles was assessed using Andersen Cascade Impactor. Spinhaler® and Handihaler® were used as model DPI devices. SEM micrographs revealed that the shape of the submicron particles was altered by varying the type of surfactant added to the precipitating medium. Particle size as measured by dynamic light scattering was also varied based on the type and concentration of the surfactant. The surfactants were able to stabilize the IgG during the precipitation process. Polyhedral, sponge-like, and spherical nanoparticles demonstrated improved aerosolization properties compared to irregularly shaped (>20 μm) unprocessed particles. Stable antibody submicron particles of different shapes and sizes were prepared. Careful control of the shape of such particles is critical to ensuring optimized lung delivery by dry powder inhalation.

  8. Lentil and chickpea protein-stabilized emulsions: optimization of emulsion formulation.

    PubMed

    Can Karaca, Asli; Nickerson, Michael T; Low, Nicholas H

    2011-12-28

    Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.

  9. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana

    PubMed Central

    Wang, Zhibiao; Ru, Licong; Baekelandt, Alexandra; Goossens, Alain; Xu, Ran; Zhu, Zhengge; Inzé, Dirk; Li, Yunhai

    2018-01-01

    Organ size control is of particular importance for developmental biology and agriculture, but the mechanisms underlying organ size regulation remain elusive in plants. Meristemoids, which possess stem cell-like properties, have been recognized to play important roles in leaf growth. We have recently reported that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3) promotes meristemoid proliferation and regulates organ size by influencing the stability of the transcriptional regulators PEAPODs (PPDs). Here we demonstrate that KIX8 and KIX9, which function as adaptors for the corepressor TOPLESS and PPD, are novel substrates of SAP. SAP interacts with KIX8/9 and modulates their protein stability. Further results show that SAP acts in a common pathway with KIX8/9 and PPD to control organ growth by regulating meristemoid cell proliferation. Thus, these findings reveal a molecular mechanism by which SAP targets the KIX-PPD repressor complex for degradation to regulate meristemoid cell proliferation and organ size. PMID:29401459

  10. Focus expansion and stability of the spread parameter estimate of the power law model for dispersal gradients

    PubMed Central

    Gent, David H.; Mehra, Lucky K.; Christie, David; Magarey, Roger

    2017-01-01

    Empirical and mechanistic modeling indicate that pathogens transmitted via aerially dispersed inoculum follow a power law, resulting in dispersive epidemic waves. The spread parameter (b) of the power law model, which is an indicator of the distance of the epidemic wave front from an initial focus per unit time, has been found to be approximately 2 for several animal and plant diseases over a wide range of spatial scales under conditions favorable for disease spread. Although disease spread and epidemic expansion can be influenced by several factors, the stability of the parameter b over multiple epidemic years has not been determined. Additionally, the size of the initial epidemic area is expected to be strongly related to the final epidemic extent for epidemics, but the stability of this relationship is also not well established. Here, empirical data of cucurbit downy mildew epidemics collected from 2008 to 2014 were analyzed using a spatio-temporal model of disease spread that incorporates logistic growth in time with a power law function for dispersal. Final epidemic extent ranged from 4.16 ×108 km2 in 2012 to 6.44 ×108 km2 in 2009. Current epidemic extent became significantly associated (P < 0.0332; 0.56 < R2 < 0.99) with final epidemic area beginning near the end of April, with the association increasing monotonically to 1.0 by the end of the epidemic season in July. The position of the epidemic wave-front became exponentially more distant with time, and epidemic velocity increased linearly with distance. Slopes from the temporal and spatial regression models varied with about a 2.5-fold range across epidemic years. Estimates of b varied substantially ranging from 1.51 to 4.16 across epidemic years. We observed a significant b ×time (or distance) interaction (P < 0.05) for epidemic years where data were well described by the power law model. These results suggest that the spread parameter b may not be stable over multiple epidemic years. However, b ≈ 2 may be considered the lower limit of the distance traveled by epidemic wave-fronts for aerially transmitted pathogens that follow a power law dispersal function. PMID:28649473

  11. Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by Humic Substances in Iron Bioavailability to Plants.

    PubMed

    Kulikova, Natalia A; Polyakov, Alexander Yu; Lebedev, Vasily A; Abroskin, Dmitry P; Volkov, Dmitry S; Pankratov, Denis A; Klein, Olga I; Senik, Svetlana V; Sorkina, Tatiana A; Garshev, Alexey V; Veligzhanin, Alexey A; Garcia Mina, Jose M; Perminova, Irina V

    2017-12-27

    Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (<5 nm) with inclusions of larger crystalline particles (the mean size of (11 ± 4) nm). The other material was composed of well-crystalline feroxyhyte (δ'-FeOOH) NPs with mean transverse sizes of (35 ± 20) nm stabilized by small amounts of HS. Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).

  12. Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces.

    PubMed

    Wei, Yujie; Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa

    2016-01-01

    The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate hierarchy theory to some extent along the weathering gradient and different forms of sesquioxides perform their specific roles in the formation and stabilization of different size aggregates.

  13. Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces

    PubMed Central

    Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa

    2016-01-01

    The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate hierarchy theory to some extent along the weathering gradient and different forms of sesquioxides perform their specific roles in the formation and stabilization of different size aggregates. PMID:27529618

  14. Characteristics of the inductive nitrogen laser generation

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapoltsev, E. S.

    2016-05-01

    The results of the experimental study of energy, temporal, spectral and spatial characteristics of UV inductive laser generation are presented. The study has identified a number of characteristics which demonstrate the differences between electron parameters of inductively coupled plasma and the plasma of longitudinal and transverse electrical discharges. The mechanism of simultaneous occurrence of Lewis-Rayleigh afterglow representing transitions between higher vibrational substates of B3Πg and A3∑u+ states; laser generation at C3Πu→B3Πg transition as well as the absence of IR radiation at 1st positive system typical for electrical discharge nitrogen lasers has been thoroughly researched. The major characteristic is ring shaped laser beam which size and width depend on excitation conditions. Inductive UV nitrogen laser is found to operate in ASE regime, but has a low divergence of 0.4±0.1 mrad and high pulse-to-pulse stability (laser pulse deviation amplitude did not exceed 1%).

  15. Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time

    PubMed Central

    Chiu, Hsin-Yi; Deng, Wen; Engelke, Hanna; Helma, Jonas; Leonhardt, Heinrich; Bein, Thomas

    2016-01-01

    Chromobodies have recently drawn great attention as bioimaging nanotools. They offer high antigen binding specificity and affinity comparable to conventional antibodies, but much smaller size and higher stability. Chromobodies can be used in live cell imaging for specific spatio-temporal visualization of cellular processes. To date, functional application of chromobodies requires lengthy genetic manipulation of the target cell. Here, we develop multifunctional large-pore mesoporous silica nanoparticles (MSNs) as nanocarriers to directly transport chromobodies into living cells for antigen-visualization in real time. The multifunctional large-pore MSNs feature high loading capacity for chromobodies, and are efficiently taken up by cells. By functionalizing the internal MSN surface with nitrilotriacetic acid-metal ion complexes, we can control the release of His6-tagged chromobodies from MSNs in acidified endosomes and observe successful chromobody-antigen binding in the cytosol. Hence, by combining the two nanotools, chromobodies and MSNs, we establish a new powerful approach for chromobody applications in living cells. PMID:27173765

  16. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys. The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization. In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth and alpha → gamma phase transformation in Fe-Ni-Zr alloys. In addition to the experimental study of thermal stabilization of nanocrystalline Fe-Cr-Zr or Fe-Ni-Zr alloys, the thesis presented here developed a new predictive model, applicable to strongly segregating solutes, for thermodynamic stabilization of binary alloys. This model can serve as a benchmark for selecting solute and evaluating the possible contribution of stabilization. Following a regular solution model, both the chemical and elastic strain energy contributions are combined to obtain the mixing enthalpy. The total Gibbs free energy of mixing is then minimized with respect to simultaneous variations in the grain boundary volume fraction and the solute concentration in the grain boundary and the grain interior. The Lagrange multiplier method was used to obtained numerical solutions. Application are given for the temperature dependence of the grain size and the grain boundary solute excess for selected binary system where experimental results imply that thermodynamic stabilization could be operative. This thesis also extends the binary model to a new model for thermodynamic stabilization of ternary nanocrystalline alloys. It is applicable to strongly segregating size-misfit solutes and uses input data available in the literature. In a same manner as the binary model, this model is based on a regular solution approach such that the chemical and elastic strain energy contributions are incorporated into the mixing enthalpy DeltaHmix, and the mixing entropy DeltaSmix is obtained using the ideal solution approximation. The Gibbs mixing free energy Delta Gmix is then minimized with respect to simultaneous variations in grain growth and solute segregation parameters. The Lagrange multiplier method is similarly used to obtain numerical solutions for the minimum Delta Gmix. The temperature dependence of the nanocrystalline grain size and interfacial solute excess can be obtained for selected ternary systems. As an example, model predictions are compared to experimental results for Fe-Cr-Zr and Fe-Ni-Zr alloy systems. Consistency between the experimental results and the present model predictions provide a more rigorous criterion for investigating thermal stabilization. However, other possible contributions for grain growth stabilization should still be considered.

  17. Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.

    2013-01-01

    In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.

  18. Spatial and temporal variation of an ice-adapted predator's feeding ecology in a changing Arctic marine ecosystem.

    PubMed

    Yurkowski, David J; Ferguson, Steven H; Semeniuk, Christina A D; Brown, Tanya M; Muir, Derek C G; Fisk, Aaron T

    2016-03-01

    Spatial and temporal variation can confound interpretations of relationships within and between species in terms of diet composition, niche size, and trophic position (TP). The cause of dietary variation within species is commonly an ontogenetic niche shift, which is a key dynamic influencing community structure. We quantified spatial and temporal variations in ringed seal (Pusa hispida) diet, niche size, and TP during ontogeny across the Arctic-a rapidly changing ecosystem. Stable carbon and nitrogen isotope analysis was performed on 558 liver and 630 muscle samples from ringed seals and on likely prey species from five locations ranging from the High to the Low Arctic. A modest ontogenetic diet shift occurred, with adult ringed seals consuming more forage fish (approximately 80 versus 60 %) and having a higher TP than subadults, which generally decreased with latitude. However, the degree of shift varied spatially, with adults in the High Arctic presenting a more restricted niche size and consuming more Arctic cod (Boreogadus saida) than subadults (87 versus 44 %) and adults at the lowest latitude (29 %). The TPs of adult and subadult ringed seals generally decreased with latitude (4.7-3.3), which was mainly driven by greater complexity in trophic structure within the zooplankton communities. Adult isotopic niche size increased over time, likely due to the recent circumpolar increases in subarctic forage fish distribution and abundance. Given the spatial and temporal variability in ringed seal foraging ecology, ringed seals exhibit dietary plasticity as a species, suggesting adaptability in terms of their diet to climate change.

  19. Nighttime atmospheric stability changes and their effects on the temporal intensity of a mesoscale convective complex

    NASA Technical Reports Server (NTRS)

    Hovis, Jeffrey S.; Brundidge, Kenneth C.

    1987-01-01

    A method of interpolating atmospheric soundings while reducing the errors associated with simple time interpolation was developed. The purpose of this was to provide a means to determine atmospheric stability at times between standard soundings and to relate changes in stability to intensity changes in an MCC. Four MCC cases were chosen for study with this method with four stability indices being included. The discussion centers on three aspects for each stability parameter examined: the stability field in the vicinity of the storm and its changes in structure and magnitude during the lifetime of the storm, the average stability within the storm boundary as a function of time and its relation to storm intensity, and the apparent flux of stability parameter into the storm as a consequence of low-level storm relative flow. It was found that the results differed among the four stability parameters, sometimes in a conflicting fashion. Thus, an interpolation of how the storm intensity is related to the changing environmental stability depends upon the particular index utilized. Some explanation for this problem is offered.

  20. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Velgosová, Oksana; Mražíková, Anna

    2017-12-01

    In this paper the influence of algae life cycle and the solutions pH on the green synthesis of colloidal Ag nanoparticles (AgNPs) as well as effect of different storage conditions on AgNPs long-term stability was investigated. Silver nanoparticles were biologically synthesized using extracts of Parachlorella kessleri algae cultivated 1, 2, 3 and 4 weeks. The formation of AgNPs was monitored using a UV-vis spectrophotometer and verified by TEM observation. The results confirmed formation of polyhedron and/or near polyhedron AgNPs, ranging between 5 and 60 nm in diameter. The age of algae influenced the synthesis rate and an amount of AgNPs in solution. The best results were obtained using tree weeks old algae. UV-vis analysis and TEM observation also revealed that the size and the stability of AgNPs depend on the pH of solution. AgNPs formed in solutions of higher pH (8 and 10) are polyhedron, fine, with narrow size interval and stabile. Nanoparticles formed in solutions of low pH (2, 4 and 6) started to lose their stability on 10th day of experiment, and the particle size interval was wide. The long-term stability of AgNPs can be influenced by light and temperature conditions. The most significant stability loss was observed at day light and room temperature (21°C). After 200-days significant amount of agglomerated particles settled on the bottom of the Erlenmeyer flask. AgNPs stored at dark and room temperature showed better long-term stability, weak particles agglomeration was observed. AgNPs stored at dark and at temperature 5°C showed the best long-term stability. Such AgNPs remained spherical, fine (5-20 nm), with narrow size interval and stable (no agglomeration) even after more than six months.

  1. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology.

    PubMed

    Mehmood, Tahir

    2015-09-15

    The objective of the present study was to prepare canola oil based vitamin E nanoemulsions by using food grade mixed surfactants (Tween:80 and lecithin; 3:1) to replace some concentration of nonionic surfactants (Tween 80) with natural surfactant (soya lecithin) and to optimize their preparation conditions. RBD (Refined, Bleached and Deodorized) canola oil and vitamin E acetate were used in water/vitamin E/oil/surfactant system due to their nutritional benefits and oxidative stability, respectively. Response surface methodology (RSM) was used to optimize the preparation conditions. The effects of homogenization pressure (75-155MPa), oil concentrations (4-12% w/w), surfactant concentrations (3-11% w/w) and vitamin E acetate contents (0.4-1.2% w/w) on the particle size and emulsion stability were studied. RSM analysis has shown that the experimental data could be fitted well into second-order polynomial model with the coefficient of determinations of 0.9464 and 0.9278 for particle size and emulsion stability, respectively. The optimum values of independent variables were 135MPa homogenization pressure, 6.18% oil contents, 6.39% surfactant concentration and 1% vitamin E acetate concentration. The optimized response values for particle size and emulsion stability were 150.10nm and 0.338, respectively. Whereas, the experimental values for particle size and nanoemulsion stability were 156.13±2.3nm and 0.328±0.015, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.

    PubMed

    Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping

    2016-11-01

    The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    NASA Astrophysics Data System (ADS)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  4. [Stability study of paediatric extemporaneous parenteral nutrition with lipids].

    PubMed

    Tuan, F; Montalto, M; Pell, Ma B; Bianchi, M; Pendica, S; Traverso, Ma L

    2011-01-01

    Stability of extemporaneous parenteral nutrition is a critical aspect of these formulations, with impact in patient safety and quality of service. In lipid emulsions physical stability can be assessed by the increase in the number of lipid globules of size superior than 500 nm, generated by coalescence of small globules during time. To determine medium size of the lipid globules that compose the internal phase of TNA, in order to evaluate its stability and establish beyond-use date of the parenteral nutrition. To evaluate distribution profile of the lipid globules in the parenteral nutrition and compare it with this of the lipid emulsion used as raw material. Globule size assessment by dynamic light scattering in a paediatric extemporaneous parenteral nutrition formula of frequent use, stored in different periods of time and temperatures. Medium globule size of the parenteral nutrition analyzed samples did not exceed the limit recommended by literature. Medium size and distribution of the lipid globules in the original lipid emulsion did not have significative changes after the compounding of the parenteral nutrition. Obtained data allow to consider that the extemporaneous parenteral nutrition evaluated would have a beyond-use date superior than the one now in use. This research must be deepened by the study of other formulas of parenteral nutrition in order to optimize the setting of beyond-use date.

  5. Characterization of nano-porosity in molecular layer deposited films.

    PubMed

    Perrotta, Alberto; Poodt, Paul; van den Bruele, F J Fieke; Kessels, W M M Erwin; Creatore, Mariadriana

    2018-06-12

    Molecular layer deposition (MLD) delivers (ultra-) thin organic and hybrid materials, with atomic-level thickness control. However, such layers are often reported to be unstable under ambient conditions, due to the interaction of water and oxygen with the hybrid structure, consequently limiting their applications. In this contribution, we investigate the impact of porosity in MLD layers on their degradation. Alucone layers were deposited by means of trimethylaluminium and ethylene glycol, adopting both temporal and spatial MLD and characterized by means of FT-IR spectroscopy, spectroscopic ellipsometry, and ellipsometric porosimetry. The highest growth per cycle (GPC) achieved by spatial MLD resulted in alucone layers with very low stability in ambient air, leading to their conversion to AlOx. Alucones deposited by means of temporal MLD, instead, showed a lower GPC and a higher ambient stability. Ellipsometric porosimetry showed the presence of open nano-porosity in pristine alucone layers. Pores with a diameter in the range of 0.42-2 nm were probed, with a relative content between 1.5% and 5%, respectively, which are attributed to the temporal and spatial MLD layers. We concluded that a correlation exists between the process GPC, the open-porosity relative content, and the degradation of alucone layers.

  6. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed Central

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-01-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032

  7. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-07-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

  8. Enabling universal memory by overcoming the contradictory speed and stability nature of phase-change materials.

    PubMed

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.

  9. Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials

    PubMed Central

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956

  10. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  11. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  12. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    NASA Astrophysics Data System (ADS)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the Gini index, Rosenbluth index) were calculated and compared to the synoptic situation in general and the atmospheric stability in special. The indices were then related to the drop size distributions and the rain rate. Special emphasis was laid in an objective distinction between stratiform and convective precipitation and hereby altered droplet size distribution, respectively Z/R relationship. In our presentation we will show how convective and stratiform precipitation becomes manifest in the different distribution indices, which in turn are thought to represent different patterns in the radar image. We also present and discuss the correlation between these distribution indices and the evolution of the drop size distribution and the rain rate and compare a dynamically adopted Z/R relation to the standard Marshall-Palmer Z/R relation.

  13. Temporal evolution of UV opacity and dust particle size at Gale Crater from MSL/REMS measurements

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Álvaro; Martinez, German; Renno, Nilton O.; Lemmon, Mark T.; Mason, Emily; De la Torre, Manuel

    2016-10-01

    A better characterization of the size, radiative properties and temporal variability of suspended dust in the Martian atmosphere is necessary to improve our understanding of the current climate of Mars. The REMS UV sensor onboard the Mars Science Laboratory (MSL) Curiosity rover has performed ground-based measurements of solar radiation in six different UV spectral bands for the first time on Mars.We developed a novel technique to retrieve dust opacity and particle size from REMS UV measurements. We use the electrical output current (TELRDR products) of the six photodiodes and the ancillary data (ADR products) to avoid inconsistencies found in the processed data (units of W/m2) when the solar zenith angle is above 30°. In addition, we use TELRDR and ADR data only in events during which the Sun is temporally blocked by the rover's masthead or mast to mitigate uncertainties associated to the degradation of the sensor due to the deposition of dust on it. Then we use a radiative transfer model with updated dust properties based on the Monte-Carlo method to retrieve the dust opacity and particle size.We find that the seasonal trend of UV opacity is consistent with opacity values at 880 nm derived from Mastcam images of the Sun, with annual maximum values in spring and in summer and minimum values in winter. The interannual variability is low, with two local maxima in mid-spring and mid-summer. Finally, dust particle size also varies throughout the year with typical values of the effective radius in the range between 0.5 and 2 μm. These variations in particle size occur in a similar way to those in dust opacity; the smallest sizes are found when the opacity values are the lowest.

  14. Spatio-temporal correlations in the Manna model in one, three and five dimensions

    NASA Astrophysics Data System (ADS)

    Willis, Gary; Pruessner, Gunnar

    2018-02-01

    Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.

  15. RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint

    PubMed Central

    Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun

    2016-01-01

    The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882

  16. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles

    PubMed Central

    2016-01-01

    A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm–3 for the smaller particles and 1.41 g cm–3 for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm–3). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact. PMID:27478250

  17. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in; Manda, Premkumar

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phasesmore » arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.« less

  18. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  19. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    NASA Astrophysics Data System (ADS)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  20. Evaluation of tablet computers for visual function assessment.

    PubMed

    Bodduluri, Lakshmi; Boon, Mei Ying; Dain, Stephen J

    2017-04-01

    Recent advances in technology and the increased use of tablet computers for mobile health applications such as vision testing necessitate an understanding of the behavior of the displays of such devices, to facilitate the reproduction of existing or the development of new vision assessment tests. The purpose of this study was to investigate the physical characteristics of one model of tablet computer (iPad mini Retina display) with regard to display consistency across a set of devices (15) and their potential application as clinical vision assessment tools. Once the tablet computer was switched on, it required about 13 min to reach luminance stability, while chromaticity remained constant. The luminance output of the device remained stable until a battery level of 5%. Luminance varied from center to peripheral locations of the display and with viewing angle, whereas the chromaticity did not vary. A minimal (1%) variation in luminance was observed due to temperature, and once again chromaticity remained constant. Also, these devices showed good temporal stability of luminance and chromaticity. All 15 tablet computers showed gamma functions approximating the standard gamma (2.20) and showed similar color gamut sizes, except for the blue primary, which displayed minimal variations. The physical characteristics across the 15 devices were similar and are known, thereby facilitating the use of this model of tablet computer as visual stimulus displays.

  1. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    NASA Astrophysics Data System (ADS)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  2. Flower diversity and bee reproduction in an arid ecosystem.

    PubMed

    Dorado, Jimena; Vázquez, Diego P

    2016-01-01

    Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

  3. Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects.

    PubMed

    Di Sipio, Enrica; Piccinini, Giulia; Pecchioli, Cristiano; Germanotta, Marco; Iacovelli, Chiara; Simbolotti, Chiara; Cruciani, Arianna; Padua, Luca

    2018-05-03

    The use of high heels is widespread in modern society in professional and social contests. Literature showed that wearing high heels can produce injurious effects on several structures from the toes to the pelvis. No studies considered shoe length as an impacting factor on walking with high heels. The aim of this study is to evaluate walking parameters in young healthy women wearing high heels, considering not only the heel height but also the foot/shoe size. We evaluate spatio-temporal, kinematic and kinetic data, collected using a 8-camera motion capture system, in a sample of 21 healthy women in three different walking conditions: 1) barefoot, 2) wearing 12 cm high heel shoes independently from shoe size, and 3) wearing shoes with heel height based on shoe size, keeping the ankles' plantar flexion angle constant. The main outcome measures were: spatio-temporal parameters, gait harmony measurement, range of motion, flexion and extension maximal values, power and moment of lower limb joints. Comparing the three walking conditions, the Mixed Anova test, showed significant differences between both high heeled conditions (variable and constant height) and barefoot in spatio-temporal, kinematic and kinetic parameters. Regardless of the shoe size, both heeled conditions presented a similar gait pattern and were responsible for negative effects on walking parameters. Considering our results and the relevance of the heel height, further studies are needed to identify a threshold, over which it is possible to observe that wearing high heels could cause harmful effects, independently from the foot/shoe size. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states.

    PubMed

    Dixon, Matthew L; Andrews-Hanna, Jessica R; Spreng, R Nathan; Irving, Zachary C; Mills, Caitlin; Girn, Manesh; Christoff, Kalina

    2017-02-15

    Anticorrelation between the default network (DN) and dorsal attention network (DAN) is thought to be an intrinsic aspect of functional brain organization reflecting competing functions. However, the effect size of functional connectivity (FC) between the DN and DAN has yet to be established. Furthermore, the stability of anticorrelations across distinct DN subsystems, different contexts, and time, remains unexplored. In study 1 we summarize effect sizes of DN-DAN FC from 20 studies, and in study 2 we probe the variability of DN-DAN interactions across six different cognitive states in a new data set. We show that: (i) the DN and DAN have an independent rather than anticorrelated relationship when global signal regression is not used (median effect size across studies: r=-.06; 95% CI: -.15 to .08); (ii) the DAN exhibits weak negative FC with the DN Core subsystem but is uncorrelated with the dorsomedial prefrontal and medial temporal lobe subsystems; (iii) DN-DAN interactions vary significantly across different cognitive states; (iv) DN-DAN FC fluctuates across time between periods of anticorrelation and periods of positive correlation; and (v) changes across time in the strength of DN-DAN coupling are coordinated with interactions involving the frontoparietal control network (FPCN). Overall, the observed weak effect sizes related to DN-DAN anticorrelation suggest the need to re-conceptualize the nature of interactions between these networks. Furthermore, our findings demonstrate that DN-DAN interactions are not stable, but rather, exhibit substantial variability across time and context, and are coordinated with broader network dynamics involving the FPCN. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Relationship between National-Level Carbon Dioxide Emissions and Population Size: An Assessment of Regional and Temporal Variation, 1960–2005

    PubMed Central

    Jorgenson, Andrew K.; Clark, Brett

    2013-01-01

    This study examines the regional and temporal differences in the statistical relationship between national-level carbon dioxide emissions and national-level population size. The authors analyze panel data from 1960 to 2005 for a diverse sample of nations, and employ descriptive statistics and rigorous panel regression modeling techniques. Initial descriptive analyses indicate that all regions experienced overall increases in carbon emissions and population size during the 45-year period of investigation, but with notable differences. For carbon emissions, the sample of countries in Asia experienced the largest percent increase, followed by countries in Latin America, Africa, and lastly the sample of relatively affluent countries in Europe, North America, and Oceania combined. For population size, the sample of countries in Africa experienced the largest percent increase, followed countries in Latin America, Asia, and the combined sample of countries in Europe, North America, and Oceania. Findings for two-way fixed effects panel regression elasticity models of national-level carbon emissions indicate that the estimated elasticity coefficient for population size is much smaller for nations in Africa than for nations in other regions of the world. Regarding potential temporal changes, from 1960 to 2005 the estimated elasticity coefficient for population size decreased by 25% for the sample of Africa countries, 14% for the sample of Asia countries, 6.5% for the sample of Latin America countries, but remained the same in size for the sample of countries in Europe, North America, and Oceania. Overall, while population size continues to be the primary driver of total national-level anthropogenic carbon dioxide emissions, the findings for this study highlight the need for future research and policies to recognize that the actual impacts of population size on national-level carbon emissions differ across both time and region. PMID:23437323

  6. Bon-EV: an improved multiple testing procedure for controlling false discovery rates.

    PubMed

    Li, Dongmei; Xie, Zidian; Zand, Martin; Fogg, Thomas; Dye, Timothy

    2017-01-03

    Stability of multiple testing procedures, defined as the standard deviation of total number of discoveries, can be used as an indicator of variability of multiple testing procedures. Improving stability of multiple testing procedures can help to increase the consistency of findings from replicated experiments. Benjamini-Hochberg's and Storey's q-value procedures are two commonly used multiple testing procedures for controlling false discoveries in genomic studies. Storey's q-value procedure has higher power and lower stability than Benjamini-Hochberg's procedure. To improve upon the stability of Storey's q-value procedure and maintain its high power in genomic data analysis, we propose a new multiple testing procedure, named Bon-EV, to control false discovery rate (FDR) based on Bonferroni's approach. Simulation studies show that our proposed Bon-EV procedure can maintain the high power of the Storey's q-value procedure and also result in better FDR control and higher stability than Storey's q-value procedure for samples of large size(30 in each group) and medium size (15 in each group) for either independent, somewhat correlated, or highly correlated test statistics. When sample size is small (5 in each group), our proposed Bon-EV procedure has performance between the Benjamini-Hochberg procedure and the Storey's q-value procedure. Examples using RNA-Seq data show that the Bon-EV procedure has higher stability than the Storey's q-value procedure while maintaining equivalent power, and higher power than the Benjamini-Hochberg's procedure. For medium or large sample sizes, the Bon-EV procedure has improved FDR control and stability compared with the Storey's q-value procedure and improved power compared with the Benjamini-Hochberg procedure. The Bon-EV multiple testing procedure is available as the BonEV package in R for download at https://CRAN.R-project.org/package=BonEV .

  7. Population Size Predicts Lexical Diversity, but so Does the Mean Sea Level --Why It Is Important to Correctly Account for the Structure of Temporal Data.

    PubMed

    Koplenig, Alexander; Müller-Spitzer, Carolin

    2016-01-01

    In order to demonstrate why it is important to correctly account for the (serial dependent) structure of temporal data, we document an apparently spectacular relationship between population size and lexical diversity: for five out of seven investigated languages, there is a strong relationship between population size and lexical diversity of the primary language in this country. We show that this relationship is the result of a misspecified model that does not consider the temporal aspect of the data by presenting a similar but nonsensical relationship between the global annual mean sea level and lexical diversity. Given the fact that in the recent past, several studies were published that present surprising links between different economic, cultural, political and (socio-)demographical variables on the one hand and cultural or linguistic characteristics on the other hand, but seem to suffer from exactly this problem, we explain the cause of the misspecification and show that it has profound consequences. We demonstrate how simple transformation of the time series can often solve problems of this type and argue that the evaluation of the plausibility of a relationship is important in this context. We hope that our paper will help both researchers and reviewers to understand why it is important to use special models for the analysis of data with a natural temporal ordering.

  8. Spatial–temporal changes in potential evaporation patterns based on the Cloud model and their possible causes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuelu; Huang, Shengzhi; Chang, Jianxia

    It is of importance to comprehensively investigate the spatial-temporal changes in potential evaporation patterns, which helps guide the long-term water resource allocation and irrigation managements. In this study, the Cloud model was adopted to quantify the average, uniformity, and stability of annual potential evaporation in the Wei River Basin (WRB), a typical arid and semi-arid region in China.. The cross wavelet analysis was then applied to explore the correlations between potential evaporation and Arctic Oscillation (AO)/El Niño Southern Oscillation (ENSO) with an aim to determine the possible causes of potential evaporation variations. Results indicated that: (1) the average of annualmore » potential evaporation in the WRB first declined and then increased, which was similar with its stability, whilst its dispersion degree exhibited a decreasing trend, implying that potential evaporation has a small inter-annual variation; (2) the average of potential evaporation in the western basin was obviously smaller than that in the other areas, while its uniformity and stability in the Guanzhong plain and the Loess Plateau areas are larger than those in other areas, particularly in the western basin where the uniformity and stability are the smallest; (3) both AO and ENSO exhibited strong correlations with potential evaporation variations, indicating that both AO and ENSO have played an important role in the annual potential evaporation variations in the WRB.« less

  9. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers.

    PubMed

    Zhang, Yaqiong; Niu, Yuge; Luo, Yangchao; Ge, Mei; Yang, Tian; Yu, Liangli Lucy; Wang, Qin

    2014-01-01

    Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    PubMed Central

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355

  11. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats.

    PubMed

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.

  12. An Investigation of the Elements which Contribute to Statical and Dynamical Stability, and of the Effects of Variation in Those Elements

    NASA Technical Reports Server (NTRS)

    Klemin, Alexander; Warner, Edward P; Denkinger, George M

    1918-01-01

    Part 1 gives details of models tested and methods of testing of the Eiffel 36 wing alone and the JN2 aircraft. Characteristics and performance curves for standard JN are included. Part 2 presents a statistical analysis of the following: lift and drag contributed by body and chassis tested without wings; lift and drag contributed by tail, tested without wings; the effect on lift and drift of interference between the wings of a biplane combination; lift and drag contributed by the addition of body, chassis, and tail to a biplane combination; total parasite resistance; effect of varying size of tail, keeping angle of setting constant; effect of varying length of body and size of tail at the same time, keeping constant moment of tail surface about the center of gravity; forces on the tail and the effects of downwash; effect of size and setting of tail on statical longitudinal stability effects of length of body on stability; the effects of the various elements of an airplane on longitudinal stability and the placing of the force vectors. Part 3 presents the fundamental principals of dynamical stability; computations of resistance derivatives; solution of the stability equation; dynamical stability of the Curtiss JN2; tabulation of resistance derivatives; discussion of the resistance derivatives; formation and solution of stability equations; physical conceptions of the resistance derivatives; elements contributing to damping and an investigation of low speed conditions. Part 4 includes a summary of the results of the statistical investigation and a summary of the results for dynamic stability.

  13. Gender-specific effects of emotional modulation on visual temporal order thresholds.

    PubMed

    Liang, Wei; Zhang, Jiyuan; Bao, Yan

    2015-09-01

    Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.

  14. Outcome of intracranial electroencephalography monitoring and surgery in magnetic resonance imaging-negative temporal lobe epilepsy.

    PubMed

    Lee, Ricky W; Hoogs, Marietta M; Burkholder, David B; Trenerry, Max R; Drazkowski, Joseph F; Shih, Jerry J; Doll, Karey E; Tatum, William O; Cascino, Gregory D; Marsh, W Richard; Wirrell, Elaine C; Worrell, Gregory A; So, Elson L

    2014-07-01

    We evaluated the outcomes of intracranial electroencephalography (iEEG) recording and subsequent resective surgery in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE). Thirty-two patients were identified from the Mayo Clinic Epilepsy Surgery Database (Arizona, Florida, and Minnesota). Eight (25.0%) had chronic iEEG monitoring that recorded neocortical temporal seizure onsets; 12 (37.5%) had mesial temporal seizure onsets; 5 (15.6%) had independent neocortical and mesial temporal seizure onsets; and 7 (21.9%) had simultaneous neocortical and mesial seizure onsets. Neocortical temporal lobe seizure semiology was the only factor significantly associated with neocortical temporal seizure onsets on iEEG. Only 33.3% of patients who underwent lateral temporal neocorticectomy had an Engel class 1 outcome, whereas 76.5% of patients with iEEG-guided anterior temporal lobectomy that included the amygdala and the hippocampus had an Engel class 1 outcome. Limitations in cohort size precluded statistical analysis of neuropsychological test data. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.

    PubMed

    Courtright, Brett A E; Jenekhe, Samson A

    2015-12-02

    We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.

  16. Cross-cultural Adaptation of the Self-care of Hypertension Inventory Into Brazilian Portuguese.

    PubMed

    Silveira, Luana Claudia Jacoby; Rabelo-Silva, Eneida Rejane; Ávila, Christiane Whast; Beltrami Moreira, Leila; Dickson, Victoria Vaughan; Riegel, Barbara

    Lifestyle changes and treatment adherence still constitute a challenge to healthcare providers involved in the care of persons with hypertension. The lack of validated instruments measuring the ability of hypertensive patients to manage their disease has slowed research progress in this area. The Self-care of Hypertension Inventory, originally developed in the United States, consists of 23 items divided across 3 scales: Self-care Maintenance, Self-care Management, and Self-care Confidence. These scales measure how well patients with hypertension adhere to treatment and manage elevated blood pressure, as well as their confidence in their ability to perform self-care. A rigorous cross-cultural adaptation and validation process is required before this instrument can be used in other countries. The aims of this study were to translate the Self-care of Hypertension Inventory into Brazilian Portuguese with cross-cultural adaptation and to evaluate interobserver reliability and temporal stability. This methodological study involved forward translation, synthesis of forward translations, back-translation, synthesis of back-translations, expert committee review, and pretesting. Interobserver agreement and the temporal stability of the scales were assessed. The expert committee proposed semantic and cultural modifications to some items and the addition of guidance statements to facilitate administration of the scale. Interobserver analysis demonstrated substantial agreement. Analysis of temporal stability showed near-perfect agreement. Cross-cultural adaptation of the Self-care of Hypertension Inventory successfully produced a Portuguese-language version of the instrument for further evaluation of psychometric properties. Once that step is completed, the scale can be used in Brazil.

  17. Nursing Intensive-Care Satisfaction Scale [NICSS]: Development and validation of a patient-centred instrument.

    PubMed

    Romero-García, Marta; de la Cueva-Ariza, Laura; Benito-Aracil, Llucia; Lluch-Canut, Teresa; Trujols-Albet, Joan; Martínez-Momblan, Maria Antonia; Juvé-Udina, Maria-Eulàlia; Delgado-Hito, Pilar

    2018-06-01

    The aim of this study was to develop and validate the Nursing Intensive-Care Satisfaction Scale to measures satisfaction with nursing care from the critical care patient's perspective. Instruments that measure satisfaction with nursing cares have been designed and validated without taking the patient's perspective into consideration. Despite the benefits and advances in measuring satisfaction with nursing care, none instrument is specifically designed to assess satisfaction in intensive care units. Instrument development. The population were all discharged patients (January 2013 - January 2015) from three Intensive Care Units of a third level hospital (N = 200). All assessment instruments were given to discharged patients and 48 hours later, to analyse the temporal stability, only the questionnaire was given again. The validation process of the scale included the analysis of internal consistency, temporal stability; validity of construct through a confirmatory factor analysis; and criterion validity. Reliability was 0.95. The intraclass correlation coefficient for the total scale was 0.83 indicating a good temporal stability. Construct validity showed an acceptable fit and factorial structure with four factors, in accordance with the theoretical model, being Consequences factor the best correlated with other factors. Criterion validity, presented a correlation between low and high (range: 0.42-0.68). The scale has been designed and validated incorporating the perspective of critical care patients. Thanks to its reliability and validity, this questionnaire can be used both in research and in clinical practice. The scale offers a possibility to assess and develop interventions to improve patient satisfaction with nursing care. © 2018 John Wiley & Sons Ltd.

  18. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scattergood, Ronald O.

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atomsmore » and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not based on an equilibrium state. The PI and coworkers have developed thermodynamic-based models that can be used to select appropriate solute additions to Fe14Cr base alloys to achieve a contribution to grain-size stabilization and He bubble mitigation by the thermodynamic effect. All such models require approximations and the proposed research was aimed at alloy selection, processing and detailed atomic-level microstructure evaluations to establish the efficacy of the thermodynamic effect. The outcome of this research shows that appropriate alloy additions can produce a contribution from the thermodynamic stabilization effect. Furthermore, due to the oxygen typically present in nominally high purity elemental powders used for powder metallurgy processing, the optimum results obtained appeared as a synergistic combination of nano-size oxide particle pinning kinetic effect and the grain-boundary segregation thermodynamic effect.« less

  19. Speckle temporal stability in XAO coronagraphic images. II. Refine model for quasi-static speckle temporal evolution for VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.

    2013-06-01

    Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.

  20. Transport and Retention of Emulsion Droplets in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Esahani, S. G.; Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Emulsions are commonly used as amendments during remediation; yet, the processes controlling the distribution of droplets within the subsurface are not well understood. Given that inadequate spatial and/or temporal delivery of amendments often leads to ineffective treatment, there is a need to better understand emulsion transport. Experiments were conducted to evaluate the transport and retention of emulsion droplets in columns containing Ottawa sands. Breakthrough curves and deposition profiles from these experiments were interrogated using a mathematical model capable of describing attachment, detachment, and straining to begin to elucidate the physical processes controlling delivery. Emulsions were constructed by stabilizing soybean oil droplets within a continuous aqueous phase. Physical properties of the resulting oil-in-water emulsions were favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet d50). Emulsions were introduced to the columns for approximately two pore volumes and followed by an extended flush of background solution. Effluent droplet size distributions did not vary significantly over the course of the experiment and remained similar to those measured for the influent emulsion. Emulsion breakthrough curves exhibited tailing, and deposition profiles were found to be hyper-exponential and unaffected by extended periods of background flow. Depending on emulsion composition and flow characteristics, 10-30% of the injected emulsion was retained on the sand suggesting a non-negligible influence on accessible porosity over the course of the experiment. Experimental results were further interpreted using a droplet transport model that accounts for temporal and spatial variation in porosity due to the retention of the emulsion droplets. At present the model assumes a uniform size distribution of inelastic emulsion droplets which are transported by advection and dispersion, and exchanged with the solid phase through attachment, detachment, and straining processes. Results examine the relative roles of attachment-detachment and straining in reducing the accessible porosity. Evaluation of how the porosity change influences the flow regime for moderately and slightly clogged media is currently under investigation.

  1. Temporal dynamics of linkage disequilibrium in two populations of bighorn sheep

    PubMed Central

    Miller, Joshua M; Poissant, Jocelyn; Malenfant, René M; Hogg, John T; Coltman, David W

    2015-01-01

    Linkage disequilibrium (LD) is the nonrandom association of alleles at two markers. Patterns of LD have biological implications as well as practical ones when designing association studies or conservation programs aimed at identifying the genetic basis of fitness differences within and among populations. However, the temporal dynamics of LD in wild populations has received little empirical attention. In this study, we examined the overall extent of LD, the effect of sample size on the accuracy and precision of LD estimates, and the temporal dynamics of LD in two populations of bighorn sheep (Ovis canadensis) with different demographic histories. Using over 200 microsatellite loci, we assessed two metrics of multi-allelic LD, D′, and χ′2. We found that both populations exhibited high levels of LD, although the extent was much shorter in a native population than one that was founded via translocation, experienced a prolonged bottleneck post founding, followed by recent admixture. In addition, we observed significant variation in LD in relation to the sample size used, with small sample sizes leading to depressed estimates of the extent of LD but inflated estimates of background levels of LD. In contrast, there was not much variation in LD among yearly cross-sections within either population once sample size was accounted for. Lack of pronounced interannual variability suggests that researchers may not have to worry about interannual variation when estimating LD in a population and can instead focus on obtaining the largest sample size possible. PMID:26380673

  2. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    PubMed

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  3. Continental drift and climate change drive instability in insect assemblages

    NASA Astrophysics Data System (ADS)

    Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk

    2015-06-01

    Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.

  4. Continental drift and climate change drive instability in insect assemblages

    PubMed Central

    Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk

    2015-01-01

    Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale. PMID:26081036

  5. Continental drift and climate change drive instability in insect assemblages.

    PubMed

    Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk

    2015-06-17

    Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region--one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.

  6. Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies

    DOE PAGES

    Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...

    2017-09-21

    Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less

  7. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  8. Scale considerations for ecosystem management

    Treesearch

    Jonathan B. Haufler; Thomas R. Crow; David Wilcove

    1999-01-01

    One of the difficult challenges facing ecosystem management is the determination of appropriate spatial and temporal scales to use. Scale in spatial sence includes considerations of both the size area or extent of an ecosystem management activity, as well as thedegree of resolution of mapped or measured data. In the temporal sense, scale concerns the duration of both...

  9. Short-Term Memory in Orthogonal Neural Networks

    NASA Astrophysics Data System (ADS)

    White, Olivia L.; Lee, Daniel D.; Sompolinsky, Haim

    2004-04-01

    We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.

  10. Chromosome I duplications in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKim, K.S.; Rose, A.M.

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left halfmore » of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.« less

  11. Quinoa starch granules as stabilizing particles for production of Pickering emulsions.

    PubMed

    Rayner, Marilyn; Sjöö, Malin; Timgren, Anna; Dejmek, Petr

    2012-01-01

    Intact starch granules isolated from quinoa (Chenopodium quinoa Willd.) were used to stabilize emulsion drops in so-called Pickering emulsions. Miglyol 812 was used as dispersed phase and a phosphate buffer (pH7) with different salt (NaCl) concentrations was used as the continuous phase. The starch granules were hydrophobically modified to different degrees by octenyl succinic anhydride (OSA) or by dry heat treatment at 120 degrees C in order to study the effect on the resulting emulsion drop size. The degree of OSA-modification had a low to moderate impact on drop size. The highest level of modification (4.66%) showed the largest mean drop size, and lowest amount of free starch, which could be an effect of a higher degree of aggregation of the starch granules and, thereby, also the emulsion drops stabilized by them. The heat treated starch granules had a poor stabilizing ability and only the starch heated for the longest time (150 min at 120 degrees C) had a better emulsifying capacity than the un-modified native starch granules. The effect of salt concentration was rather limited. However, an increased concentration of salt slightly increased the mean drop size and the elastic modulus.

  12. The inviscid stability of supersonic flow past axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).

  13. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard; Kasl, Eldon P.

    2010-01-01

    We describe the fabrication and thermal-stability analysis and test of a composite demonstration model of the Scanning Microwave Limb Sounder (SMLS) primary reflector, having full 4m height and 1/3 the width planned for flight. SMLS is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 660 GHz. Current MLS instruments in low Earth orbit scan pencil-beam antennas (sized to resolve about one scale height) vertically over the atmospheric limb. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, adds azimuthal scanning for better horizontal and temporal resolution and coverage than typical orbit spacing provides. SMLS combines the wide scan range of the parabolic torus with unblocked offset Cassegrain optics. The resulting system is diffraction-limited in the vertical plane but highly astigmatic in the horizontal, having a beam aspect ratio [tilde operator]1:20. Symmetry about the nadir axis ensures that beam shape is nearly invariant over +/-65(white bullet) azimuth. The a feeds a low-noise SIS receiver whose FOV is swept over the reflector system by a small scanning mirror. Using finiteelement models of antenna reflectors and structure, we evaluate thermal deformations and the resulting optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during wide-range (ambient+[-97,+75](white bullet) C) thermal soak tests of the primary in a chamber. This range exceeds predicted orbital soak ranges by large factors, implying in-orbit thermal stability of 0.21(mu)m rms/(white bullet)C, which meets SMLS requirements.

  14. Understanding spatial and temporal behavior of sea spray droplets in the marine atmospheric boundary layer using an Eulerian-Lagrangian model

    NASA Astrophysics Data System (ADS)

    Nissanka, I. D.; Richter, D. H.

    2017-12-01

    Previous studies have shown that sea spray droplets can play a significant role in air-sea heat and moisture exchange. The larger spray droplets have potential to transfer considerable amount of mass, momentum and heat, however they remain closer to surface and their residence times are shorter due to the faster settling. On the other hand, smaller droplets have high vertical mobility which allows sufficient time for droplets to adjust to ambient conditions. Hence, to study the heat and moisture characteristics of sea spray droplets it is important to understand how different droplet sizes behave in the Marine Atmospheric Boundary Layer (MABL), especially their temporal evolutions. In this study sea spray droplet transport in the MABL is simulated using Large Eddy Simulation combined with a Lagrangian Particle model which represents spray droplets of varying size. The individual droplets are tracked while their radius and temperature evolve based on local ambient conditions. The particles are advected based on the local resolved velocities and the particle dispersion due to sub-filtered scale motions are modeled using a Lagrangian stochastic model. In this study a series of simulations are conducted with the focus of understanding fundamental droplet microphysics, which will help characterize and quantify the lifetime and airborne concentrations of spray droplets in the MABL, thus elucidating ongoing knowledge gaps which are impossible to fill using observations alone. We measure the size resolved spray droplet vertical concentrations, particle residence times, and temporal evolution of droplet radius and temperature to explain the behavior of sea spry droplets in MABL. The PDF of residence time of different initial droplet sizes and joint PDFs of droplet life time and radius and temperature for different droplet sizes are calculated to further quantify the temporal and spatial behavior of sea spray droplets in the MABL, which can be used as inputs into bulk models of air-sea transfer.

  15. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  16. Influence of non-ionic emulsifier type on the stability of cinnamaldehyde nanoemulsions: A comparison of polysorbate 80 and hydrophobically modified inulin.

    PubMed

    Sedaghat Doost, Ali; Dewettinck, Koen; Devlieghere, Frank; Van der Meeren, Paul

    2018-08-30

    Cinnamaldehyde nanoemulsions were formulated to enable its application in an aqueous environment. The pure cinnamaldehyde nanoemulsions, stabilized by polysorbate 80 (at concentrations >0.5%), had both a higher stability and smaller droplet size, whereas the emulsions containing hydrophobically modified inulin (HMI) formed a colloidal dispersion with larger particle size. Incorporation of sunflower oil (SO) allowed postponement of Ostwald ripening for a sufficiently long period of time (at least 60 days). Cryo-SEM and droplet size analyses of the nanoemulsions emulsified by HMI revealed no significant changes during storage. Under these conditions, HMI as an emulsifier exhibited a powerful resistance to high salt contents (up to 2 M) and high thermal processing temperatures (90 °C). The surfactant type and SO content had no marked influence on the antimicrobial activity of the nanoemulsions. This study provides precious information for a commercial formulation of nanoemulsions with durable physical stability under severe stress conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Formulation and characterization of fisetin nanosuspension

    NASA Astrophysics Data System (ADS)

    Dzakwan, M.; Pramukantoro, G. E.; Mauludin, R.; Wikarsa, S.

    2017-11-01

    Fisetin (3,3,4,7-tetrahydroxyflavone) is a natural antioxidant that has shown to posses anticancer, antioxidant and anti-inflammatory properties. However, the poor solubility leads to poor bioavailability and limits its development. The aim of the study is to investigate the effect of fisetin nanosuspension using a precipitation-sonication method and additional stabilizers polysorbat 80, SLS, F68, PVP, PVA and HPMC on particle size average and the polydispersity index. The suspensions of microcrystalline FIS were prepared by a precipitation method with different proportion of stabilizers fixed. The nanosuspension produced was then characterized using Photon Correlation Spectroscopy (PCS) in term of particle size distribution, polydispersity index and morphology particle (SEM). Result showed fisetin nanosuspension were successfully prepared by anti-solvent precipitation with additional stabilizer SLS and PVA. The nanosuspension containing PVA showed smaller average particle size of 406 nm, a polydispersity index of 0.22±0.1 was obtained. The drug particles precipitated with the PVA as stabilizer were spherical in shape.

  18. Body size distributions signal a regime shift in a lake ...

    EPA Pesticide Factsheets

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  19. A computer module used to calculate the horizontal control surface size of a conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Swanson, Stephen Mark

    1990-01-01

    The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.

  20. Influence of undersized cementless hip stems on primary stability and strain distribution.

    PubMed

    Fottner, Andreas; Woiczinski, Matthias; Kistler, Manuel; Schröder, Christian; Schmidutz, Tobias F; Jansson, Volkmar; Schmidutz, Florian

    2017-10-01

    Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results. Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones ® ), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes. Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding. This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.

  1. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  2. Theoretical study on microhydration of SeO42-: On the number of water molecules necessary to stabilize the dianion

    NASA Astrophysics Data System (ADS)

    Pathak, Arup Kumar

    2012-01-01

    Microhydration of SeO42-·nH2O (n = 1-5) clusters are reported at B3LYP/Aug-cc-pvtz level of theory. Lower size hydrated clusters are stabilized by only double-hydrogen-bonding arrangements and the most stable conformer for higher size cluster (n > 3) contains a cyclic water ring. It is observed that at least one water molecule is necessary to stabilize the dianion in the gas phase against spontaneous electron loss. The microscopic theory based expression provides a route to predict the instability of bare SeO42- and to obtain the VDE for a wide range of cluster sizes including the bulk from the knowledge of the same for a few stable hydrated clusters.

  3. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams

    PubMed Central

    Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O’Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David DI

    2015-01-01

    Objective To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Methods Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Results Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Conclusion Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. PMID:26036246

  4. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.

    PubMed

    Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O'Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David D I; Lewis, Andrew L

    2016-05-01

    To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. © The Author(s) 2015.

  5. Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Wang, Li; Findley, Kip O.; Speer, John G.

    2017-05-01

    With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson-Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.

  6. Mass size distribution of particle-bound water

    NASA Astrophysics Data System (ADS)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  7. An analytical method for prediction of stability lobes diagram of milling of large-size thin-walled workpiece

    NASA Astrophysics Data System (ADS)

    Yao, Jiming; Lin, Bin; Guo, Yu

    2017-01-01

    Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.

  8. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.

  9. Learning and disrupting invariance in visual recognition with a temporal association rule

    PubMed Central

    Isik, Leyla; Leibo, Joel Z.; Poggio, Tomaso

    2012-01-01

    Learning by temporal association rules such as Foldiak's trace rule is an attractive hypothesis that explains the development of invariance in visual recognition. Consistent with these rules, several recent experiments have shown that invariance can be broken at both the psychophysical and single cell levels. We show (1) that temporal association learning provides appropriate invariance in models of object recognition inspired by the visual cortex, (2) that we can replicate the “invariance disruption” experiments using these models with a temporal association learning rule to develop and maintain invariance, and (3) that despite dramatic single cell effects, a population of cells is very robust to these disruptions. We argue that these models account for the stability of perceptual invariance despite the underlying plasticity of the system, the variability of the visual world and expected noise in the biological mechanisms. PMID:22754523

  10. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  11. Spatial-temporal variability of soil moisture and its estimation across scales

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2010-02-01

    The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.

  12. Structural Technology Evaluation Analysis Program (STEAP). Task Order 0029: Thermal Stability of Fatigue Life-Enhanced Structures

    DTIC Science & Technology

    2012-01-01

    and c, we were able to obtain Figure 21: Intensity and Pressure Temporal Profiles Calculated from Pressure Model 0 20 40 60 80 100 0 2 4 6 8...August 2008 – 31 January 2012 4 . TITLE AND SUBTITLE STRUCTURAL TECHNOLOGY EVALUATION ANALYSIS PROGRAM (STEAP) Task Order 0029: Thermal...Stability of Fatigue Life-Enhanced Structures 5a. CONTRACT NUMBER FA8650-04-D-3446-0029 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6

  13. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  14. Nineteen-month stability of Revised NEO Personality Inventory domain and facet scores in patients with personality disorders.

    PubMed

    Wilberg, Theresa; Karterud, Sigmund; Pedersen, Geir; Urnes, Øyvind; Costa, Paul T

    2009-03-01

    We lack knowledge of the temporal stability of major personality dimensions in patients with personality disorders (PDs). The Revised NEO Personality Inventory (NEO-PI-R) is a self-report instrument that operationalizes the Five-Factor Model of personality. This study investigated the relative stability, mean level stability, and individual level stability of the NEO-PI-R scores in patients with PDs (n = 393) and patients with symptom disorders only (n = 131). The NEO-PI-R was administered at admission to short-term day treatment and after an average of 19 months. The results showed a moderate to high degree of stability of NEO-PI-R scale scores with no substantial difference in stability between patients with and without PD. Changes in NEO-PI-R scores were associated with changes in symptom distress. Neuroticism was the least stable domain. The study indicates that the Five-Factor Model of personality dimensions and traits are fairly stable in patients with PDs. The lower stability of Neuroticism may partly be explained by its inherent state aspects.

  15. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    PubMed

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  16. Effect of palladium doping on the stability and fragmentation patterns of cationic gold clusters

    NASA Astrophysics Data System (ADS)

    Ferrari, P.; Hussein, H. A.; Heard, C. J.; Vanbuel, J.; Johnston, R. L.; Lievens, P.; Janssens, E.

    2018-05-01

    We analyze in detail how the interplay between electronic structure and cluster geometry determines the stability and the fragmentation channels of single Pd-doped cationic Au clusters, PdA uN-1+ (N =2 -20 ). For this purpose, a combination of photofragmentation experiments and density functional theory calculations was employed. A remarkable agreement between the experiment and the calculations is obtained. Pd doping is found to modify the structure of the Au clusters, in particular altering the two-dimensional to three-dimensional transition size, with direct consequences on the stability of the clusters. Analysis of the electronic density of states of the clusters shows that depending on cluster size, Pd delocalizes one 4 d electron, giving an enhanced stability to PdA u6 + , or remains with all 4 d10 electrons localized, closing an electronic shell in PdA u9 + . Furthermore, it is observed that for most clusters, Au evaporation is the lowest-energy decay channel, although for some sizes Pd evaporation competes. In particular, PdA u7 + and PdA u9 + decay by Pd evaporation due to the high stability of the A u7 + and A u9 + fragmentation products.

  17. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joseph B.; Dandu, Naveen; Velizhanin, Kirill A.

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respectmore » to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.« less

  18. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-01

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  19. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    DOE PAGES

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less

  20. Size Limit for Particle-Stabilized Emulsion Droplets under Gravity

    NASA Astrophysics Data System (ADS)

    Tavacoli, J. W.; Katgert, G.; Kim, E. G.; Cates, M. E.; Clegg, P. S.

    2012-06-01

    We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.

  1. Temporal and spatial complexity of maternal thermoregulation in tropical pythons.

    PubMed

    Stahlschmidt, Zachary Ross; Shine, Richard; Denardo, Dale F

    2012-01-01

    Parental care is a widespread adaptation that evolved independently in a broad range of taxa. Although the dynamics by which two parents meet the developmental needs of offspring are well studied in birds, we lack understanding about the temporal and spatial complexity of parental care in taxa exhibiting female-only care, the predominant mode of parental care. Thus, we examined the behavioral and physiological mechanisms by which female water pythons Liasis fuscus meet a widespread developmental need (thermoregulation) in a natural setting. Although female L. fuscus were not facultatively thermogenic, they did use behaviors on multiple spatial scales (e.g., shifts in egg-brooding postures and surface activity patterns) to balance the thermal needs of their offspring throughout reproduction (gravidity and egg brooding). Maternal behaviors in L. fuscus varied by stage within reproduction and were mediated by interindividual variation in body size and fecundity. Female pythons with relatively larger clutch sizes were cooler during egg brooding, suggesting a trade-off between reproductive quantity (size of clutch) and quality (developmental temperature). In nature, caregiving parents of all taxa must navigate both extrinsic factors (temporal and spatial complexity) and intrinsic factors (body size and fecundity) to meet the needs of their offspring. Our study used a comprehensive approach that can be used as a general template for future research examining the dynamics by which parents meet other developmental needs (e.g., predation risk or energy balance).

  2. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  3. Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path

    PubMed Central

    Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki

    2017-01-01

    Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622

  4. Temporal Stability of the Human Skin Microbiome.

    PubMed

    Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2016-05-05

    Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Intra- and interobserver agreement in the classification and treatment of distal third clavicle fractures.

    PubMed

    Bishop, Julie Y; Jones, Grant L; Lewis, Brian; Pedroza, Angela

    2015-04-01

    In treatment of distal third clavicle fractures, the Neer classification system, based on the location of the fracture in relation to the coracoclavicular ligaments, has traditionally been used to determine fracture pattern stability. To determine the intra- and interobserver reliability in the classification of distal third clavicle fractures via standard plain radiographs and the intra- and interobserver agreement in the preferred treatment of these fractures. Cohort study (Diagnosis); Level of evidence, 3. Thirty radiographs of distal clavicle fractures were randomly selected from patients treated for distal clavicle fractures between 2006 and 2011. The radiographs were distributed to 22 shoulder/sports medicine fellowship-trained orthopaedic surgeons. Fourteen surgeons responded and took part in the study. The evaluators were asked to measure the size of the distal fragment, classify the fracture pattern as stable or unstable, assign the Neer classification, and recommend operative versus nonoperative treatment. The radiographs were reordered and redistributed 3 months later. Inter- and intrarater agreement was determined for the distal fragment size, stability of the fracture, Neer classification, and decision to operate. Single variable logistic regression was performed to determine what factors could most accurately predict the decision for surgery. Interrater agreement was fair for distal fragment size, moderate for stability, fair for Neer classification, slight for type IIB and III fractures, and moderate for treatment approach. Intrarater agreement was moderate for distal fragment size categories (κ = 0.50, P < .001) and Neer classification (κ = 0.42, P < .001) and substantial for stable fracture (κ = 0.65, P < .001) and decision to operate (κ = 0.65, P < .001). Fracture stability was the best predictor of treatment, with 89% accuracy (P < .001). Fracture stability determination and the decision to operate had the highest interobserver agreement. Fracture stability was the key determinant of treatment, rather than the Neer classification system or the size of the distal fragment. © 2015 The Author(s).

  6. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    PubMed

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterization of high temporal resolution prr acquisition by fast comtec card: Deadtime, PRR desaturation, temperature calibration and retrieval.

    NASA Astrophysics Data System (ADS)

    Martucci, Giovanni; Simeonov, Valentin; Renaud, Ludovic; Haefele, Alexander

    2018-04-01

    RAman Lidar for Meteorological Observations (RALMO) is operated at MeteoSwiss and provides continuous measurements of water vapor and temperature since 2010. While the water vapor has been acquired by a Licel acquisition system since 2008, the temperature channels have been migrated to a Fastcom P7888 acquisition system, since August 2015. We present a characterization of this new acquisition system, namely its dead-time, desaturation, temporal stability of the Pure Rotational Raman signals and the retrieval of the PRR-temperature.

  8. Ecological effects of particulate matter.

    PubMed

    Grantz, D A; Garner, J H B; Johnson, D W

    2003-06-01

    Atmospheric particulate matter (PM) is a heterogeneous material. Though regulated as un-speciated mass, it exerts most effects on vegetation and ecosystems by virtue of the mass loading of its chemical constituents. As this varies temporally and spatially, prediction of regional impacts remains difficult. Deposition of PM to vegetated surfaces depends on the size distribution of the particles and, to a lesser extent, on the chemistry. However, chemical loading of an ecosystem may be determined by the size distribution as different constituents dominate different size fractions. Coating with dust may cause abrasion and radiative heating, and may reduce the photosynthetically active photon flux reaching the photosynthetic tissues. Acidic and alkaline materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more likely route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. PM deposited directly to the soil can influence nutrient cycling, especially that of nitrogen, through its effects on the rhizosphere bacteria and fungi. Alkaline cation and aluminum availability are dependent upon the pH of the soil that may be altered dramatically by deposition of various classes of PM. A regional effect of PM on ecosystems is linked to climate change. Increased PM may reduce radiation interception by plant canopies and may reduce precipitation through a variety of physical effects. At the present time, evidence does not support large regional threats due to un-speciated PM, though site-specific and constituent-specific effects can be readily identified. Interactions of PM with other pollutants and with components of climate change remain important areas of research in assessment of challenges to ecosystem stability.

  9. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.

    PubMed

    Maghsoodi, Maryam; Nokhodchi, Ali

    2016-12-01

    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  10. Considerations for opto-mechanical vs. digital stabilization in surveillance systems

    NASA Astrophysics Data System (ADS)

    Kowal, David

    2015-05-01

    Electro-optical surveillance and reconnaissance systems are frequently mounted on unstable or vibrating platforms such as ships, vehicles, aircraft and masts. Mechanical coupling between the platform and the cameras leads to angular vibration of the line of sight. Image motion during detector and eye integration times leads to image smear and a resulting loss of resolution. Additional effects are wavy images for detectors based on a rolling shutter mechanism and annoying movement of the image at low frequencies. A good stabilization system should yield sub-pixel stabilization errors and meet cost and size requirements. There are two main families of LOS stabilization methods: opto-mechanical stabilization and electronic stabilization. Each family, or a combination of both, can be implemented by a number of different techniques of varying complexity, size and cost leading to different levels of stabilization. Opto-mechanical stabilization is typically based on gyro readings, whereas electronic stabilization is typically based on gyro readings or image registration calculations. A few common stabilization techniques, as well as options for different gimbal arrangements will be described and analyzed. The relative merits and drawbacks of the different techniques and their applicability to specific systems and environments will be discussed. Over the years Controp has developed a large number of stabilized electro-optical payloads. A few examples of payloads with unique stabilization mechanisms will be described.

  11. TH-CD-BRA-11: Implementation and Evaluation of a New 3D Dosimetry Protocol for Validating MRI Guided Radiation Therapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mein, S; Rankine, L; Department of Radiation Oncology, Washington University School of Medicine

    Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian by ViewRay™). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE™ with optical-CT readout. Methods: A detailed study of PRESAGE™ dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) bymore » optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr. Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%. Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by optical-CT within a week of treatment. The protocol requires small corrections for temporal and spatially-dependent behaviors observed between irradiation and readout.« less

  12. Using Spatial-Temporal Primitives to Improve Geographic Skills for Preservice Teachers

    ERIC Educational Resources Information Center

    Kaufman, Martin M.

    2004-01-01

    An exercise to help improve the geographic skills of preservice teachers was developed and tested during a six year period on over 500 students. The exercise required these students to map two arrangements of roads and facilities within a small neighborhood. A set of special-temporal primitives (place, size, shape, distance, direction,…

  13. The Representation of Information about Faces in the Temporal and Frontal Lobes

    ERIC Educational Resources Information Center

    Rolls, Edmund T.

    2007-01-01

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed…

  14. Experimental techniques for studying the structure of foams and froths.

    PubMed

    Pugh, R J

    2005-06-30

    Several techniques are described in this review to study the structure and the stability of froths and foams. Image analysis proved useful for detecting structure changes in 2-D foams and has enabled the drainage process and the gradients in bubble size distribution to be determined. However, studies on 3-D foams require more complex techniques such as Multiple-Light Scattering Methods, Microphones and Optical Tomography. Under dynamic foaming conditions, the Foam Scan Column enables the water content of foams to be determined by conductivity analysis. It is clear that the same factors, which play a role in foam stability (film thickness, elasticity, etc.) also have a decisive influence on the stability of isolated froth or foam films. Therefore, the experimental thin film balance (developed by the Bulgarian Researchers) to study thinning of microfilms formed by a concave liquid drop suspended in a short vertical capillary tube has proved useful. Direct measurement of the thickness of the aqueous microfilm is determined by a micro-reflectance method and can give fundamental information on drainage and thin film stability. It is also important to consider the influence of the mineral particles on the stability of the froth and it have been shown that particles of well defined size and hydrophobicity can be introduced into the thin film enabling stabilization/destabilization mechanisms to be proposed. It has also been shown that the dynamic and static stability can be increased by a reduction in particle size and an increase in particle concentration.

  15. Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide

    NASA Astrophysics Data System (ADS)

    Chiu, Chin-Yi; Li, Yujing; Huang, Yu

    2010-06-01

    Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution.Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution. Electronic Supplementary Information (ESI) available. Experimental details for peptide selection, peptide synthesis and Pd NCs synthesis; Q7 peptide sequence molecular structure and characterization; TEM images of Pd NCs. See DOI: 10.1039/c0nr00194e/

  16. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer.

    PubMed

    Gong, Xiaoyu; Wang, Yixiang; Chen, Lingyun

    2017-08-01

    Cellulose nanocrystals are hydrophilic nanomaterials, which limits their applications as interfacial compounds. Herein, we propose using modified wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Wood cellulose was consecutively oxidized and modified with phenyltrimethylammonium chloride to create hydrophobic domains comprised of phenyl groups. These modified oxidized cellulose nanocrystals (m-O-CNCs) were homogeneous/electrostatically stable in water and they can stabilize O/W Pickering emulsions. The dispersed phase volume fraction (DPVF) of the Pickering emulsion was 0.7 at around 1.5g/L, whereas the tween-20 control needed a 13-fold greater concentration to have a similar DPVR. In addition, these m-O-CNC stabilized Pickering emulsions also showed good mechanical and thermal stability against centrifugation and heat, as well as size controllability. In terms of stability, size controllability, surfactant-free status, these m-O-CNCs possess superior and enhanced emulsifying properties. Future research for these new interfacial materials have potential in applications, for personal care, cosmetic and pharmaceutic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-dependent Localized Ostwald Ripening.

    PubMed

    Wenchao, Duan; Zhang, Peina; Xiahou, Yujiao; Song, Yahui; Bi, Cuixia; Zhan, Jie; Du, Wei; Huang, Lihui; Möhwald, Helmuth; Xia, Haibing

    2018-06-21

    It is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au m-n aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle-number ratios, where m and n represent the size of Au NPs, respectively. In addition, 3D Au m-n @Pd aerogels were further synthesized on the basis of Au m-n aerogels and also bear controlled surface facets due to the formation of ultrathin Pd layers on Au m-n aerogels. Taking the electrooxidation of small organic molecules (such as methanol and ethanol) by the resulting Au m-n and Au m-n @Pd aerogels as examples, it is found that surface facets of metallic aerogels with excellent performance can be regulated to realize preferential surface facets for methanol oxidation and ethanol oxidation, respectively. Moreover, they also indeed simultaneously bear high activity and excellent stability. Furthermore, their activities and stability are also highly dependent on the area ratio of active facets and inactive facets on their surfaces, respectively, and these ratios are varied via the mismatch of sizes of adjacent nanoparticles. Thus, this work not only demonstrates the realization of the regulation of the surface facets of metallic aerogels by size-dependent localized Ostwald ripening, but also will open up a new way to improve electrocatalytic performance of three-dimensional metallic aerogels by surface regulation.

  18. Spatial and temporal analysis of postural control in dyslexic children.

    PubMed

    Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia

    2015-07-01

    The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Temporal distribution of intertidal macrozoobenthic assemblages in a Nanozostera noltii-dominated area (Lagoon of Venice).

    PubMed

    Tagliapietra, D; Pessa, G; Cornello, M; Zitelli, A; Magni, P

    2016-03-01

    We describe the temporal distribution of intertidal macrozoobenthic assemblages in a small marsh pond of the Lagoon of Venice colonized by the seagrass Nanozostera noltii (Hornemman) Tomlinson et Posluzny. Three stations ranging in the degree of N. noltii cover were selected about 100 m apart and sampled 9 times at regular intervals from March 1996 to March 1997. We applied the concepts of resistance and resilience to "natural stress" (e.g. extent of protection from seagrass meadows, exposure of macrozoobenthic assemblages to high temperatures in summer) with the aim to assess the stability of a community along a gradient of seagrass coverage. Results showed that the most structured and taxa-rich macrozoobenthic assemblage occurred at the station covered by a continuous stand of N. noltii, where permanent taxa (i.e. found in 100% of samples) were almost double than those found at the other stations. During the annual cycle, the macrozoobenthic assemblages showed a cyclical pattern, with temporal fluctuations increasing as they moved further away from the seagrass beds. We propose the role of N. noltii offering structural complexity and stability as the more probable explanation to the observed differences between stations in the intertidal assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    PubMed

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  1. Hierarchy of stability factors in reverse shoulder arthroplasty.

    PubMed

    Gutiérrez, Sergio; Keller, Tony S; Levy, Jonathan C; Lee, William E; Luo, Zong-Ping

    2008-03-01

    Reverse shoulder arthroplasty is being used more frequently to treat irreparable rotator cuff tears in the presence of glenohumeral arthritis and instability. To date, however, design features and functions of reverse shoulder arthroplasty, which may be associated with subluxation and dislocation of these implants, have been poorly understood. We asked: (1) what is the hierarchy of importance of joint compressive force, prosthetic socket depth, and glenosphere size in relation to stability, and (2) is this hierarchy defined by underlying and theoretically predictable joint contact characteristics? We examined the intrinsic stability in terms of the force required to dislocate the humerosocket from the glenosphere of eight commercially available reverse shoulder arthroplasty devices. The hierarchy of factors was led by compressive force followed by socket depth; glenosphere size played a much lesser role in stability of the reverse shoulder arthroplasty device. Similar results were predicted by a mathematical model, suggesting the stability was determined primarily by compressive forces generated by muscles.

  2. The influence of sediment transport rate on the development of structure in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure

  3. Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang

    2018-05-01

    Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.

  4. Enzymatic degradation of poly(L-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects.

    PubMed

    Baier, Grit; Cavallaro, Alex; Friedemann, Kathrin; Müller, Beate; Glasser, Gunnar; Vasilev, Krasimir; Landfester, Katharina

    2014-01-01

    The enzyme-triggered release of the antimicrobial agent octenidine out of poly(l-lactide)-based nanoparticles (PLLA-NPs) and their in vitro antibacterial activities in the presence of gram-positive and gram-negative bacteria are presented. The formation of the nanoparticles was achieved using a combination of the solvent evaporation and the miniemulsion approach. For the stabilization of the polymeric nanoparticles, non-ionic polymers (polyvinylalcohol [PVA], hydroxyethyl starch [HES], human serum albumin [HSA]) were successfully used for enzymatic degradation; ionic surfactants such as sodium dodecyl sulfate and cetyltrimethylammonium chloride inhibited the enzymatic degradation. The change in pH, size, size distribution and morphology during the degradation process of PLLA-NPs and the release of the antimicrobial agent was studied. The influence of the different amounts of octenidine and of the different stabilizers on the NPs' stability, size, size distribution, morphology, zeta potential and on the surface group's density is discussed. Fluorescently labeled HES-stabilized PLLA-NPs are immobilized by colloidal electrospinning. The observed data from HPLC measurements show that octenidine is released out of PLLA-NPs which are stabilized with PVA, HES or HSA. In bacteria tests the PLLA nanoparticles showed a greater ability to inhibit the growth of Staphylococcus aureus compared to Escherichia coli. This article discusses the enzyme-triggered release and antibacterial effects of octenidine from poly(l-lactide)-based nanoparticles demonstrating the viability of this approach for potential future antibacterial therapy. © 2013.

  5. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kVmore » beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.« less

  6. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging.

    PubMed

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Halaweish, Ahmed; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia

    2016-01-01

    The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. The authors' report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.

  7. The Primary Break-up Instabilities in a gas-liquid coaxial atomizer combined with electro-spray

    NASA Astrophysics Data System (ADS)

    Osuna, Rodrigo; Machicoane, Nathanael; Aliseda, Alberto

    2017-11-01

    We present an experimental study of a canonical coaxial gas-liquid atomizer, balancing the physics of gas-assisted atomization and electro-sprays. The laminar liquid stream is injected through a long straight metallic pipe at the center of the turbulent gas jet. The liquid needle is used as the anode, while the cathode is formed by a ring located on the streamwise face of the coaxial gas chamber. The gas Reynolds number ranges from 104-106, while keeping the liquid Reynolds number constant at 103. The electrospray voltage applied is varied from 100 to 5000 V and the resulting negative charge transferred to the liquid jet spans from O(10-3 - 10-1) Coulomb per cubic meter. The relative influence of the high speed gas to the liquid electric charge on the primary instability and jet break-up is studied. The effect of the electric field on the atomization process is characterized by high speed visualization at the nozzle exit, complemented with the resulting droplet size distribution in the mid field after break-up has ended. The quantitative visualization captures the fast dynamics of the interface de-stabilization and clearly shows the changes in the liquid stream instabilities caused by the electric field. These instabilities control the liquid droplet sizes and their spatio-temporal distribution in the spray, as measured from light interferometry.

  8. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Krishna

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. Tomore » address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10B) and enriched lithium ( 6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.« less

  9. Adaptive inversion algorithm for 1 . 5 μm visibility lidar incorporating in situ Angstrom wavelength exponent

    NASA Astrophysics Data System (ADS)

    Shang, Xiang; Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Li, Manyi; Wang, Chong

    2018-07-01

    An eye-safe 1 . 5 μm visibility lidar is presented in this work considering in situ particle size distribution, which can be deployed in crowded places like airports. In such a case, the measured extinction coefficient at 1 . 5 μm should be converted to that at 0 . 55 μm for visibility retrieval. Although several models have been established since 1962, the accurate wavelength conversion remains a challenge. An adaptive inversion algorithm for 1 . 5 μm visibility lidar is proposed and demonstrated by using the in situ Angstrom wavelength exponent, which is derived from an aerosol spectrometer. The impact of the particle size distribution of atmospheric aerosols and the Rayleigh backscattering of atmospheric molecules are taken into account. Using the 1 . 5 μm visibility lidar, the visibility with a temporal resolution of 5 min is detected over 48 h in Hefei (31 . 83∘ N, 117 . 25∘ E). The average visibility error between the new method and a visibility sensor (Vaisala, PWD52) is 5.2% with the R-square value of 0.96, while the relative error between another reference visibility lidar at 532 nm and the visibility sensor is 6.7% with the R-square value of 0.91. All results agree with each other well, demonstrating the accuracy and stability of the algorithm.

  10. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Daigle, Hugh

    2017-01-01

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from 3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of 500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of 330 nm.

  11. Influence of stabilizers on the physicochemical characteristics of inhaled insulin powders produced by supercritical antisolvent process.

    PubMed

    Kim, Yong Ho; Sioutas, Constantinos; Shing, Katherine S

    2009-01-01

    To examine the effect of stabilizers on aerosol physicochemical characteristics of inhaled insulin particles produced using a supercritical fluid technology. Insulin with stabilizers such as mannitol and trehalose was micronized by aerosol solvent extraction system (ASES). The supercritically-micronized insulin particles were characterized for size, shape, aerosol behavior, crystallinity and secondary structure. Experimental results indicated that when insulin was incorporated with the most commonly used stabilizer mannitol (insulin/mannitol: 15/85 wt.%, designated IM), the particles formed were irregular and needle-shaped and had a tendency to agglomerate. With the incorporation of a second stabilizer trehalose (insulin/mannitol/trehalose: 15/70/15 wt.%, designated IMT), the particles were relatively uniform, more spherical, less cohesive, and less agglomerated in an air flow, when compared to IM particles. The mass median aerodynamic diameter of the IMT particles was 2.32 mum which is suitable for use in inhalation therapy. In vitro deposition test using micro-orifice uniform deposit impactor showed 69 +/- 7 wt.% of the IMT particles was deposited in stage 3, 4, 5 and 6 while 41 +/- 15 wt.% of the IM particles was deposited in the same stages. In terms of insulin stability, secondary structures of insulin particles were not adversely affected by the ASES processing studied here. When properly formulated (as in IMT particles), ASES process can produce particles with appropriate size and size distribution suitable for pulmonary insulin delivery.

  12. Circadian type and bed-timing regularity in 654 retired seniors: correlations with subjective sleep measures.

    PubMed

    Monk, Timothy H; Buysse, Daniel J; Billy, Bart D; Fletcher, Mary E; Kennedy, Kathy S; Schlarb, Janet E; Beach, Scott R

    2011-02-01

    Using telephone interview data from retired seniors to explore how inter-individual differences in circadian type (morningness) and bed-timing regularity might be related to subjective sleep quality and quantity. MANCOVA with binary measures of morningness, stability of bedtimes, and stability of rise-times as independent variables; sleep measures as dependent variables; age, former shift work, and gender as covariates. Telephone interviews using a pseudo-random age-targeted sampling process. 654 retired seniors (65 y+, 363M, 291F). none. (1) circadian type (from Composite Scale of Morningness [CSM]), and stability of (2) bedtime and (3) rise-time from the Sleep Timing Questionnaire (STQ). Pittsburgh Sleep Quality Index (PSQI) score, time in bed, time spent asleep, and sleep efficiency, from Sleep Timing Questionnaire (STQ). Morning-type orientation, stability in bedtimes, and stability in rise-times were all associated with better sleep quality (P < 0.001, for all; effect sizes: 0.43, 0.33, and 0.27). Morningness was associated with shorter time in bed (P < 0.0001, effect size 0.45) and time spent asleep (P < 0.005, effect size 0.26). For bedtime and rise-time stability the direction of effect was similar but mostly weaker. In retired seniors, a morning-type orientation and regularity in bedtimes and rise-times appear to be correlated with improved subjective sleep quality and with less time spent in bed.

  13. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions.

    PubMed

    Fernández-Ávila, C; Escriu, R; Trujillo, A J

    2015-09-01

    The effect of Ultra-High Pressure Homogenization (UHPH, 100-300MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15MPa). CH emulsions were prepared with non-heated and heated (95°C for 15min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d 3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200MPa with 20% of oil were the most stable due to low particle size values (d 3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Psychometric properties of a new questionnaire to assess eating in the absence of hunger in children and adolescents.

    PubMed

    Tanofsky-Kraff, Marian; Ranzenhofer, Lisa M; Yanovski, Susan Z; Schvey, Natasha A; Faith, Myles; Gustafson, Jennifer; Yanovski, Jack A

    2008-07-01

    Eating in the absence of hunger (EAH), studied in the context of laboratory paradigms, has been associated with obesity and is predictive of excess weight gain in children. However, no easily administered questionnaire exists to assess for EAH in children. We developed an Eating in the Absence of Hunger Questionnaire to be administered to children and adolescents (EAH-C) and examined psychometric properties of the measure. Two-hundred and twenty-six obese (BMI > or = 95th percentile for age and sex, n=73) and non-obese (BMI<95th percentile, n=153) youth (mean age+/-S.D., 14.4+/-2.5 y) completed the EAH-C and measures of loss of control and emotional eating, and general psychopathology. Temporal stability was assessed in a subset of participants. Factor analysis generated three subscales for the EAH-C: Negative Affect, External Eating, and Fatigue/Boredom. Internal consistency for all subscales was established (Cronbach's alphas: 0.80-0.88). The EAH-C subscales had good convergent validity with emotional eating and loss of control episodes (p's<0.01). Obese children reported higher Negative Affect subscale scores than non-obese children (p

  15. Temporal Variability of Oral Microbiota over 10 Months and the Implications for Future Epidemiologic Studies.

    PubMed

    Vogtmann, Emily; Hua, Xing; Zhou, Liang; Wan, Yunhu; Suman, Shalabh; Zhu, Bin; Dagnall, Casey L; Hutchinson, Amy; Jones, Kristine; Hicks, Belynda D; Sinha, Rashmi; Shi, Jianxin; Abnet, Christian C

    2018-05-01

    Background: Few studies have prospectively evaluated the association between oral microbiota and health outcomes. Precise estimates of the intrasubject microbial metric stability will allow better study planning. Therefore, we conducted a study to evaluate the temporal variability of oral microbiota. Methods: Forty individuals provided six oral samples using the OMNIgene ORAL kit and Scope mouthwash oral rinses approximately every two months over 10 months. DNA was extracted using the QIAsymphony and the V4 region of the 16S rRNA gene was amplified and sequenced using the MiSeq. To estimate temporal variation, we calculated intraclass correlation coefficients (ICCs) for a variety of metrics and examined stability after clustering samples into distinct community types using Dirichlet multinomial models (DMMs). Results: The ICCs for the alpha diversity measures were high, including for number of observed bacterial species [0.74; 95% confidence interval (CI): 0.65-0.82 and 0.79; 95% CI: 0.75-0.94] from OMNIgene ORAL and Scope mouthwash, respectively. The ICCs for the relative abundance of the top four phyla and beta diversity matrices were lower. Three clusters provided the best model fit for the DMM from the OMNIgene ORAL samples, and the probability of remaining in a specific cluster was high (59.5%-80.7%). Conclusions: The oral microbiota appears to be stable over time for multiple metrics, but some measures, particularly relative abundance, were less stable. Impact: We used this information to calculate stability-adjusted power calculations that will inform future field study protocols and experimental analytic designs. Cancer Epidemiol Biomarkers Prev; 27(5); 594-600. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. Psychometric Properties of a New Questionnaire to Assess Eating in the Absence of Hunger in Children and Adolescents

    PubMed Central

    Tanofsky-Kraff, Marian; Ranzenhofer, Lisa M.; Yanovski, Susan Z.; Schvey, Natasha A.; Faith, Myles; Gustafson, Jennifer; Yanovski, Jack A.

    2008-01-01

    Background Eating in the absence of hunger (EAH), studied in the context of laboratory paradigms, has been associated with obesity and is predictive of excess weight gain in children. However, no easily administered questionnaire exists to assess for EAH in children. Objective We developed an Eating in the Absence of Hunger questionnaire to be administered to children and adolescents (EAH-C) and examined psychometric properties of the measure. Design Two-hundred-twenty-six obese (BMI ≥ 95th percentile for age and sex, n = 73) and non-obese (BMI <95th percentile, n = 153) youth (mean age ± SD, 14.4 ± 2.5y) completed the EAH-C and measures of loss of control and emotional eating, and general psychopathology. Temporal stability was assessed in a subset of participants. Results Factor analysis generated three subscales for the EAH-C: Negative Affect, External Eating, and Fatigue/Boredom. Internal consistency for all subscales was established (Cronbach's alphas: 0.80 to 0.88). The EAH-C subscales had good convergent validity with emotional eating and loss of control episodes (p's < 0.01). Obese children reported higher Negative Affect subscale scores than non-obese children (p ≤ 0.05). All three subscales were positively correlated with measures of general psychopathology. Intra-class correlation coefficients revealed temporal stability for all subscales (ranging from 0.65 to 0.70, p's < 0.01). We conclude that the EAH-C had internally consistent subscales with good convergent validity and temporal stability, but may have limited discriminant validity. Further investigations examining the EAH-C in relation to laboratory feeding studies are required to determine whether reported EAH is related to actual energy intake or to the development of excess weight gain. PMID:18342988

  17. Goal orientations, motivational climate, and prosocial and antisocial behaviour in youth football: exploring their temporal stability and reciprocal relationships.

    PubMed

    Sage, Luke D; Kavussanu, Maria

    2008-05-01

    In this study, we examined the temporal stability and reciprocal relationships among task and ego orientation, task- and ego-involving climates, and prosocial and antisocial behaviour in youth football. Male (n = 156) and female (n = 24) footballers (mean age 14.1 years, s = 1.8) completed questionnaires towards the beginning and end of a regular season. Questionnaires measured goal orientation, perceived motivational climate, and frequency of prosocial and antisocial behaviours. Structural equation modelling indicated moderate covariance stability between the beginning and end of the season. Subsequent analyses revealed a significant decrease only in perceptions of task-involving climate. In the cross-lagged analyses, prosocial behaviour at the beginning of the season positively predicted task-involving climate at the end of the season. Antisocial behaviour at the beginning of the season positively predicted both ego orientation and ego-involving climate at the end of the season and a reciprocal relationship was revealed whereby ego orientation at the beginning of the season positively predicted antisocial behaviour at the end of the season. Task orientation at the beginning of the season negatively predicted ego-involving climate at the end of the season. All cross-lagged relationships were weak. This exploratory study offers limited support for bi-directional relationships between personal, environmental, and behavioural variables but provides useful insight into the covariance stability, change, and interrelationships between motivational and moral constructs over a competitive season.

  18. Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses

    PubMed Central

    Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.

    2014-01-01

    The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267

  19. Nonlinear stability of the 1D Boltzmann equation in a periodic box

    NASA Astrophysics Data System (ADS)

    Wu, Kung-Chien

    2018-05-01

    We study the nonlinear stability of the Boltzmann equation in the 1D periodic box with size , where is the Knudsen number. The convergence rate is for small time region and exponential for large time region. Moreover, the exponential rate depends on the size of the domain (Knudsen number). This problem is highly nonlinear and hence we need more careful analysis to control the nonlinear term.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yang; Liu, Yang; Zhu, Guanghui

    Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less

Top