Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats
Fratangeli, Francesca; Dondi, Nicolò; Segre Reinach, Marco; Serra, Clara; Sweet, Michael J.
2016-01-01
Worldwide coral reef decline appears to be accompanied by an increase in the spread of hard coral diseases. However, whether this is the result of increased direct and indirect human disturbances and/or an increase in natural stresses remains poorly understood. The provision of baseline surveys for monitoring coral health status lays the foundations to assess the effects of any such anthropogenic and/or natural effects on reefs. Therefore, the objectives of this present study were to provide a coral health baseline in a poorly studied area, and to investigate possible correlations between coral health and the level of anthropogenic and natural disturbances. During the survey period, we recorded 20 different types of coral diseases and other compromised health statuses. The most abundant were cases of coral bleaching, followed by skeletal deformations caused by pyrgomatid barnacles, damage caused by fish bites, general pigmentation response and galls caused by cryptochirid crabs. Instances of colonies affected by skeletal eroding bands, and sedimentation damage increased in correlation to the level of bio-chemical disturbance and/or proximity to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at sites affected by blast fishing and close to a newly opened metal mine. Interestingly, in the investigated area the percentage of corals showing signs of ‘common’ diseases such as black band disease, brown band disease, white syndrome and skeletal eroding band disease were relatively low. Nevertheless, the relatively high occurrence of less common signs of compromised coral-related reef health, including the aggressive overgrowth by sponges, deserves further investigation. Although diseases appear relatively low at the current time, this area may be at the tipping point and an increase in activities such as mining may irredeemably compromise reef health. PMID:27812416
Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats.
Ponti, Massimo; Fratangeli, Francesca; Dondi, Nicolò; Segre Reinach, Marco; Serra, Clara; Sweet, Michael J
2016-01-01
Worldwide coral reef decline appears to be accompanied by an increase in the spread of hard coral diseases. However, whether this is the result of increased direct and indirect human disturbances and/or an increase in natural stresses remains poorly understood. The provision of baseline surveys for monitoring coral health status lays the foundations to assess the effects of any such anthropogenic and/or natural effects on reefs. Therefore, the objectives of this present study were to provide a coral health baseline in a poorly studied area, and to investigate possible correlations between coral health and the level of anthropogenic and natural disturbances. During the survey period, we recorded 20 different types of coral diseases and other compromised health statuses. The most abundant were cases of coral bleaching, followed by skeletal deformations caused by pyrgomatid barnacles, damage caused by fish bites, general pigmentation response and galls caused by cryptochirid crabs. Instances of colonies affected by skeletal eroding bands, and sedimentation damage increased in correlation to the level of bio-chemical disturbance and/or proximity to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at sites affected by blast fishing and close to a newly opened metal mine. Interestingly, in the investigated area the percentage of corals showing signs of 'common' diseases such as black band disease, brown band disease, white syndrome and skeletal eroding band disease were relatively low. Nevertheless, the relatively high occurrence of less common signs of compromised coral-related reef health, including the aggressive overgrowth by sponges, deserves further investigation. Although diseases appear relatively low at the current time, this area may be at the tipping point and an increase in activities such as mining may irredeemably compromise reef health.
A non-destructive method for dating human remains
Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason
2013-01-01
The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.
Nicolet, K J; Chong-Seng, K M; Pratchett, M S; Willis, B L; Hoogenboom, M O
2018-03-27
Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.
Laparoscopic Adjustable Gastric Band (LAGB) Migration - Endoscopic Treatment Modalities.
Klimczak, Tomasz; Szewczyk, Tomasz; Janczak, Przemysław; Jurałowicz, Piotr
2016-12-01
Laparoscopic adjustible gastric binding (LAGB) is one of most common surgical methods of treating obesity. Gastric band migration (erosion) is a typical LAGB complication, with a frequency of about 1-4%. The aim of the study was to present the possibilities of endoscopic diagnosis and treatment of this complication. The study was carried out in the Department of Gastroenterological, Oncological and General Surgery in Łódź. Between 2008 and 2015, 450 gastric bands were implanted using the laparoscopic technique in 318 (71%) women and 132 (29%) men. In this period 7 cases of band migration were diagnosed - 3 cases in men (2.3%) and 4 cases in women (1.3%), what presents 1.56% of general number of complications. Five out of 7 eroded bands were qualified for endoscopic removal. Four out of 5 qualified eroded bands were removed using the gastric band cutting technique. In one case we used the musculo-mucosal incision technique. In order to diagnose early perforations all patients underwent control passage examinations with oral contrast (gastrografin) 3-6 hours after the procedure. All 5 out of 5 qualified eroded gastric bands were successfully removed with the endoscopic method, which gives 100% success rate in own material. Two endoscopic methods were used: 1) endoscopic gastric band cutting, 2) endoscopic musculo-mucosal incision. Endoscopy gives a possibility of instant diagnosis of gastric band migration and early minimally invasive treatment. One of our endoscopic methods of removing the bands by making several incisions of the musculo-mucosal plicae has not yet been described in professional medical literature.
Roff, George; Ulstrup, Karin E; Fine, Maoz; Ralph, Peter J; Hoegh-Guldberg, Ove
2008-04-01
Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization of the two-dimensional variability in the photophysiology of endosymbiotic dinoflagellates (zooxanthellae) by measuring rapid light curves. Three of four syndromes associated with active tissue loss (type a) were spatially homogenous (white syndrome, brown band, and skeletal eroding band), with no impact on the photochemical function of zooxanthellae populations at or behind the lesion borders. However, a decline in maximum quantum yield (Fv /Fm ) and elevated levels of maximum nonphotochemical quenching (NPQmax ) occurred in visually healthy tissue of black band disease adjacent to the lesion borders, possibly due to hypoxic conditions caused by the black band cyanobacterial mat. Two out of three syndromes associated with pathological change of intact tissue with no active tissue loss (type b) showed variable photophysiological responses (neoplasia and pigmentation response). Only the bleached foci associated with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0 ) and maximum quantum yield (Fv /Fm ), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal. © 2008 Phycological Society of America.
NASA Technical Reports Server (NTRS)
Morrison, R. B.; Cooley, M. E.
1973-01-01
The author has identified the following significant results. The red MSS band 5 gives the sharpest definition of modern arroyos. On the best images, modern arroy0s can be distinguished as narrow as 150 to 200 feet in reaches where their contrast with adjacent areas is only moderate, and as narrow as 60 to 75 feet where their contrast is high. Both the red and infrared bands show differences is soils and vegetation. In the late fall and winter imagery, band 7 generally is the most useful for mapping the areas of the more erodible soils. A map at 1:1,000,000 scale has been prepared that shows all the arroyos within the 17,000 square mile study area that have been identified from ERTS-1 images. Also, from U-2 color infrared airphotos, a 1:125,000 scale map has been made of a 50 mile reach along San Simon Wash, in southeastern Arizona. This map shows not only the arroyo channels and narrow flood plains that have developed since 1890, but also areas within a few miles of the wash that are severely guilled, severely sheet-eroded, and moderately sheet-eroded. Two important effects of the third largest recorded flood of the upper Gila River also have been determined from the ERTS-1 images. The inundated area is best displayed on band 7, and the areas of severe sand/gravel erosion/deposition show best on band 5.
Abeysekera, Ashvini; Ghosh, Simon; Hacking, Craig
2017-01-01
We present an unusual and rare complication caused by gastric band erosion into the stomach after band placement 15 years ago. The complication was only picked up after the band had subsequently migrated from the stomach at the site of erosion, to the distal ileum causing acute small bowel obstruction and focal perforation requiring emergency laparotomy. Abdominal pain in patients with gastric band should always be treated as serious until proven otherwise. PMID:28500263
NASA Astrophysics Data System (ADS)
Carricart-Ganivet, J. P.; Vásquez-Bedoya, L. F.; Cabanillas-Terán, N.; Blanchon, P.
2013-09-01
Density banding in skeletons of reef-building corals is a valuable source of proxy environmental data. However, skeletal growth strategy has a significant impact on the apparent timing of density-band formation. Some corals employ a strategy where the tissue occupies previously formed skeleton during as the new band forms, which leads to differences between the actual and apparent band timing. To investigate this effect, we collected cores from female and male colonies of Siderastrea siderea and report tissue thicknesses and density-related growth parameters over a 17-yr interval. Correlating these results with monthly sea surface temperature (SST) shows that maximum skeletal density in the female coincides with low winter SSTs, whereas in the male, it coincides with high summer SSTs. Furthermore, maximum skeletal densities in the female coincide with peak Sr/Ca values, whereas in the male, they coincide with low Sr/Ca values. Both results indicate a 6-month difference in the apparent timing of density-band formation between genders. Examination of skeletal extension rates also show that the male has thicker tissue and extends faster, whereas the female has thinner tissue and a denser skeleton—but both calcify at the same rate. The correlation between extension and calcification, combined with the fact that density banding arises from thickening of the skeleton throughout the depth reached by the tissue layer, implies that S. siderea has the same growth strategy as massive Porites, investing its calcification resources into linear extension. In addition, differences in tissue thicknesses suggest that females offset the greater energy requirements of gamete production by generating less tissue, resulting in differences in the apparent timing of density-band formation. Such gender-related offsets may be common in other corals and require that environmental reconstructions be made from sexed colonies and that, in fossil corals where sex cannot be determined, reconstructions must be duplicated in different colonies.
Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław
2016-01-01
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.
Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V.; Stolarski, Jarosław
2016-01-01
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates. PMID:26751803
Lamb, Joleah B; Willis, Bette L
2011-10-01
Concentrating tourism activities can be an effective way to closely manage high-use parks and minimize the extent of the effects of visitors on plants and animals, although considerable investment in permanent tourism facilities may be required. On coral reefs, a variety of human-related disturbances have been associated with elevated levels of coral disease, but the effects of reef-based tourist facilities (e.g., permanent offshore visitor platforms) on coral health have not been assessed. In partnership with reef managers and the tourism industry, we tested the effectiveness of concentrating tourism activities as a strategy for managing tourism on coral reefs. We compared prevalence of brown band disease, white syndromes, black band disease, skeletal eroding band, and growth anomalies among reefs with and without permanent tourism platforms within the Great Barrier Reef Marine Park. Coral diseases were 15 times more prevalent at reefs with offshore tourism platforms than at nearby reefs without platforms. The maximum prevalence and maximum number of cases of each disease type were recorded at reefs with permanently moored tourism platforms. Diseases affected 10 coral genera from 7 families at reefs with platforms and 4 coral genera from 3 families at reefs without platforms. The greatest number of disease cases occurred within the spatially dominant acroporid corals, which exhibited 18-fold greater disease prevalence at reefs with platforms than at reefs without platforms. Neither the percent cover of acroporids nor overall coral cover differed significantly between reefs with and without platforms, which suggests that neither factor was responsible for the elevated levels of disease. Identifying how tourism activities and platforms facilitate coral disease in marine parks will help ensure ongoing conservation of coral assemblages and tourism. ©2011 Society for Conservation Biology.
Density Banding in Coral Skeletons: A Biotic Response to Sea Surface Temperature?
NASA Astrophysics Data System (ADS)
Hill, C. A.; Oehlert, A. M.; Piggot, A. M.; Yau, P. M.; Fouke, B. W.
2008-12-01
Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. This provides a sensitive reconstructive tool for paleothermometry, paleoclimatology and paleoecology. However, the detailed mechanisms controlling aragonite nucleation and crystallization events and the rate of skeletal growth remain uncertain. The organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles (annual mean variation in SST is 29° C in mid-September to 26° C in late February). Samples were collected in the following three contextual modes: 1) at two sites (Water Plant and Playa Kalki) along a lateral 25 km spatial transect; 2) across a vertical bathymetric gradient from 5 to 15 m water depth at each site; and 3) at strategic time periods spanning the 3° C annual variations in SST. Preliminary results indicate that skeletal density banding is also expressed in the organic matrix, permitting biochemical characterization and correlation of the organic matrix banding to the skeletal banding. In addition, both surficial and ectodermal mucins were characterized in terms of total protein content, abundance and location of their anionic, cationic, and neutral macromolecular constituents. Furthermore, the ratio of mucocytes in the oral ectoderm to gastrodermal symbiotic zooxanthellae has permitted estimates of seasonal carbon allocation by the coral holobiont. Our nanometer-scale optical analyses of crystal morphology, arrangement, and densities have revealed consistent changes between high and low skeletal density bands. Mass spectrometry, newly developed immunohistochemical staining, fluorescence and polarized light microscopy are in progress to further quantify and model these observations.
Beluga whale liver microsomal cytochrome P4501A (CYP1A) enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, P.L.; Addison, R.; Lockhart, L.
1995-12-31
Beluga whale (Delphinapterus leucas) liver from the Canadian arctic was analyzed for the presence of CYP1A enzymes, as part of current studies on biomarkers for environmental contamination. CYP1A1-associated 7-ethoxyresorufin O-dealkylase activity (EROD) varied 13 fold among sixteen male whale liver microsomal samples and 31 fold among five females. Similarly, the rate of 7-methoxyresorufin O-dealkylation (MROD) varied 7 fold and 3 fold in microsomal samples from males and females, respectively. Furthermore, 7-pentoxyresorufin O-dealkylase activity (PROD) varied 10 fold in both sexes. None of these enzyme activities were sexually differentiated, and EROD and MROD were inhibited by {alpha}-naphthoflavone. There was very goodmore » correlation between EROD and MROD (r{sup 2} = .894), EROD and PROD (r{sup 2} = .909), but MROD and PROD were not as well correlated (r{sup 2} = 785). On Western immunoblots, a single band was recognized in Beluga whale liver microsomes by a polygonal antibody raised against an oligopeptide related to trout CYP1A1. This antibody also recognized purified rat CYP1A1 (56 kDa) and stained only one band (56 kDa) in liver microsomes isolated from male rats treated with {beta}-naphthoflavone. The interindividual variation in EROD paralleled differences in the amount of whale liver microsomal protein that cross-reacted with the anti-peptide antibody. The results suggest that Beluga whale liver contains at least one CYP1A enzyme which catalyzes the 0-dealkylation of 7-ethoxy, 7-methoxy and 7-pentoxyresorufin and has a molecular weight less than that of rat CYP1A1, but similar to rat CYP1A2 (52 kDa).« less
NASA Astrophysics Data System (ADS)
Sepuru, Terrence Koena; Dube, Timothy
2018-07-01
In this study, we determine the most suitable multispectral sensor that can accurately detect and map eroded areas from other land cover types in Sekhukhune rural district, Limpopo Province, South Africa. Specifically, the study tested the ability of multi-date (wet and dry season) Landsat 8 OLI and Sentinel-2 MSI images in detecting and mapping eroded areas. The implementation was done, using a robust non-parametric classification ensemble: Discriminant Analysis (DA). Three sets of analysis were applied (Analysis 1: Spectral bands as independent dataset; Analysis 2: Spectral vegetation indices as independent and Analysis 3: Combined spectral bands and spectral vegetation indices). Overall classification accuracies ranging between 80% to 81.90% for MSI and 75.71%-80.95% for OLI were derived for the wet and dry season, respectively. The integration of spectral bands and spectral vegetation indices showed that Sentinel-2 (OA = 83, 81%), slightly performed better than Landsat 8, with 82, 86%. The use of bands and vegetation indices as independent dataset resulted in slightly weaker results for both sensors. Sentinel-2 MSI bands located in the NIR (0.785-0.900 μm), red edge (0.698-0.785 μm) and SWIR (1.565-2.280 μm) regions were selected as the most optimal for discriminating degraded soils from other land cover types. However, for Landsat 8OLI, only the SWIR (1.560-2.300 μm), NIR (0.845-0.885 μm) region were selected as the best regions. Of the eighteen spectral vegetation indices computed, NDVI and SAVI and SAVI and Global Environmental Monitoring Index (GEMI) were ranked selected as the most suitable for detecting and mapping soil erosion. Additionally, SRTM DEM derived information illustrates that for both sensors eroded areas occur on sites that are 600 m and 900 m of altitude with similar trends observed in both dry and wet season maps. Findings of this work emphasize the importance of free and readily available new generation sensors in continuous landscape-scale soil erosion monitoring. Besides, such information can help to identify hotspots and potentially vulnerable areas, as well as aid in developing possible control and mitigation measures.
Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.
Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K
2013-10-01
Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.
Abeysekera, Ashvini; Lee, Jerry; Ghosh, Simon; Hacking, Craig
2017-05-12
We present an unusual and rare complication caused by gastric band erosion into the stomach after band placement 15 years ago. The complication was only picked up after the band had subsequently migrated from the stomach at the site of erosion, to the distal ileum causing acute small bowel obstruction and focal perforation requiring emergency laparotomy.Abdominal pain in patients with gastric band should always be treated as serious until proven otherwise. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Dissepiments, density bands and signatures of thermal stress in Porites skeletons
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Cohen, Anne L.
2017-09-01
The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the underlying cause of high-density stress bands.
Presence of skeletal banding in a reef-building tropical crustose coralline alga
Lewis, Bonnie; Lough, Janice M.; Nash, Merinda C.; Diaz-Pulido, Guillermo
2017-01-01
The presence of banding in the skeleton of coralline algae has been reported in many species, primarily from temperate and polar regions. Similar to tree rings, skeletal banding can provide information on growth rate, age, and longevity; as well as records of past environmental conditions and the coralline alga’s growth responses to such changes. The aim of this study was to explore the presence and characterise the nature of banding in the tropical coralline alga Porolithon onkodes, an abundant and key reef-building species on the Great Barrier Reef (GBR) Australia, and the Indo-Pacific in general. To achieve this we employed various methods including X-ray diffraction (XRD) to determine seasonal mol% magnesium (Mg), mineralogy mapping to investigate changes in dominant mineral phases, scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS), and micro-computed tomography (micro-CT) scanning to examine changes in cell size and density banding, and UV light to examine reproductive (conceptacle) banding. Seasonal variation in the Mg content of the skeleton did occur and followed previously recorded variations with the highest mol% MgCO3 in summer and lowest in winter, confirming the positive relationship between seawater temperature and mol% MgCO3. Rows of conceptacles viewed under UV light provided easily distinguishable bands that could be used to measure vertical growth rate (1.4 mm year-1) and age of the organism. Micro-CT scanning showed obvious banding patterns in relation to skeletal density, and mineralogical mapping revealed patterns of banding created by changes in Mg content. Thus, we present new evidence for seasonal banding patterns in the tropical coralline alga P. onkodes. This banding in the P. onkodes skeleton can provide valuable information into the present and past life history of this important reef-building species, and is essential to assess and predict the response of these organisms to future climate and environmental changes. PMID:28976988
Spatiotemporal patterns of coral disease prevalence on Heron Island, Great Barrier Reef, Australia
NASA Astrophysics Data System (ADS)
Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.
2010-12-01
Despite increasing research effort on coral diseases, little is known about factors driving disease dynamics on the Great Barrier Reef (GBR). This is the first study to investigate the temporal patterns of coral disease prevalence and potential drivers of disease around Heron Island, in the southern Capricorn Bunker sector of the GBR. Surveys were conducted in two austral summers and three winters between November 2007 and August 2009 on six sites around the island. Six diseases were detected: brown band syndrome (BrB), growth anomalies (GA), ulcerative white spots (UWS), white syndrome (WS), skeletal eroding band disease (SEB) and black band disease (BBD). The lowest overall mean disease prevalence was 1.87 ± 0.75% (mean ± SE) in November 2007 and the highest 4.22 ± 1.72% in August 2008. There was evidence of seasonality for two diseases: BrB and UWS. This is the first study to report a higher prevalence of BrB in the winter. BrB had a prevalence of 3.29 ± 0.58% in August 2008 and 1.53 ± 0.28% in August 2009, while UWS was the most common syndrome in the summer with a prevalence of 1.12 ± 0.31% in November 2007 and 2.67 ± 0.52% prevalence in January 2008. The prevalence of GAs and SEB did not depend on the season, although the prevalence of GAs increased throughout the study period. WS had a slightly higher prevalence in the summer, but its overall prevalence was low (<0.5%). Sites with high abundance of staghorn Acropora and Montipora were characterised by the highest disease prevalence (12% of Acropora and 3.3% of Montipora species were diseased respectively). These results highlight the correlations between coral disease prevalence, seasonally varying environmental parameters and coral community composition. Given that diseases are likely to reduce the resilience of corals, seasonal patterns in disease prevalence deserve further research.
Skeletal records of community-level bleaching in Porites corals from Palau
NASA Astrophysics Data System (ADS)
Barkley, Hannah C.; Cohen, Anne L.
2016-12-01
Tropical Pacific sea surface temperature is projected to rise an additional 2-3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These "stress bands" are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.
Elevated Cardiac Troponin T in Patients With Skeletal Myopathies.
Schmid, Johannes; Liesinger, Laura; Birner-Gruenberger, Ruth; Stojakovic, Tatjana; Scharnagl, Hubert; Dieplinger, Benjamin; Asslaber, Martin; Radl, Roman; Beer, Meinrad; Polacin, Malgorzata; Mair, Johannes; Szolar, Dieter; Berghold, Andrea; Quasthoff, Stefan; Binder, Josepha S; Rainer, Peter P
2018-04-10
Cardiac troponins are often elevated in patients with skeletal muscle disease who have no evidence of cardiac disease. The goal of this study was to characterize cardiac troponin concentrations in patients with myopathies and derive insights regarding the source of elevated troponin T measurements. Cardiac troponin T (cTnT) and cardiac troponin I (cTnI) concentrations were determined by using high sensitivity assays in 74 patients with hereditary and acquired skeletal myopathies. Patients underwent comprehensive cardiac evaluation, including 12-lead electrocardiogram, 24-h electrocardiogram, cardiac magnetic resonance imaging, and coronary artery computed tomography. cTnT and cTnI protein expression was determined in skeletal muscle samples of 9 patients and in control tissues derived from autopsy using antibodies that are used in commercial assays. Relevant Western blot bands were subjected to liquid chromatography tandem mass spectrometry for protein identification. Levels of cTnT (median: 24 ng/l; interquartile range: 11 to 54 ng/l) were elevated (>14 ng/l) in 68.9% of patients; cTnI was elevated (>26 ng/l) in 4.1% of patients. Serum cTnT levels significantly correlated with creatine kinase and myoglobin (r = 0.679 and 0.786, respectively; both p < 0.001). Based on cTnT serial testing, 30.1% would have fulfilled current rule-in criteria for myocardial infarction. Noncoronary cardiac disease was present in 23%. Using cTnT antibodies, positive bands were found in both diseased and healthy skeletal muscle at molecular weights approximately 5 kDa below cTnT. Liquid chromatography tandem mass spectrometry identified the presence of skeletal troponin T isoforms in these bands. Measured cTnT concentrations were chronically elevated in the majority of patients with skeletal myopathies, whereas cTnI elevation was rare. Our data indicate that cross-reaction of the cTnT immunoassay with skeletal muscle troponin isoforms was the likely cause. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Mandibular bone changes in 24 years and skeletal fracture prediction.
Jonasson, G; Sundh, V; Hakeberg, M; Hassani-Nejad, A; Lissner, L; Ahlqwist, M
2013-03-01
The objectives of the investigation were to describe changes in mandibular bone structure with aging and to compare the usefulness of cortical and trabecular bone for fracture prediction. From 1968 to 1993, 1,003 women were examined. With the help of panoramic radiographs, cortex thickness was measured and cortex was categorized as: normal, moderately, or severely eroded. The trabeculation was assessed as sparse, mixed, or dense. Visually, the mandibular compact and trabecular bone transformed gradually during the 24 years. The compact bone became more porous, the intertrabecular spaces increased, and the radiographic image of the trabeculae seemed less mineralized. Cortex thickness increased up to the age of 50 and decreased significantly thereafter. At all examinations, the sparse trabeculation group had more fractures (71-78 %) than the non-sparse group (27-31 %), whereas the severely eroded compact group showed more fractures than the less eroded groups only in 1992/1993, 24 years later. Sparse trabecular pattern was associated with future fractures both in perimenopausal and older women (relative risk (RR), 1.47-4.37) and cortical erosion in older women (RR, 1.35-1.55). RR for future fracture associated with a severely eroded cortex increased to 4.98 for cohort 1930 in 1992/1993. RR for future fracture associated with sparse trabeculation increased to 11.43 for cohort 1922 in 1992/1993. Dental radiographs contain enough information to identify women most at risk of future fracture. When observing sparse mandibular trabeculation, dentists can identify 40-69 % of women at risk for future fractures, depending on participant age at examination.
NASA Technical Reports Server (NTRS)
2006-01-01
NASA's Mars Exploration Rover Opportunity continues to cut southward across a plain marked by large sand ripples and a pavement of outcrop rock. The ripple in the center of the image shows a distinct pattern of banding, which the science team hopes to investigate more closely during the trek through this terrain. The banding and other features have inspired a hypothesis that Meridiani ripples are old features that are currently being eroded, and not transported, by wind. This navigation camera image was taken on Opportunity's sol 795, April 19, 2006.NASA Astrophysics Data System (ADS)
Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.
2017-09-01
Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.
Aberrant growth of maxillary canine teeth in male babirusa (genus Babyrousa).
Macdonald, Alastair A
2018-04-01
A worldwide survey of babirusa skulls curated in museum and private collections located 431 that were from adult males and had retained at least one maxillary canine tooth. Eighty-three of these skulls were identified as exhibiting aberrant maxillary canine tooth growth. Twenty-four of the skulls represented babirusa from Buru and the Sula Islands, and forty-five skulls represented babirusa from Sulawesi and the Togian Islands. The remaining series of fourteen babirusa skulls originally came from zoo animals. Fifteen skulls showed anomalous alveolar and tooth rotation in a median plane. Twenty-nine skulls had maxillary canine teeth that did not grow symmetrically towards the median plane of the cranium. Fourteen skulls showed evidence that the tips of one or both maxillary canine teeth had eroded the nasal bones. Twenty-one skulls had maxillary canine teeth that had eroded the frontal bones. The teeth of two skulls had eroded a parietal bone. One skull had two maxillary canines arising from an adjacent pair of alveoli on the left side of the cranium. Three skulls exhibited alveoli with no formed maxillary canine teeth in them. Analysis suggested that approximately 12% of the adult male babirusa in the wild experience erosion of the cranial bony tissues as a result of maxillary canine tooth growth. There was no skeletal evidence that maxillary canine teeth penetrate the eye. Crown Copyright © 2018. Published by Elsevier Masson SAS. All rights reserved.
Cintolo, Jessica A; Levine, Marc S; Huang, Stephanie; Dumon, Kristoffel
2012-01-01
Intraluminal erosion of a laparoscopic gastric band into the stomach has been reported as a complication of laparoscopic adjustable gastric banding. To our knowledge, however, intraluminal erosion of the band tubing into the duodenum has not been described. We report a 46-year-old man in whom a laparoscopic adjustable gastric band tubing eroded into the duodenal lumen, causing recurrent port-site infections. This complication was diagnosed on upper endoscopy and also, in retrospect, on an upper gastrointestinal barium study and computed tomography. The patient underwent surgical removal of the band and tubing, with a primary duodenal repair, and made a complete recovery without complications. Erosion of laparoscopic band tubing into the duodenum should be included in the differential diagnosis for recurrent port-site infections after laparoscopic adjustable gastric banding. Radiographic or endoscopic visualization of the intraluminal portion of the tubing may be required for confirmation. Definitive treatment of this complication entails surgical removal of the tubing from the duodenum.
[Calcium in the developing skeletal muscles of the chick embryo].
Samosudova, N V; Enenko, S O; Larin, Iu S; Shungskaia, V E
1982-07-01
The osmium-pyroantimonate technique was used for the ultrastructural study of Ca2+-localization in two types of chick embryo skeletal muscles: m. pectoralis and m. soleus. In 8- and 12-day old embryos the pyroantimonate precipitate was found on plasmalemma, condensed chromatine and ribosomes and in N-lines of I-band. During myogenesis (15-, 21-day old embryos) the calcium precipitate is redistributed from the above mentioned sites to terminal cisternae and N-line of I-band. It is proposed that calcium of N-lines may be involved in the glycogenolysis, its association with the muscle contraction occurring particularly at early developmental stages.
2006-05-01
NASA's Mars Exploration Rover Opportunity continues to cut southward across a plain marked by large sand ripples and a pavement of outcrop rock. The ripple in the center of the image shows a distinct pattern of banding, which the science team hopes to investigate more closely during the trek through this terrain. The banding and other features have inspired a hypothesis that Meridiani ripples are old features that are currently being eroded, and not transported, by wind. This navigation camera image was taken on Opportunity's sol 795, April 19, 2006. http://photojournal.jpl.nasa.gov/catalog/PIA08424
NASA Astrophysics Data System (ADS)
Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.
2016-04-01
Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.
Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna
2010-08-01
Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.
Fat-Free Mass and Skeletal Muscle Mass Five Years After Bariatric Surgery.
Davidson, Lance E; Yu, Wen; Goodpaster, Bret H; DeLany, James P; Widen, Elizabeth; Lemos, Thaisa; Strain, Gladys W; Pomp, Alfons; Courcoulas, Anita P; Lin, Susan; Janumala, Isaiah; Thornton, John C; Gallagher, Dympna
2018-07-01
This study investigated changes in fat-free mass (FFM) and skeletal muscle 5 years after surgery in participants from the Longitudinal Assessment of Bariatric Surgery-2 trial. A three-compartment model assessed FFM, and whole-body magnetic resonance imaging (MRI) quantified skeletal muscle mass prior to surgery (T0) and 1 year (T1), 2 years (T2), and 5 years (T5) postoperatively in 93 patients (85% female; 68% Caucasian; age 44.2 ± 11.6 years) who underwent gastric bypass (RYGB), sleeve gastrectomy, or adjustable gastric band. Repeated-measures mixed models were used to analyze the data. Significant weight loss occurred across all surgical groups in females from T0 to T1. FFM loss from T0 to T1 was greater after RYGB (mean ± SE: -6.9 ± 0.6 kg) than adjustable gastric band (-3.5 ± 1.4 kg; P < 0.05). Females with RYGB continued to lose FFM (-3.3 ± 0.7 kg; P < 0.001) from T1 to T5. A subset of males and females with RYGB and MRI-measured skeletal muscle showed similar initial FFM loss while maintaining FFM and skeletal muscle from T1 to T5. Between 1 and 5 years following common bariatric procedures, FFM and skeletal muscle are maintained or decrease minimally. The changes observed in FFM and muscle during the follow-up phase may be consistent with aging. © 2018 The Obesity Society.
Effects of audiogenic hazard on fetal skeletal development in mice
NASA Astrophysics Data System (ADS)
Murata, M.; Kawade, F.; Kondo, M.; Takigawa, H.; Sakamoto, H.
1990-06-01
The effects of noise on fetal skeletal development in mice were examined. Pregnant ICR mice were exposed to a wide octave-band noise at 100 dB(C) for 6 hours a day in three ways: the first group was continuously exposed only on day 7 of pregnancy (group "N"); the second was exposed intermittently (15 min on/15 min off) only on day 7 of pregnancy (group "IN"); and the third was exposed to a continuous noise recurrently during days 7-12 of pregnancy (group "RN"). On day 18 of pregnancy, fetuses were removed and prepared as skeletons of cleared specimens stained with alizarin red S for examining skeletal development. Skeletal immaturity was observed in group "RN". The percentage of fetuses with skeletal malformations was significantly increased in group "N", as compared with the control. Significantly higher percentages of fetuses with variations in cervical vertebral arches were observed in groups "N" and "RN".
NASA Astrophysics Data System (ADS)
Yanti, Apriwida; Susilo, Bowo; Wicaksono, Pramaditya
2016-11-01
Gajahmungkur reservoir is administratively located in Wonogiri Regency, Central Java, with the main function as a flood control in the upstream of Bengawan Solo River. Other functions of the reservoir are as hydroelectric power plant (PLTA), water supply, irrigation, fisheries and tourism. Economic utilization of the reservoir is estimated until 100 years, but it is begun to be threatened by the silting of the reservoir. Eroded materials entering water body will be suspended and accumulated. Suspended Material or TSS (Total Suspended Solid) will increase the turbidity of water, which can affect the quality of water and silting the reservoir. Remote sensing technology can be used to determine the spatial distribution of TSS. The purposes of this study were to 1) utilize and compare the accuracy of single band Landsat 8 OLI for mapping the spatial distribution of TSS and 2) estimate the TSS on Gajahmungkur reservoir surface waters up to the depth of 30 cm. The method used for modelling the TSS spatial distribution is the empirical modelling that integrates image pixel values and field data using correlation analysis and regression analysis. The data used in the empirical modelling are single band of visible, NIR, and SWIR of Landsat 8 OLI, which was acquired on 8 May 2016, and field-measured TSS values based on the field data collection conducted on 12 April 2016. The results revealed that mapping the distribution and the estimated value of TSS in Reservoir Gajahmungkur can be performed more accurately using band 4 (red band). The determinant coefficient between TSS field and TSS value of image using band 4 is 0.5431. The Standard Error (SE) of the predicted TSS value is 16.16 mg/L. The results also showed that the estimated total TSS of May 2016 according to band 4 is 1.087,56 tons. The average estimation of TSS value in up to the depth of 30 cm is 61.61 mg/L. The highest TSS distribution is in the northern parts, which was dominated by eroded materials from Keduang River.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chya; Forbes, Jeffrey G.; Wang, Kuan
2016-06-01
Nebulin is an about 1 μ m long intrinsically disordered scaffold for the thin filaments of skeletal muscle sarcomere. It is a multifunctional elastic protein that wraps around actin filament, stabilizes thin filaments, and regulates Ca-dependent actomyosin interactions. This study investigates whether the disorder profile of nebulin might encode guidelines for thin and thick filament interactions in the sarcomere of the skeletal muscle. The question was addressed computationally by analyzing the predicted disorder profile of human nebulin (6669 residues, ˜200 actin-binding repeats) by pondr and the periodicity of the A-band stripes (reflecting the locations of myosin-associated proteins) in the electron micrographs of the sarcomere. Using the detrended fluctuation analysis, a scale factor for the A-band stripe image data with respect to the nebulin disorder profile was determined to make the thin and thick filaments aligned to have maximum correlation. The empirical mode decomposition method was then applied to identify hidden periodicities in both the nebulin disorder profile and the rescaled A-band data. The decomposition reveals three characteristic length scales (45 nm, 100 nm, and 200 nm) that are relevant for correlational analysis. The dynamical cross-correlation analyses with moving windows at various sarcomere lengths depict a vernierlike design for both periodicities, thus enabling nebulin to sense position and fine tune sarcomere overlap. This shows that the disorder profile of scaffolding proteins may encode a guideline for cellular architecture.
Ren, Jimin; Sherry, A Dean; Malloy, Craig R
2015-12-01
The goal of this study was to amplify the effects of magnetization exchange between γ-adenosine triphosphate (ATP) and inorganic phosphate (Pi) for evaluation of ATP synthesis rates in human skeletal muscle. The strategy works by simultaneously inverting the (31) P resonances of phosphocreatine (PCr) and ATP using a wide bandwidth, adiabatic inversion radiofrequency pulse followed by observing dynamic changes in intensity of the noninverted Pi signal versus the delay time between the inversion and observation pulses. This band inversion technique significantly delays recovery of γ-ATP magnetization; consequently, the exchange reaction, Pi ↔ γ-ATP, is readily detected and easily analyzed. The ATP synthesis rate measured from high-quality spectral data using this method was 0.073 ± 0.011 s(-1) in resting human skeletal muscle (N = 10). The T1 of Pi was 6.93 ± 1.90 s, consistent with the intrinsic T1 of Pi at this field. The apparent T1 of γ-ATP was 4.07 ± 0.32 s, about two-fold longer than its intrinsic T1 due to storage of magnetization in PCr. Band inversion provides an effective method to amplify the effects of magnetization transfer between γ-ATP and Pi. The resulting data can be easily analyzed to obtain the ATP synthesis rate using a two-site exchange model. © 2014 Wiley Periodicals, Inc.
Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK
Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven
2014-01-01
Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation analysis to improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation. PMID:25063546
An essential role for the association of CD47 to SHPS-1 in skeletal remodeling.
Maile, Laura A; DeMambro, Victoria E; Wai, Christine; Lotinun, Sutada; Aday, Ariel W; Capps, Byron E; Beamer, Wesley G; Rosen, Clifford J; Clemmons, David R
2011-09-01
Integrin-associated protein (IAP/CD47) has been implicated in macrophage-macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47(-/-) mice with Cd47(+/+) controls. Cd47(-/-) mice weighed less and had decreased areal bone mineral density compared with controls. Cd47(-/-) femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone-formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47(-/-) mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47(-/-) bone marrow cells was significantly decreased compared with wild-type cultures and was associated with a decrease in bone-resorption capacity. Furthermore, by disrupting the CD47-SHPS-1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS-1 phosphorylation, SHP-1 phosphatase recruitment, and subsequent dephosphorylation of non-muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47(-/-) mice. Our finding of cell-autonomous defects in Cd47(-/-) osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47(-/-) mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. Copyright © 2011 American Society for Bone and Mineral Research.
Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles
NASA Astrophysics Data System (ADS)
Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.
2008-02-01
The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.
Tuberculosis of the Knee: A Case Report and Literature Review
Uboldi, Francesco M.; Limonta, Silvia; Ferrua, Paolo; Manunta, Andrea; Pellegrini, Antonio
2017-01-01
Tuberculosis (TB) is currently in resurgence due to immigration from endemic areas. Skeletal TB frequently mimics more common etiologies and can be difficult to diagnose. A case of TB knee arthritis in a young woman with painful and swelling knee is reported here. Arthrotomy was performed and inflamed synovial tissue was found, with multiple rice bodies in the eroded lateral femoral condyle. The patient was treated with an antituberculosis polytherapy and at 1-year follow-up, she reported relief from pain and swelling. We believe that all surgeons assessing patients from TB endemic regions have to adopt an updated approach to TB treatment. Thus, a literature review is also reported here on the current strategies used in different knee TB cases. PMID:29270550
NASA Technical Reports Server (NTRS)
Ke, Hua Zhu; Jee, Webster S. S.; Mori, Satoshi; Li, Xiao Jian; Kimmel, Donald B.
1992-01-01
The effects of long-term prostaglandin E(sub 2) (PGE(sub 2)) on cancellous bone in proximal tibial metaphysis were studied in 7 month old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE(sub 2)/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE(sub 2) produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE(sub 2) for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE(sub 2) administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration .
White, Jennifer; Barro, Marietta V.; Makarenkova, Helen P.; Sanger, Joseph W.; Sanger, Jean M.
2014-01-01
It is important to understand how muscle forms normally in order to understand muscle diseases that result in abnormal muscle formation. Although the structure of myofibrils is well understood, the process through which the myofibril components form organized contractile units is not clear. Based on the staining of muscle proteins in avian embryonic cardiomyocytes, we previously proposed that myofibrils formation occurred in steps that began with premyofibrils followed by nascent myofibrils and ending with mature myofibrils. The purpose of this study was to determine whether the premyofibril model of myofibrillogenesis developed from studies developed from studies in avian cardiomyocytes was supported by our current studies of myofibril assembly in mouse skeletal muscle. Emphasis was on establishing how the key sarcomeric proteins, F-actin, non-muscle myosin II, muscle myosin II, and α-actinin were organized in the three stages of myofibril assembly. The results also test previous reports that non-muscle myosins II A and B are components of the Z-Bands of mature myofibrils, data that are inconsistent with the premyofibril model. We have also determined that in mouse muscle cells, telethonin is a late assembling protein that is present only in the Z-Bands of mature myofibrils. This result of using specific telethonin antibodies supports the approach of using YFP-tagged proteins to determine where and when these YFP-sarcomeric fusion proteins are localized. The data presented in this study on cultures of primary mouse skeletal myocytes are consistent with the premyofibril model of myofibrillogenesis previously proposed for both avian cardiac and skeletal muscle cells. PMID:25125171
NASA Astrophysics Data System (ADS)
Boppart, Stephen
2006-02-01
Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.
Plasma cell cheilitis, successfully treated with topical 0.03% tacrolimus ointment.
Jin, Seon Pil; Cho, Kwang Hyun; Huh, Chang Hun
2010-05-01
Plasma cell cheilitis is a rare, idiopathic mucosal condition. The treatment of plasma cell cheilitis is often disappointing. It is often resistant to various topical treatments. We present a 65-year-old woman who had a painful, eroded area on her lower lip, which responded poorly to various topical treatments. A biopsy revealed a band-like infiltration composed mainly of plasma cells in the dermis. She was diagnosed as having plasma cell cheilitis, and was successfully treated with 0.03% topical tacrolimus ointment.
Assessing coral health and disease from digital photographs and in situ surveys.
Page, C A; Field, S N; Pollock, F J; Lamb, J B; Shedrawi, G; Wilson, S K
2017-01-01
Methods for monitoring the status of marine communities are increasingly adopting the use of images captured in the field. However, it is not always clear how data collected from photographic images relate to historic data collected using traditional underwater visual census methods. Here, we compare coral health and disease data collected in situ by scuba divers with photographic images collected simultaneously at 12 coral reef sites. Five globally relevant coral diseases were detected on 194 colonies from in situ surveys and 79 colonies from photos, whilst 698 colonies from in situ surveys and 535 colonies from photos exhibited signs of compromised health other than disease. Comparisons of in situ surveys with photographic analyses indicated that the number of disease cases occurring in the examined coral populations (prevalence) was six times higher (4.5 vs. 0.8% of colonies), whilst compromised health was three times higher (14 vs. 4% of colonies) from in situ surveys. Skeletal eroding band disease, sponge overgrowth and presence of Waminoa flatworms were not detected in photographs, though they were identified in situ. Estimates of black band disease and abnormally pigmented coral tissues were similar between the two methods. Estimates of the bleached and healthy colonies were also similar between methods and photographic analyses were a strong predictor of bleached (r 2 = 0.8) and healthy (r 2 = 0.5) colony prevalence from in situ surveys. Moreover, when data on disease and compromised health states resulting in white or pale coral colony appearance were pooled, the prevalence of 'white' colonies from in situ (14%) and photographic analyses (11%) were statistically similar. Our results indicate that information on coral disease and health collected by in situ surveys and photographic analyses are not directly comparable, with in situ surveys generally providing higher estimates of prevalence and greater ability to identify some diseases and compromised states. Careful sampling of photographs can however identify signs of coral stress, including some coral diseases, which may be used to trigger early-warning management interventions.
Wilson, Todd D; Miller, Nathan; Brown, Nicholas; Snyder, Brad E; Wilson, Erik B
2013-05-01
In gastrointestinal surgery, specifically in bariatric surgery, there are many types of fixed bands used for restriction and there are a multitude reasons that might eventually be an impetus for the removal of those bands. Bands consisting of Marlex or non silastic materials can be extremely difficult to remove. Intraoperative complications removing fixed bands include the difficulty in locating the band, inability to remove all of the band, and damage to surrounding structures including gastrotomies. Removal of eroded bands endoscopically may pose less risk. Potentially, forced erosion may be an easier modality than surgery, allowing revision without having to deal with the actual band at the time of definitive revision surgery. A retrospective case series developed from a university single institution bariatric practice setting was utilized. Endpoints for the study include success of band removal, complications, length of time the stent was present, and the type of stent. A total of 15 consecutive cases utilizing endoscopic stenting to actively induce fixed gastric band erosion for subsequent endoscopic removal were reviewed. There was an 87 % success rate in complete band removal with partial removal of the remaining bands that resolved the patient's symptoms. A complication rate of 27 % was recorded among the 15 patients, consisting of pain and/or nausea and vomiting. The mean time period of the placement of the stent prior to removal or attempted removal was 16.3 days. Endoscopic forced erosion of fixed gastric bands is feasible, safe, and may offer an advantage over laparoscopic removal. This technique is especially applicable for gastric obstruction from fixed bands, prior to large and definitive revision surgeries, or anticipated hostile anatomy that might preclude an abdominal operation altogether.
Targeting myofascial taut bands by ultrasound.
Thomas, Kisha; Shankar, Hariharan
2013-07-01
Myofascial pain syndrome (MPS) is a frequent diagnosis in chronic pain and is characterized by tender, taut bands known as trigger points. The trigger points are painful areas in skeletal muscle that are associated with a palpable nodule within a taut band of muscle fibers. Despite the prevalence of myofascial pain syndrome, diagnosis is based on clinical criteria alone. A growing body of evidence that suggests that taut bands are readily visualized under ultrasound-guided exam, especially when results are correlated with elastography, multidimensional imaging, and physical exam findings such as local twitch response. The actual image characteristic in B mode appears to be controversial. Ultrasonography provides an objective modality to assist with diagnosis and treatment of trigger points in the future.
NASA Astrophysics Data System (ADS)
Cole, J. E.; Lough, J.; Reed, E. V.; Schrag, D. P.
2016-12-01
The Indo-Pacific warm pool is intimately involved with large-scale climate variability on seasonal to secular time scales. The lack of long instrumental observations in this region has motivated paleoclimatic analyses using diverse proxy data sources. We present here new multicentury paleoclimate records from a Gulf of Papua coral that capture past variability with a Pacific-wide signature. We have developed stable isotope, Sr/Ca, skeletal density, and luminescence data from a coral core recovered at Bramble Cay, Australia (9°S, 144°E). The geochemical records span CE 1775-1993 and are dominated by low-frequency (decade-century scale) variability that is consistent with records from other proxies in the same region, and with other coral records from far-flung sites across the southwest Pacific. Unlike in many Pacific coral records, we observe no strong trend towards warmer conditions. Although skeletal density bands are clearly visible, they show inconsistent seasonal phasing with the geochemical tracers of sea surface temperature (SST; Sr/Ca and oxygen isotope content), and skeletal density does not correlate with these tracers on longer time scales. In this coral, density banding must be controlled by a more complex mix of internal and/or external factors. Luminescent banding and reconstructed salinity provide similar histories, suggesting a common hydroclimatic signal with significant variability at periods of decades and longer. The strong low-frequency behavior in these new climate records of SST and hydroclimate, from a remote region of the Indo-Pacific, confirms an important source of internal climate variability, on a poorly documented time scale, from a region with far-reaching climatic importance.
Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío
2016-10-01
The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Morishita, Hidetada; Tamiaki, Hitoshi
2009-03-01
Metal complexes of methyl 13 1- 18O-labelled pyropheophorbide- a1-M- 18O (M = Zn, Cu and Ni) were prepared by metallation of the 18O-labelled free base ( 1- 18O) and 18O-labelling of unlabelled nickel complex ( 1-Ni). The FT-IR spectra of 1-Zn and 1-Zn- 18O in CH 2Cl 2 showed that the 13-keto carbonyl stretching vibration mode moved to about a 30-cm -1 lower wavenumber by 18O-labelling of the 13 1-oxo moiety. In 1-Cu- 18O and 1-Ni- 18O, the 13-C dbnd 18O stretching modes were close to the highest-energy wavenumber mode of chlorin skeletal C-C/C-N vibrations at around 1650 cm -1 and they were coupled in CH 2Cl 2 to give two split IR bands (Fermi resonance). A similar coupling was observed in the resonance Raman scattering of 1-Ni- 18O in the solid state. The hydrogen-bonded 13-C dbnd 16O vibration mode of 1-Ni similarly coupled with the skeletal C-C/C-N mode in CCl 4 containing 1% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol, while such a coupling was not observed in a neat CCl 4 solution of 1-Ni possessing the 13-C dbnd 16O free from any interaction. The skeletal C-C/C-N band selectively coupled with the 13-C dbnd O, not with the 3-C dbnd O, when the difference in their peak maxima was less than 20 cm -1.
1983-01-01
The extensibility of the myofilaments in vertebrate skeletal muscle was studied by stretching glycerinated rabbit psoas muscle fibers in rigor state and examining the resulting extension of sarcomere structures under an electron microscope. Although stretches applied to rigor fibers produced a successive yielding of the weakest sarcomeres, the length of the remaining intact sarcomeres in many myofibrils was fairly uniform, being definitely longer than the sarcomeres in the control, nonstretched part of rigor fibers. The stretch-induced increase in sarcomere length was found to be taken up by the extension of the H zone and the I band, whereas the amount of overlap between the thick and thin filaments did not change appreciably with stretches of 10-20%. The thick filament extension in the H zone was localized in the bare regions, whereas the thin filament extension in the I band appeared to take place uniformly along the filament length. No marked increase in the Z-line width was observed even with stretches of 20-30%. These results clearly demonstrate the extensibility of the thick and thin filaments. The possible contribution of the myofilament compliance to the series elastic component (SEC) in vertebrate skeletal muscle fibers is discussed on the basis of the electron microscopic data and the force-extension curve of the SEC in rigor fibers. PMID:6682885
NASA Astrophysics Data System (ADS)
Gagnon, Alexander C.; Adkins, Jess F.; Fernandez, Diego P.; Robinson, Laura F.
2007-09-01
Deep-sea corals are a new tool in paleoceanography with the potential to provide century long records of deep ocean change at sub-decadal resolution. Complicating the reconstruction of past deep-sea temperatures, Mg/Ca and Sr/Ca paleothermometers in corals are also influenced by non-environmental factors, termed vital effects. To determine the magnitude, pattern and mechanism of vital effects we measure detailed collocated Sr/Ca and Mg/Ca ratios, using a combination of micromilling and isotope-dilution ICP-MS across skeletal features in recent samples of Desmophyllum dianthus, a scleractinian coral that grows in the near constant environment of the deep-sea. Sr/Ca variability across skeletal features is less than 5% (2σ relative standard deviation) and variability of Sr/Ca within the optically dense central band, composed of small and irregular aragonite crystals, is significantly less than the surrounding skeleton. The mean Sr/Ca of the central band, 10.6 ± 0.1 mmol/mol (2σ standard error), and that of the surrounding skeleton, 10.58±0.09 mmol/mol, are statistically similar, and agree well with the inorganic aragonite Sr/Ca-temperature relationship at the temperature of coral growth. In the central band, Mg/Ca is greater than 3 mmol/mol, more than twice that of the surrounding skeleton, a general result observed in the relative Mg/Ca ratios of D. dianthus collected from separate oceanographic locations. This large vital effect corresponds to a ˜ 10 °C signal, when calibrated via surface coral Mg/Ca-temperature relationships, and has the potential to complicate paleoreconstructions. Outside the central band, Mg/Ca ratios increase with decreasing Sr/Ca. We explain the correlated behavior of Mg/Ca and Sr/Ca outside the central band by Rayleigh fractionation from a closed pool, an explanation that has been proposed elsewhere, but which is tested in this study by a simple and general relationship. We constrain the initial solution and effective partition coefficients for a Rayleigh process consistent with our accurate Metal/Ca measurements. A process other than Rayleigh fractionation influences Mg in the central band and our data constrain a number of possible mechanisms for the precipitation of this aragonite. Understanding the process affecting tracer behavior during coral biomineralization can help us better interpret paleoproxies in biogenic carbonates and lead to an improved deep-sea paleothermometer.
NASA Astrophysics Data System (ADS)
de Oliveira, Leandra N.; de Oliveira, Vanessa E.; D'ávila, Sthefane; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.
2013-10-01
The colours of mollusc shells were determined using the Raman spectroscopy and these analyses suggest that the conjugated polyenes (carotenoids) and psittacofulvins are the organic pigments incorporated into their skeletal structures responsible by their colorations. The symmetric stretching vibration of the carbonate ion gives rise to a very strong Raman band at ca. 1089 cm-1 and a weak band at 705 cm-1, for all samples; the second band characterizes the aragonite as the inorganic matrix and can be used as a marker. The specimens show bands at 1523-1500 and at 1130-1119 cm-1, assigned to the ν1 and ν2 modes of the polyenic chain vibrations, respectively. Another band at 1293 cm-1, assigned to the CHdbnd CH in-plane rocking mode of the olefinic hydrogen is also observed in all samples, which reinforces the psittacofulvin compound as the main pigment present in the analyzed samples.
NASA Technical Reports Server (NTRS)
Beegle, L. W.; Wdowiak, T. J.; Harrison, J. G.
2001-01-01
While many of the characteristics of the cosmic unidentified infrared (UIR) emission bands observed for interstellar and circumstellar sources within the Milky Way and other galaxies, can be best attributed to vibrational modes of the variants of the molecular family known as polycyclic aromatic hydrocarbons (PAH), there are open questions that need to be resolved. Among them is the observed strength of the 6.2 micron (1600 cm(-1)) band relative to other strong bands, and the generally low strength for measurements in the laboratory of the 1600 cm(-1) skeletal vibration band of many specific neutral PAH molecules. Also, experiments involving laser excitation of some gas phase neutral PAH species while producing long lifetime state emission in the 3.3 micron (3000 cm(-1)) spectral region, do not result in significant 6.2 micron (1600 cm(-1)) emission. A potentially important variant of the neutral PAH species, namely hydrogenated-PAH (H(N)-PAH) which exhibit intriguing spectral correlation with interstellar and circumstellar infrared emission and the 2175 A extinction feature, may be a factor affecting the strength of 6.2 micron emission. These species are hybrids of aromatic and cycloalkane structures. Laboratory infrared absorption spectroscopy augmented by density function theory (DFT) computations of selected partially hydrogenated-PAH molecules, demonstrates enhanced 6.2 micron (1600 cm(-1)) region skeletal vibration mode strength for these molecules relative to the normal PAH form. This along with other factors such as ionization or the incorporation of nitrogen or oxygen atoms could be a reason for the strength of the cosmic 6.2 micron (1600 cm(-1)) feature.
Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles
NASA Technical Reports Server (NTRS)
Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.
1987-01-01
Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.
Comparative photoelastic study of dental and skeletal anchorages in the canine retraction.
de Assis Claro, Cristiane Aparecida; Chagas, Rosana Villela; Neves, Ana Christina Elias Claro; da Silva-Concílio, Laís Regiane
2014-01-01
To compare dental and skeletal anchorages in mandibular canine retraction by means of a stress distribution analysis. A photoelastic model was produced from second molar to canine, without the first premolar, and mandibular canine retraction was simulated by a rubber band tied to two types of anchorage: dental anchorage, in the first molar attached to adjacent teeth, and skeletal anchorage with a hook simulating the mini-implant. The forces were applied 10 times and observed in a circular polariscope. The stresses located in the mandibular canine were recorded in 7 regions. The Mann-Whitney test was employed to compare the stress in each region and between both anchorage systems. The stresses in the mandibular canine periradicular regions were compared by the Kruskal-Wallis test. Stresses were similar in the cervical region and the middle third. In the apical third, the stresses associated with skeletal anchorage were higher than the stresses associated with dental anchorage. The results of the Kruskal-Wallis test showed that the highest stresses were identified in the cervical-distal, apical-distal, and apex regions with the use of dental anchorage; and in the apical-distal, apical-mesial, cervical-distal, and apex regions with the use of skeletal anchorage. The use of skeletal anchorage in canine retraction caused greater stress in the apical third than the use of dental anchorage, which indicates an intrusive component resulting from the direction of the force due to the position of the mini-implant and the bracket hook of the canine.
Wu, Guo-sheng; Lin, Hui-hua; Zhu, He-jian; Sha, Jin-ming; Dai, Wen-yuan
2011-07-01
Based on the 1988, 2000, and 2007 remote sensing images of a typical red soil eroded region (Changting County, Fujian Province) and the digital elevation model (DEM), the eroded landscape types were worked out, and the changes of the eroded landscape pattern in the region from 1988 to 2007 were analyzed with the spatial mathematics model. In 1988-2007, different eroded landscape types in the region had the characteristics of inter-transfer, mainly manifested in the transfer from seriously eroded to lightly eroded types but still existed small amount of the transference from lightly eroded to seriously eroded types. Little change was observed in the controid of the eroded landscape. In the County, Hetian Town was all along the eroded center. During the study period, the landscape pattern index showed a tendency of low heterogeneity, low fragmentation, and high regularization at landscape level, but an overall improvement and expansion of lightly eroded and easy-to-tackle patches as well as the partial improvement and fragmentation of seriously eroded and difficult-to-tackle patches at patch level.
Spatial and Temporal Changes in Coral Community Responses to Ocean Warming
NASA Astrophysics Data System (ADS)
Barkley, H.; Cohen, A. L.
2016-02-01
Tropical Pacific sea surface temperature is projected to rise 2-3°C by the end of this century, fueling efforts to identify thermally-tolerant reef communities that have the best chance of surviving future climate change. We used skeletal indicators of thermal stress in massive Porites corals collected across the Palau archipelago to document spatial and temporal changes in community-scale tolerance to anomalous warm events associated with the 1998 and 2010 Pacific ENSOs. Within communities where bleaching was documented by visual surveys, we find a strong correlation between percent bleaching and the proportion of surviving Porites colonies exhibiting skeletal density anomalies or "stress bands". Using this relationship, we reconstructed the intensity and spatial patterns of bleaching during the 1998 ENSO event when survey data are limited. On exposed barrier reefs and inshore fringing reefs, the proportion of corals with 1998 stress bands (60% and 40% respectively) was consistent with that expected from DHW predictions and post-bleaching surveys. Conversely, in the Rock Island bays, where ambient temperatures were highest, no 1998 stress bands were recorded. However, these corals did respond to the 2010 thermal anomaly with the appearance of stress bands and an abrupt decline in calcification. The reasons for this apparent shift in thermal tolerance in response to the relatively weak 2010 warming are not yet clear. While the interplay of temperature with other environmental variables including light and flow cannot yet be ruled out, stressors associated with an increase in human activities, including tourism, on Palau are also considered.
NASA Astrophysics Data System (ADS)
Oehlert, A. M.; Hill, C. A.; Piggot, A. M.; Fouke, B. W.
2008-12-01
As one of the core reservoirs of primary production in the world's oceans, tropical coral reefs support a complex ecosystem that directly impacts over ninety percent of marine organisms at some point in their life cycle. Corals themselves are highly complex organisms and exhibit a range of growth forms that range from branching to massive, foliaceous, columnar, encrusting, free living and laminar coralla. Fierce competition over scarce resources available to each individual coral species creates niche specialization. Throughout the Phanerozic geological record, this has driven speciation events and created distinct skeletal growth morphologies that have differential abilities in feeding strategy. In turn, this has presumably led to the development of niche specialization that can be quantitatively measured through hierarchical morphological differences from the micrometer to the meter scale. Porter (1976) observed significant differences in skeletal morphology between Caribbean coral species that reflects an adaptive geometry based on feeding strategy. Within the Montastraea species complex there are four major morphologies; columnar, bouldering, irregular mounding, and skirted. Each morphotype can be found forming high abundance along the bathymetric gradient of coral reefs that grow along the leeward coast of Curacao, Netherlands Antilles. We have undertaken a study to determine the relative relationships amongst coral morphology, skeletal density and feeding strategy by comparing the morphometric measurements of individual polyps as well as the entire colony along spatial and bathymetric gradients. Polyp diameter, mouth size, interpolyp area, and interpolyp distance were measured from high-resolution images taken on a stereoscope, and evaluated with AxioVision image analysis software. These high-resolution optical analyses have also revealed new observations regarding folded tissue structures of the outer margin of polyps in the Montastrea complex. Skeletal densities were measured in vertical cross-sections of each whole corallum using standard X-ray techniques utilizing a calibrated step wedge to portray banding and overall density. The combination of the stereoscope and X-ray analyses across spatial and temporal gradients provide insight into how coral reef carbonate depositional facies are affected by changes in key environmental parameters, such as increased pollution, or changing photosynthetic activity with depth or sea surface temperature fluctuations.
Role of the Z band in the mechanical properties of the heart.
Goldstein, M A; Schroeter, J P; Michael, L H
1991-05-01
In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.
Tomishige, Michio; Sako, Yasushi; Kusumi, Akihiro
1998-01-01
Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton. PMID:9722611
Bang, Hyun Seok; Seo, Dae Yun; Chung, Young Min; Kim, Do Hyung; Lee, Sam-Jun; Lee, Sung Ryul; Kwak, Hyo-Bum; Kim, Tae Nyun; Kim, Min; Oh, Kyoung-Mo; Son, Young Jin; Kim, Sanghyun
2017-01-01
Ursolic acid (UA) supplementation was previously shown to improve skeletal muscle function in resistance-trained men. This study aimed to determine, using the same experimental paradigm, whether UA also has beneficial effects on exercise-induced skeletal muscle damage markers including the levels of cortisol, B-type natriuretic peptide (BNP), myoglobin, creatine kinase (CK), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) in resistance-trained men. Sixteen healthy participants were randomly assigned to resistance training (RT) or RT+UA groups (n=8 per group). Participants were trained according to the RT program (60~80% of 1 repetition, 6 times/week), and the UA group was additionally given UA supplementation (450 mg/day) for 8 weeks. Blood samples were obtained before and after intervention, and cortisol, BNP, myoglobin, CK, CK-MB, and LDH levels were analyzed. Subjects who underwent RT alone showed no significant change in body composition and markers of skeletal muscle damage, whereas RT+UA group showed slightly decreased body weight and body fat percentage and slightly increased lean body mass, but without statistical significance. In addition, UA supplementation significantly decreased the BNP, CK, CK-MB, and LDH levels (p<0.05). In conclusion, UA supplementation alleviates increased skeletal muscle damage markers after RT. This finding provides evidence for a potential new therapy for resistance-trained men. PMID:29200908
Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant
NASA Astrophysics Data System (ADS)
Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.
2014-05-01
Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).
Effects of the mosquito larvicide GB-1111 on red-winged blackbird embryos
Albers, P.H.; Hoffman, D.J.; Buscemi, D.M.; Melancon, M.J.
2003-01-01
Golden Bear Oil (GB-111 I; legal trade name for GB-1313) is a petroleum distillate that is used in the United States and other countries as a larvicide for mosquito suppression. As part of a multi-species evaluation of the potential effects of GB-1111 on birds, red-winged blackbird eggs were collected, artificially incubated, and treated with one of five amounts of GB-1111 varying from 0 to 10 times the expected exposure from a spray application of the maximum recommended amount (X=47 l/ha, 5 gal/ac). The application of 10 X caused a significant reduction in hatching success. A dose-related reduction of hepatic microsomal mono-oxygenase activity (EROD) was detected. Among body weights, skeletal measurements, and age at death, only crownrump length was different among experimental groups. Overall, the potential hazard to embryos of a representative wetland passerine appears minimal until the application rate exceeds 3 X.
Oxygen drives skeletal muscle remodeling in an amphibious fish out of water.
Rossi, Giulia S; Turko, Andy J; Wright, Patricia A
2018-04-24
Skeletal muscle remodeling in response to terrestrial acclimation improves the locomotor performance of some amphibious fishes on land, but the cue for this remodeling is unknown. We tested the hypothesis that muscle remodeling in the amphibious Kryptolebias marmoratus on land is driven by higher O 2 availability in atmospheric air, and the alternative hypothesis that remodeling is induced by a different environmental or physiological condition fish experience on land. Fish were acclimated to 28 days of air, aquatic hyperoxia, hypercapnia, hypoxia, elevated temperature, or fasting conditions. Air, fasting, and hyperoxic conditions increased (>25%) the size of oxidative fibers in K. marmoratus while hypoxia had the reverse effect (23% decrease). Surprisingly, hyperoxia-acclimation also resulted in a transformation of the musculature to include large bands of oxidative-like muscle. Our results show that K. marmoratus is highly responsive to environmental O 2 levels and capitalize on O 2 -rich opportunities to enhance O 2 utilization by skeletal muscle. © 2018. Published by The Company of Biologists Ltd.
Bone Metabolism after Bariatric Surgery
Yu, Elaine W.
2014-01-01
Bariatric surgery is a popular and effective treatment for severe obesity, but may have negative effects on the skeleton. This review summarizes changes in bone density and bone metabolism from animal and clinical studies of bariatric surgery, with specific attention to Roux-en-Y gastric bypass (RYGB), adjustable gastric banding (AGB), and sleeve gastrectomy (SG). Skeletal imaging artifacts from obesity and weight loss are also considered. Despite challenges in bone density imaging, the preponderance of evidence suggests that bariatric surgery procedures have negative skeletal effects that persist beyond the first year of surgery, and that these effects vary by surgical type. The long-term clinical implications and current clinical recommendations are presented. Further study is required to determine mechanisms of bone loss after bariatric surgery. Although early studies focused on calcium/vitamin D metabolism and mechanical unloading of the skeleton, it seems likely that surgically-induced changes in the hormonal and metabolic profile may be responsible for the skeletal phenotypes observed after bariatric surgery. PMID:24677277
Comparative photoelastic study of dental and skeletal anchorages in the canine retraction
Claro, Cristiane Aparecida de Assis; Chagas, Rosana Villela; Neves, Ana Christina Elias Claro; da Silva-Concílio, Laís Regiane
2014-01-01
Objective To compare dental and skeletal anchorages in mandibular canine retraction by means of a stress distribution analysis. Methods A photoelastic model was produced from second molar to canine, without the first premolar, and mandibular canine retraction was simulated by a rubber band tied to two types of anchorage: dental anchorage, in the first molar attached to adjacent teeth, and skeletal anchorage with a hook simulating the mini-implant. The forces were applied 10 times and observed in a circular polariscope. The stresses located in the mandibular canine were recorded in 7 regions. The Mann-Whitney test was employed to compare the stress in each region and between both anchorage systems. The stresses in the mandibular canine periradicular regions were compared by the Kruskal-Wallis test. Results Stresses were similar in the cervical region and the middle third. In the apical third, the stresses associated with skeletal anchorage were higher than the stresses associated with dental anchorage. The results of the Kruskal-Wallis test showed that the highest stresses were identified in the cervical-distal, apical-distal, and apex regions with the use of dental anchorage, and in the apical-distal, apical-mesial, cervical-distal, and apex regions with the use of skeletal anchorage. Conclusions The use of skeletal anchorage in canine retraction caused greater stress in the apical third than the use of dental anchorage, which indicates an intrusive component resulting from the direction of the force due to the position of the mini-implant and the bracket hook of the canine. PMID:24713566
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure
Whyte, J.J.; Jung, R.E.; Schmitt, C.J.; Tillitt, D.E.
2000-01-01
This review compiles and evaluates existing scientific information on the use, limitations, and procedural considerations for EROD activity (a catalytic measurement of cytochrome P4501A induction) as a biomarker in fish. A multitude of chemicals induce EROD activity in a variety of fish species, the most potent inducers being structural analogs of 2,3,7,8-tetracholordibenzo-p-dioxin. Although certain chemicals may inhibit EROD induction/activity, this interference is generally not a drawback to the use of EROD induction as a biomarker. The various methods of EROD analysis currently in use yield comparable results, particularly when data are expressed as relative rates of EROD activity. EROD induction in fish is well characterized, the most important modifying factors being fish species, reproductive status and age, all of which can be controlled through proper study design. Good candidate species for biomonitoring should have a wide range between basal and induced EROD activity (e.g., common carp, channel catfish, and mummichog). EROD activity has proven value as a biomarker in a number of field investigations of bleached kraft mill and industrial effluents, contaminated sediments, and chemical spills. Research on mechanisms of CYP1A-induced toxicity suggests that EROD activity may not only indicate chemical exposure, but also may also precede effects at various levels of biological organization. A current research need is the development of chemical exposure-response relationships for EROD activity in fish. In addition, routine reporting in the literature of EROD activity in standard positive and negative control material will enhance confidence in comparing results from different studies using this biomarker.
Soil erodibility for water erosion: A perspective and Chinese experiences
NASA Astrophysics Data System (ADS)
Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric
2013-04-01
Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.
Global Correlation and Non-Correlation of Topography with Color and Reflectance on Pluto
NASA Astrophysics Data System (ADS)
Schenk, Paul M.; Beyer, Ross A.; Moore, Jeffrey M.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; Weaver, Harold A.; Stern, S. Alan; New Horizons Geology and Geophysics Team
2017-10-01
A key objective of the New Horizons mission at Pluto in July 2015 was completion of global maps of surface brightness and color patterns (covering 78% of surface) and topography (covering ~42%) of Pluto and its large moon Charon. The first calibrated and registered versions of these maps have now been completed for posting in the PDS this fall (with a peer-reviewed report on these products to be submitted). Rich in detail, investigation into the roles of local topography and insolation are ongoing (e.g., Lewis et al., 2017). Here we focus on the data sets and links between elevation and global color and brightness patterns and the global mapping revealed by them. In the “north,” yellowish deposits correlate with non-depressed portions of an eroded polar topographic dome ~600 km wide & 2-3 km high (e.g., Young et al., 2017). The broad dark band along the equator forming Cthulhu Macula to the west of Sputnik Planitia is topographically indistinguishable from the vast smooth lightly cratered plains to the north, indicating that latitude is the primary control, not topography. The curious lack of dark material along the equatorial band east of Sputnik Planitia may be partly due to topography of Eastern Tombaugh Regio, which is ~500 m above eroded plains the north and Cthulhu Macula itself. To the south of Cthulhu Macula, plains are slightly brighter, which correlates with a modest rise in topography of <1 km. To the southeast of Cthulhu Macula, however, an abrupt increase in reflectance correlates with the edge of elevated plateau that rises 2-3 km above the plains. The areas with the strongest signature in the CH4-band are associated with bladed terrain, the highest standing geologic unit in absolute elevation. Similar colored amoeboid-shaped units are evident along the equator in the low-resolution mapping areas, indicating their probable occurrence elsewhere. Thus, while many of Pluto’s major color and albedo features correlate well with topography and are thus controlled by it, some (especially Cthulhu Macula) are not. Latitude controls some of the global patterns, but geology may be a more important driver.
Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan.
Wood, Rachel; Penny, Amelia
2018-01-10
The ability to encrust in order to secure and maintain growth on a substrate is a key competitive innovation in benthic metazoans. Here we describe the substrate growth dynamics, mode of biomineralization and possible affinity of Namapoikia rietoogensis , a large (up to 1 m), robustly skeletal, and modular Ediacaran metazoan which encrusted the walls of synsedimentary fissures within microbial-metazoan reefs. Namapoikia formed laminar or domal morphologies with an internal structure of open tubules and transverse elements, and had a very plastic, non-deterministic growth form which could encrust both fully lithified surfaces as well as living microbial substrates, the latter via modified skeletal holdfasts. Namapoikia shows complex growth interactions and substrate competition with contemporary living microbialites and thrombolites, including the production of plate-like dissepiments in response to microbial overgrowth which served to elevate soft tissue above the microbial surface. Namapoikia could also recover from partial mortality due to microbial fouling. We infer initial skeletal growth to have propagated via the rapid formation of an organic scaffold via a basal pinacoderm prior to calcification. This is likely an ancient mode of biomineralization with similarities to the living calcified demosponge Vaceletia. Namapoikia also shows inferred skeletal growth banding which, combined with its large size, implies notable individual longevity. In sum, Namapoikia was a large, relatively long-lived Ediacaran clonal skeletal metazoan that propagated via an organic scaffold prior to calcification, enabling rapid, effective and dynamic substrate occupation and competition in cryptic reef settings. The open tubular internal structure, highly flexible, non-deterministic skeletal organization, and inferred style of biomineralization of Namapoikia places probable affinity within total-group poriferans. © 2018 The Author(s).
Applying transport-distance specific SOC distribution to calibrate soil erosion model WaTEM
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Heckrath, Goswin J.; Kuhn, Nikolaus J.
2016-04-01
Slope-scale soil erosion, transport and deposition fundamentally decide the spatial redistribution of eroded sediments in terrestrial and aquatic systems, which further affect the burial and decomposition of eroded SOC. However, comparisons of SOC contents between upper eroding slope and lower depositional site cannot fully reflect the movement of eroded SOC in-transit along hillslopes. The actual transport distance of eroded SOC is decided by its settling velocity. So far, the settling velocity distribution of eroded SOC is mostly calculated from mineral particle specific SOC distribution. Yet, soil is mostly eroded in form of aggregates, and the movement of aggregates differs significantly from individual mineral particles. This urges a SOC erodibility parameter based on actual transport distance distribution of eroded fractions to better calibrate soil erosion models. Previous field investigation on a freshly seeded cropland in Denmark has shown immediate deposition of fast settling soil fractions and the associated SOC at footslopes, followed by a fining trend at the slope tail. To further quantify the long-term effects of topography on erosional redistribution of eroded SOC, the actual transport-distance specific SOC distribution observed on the field was applied to a soil erosion model WaTEM (based on USLE). After integrating with local DEM, our calibrated model succeeded in locating the hotspots of enrichment/depletion of eroded SOC on different topographic positions, much better corresponding to the real-world field observation. By extrapolating into repeated erosion events, our projected results on the spatial distribution of eroded SOC are also adequately consistent with the SOC properties in the consecutive sample profiles along the slope.
Laparoscopic sleeve gastrectomy as revisional surgery for adjustable gastric band erosion.
Park, Yeon Ho; Kim, Seong Min
2014-09-01
Laparoscopic sleeve gastrectomy (LSG) has been increasingly adopted as a revisional surgery for failed gastric banding. However, little information is available regarding the outcome of revisional LSG for band erosion. A retrospective database analysis was performed to study LSG as revisional surgery for band erosion. For staged revision, we waited a minimum of 3 months after band removal, and for single-stage revision, the band was removed by gastrotomy, and sleeve gastrectomy was performed at the same time. Main outcome measures were success rates of therapeutic strategies, morbidity, and mortality rates, length of stay, and body mass index (BMI) (percentage excess weight loss [%EWL]) before and after revision. From March 2011 to February 2013, 9 female patients underwent revisional LSG. Average age was 34.7 years. Six patients underwent a staged procedure, and the other 3 underwent a single-stage revision. Among the 6 staged patients, eroded bands had been removed by laparoscopy in 4 and by endoscopy in 2 without complications. Their LSGs were performed at a median of 4.4 months after band removal. Another 2 patients underwent single-stage revision. In the last patient, band erosion was incidentally found during a revisional LSG for insufficient weight loss. No mortality occurred. There were one stenosis and two proximal leaks. Two patients with leak underwent total gastrectomy and fistulojejunostomy. After a mean follow-up of 19.1 months, all 9 patients exhibited weight loss. The mean (±standard deviation [SD]) pre- and post-LSG BMIs were 34.0±4.4 and 25.6±2.1 kg/m(2), respectively, and their mean (±SD) %EWL from prebanding was 86.8±10.1%. Revisional LSG resulted in a further median %EWL of 28.0% (range, 7.9%-68.9%) versus weight at time of band removal. Revisional LSG after band erosion was found to be feasible and effective. However, it is prone to severe complication. In selected cases of band erosion, LSG can be performed at the time of band removal in a single stage.
Velo-facio-skeletal syndrome in a mother and daughter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teebi, A.S.; Meyn, M.S.; Meyers-Seifer, C.H.
We present a woman and her daughter with an apparently new short stature syndrome associated with facial and skeletal anomalies and hypernasality. Manifestations included hypertelorism with broad and high nasal bridge, epicanthal folds, narrow and high arched palate, mild mesomelic brachymelia, short broad hands, prominent finger pads, hyperextensibility of hand joints, small feet, nasal voice, and normal intelligence. The mother had short stubby thumbs and the daughter had posteriorly angulated ears and delayed bone age. The morphology of the nose and the hypernasality are reminiscent to those in the velo-cardio-facial syndrome. High resolution banding and fluorescent in situ hybridization studiesmore » showed no evidence of 22q11 deletions. Differentiation from Aarskog syndrome and Robinow syndrome is discussed. 9 refs., 5 figs., 3 tabs.« less
Lambert, Matthias; Richard, Elodie; Duban-Deweer, Sophie; Krzewinski, Frederic; Deracinois, Barbara; Dupont, Erwan; Bastide, Bruno; Cieniewski-Bernard, Caroline
2016-09-01
The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Fornaciari, Gino; Bartolozzi, Pietro; Bartolozzi, Carlo; Rossi, Barbara; Menchi, Ilario; Piccioli, Andrea
2014-09-10
The Medici project consisted in archeological and paleopathological researches on some members of the great dynasty of the Italian Renaissance. The remains of Giovanni de' Medici, so-called "dalle Bande Nere" (Forlì 1498- Mantua 1526) have not been investigated yet. The enigma of the fatal injury and leg amputation of the famous Captain excited curiosity of paleopathologists, medical scientists and Italian Society of Orthopedic and Traumatology which contributed to realize the project of exhumation and study of his skeletal remains. The aim of the study is to report the first anthropological and paleopathological results. The tomb of Giovanni and his wife Maria Salviati was explored and the skeletal remains were investigated. Anthropological and paleopathological examination defined: age at death, physical constitution and activity, skeletal diseases. The bones of the leg were studied macroscopically, under stereoscopic microscope, at X-ray and CT scans to detect type of injury and level of amputation. The skeleton and muscular insertions of Giovanni revealed a young-adult and vigorous man, subjected to stresses of military activity since adolescence. Right tibia was amputated below the proximal half of diaphysis leaving long tibio-fibular stumps with a horizontal cut only at the lateral portion. Thus, the surgeon limited to complete the traumatic hemi-amputation. Amputation in the Sixteenth Century technically consisted in guillotine incisions below the knee using crescent shaped knife and bony saw, usually leaving a quite long tibial stump. Amputations in the Sixteenth Century were contaminated and grossly performed not providing vascular binding nor wound closure. The surgeon performed the procedure in conformity with surgical knowledge of that period.
Skeletal morphology and development of the olfactory region of Spea (Anura: Scaphiopodidae)
Pugener, L A; Maglia, A M
2007-01-01
The nasal capsules of anurans are formed by an intricate set of sac-like cavities that house the olfactory organ and constitute the beginning of the respiratory system. In tadpoles, nasal capsules do not have a respiratory function, but each is composed of a single soft tissue cavity lined with olfactory epithelium. Our study has revealed that in Spea the nasal cartilages and septomaxillae are de novo adult structures that form dorsal to the larval skeleton of the ethmoid region. The only element of the adult nasal capsule that is partially derived from the larval skeleton is the solum nasi. Development of the nasal skeleton begins at about Gosner Stage 31, with chondrification of the septum nasi and lamina orbitonasalis. The alary cartilage and superior prenasal cartilage are the first of the anterior nasal cartilages to chondrify at Gosner Stage 37. By Gosner Stages 40/41, the ethmoid region is composed of the larval structures ventrally and the adult structures dorsally. By Stage 44, the larval structures have eroded. The adult nasal capsule is characterized by: (1) a septum nasi that projects ventrally beyond the plane of the nasal floor; (2) a paranasal commissure that forms the ventral margin of the fenestra nasolateralis; and (3) a large skeletal support for the eminentia olfactoria formed by the nasal floor and vomer. The timing of chondrification of the anterior nasal cartilages and the development of the postnasal wall, inferior prenasal cartilage, fenestra nasolateralis, and paranasal commissure are discussed and compared with those of other anuran species. This study also includes a discussion of the morphology of the skeletal support for the eminentia olfactoria, a structure best developed in distinctly ground-dwelling frogs such as spadefoot toads. Finally, we propose a more precise restriction of the terminology that is used to designate the posterior structures of the olfactory region of anurans. PMID:18045351
SRTM Anaglyph: Corral de Piedra, Argentina
NASA Technical Reports Server (NTRS)
2001-01-01
Volcanism and erosion are prominently seen in this view of the eastern flank of the Andes Mountains taken by Shuttle Radar Topography Mission (SRTM). The area is southeast of San Martin de Los Andes, Argentina. Eroded peaks up to 2,210-meter-high (7,260-foot) are seen on the west (left), but much of the scene consists of lava plateaus that slope gently eastward. These lava flows were most likely derived from volcanic sources in the high mountains. However, younger and more localized volcanic activity is evident in the topographic data as a cone surrounding oval-shaped flow near the center of the scene.The plateaus are extensively eroded by the Rio Limay (bottom of the image) and the Rio Collon Cura and its tributaries (upper half). The larger stream channels have reached a stable level and are now cutting broad valleys. Few terraces between the levels of the high plateaus and lower valleys (bottom center and upper right of the volcanic cone) indicate that stream erosion had once temporarily reached a higher stable level before eroding down to its current level. In general, depositional surfaces like lava flows are progressively younger with increasing elevation, while erosional surfaces are progressively younger with decreasing elevation.This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 57.6 x 40.5 kilometers (35.7 x 25.1 miles) Location: 40.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded SRTM elevation model Date Acquired: February 2000SRTM Colored Height and Shaded Relief: Corral de Piedra, Argentina
NASA Technical Reports Server (NTRS)
2001-01-01
Volcanism and erosion are prominently seen in this view of the eastern flank of the Andes Mountains taken by Shuttle Radar Topography Mission (SRTM). The area is southeast of San Martin de Los Andes, Argentina. Eroded peaks up to 2,210-meter-high (7,260-foot) are seen on the west (left), but much of the scene consists of lava plateaus that slope gently eastward. These lava flows were most likely derived from volcanic sources in the high mountains. However, younger and more localized volcanic activity is evident in the topographic data as a cone surrounding oval-shaped flow near the center of the scene.The plateaus are extensively eroded by the Rio Limay (bottom of the image) and the Rio Collon Cura and its tributaries (upper half). The larger stream channels have reached a stable level and are now cutting broad valleys. Few terraces between the levels of the high plateaus and lower valleys (bottom center and upper right of the volcanic cone) indicate that stream erosion had once temporarily reached a higher stable level before eroding down to its current level. In general, depositional surfaces like lava flows are progressively younger with increasing elevation, while erosional surfaces are progressively younger with decreasing elevation.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red and magenta to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 57.6 x 40.5 kilometers ( 35.7 x 25.1 miles) Location: 40.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000Castillo, Karl D.; Ries, Justin B.; Weiss, Jack M.
2011-01-01
Background Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea. Methodology/Principal Findings Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were −0.020±0.005, 0.011±0.006, and −0.008±0.006 mm yr−1 per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr−1 per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century. Conclusions/Significance Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain the cause(s) of the observed reductions in coral skeletal growth. This should improve our ability to predict and potentially mitigate the effects of future environmental stressors on coral reef ecosystems. PMID:21359203
Stereo Pair: Patagonia, Argentina
NASA Technical Reports Server (NTRS)
2000-01-01
This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 23.9 kilometers (14.8 miles) x 15.2 kilometers (9.4 miles) Location: 42 deg. South lat., 68 deg. West lon. Orientation: North toward upper left Image Data: Landsat bands 1,4,7 in blue, green, red Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat)Anaglyph: Patagonia, Argentina
NASA Technical Reports Server (NTRS)
2000-01-01
This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (bright patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (dark lakes with bright shores). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then producing the two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and the right eye with a blue filter.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 23.9 kilometers (14.8 miles) x 15.2 kilometers (9.4 miles) Location: 42 deg. South lat., 68 deg. West lon. Orientation: North toward upper left Image Data: Landsat band 4 (near infrared) Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat)Metal isotope and density functional study of the tetracarboxylatodicopper(II) core vibrations
NASA Astrophysics Data System (ADS)
Drożdżewski, Piotr; Brożyna, Anna
2005-11-01
Vibrational spectra of tetrakis(acetato)diaquadicopper(II) complex have been deeply examined in order to provide a detailed description of dynamics of [Cu 2O 8C 4] core being a typical structural unit of most copper(II) carboxylates. Low frequency bands related to significant motions of metal atoms were detected by metal isotope substitution. Observed spectra and isotope shifts were reproduced in DFT calculations. For clear presentation of computed normal vibrations, a D 4h symmetry approximation was successfully applied. Basing on observed isotope shifts and calculation results, all skeletal vibrations have been analyzed including normal mode with the largest Cu ⋯Cu stretching amplitude assigned to Raman band at 178 cm -1.
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of changing field boundaries. When field boundaries are changed to include areas of land that were... Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria. (a...
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Law, Brent A.; Wheatcroft, Robert A.; Milligan, Timothy G.; Hill, Paul S.
2013-06-01
Measurements of erodibility, porosity and sediment size were made three times over the course of a year at sites within a muddy, mesotidal flat-channel complex in southern Willapa Bay, WA, to examine spatial and seasonal variations in sediment properties and transport potential. Average critical shear stress profiles, the metric we used for erodibility, were quantified using a power-law fit to cumulative eroded mass vs. shear stress for the flats and channel. Laboratory erosion measurements of deposits made from slurries of flat and channel sediment were used to quantify erodibility over consolidation time scales ranging from 6 to 96h. Erodibility of the tidal flats was consistently low, with spatial variability comparable to seasonal variability despite seasonal changes in biological activity. In contrast, channel-bed erodibility underwent large seasonal variations, with mobile sediment present in the channel thalweg during winter that was absent in the spring and summer, when channel-bed erodibility was low and comparable to that of the tidal flats. Sediment on the northern (left) channel flank was mobile in summer and winter, whereas sediment on the southern flank was not. Seasonal changes in channel-bed erodibility are sufficient to produce order-of-magnitude changes in suspended sediment concentrations during peak tidal flows. Porosity just below the sediment surface was the best predictor of erodibility in our study area.
Soil quality changes after topsoil addition to eroded land
USDA-ARS?s Scientific Manuscript database
Soil-landscape rehabilitation within eroded fields can be accomplished by moving topsoil from depositional to eroded landscape positions. The purpose is to improve soil quality and productivity of the upper root zone in eroded areas of the field. Changes in soil quality may be estimated through chan...
Role of Complement in Red Cell Dysfunction in Trauma
2013-12-01
fragmentation 2. Erythrocyte membrane has there major components: 1) membrane proteins, that are either transmembrane or attached to the plasma membrane...through GPI- or lipid-anchors (glycophorins, CD47, CR1, band 3, CD55, CD59, flotillin, stomatin etc.) 2) skeletal proteins, located below the plasma ...glycophorin C with spectrin skeleton 3. More recently, adducin and dematin have also been implicated in linking plasma membrane protein Glut-1
Role of Complement in Red Cell Dysfunction in Trauma
2012-12-01
there major components: 1) membrane proteins, that are either transmembrane or attached to the plasma membrane through GPI- or lipid-anchors...glycophorins, CD47, CR1, band 3, CD55, CD59, flotillin, stomatin etc.) 2) skeletal proteins, located below the plasma membrane, conferring the erythrocyte...skeleton 3. More recently, adducin and dematin have also been implicated in linking plasma membrane protein Glut-1 (glucose transporter-1) to spectrin 4
Ito, Akira; Eckardt, Winnie; Stoinski, Tara S; Gillespie, Thomas R; Tokiwa, Toshihiro
2016-06-01
The morphology of Prototapirella fosseyi n. sp., P. rwanda n. sp. and P. gorillaeImai, Ikeda, Collet, and Bonhomme, 1991 in the Entodiniomorphida were described from the mountain gorillas, Gorilla beringei beringei, in Rwanda. The ciliates have a retractable adoral ciliary zone, four non-retractable ciliary tufts in four caudalia, and one broad skeletal plate beneath the body surface. P. rwanda has a dorsal lobe and ventral lobes in two rows whereas P. fosseyi has no lobes. These two new species have an elongated body, a flat tail flap leaning to the ventral, a macronucleus with a tapering anterior end, a round posterior end and a shallow depression on the dorsal side, a micronucleus lying near the anterior end of macronucleus, a thin left region of the skeletal plate, a distinct skeletal rod plate, and four contractile vacuoles. P. gorillae has some variations in the nuclei and the skeletal plate. The infraciliary bands of three Prototapirella species were the same as some Triplumaria species; a C-shaped adoral polybrachykinety, a slender perivestibular polybrachykinety, and paralabial kineties in their retractable adoral ciliary zone and short lateral polybrachykineties in their four caudalia. The perivestibular polybrachykinety is joined only to the right end of adoral polybrachykinety. Copyright © 2016 Elsevier GmbH. All rights reserved.
Manure effects on soil N in eroded and non-eroded, sprinkler-irrigated soil
USDA-ARS?s Scientific Manuscript database
Manure effects on nitrate-N transport through irrigated, low-organic matter calcareous soil are not well known. This field study quantified the effects of a one-time fall application of stockpiled dairy manure and urea on in-season and over-winter nitrate-N transport through non-eroded and eroded (...
Costenoble, Aline; Vennat, Elsa; Attal, Jean-Pierre; Dursun, Elisabeth
2016-11-01
To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces. Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate-sodium phosphate salts (CSP); eroded+infiltrated by ICON ® ; eroded+infiltrated by ICON ® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM). Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings. Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.
NASA Astrophysics Data System (ADS)
Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed
2017-04-01
Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility
Microbiological and meteorological analysis of two Australian dust storms in April 2009.
Lim, Natalie; Munday, Chris I; Allison, Gwen E; O'Loingsigh, Tadhg; De Deckker, Patrick; Tapper, Nigel J
2011-12-15
Dust is an important source of bioaerosols including bacteria. In this study, the microbiology and meteorology of specific dust storms in Australia were investigated. The samples were collected from two dust events in April 2009 that were characterised by intense cold fronts that entrained dust from the highly erodible and drought-stricken Mallee and Riverina regions of Victoria and central NSW. In the first storm, the dust travelled eastward over Canberra and Sydney, and in the second storm, the dust travelled east/southeastward over Canberra and Melbourne. Rain fell on both cities during the second dust storm. Dust and rain samples were collected, cultured, and the composition compared using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Multiple bands were evident on DGGE indicative of a diverse microflora, and identification of several bands confirmed the presence of multiple genera and species representing three phyla. Numerous bands represented Bacillus species, and these were present in multiple dust samples collected from both Canberra and Melbourne. Interestingly, the microflora present in rain samples collected in Canberra during the second dust storm was quite different and the DGGE banding patterns from these samples clustered separately to most dust samples collected at the same time. Identification of several DGGE bands and PCR products from these rain samples indicated the presence of Pseudomonas species. These results indicate that Australian dust and rain have a diverse microflora and highlights the contribution of dust events to the distribution of microbes in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling changes in rill erodibility and critical shear stress on native surface roads
Randy B. Foltz; Hakjun Rhee; William J. Elliot
2008-01-01
This study investigated the effect of cumulative overland flow on rill erodibility and critical shear stress on native surface roads in central Idaho. Rill erodibility decreased exponentially with increasing cumulative overland flow depth; however, critical shear stress did not change. The study demonstrated that road erodibility on the studied road changes over the...
Clock is not a component of Z-bands.
Wang, Jushuo; Dube, Dipak K; White, Jennifer; Fan, Yingli; Sanger, Jean M; Sanger, Joseph W
2012-12-01
The process of Z-band assembly begins with the formation of small Z-bodies composed of a complex of proteins rich in alpha-actinin. As additional proteins are added to nascent myofibrils, Z-bodies are transformed into continuous bands that form coherent discs of interacting proteins at the boundaries of sarcomeres. The steps controlling the transition of Z-bodies to Z-bands are not known. The report that a circadian protein, Clock, was localized in the Z-bands of neonatal rat cardiomyocytes raised the question whether this transcription factor could be involved in Z-band assembly. We found that the anti-Clock antibody used in the reported study also stained the Z-bands and Z-bodies of mouse and avian cardiac and skeletal muscle cells. YFP constructs of Clock that were assembled, however, did not localize to the Z-bands of muscle cells. Controls of Clock's activity showed that cotransfection of muscle cells with pYFP-Clock and pCeFP-BMAL1 led to the expected nuclear localization of YFP-Clock with its binding partner CeFP-BMAL1. Neither CeFP-BMAL1 nor antibodies directed against BMAL1 localized to Z-bands. A bimolecular fluorescence complementation assay (VC-BMAL1 and VN-Clock) confirmed the absence of Clock and BMAL1 from Z-bands, and their nuclear colocalization. A second anti-Clock antibody stained nuclei, but not Z-bands, of cells cotransfected with Clock and BMAL1 plasmids. Western blots of reactions of muscle extracts and purified alpha-actinins with the two anti-Clock antibodies showed that the original antibody cross-reacted with alpha-actinin and the second did not. These results cannot confirm Clock as an active component of Z-bands. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Erodibility of selected soils and estimates of sediment yields in the San Juan Basin, New Mexico
Summer, Rebecca M.
1981-01-01
Onsite rainfall-simulation experiments were conducted to derive field-erodibility indexes for rangeland soils and soils disturbed by mining in coal fields of northwestern New Mexico. Mean indexes on rangeland soils range from 0 grams (of detached soil) on dune soil to 121 grams on wash-transport zones. Mean field-erodibility-index values of soils disturbed by mining range from 16 to 32 grams; they can be extrapolted to nearby coal fields where future mining is expected. Because field-erodibility-index data allow differentiation of erodibilities across a variable landscape, these indexes were used to adjust values of K, the erodibility factor of the Universal Soil Loss Equation. Estimates of soil loss and sediment yield were then calculated for a small basin following mining. (USGS)
Space environmental effects on LDEF composites: A leading edge coated graphite epoxy panel
NASA Technical Reports Server (NTRS)
George, Pete E.; Dursch, Harry W.; Hill, Sylvester G.
1993-01-01
The electronics module cover for the leading edge (Row D 9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a (O(sub 2), +/- 45, O(sub 2), +/- 45, 90, 0)(sub s) layup. This 11.75 in x 16.75 in panel was covered with thermal control coatings in three of the four quadrants with the fourth quadrant uncoated. The composite panel experienced different thermal cycling extremes in each quadrant due to the different optical properties of the coatings and bare composite. The panel also experienced ultraviolet (UV) and atomic oxygen (AO) attack as well as micrometeoroid and space debris impacts. An AO reactivity of 0.99 x 10(exp -24) cm(sup 3)/atom was calculated for the bare composite based on thickness loss. The white urethane thermal control coatings (A276 and BMS 1060) prevented AO attack of the composite substrate. However, the black urethane thermal control coating (Z306) was severely eroded by AO, allowing some AO attack of the composite substrate. An interesting banding pattern on the AO eroded bare composite surface was investigated and found to match the dimensions of the graphite fiber tow widths as prepregged. Also, erosion depths were greater in the darker bands. Five micrometeoroid/space debris impacts were cross sectioned to investigate possible structural damage as well as impact/AO interactions. Local crushing and delaminations were found to some extent in all of the impacts. No signs of coating undercutting were observed despite the extensive AO erosion patterns seen in the exposed composite material at the impact sites. An extensive microcrack study was performed on the panel along with modeling of the thermal environment to estimate temperature extremes and thermal shock. The white coated composite substrate displayed almost no microcracking while the black coated and bare composite showed extensive microcracking. Significant AO erosion was seen in many of the cracks in the bare composite.
Experimental Study of Factors Affecting Soil Erodibility
NASA Astrophysics Data System (ADS)
Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.
2018-03-01
The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.
Biggs, C A; Prall, C; Tait, S; Ashley, R
2005-01-01
The changes in particle size of sewer sediment particles rapidly eroded from a previously deposited sediment bed are described, using a rotating annular flume as a laboratory scale sewer simulator. This is the first time that particle size distributions of eroded sewer sediments from a previously deposited sediment bed have been monitored in such a controlled experimental environment. Sediments from Loenen, The Netherlands and Dundee, UK were used to form deposits in the base of the annular flume (WL Delft Netherlands) with varying conditions for consolidation in order to investigate the effect of changing consolidation time, temperature and sediment type on the amount and size of particles eroded from a bed under conditions of increasing shear. The median size of the eroded particles did not change significantly with temperature, although the eroded suspended solids concentration was greater for the higher temperature under the same shear stresses, indicating a weaker bed deposit. An increase in consolidation time caused an increase in median size of eroded solids at higher bed shear stresses, and this was accompanied by higher suspended solids concentrations. As the shear stress increased, the solids eroded from the bed developed under a longer consolidation time (56 hours) tended towards a broad unimodal distribution, whilst the size distribution of solids eroded from beds developed under shorter consolidation times (18 or 42 hours) retained a bi- or tri-modal distribution. Using different types of sediment in the flume had a marked effect on the size of particles eroded.
NASA Astrophysics Data System (ADS)
Ardisana, R. N.; Miller, C. A.; Sivaguru, M.; Fouke, B. W.
2013-12-01
Corals are a key reservoir of biodiversity in coastal, shallow water tropical marine environments, and density banding in their aragonite skeletons is used as a sensitive record of paleoclimate. Therefore, the cellular response of corals to environmental change and its expression in skeletal structure is of significant importance. Chromatophores, pigment-bearing cells within the ectoderm of hermatypic corals, serve to both enhance the photosynthetic activity of zooxanthellae symbionts, as well as protect the coral animal from harmful UV radiation. Yet connections have not previously been drawn between chromatophore tissue density and the development of skeletal density bands. A histological analysis of the coral Montastrea faveolata has therefore been conducted across a bathymetric gradient of 1-20 m on the southern Caribbean island of Curaçao. A combination of field and laboratory photography, serial block face imaging (SBFI), two-photon laser scanning microscopy (TPLSM), and 3D image analysis has been applied to test whether M. faveolata adapts to increasing water depth and decreasing photosynthetically active radiation by shifting toward a more heterotrophic lifestyle (decreasing zooxanthellae tissue density, increasing mucocyte tissue density, and decreasing chromatophores density). This study is among the first to collect and evaluate histological data in the spatial context of an entire unprocessed coral polyp. TPLSM was used to optically thin section unprocessed tissue biopsies with quantitative image analysis to yield a nanometer-scale three-dimensional map of the quantity and distribution of the symbionts (zooxanthellae) and a host fluorescent pigments (chromatophores), which is thought to have photoprotective properties, within the context of an entire coral polyp. Preliminary results have offered new insight regarding the three-dimensional distribution and abundance of chromatophores and have identified: (1) M. faveolata tissue collected from 8M SWD do not contain the abundant chromatophores present in M. faveolata collected from 20M SWD; and (2) a distinct difference in size and distribution of chromatophores between M. faveolata collected from 8-20M SWD. These results suggest that chromatophore cells may have an important photoenhancing function (reflection of light to help facilitate the collection of usable light that reaches the symbiotic algae for effective photosynthesis) rather than a photoinhibitive function (absorbing or refract light that may be harmful to zooxanthellae) which has been previously hypothesized.
NASA Astrophysics Data System (ADS)
Pasquesi, James J.; Schlachter, Simon C.; Boppart, Marni D.; Chaney, Eric; Kaufman, Stephen J.; Boppart, Stephen A.
2006-02-01
Birefringence of skeletal muscle has been associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Murine skeletal muscle (gastrocnemius) was imaged with a fiber-based PS-OCT imaging system to determine the level of birefringence present in the tissue under various conditions. In addition to muscle controls from wild-type mice, muscle from abnormal mice included: genetically-modified (mdx) mice which model human muscular dystrophy, transgenic mice exhibiting an overexpression of integrin (α7β1), and transgenic integrin (α7β1)knockout mice. Comparisons were also made between rested and exercised muscles to determine the effects of exercise on muscle birefringence for each of these normal and abnormal conditions. The PS-OCT images revealed that the presence of birefringence was similar in the rested muscle with dystrophy-like features (i.e., lacking the structural protein dystrophin - mdx) and in the integrin (α7β1)knockout muscle when compared to the normal (wild-type) control. However, exercising these abnormal muscle tissues drastically reduced the presence of birefringence detected by the PS-OCT system. The muscle exhibiting an overexpression of integrin (α7β1) remained heavily birefringent before and after exercise, similar to the normal (wild-type) muscle. These results suggest that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.
Atomic and electronic structure of Mo6S9-xIx nanowires
NASA Astrophysics Data System (ADS)
Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.
2005-09-01
Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578
NASA Technical Reports Server (NTRS)
Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.
1999-01-01
Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.
NASA Astrophysics Data System (ADS)
Cabral-Tena, R. A.; Sánchez, A.; Reyes-Bonilla, H.; Ruvalcaba-Díaz, A. H.; Balart, E. F.
2015-11-01
Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09 ‰ °C-1, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signal differently in each sex.
Miller, K A; Addison, R F; Bandiera, S M
2004-01-01
To assess chemical contaminant stress in the marine environment, ethoxyresorufin-O-deethylase (EROD) activity and cytochrome P450 1A (CYP1A) expression were measured in 88 English Sole (Pleuronectes vetulus) collected during May and June 1999 from four sites in Vancouver Harbour and at an expected reference site outside the harbour. Hepatic microsomes were prepared from the fish and analyzed for total CYP content, EROD activity, and CYP1A protein levels. Hepatic EROD activity and CYP1A protein levels were elevated in fish from two sites in the inner harbour. A comparison with sediment chemistry data showed that fish with increased EROD activity and CYP1A levels came from sites containing relatively high levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Unexpectedly high levels of EROD activity and CYP1A protein were also found in fish from a reference site near Gibsons, in Howe Sound. The elevated EROD activity and CYP1A expression in fish from this site cannot be explained by the chemical analysis data collected.
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
Dioxin-ähnliche Wirkungen durch Grundwasser am Industriestandort Zeitz
NASA Astrophysics Data System (ADS)
Schirmer, Kristin; Bopp, Stephanie; Russold, Sandra; Popp, Peter
Kurzfassung Im Rahmen der Etablierung des Standortes Zeitz (Sachsen-Anhalt) als Referenztestfeld zur Implementierung des Natural-Attenuation-Ansatzes, haben wir Grundwasser auf seine Fähigkeit untersucht, eine Dioxin-ähnliche Wirkung hervorzurufen. Die Dioxin-ähnliche Wirkung ist die Arylhydrocarbon Rezeptor-vermittelte Induktion des Proteinkomplexes Cytochrom CYP1A, welches als 7-Ethoxyresorufin-O-Deethylase (EROD) Enzymaktivität in einer Fischleberzelllinie gemessen wurde. Von 32 Probennahmestellen wiesen sieben eine signifikante EROD-Induktion auf, welche zu einem geringen Teil auf Polyzyklische Aromatische Kohlenwasserstoffe zurückzuführen war. Ein weiterer Teil der EROD-Induktion konnte den Substanzen Benzofuran, Indan und Inden zugesprochen werden, welche hier erstmalig als EROD-Induktoren identifiziert wurden. Alle Probennahmestellen mit signifikanter EROD-Induktion lagen im Anstrom bzw. westlich des früheren Standortes der Benzolanlage in Zeitz, was einen signifikanten Einfluss von Benzol vor allem auf den Transport und das Lösungsverhalten EROD-induzierender Grundwasserkontaminanten vermuten lässt. Insgesamt zeigen diese Untersuchungen, wie eine Kombination von chemischer und biologischer Analytik zu einer deutlich verbesserten Aussagekraft führt und somit zu einer nachhaltigen Überwachung der Qualität von Grundwasser beitragen kann. As part of setting up the test field Zeitz (Saxony-Anhalt, Germany) as a reference site for the implementation of Natural Attenuation as a remediation option, we have investigated groundwater for its ability to cause a dioxin-like response. The dioxin-like response is the aryl hydrocarbon receptor-mediated induction of the protein complex cytochrome CYP1A, which was measured as 7-Ethoxyresorufin-O-deethylase (EROD) enzyme activity in a fish liver cell line. Out of 32 sampling locations, seven showed significant EROD induction, which could be explained, to a minor extent, by the presence of polycyclic aromatic hydrocarbons. Another small portion of the EROD induction was attributed to the low molecular weight compounds, Benzofuran, Indane and Indene, which were shown for the first time to act as EROD inducers. All sampling locations showing significant EROD induction were located upstream or to the west of the former benzene production site in Zeitz. This indicates that benzene is likely to affect the transport and dissolution of EROD-inducing groundwater contaminants. In sum, this study shows how a combination of chemical and biological analysis can greatly augment knowledge about site characteristics and thus contribute to a sustainable monitoring of groundwater quality.
The end of the unique myocardial band: Part I. Anatomical considerations.
MacIver, David H; Stephenson, Robert S; Jensen, Bjarke; Agger, Peter; Sánchez-Quintana, Damián; Jarvis, Jonathan C; Partridge, John B; Anderson, Robert H
2018-01-01
The concept of the 'unique myocardial band', which proposes that the ventricular myocardial cone is arranged like skeletal muscle, provides an attractive framework for understanding haemodynamics. The original idea was developed by Francisco Torrent-Guasp. Using boiled hearts and blunt dissection, Torrent-Guasp created a single band of ventricular myocardium extending from the pulmonary trunk to the aortic root, with the band thus constructed encircling both ventricular cavities. Cooked hearts can, however, be dissected in many ways. In this review, we show that the band does not exist as an anatomical entity with defined borders. On the contrary, the ventricular cardiomyocytes are aggregated end to end and by their branching produce an intricate meshwork. Across the thickness of the left ventricular wall, the chains of cardiomyocytes exhibit a gradually changing helical angle, with a circumferential zone formed in the middle. There is no abrupt change in helical angle, as could be expected if the wall was constructed of opposing limbs of a single wrapped band, nor does the long axis of the cardiomyocytes consistently match with the long axis of the unique myocardial band. There are, furthermore, no connective tissue structures that could be considered to demarcate its purported boundaries. The unique myocardial band should be consistent with evolution, and although the ventricular wall of fish and reptiles has one or several distinct layers, a single band is not found. In 1965, Lev and Simpkins cautioned that the ventricular muscle mass of a cooked heart can be dissected almost at the whim of the anatomist. We suggest that the unique myocardial band should have ended there. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Statistical analysis of cyprinid ethoxyresorufin-O-deethylase data in a large French watershed.
Flammarion, P; Migeon, B; Garric, J
1998-01-01
A comparison of ethoxyresorufin-O-deethylase (EROD) data collected in 1995 in various sites in the Rhône watershed (France) was carried out to quantify the influence of factors such as contamination and biological parameters on EROD levels and within-group variabilities. Three species of cyprinids were collected and fish chemical contamination was measured. A log transformation of EROD data provided both normalization and homogeneity of variances. The influence of female sexual maturation on the variability and EROD dimorphism was quantified. A relationship with contaminant bioaccumulation was observed. A comparison with EROD data collected during previous studies by the same laboratory was made to validate the results.
Relationship between soil erodibility and modeled infiltration rate in different soils
NASA Astrophysics Data System (ADS)
Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue
2015-09-01
The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
NASA Astrophysics Data System (ADS)
Brachert, Thomas C.; Reuter, Markus; Krüger, Stefan; Kirkerowicz, Julia; Klaus, James S.
2016-03-01
The fast growing calcareous skeletons of zooxanthellate reef corals (z corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z corals. The z corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from sub-annually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene were ˜ 2 °C higher than they are in the present day, intermittent upwelling of cool, nutrient-rich water mitigated water temperatures off south-western Florida and created temporary refuges for z coral growth. Based on the sub-annually resolved δ18O and δ13C records, the duration of the upwelling episodes causing the endmember 2 conditions was variable and lasted from a few years to a number of decades. The episodes of upwelling were interrupted by phases without upwelling (endmember 1) which lasted for at least a few years and led to high surface water temperatures. This variable environment is likely one of the reasons why the coral fauna is dominated by the eurytopic genus Solenastrea, also a genus resistant to high turbidity. Over a period of ˜ 50 years, the oldest sub annually resolved proxy record available (3.2 Ma) documents a persistent occurrence of the HDB during winter. In contrast, the HDB forms in summer in modern z corals from the Florida reef tract. We suggest this difference should be tested as being the expression of a tendency towards decreasing interglacial upwelling since the middle Pliocene. The number of z coral sclerochronological records for the Plio-Pleistocene is still rather low, however, and requires more data and an improved resolution, through records from additional time slices. Nonetheless, our calcification data from the warm periods of past interglacials may contribute to predicting the effects of future ocean warming on z coral health along the Florida reef tract. The inconsistent timing of the HDB within single coral records or among specimens and time slices is unexpected and contrasts the common practice of establishing chronologies on the basis of the density banding.
NASA Astrophysics Data System (ADS)
Kobayashi, Yusuke; Watanabe, Teiji
2017-04-01
This study has three objectives: (1) to estimate changes of the eroded volume of mountain trails from 2014 to 2016 by making DSMs, (2) to understand a relationship between the trail erosion and micro-topography, and (3) to predict the volume of soil that can be eroded in future. Trail erosion has been investigated near Mt. Hokkai-dake in Daisetzuzan National Park, Hokkaido, northern Japan, with a drone (UAV) from 2014 to 2016. Seven segments with the soil erosion from starting sites to ending sites were selected to make DSMs and Orthophotographs by Agisoft, which is one of the Structure from Motion (SfM) software. Then, at fourteen points in each of the seven segments were selected to estimate the volume of soil that can be eroded in the future by PANDA2, a soil compaction penetrometer. The eroded volume in the segment with the largest eroded value attained 274.67 m3 for the two-year period although extremely heavy rain hit this area in the 2016 summer. The result obtained by PANDA2 shows that soil more than 100 cm in depth will be potentially eroded at four points in three years to one hundred years.
Kosmala, A; Migeon, B; Flammarion, P; Garric, J
1998-09-01
The impact of a wastewater treatment plant (WWTP) effluent was assessed with the fish biomarker ethoxyresorufin-O-deethylase (EROD) using field and on-site laboratory experiments. EROD activity was measured in chub (Leuciscus cephalus) and stone loach (Noemacheilus barbatulus) caught at three sites of the Chalaronne River (southeast France). Liver somatic index (LSI) and organochloride bioaccumulation in muscle were estimated for chub only. In September, EROD activity and LSI of chub increased significantly between the sites above and below the WWTP effluent discharge. EROD induction detected in chub was confirmed by on-site tank experiments. EROD levels were determined in juvenile rainbow trout (Oncorhynchus mykiss) and mirror carp (Cyprinus carpio) exposed to different concentrations of the WWTP effluent and river water for 16 days. After a 4-day exposure, EROD activities of the carp exposed to the effluent increased significantly compared with the control. The response was linked to the effluent concentration and was stable with exposure time. WWTP effluent induced EROD activity, whereas organic and metal analyses, performed on fish muscle and sediment, did not indicate any difference between upstream and downstream of the discharge. Copyright 1998 Academic Press.
EROD activity measured in flatfish from the area of the Sea Empress oil spill.
Kirby, M F; Neall, P; Tylor, T
1999-05-01
Dab (Limanda limanda) and plaice (Pleuronectes platessa) were collected at five stations near to the site of the Sea Empress oil spill within two weeks of the incident and a further fourteen stations three months after the spillage. Ethoxyresorufin-O-deethylase (EROD) activity was determined in the livers of the specimens to determine whether induction could be detected. Statistically significant inter-site differences in EROD levels in both species were demonstrated. Elevated levels of EROD activity in dab were found at the two stations nearest to the incident up to three months after the spill but no clear relationship to putative contaminant levels was determined. EROD levels in plaice showed a generally similar pattern of induction as in dab. Correlation of EROD levels with other variables showed that sexual maturity had the greatest influence on dab during the study period. The plaice specimens were sexually immature and, therefore, did not demonstrate a corresponding relationship. It was concluded that, for EROD monitoring purposes, fish should be sampled during their sexually inactive phase and that close attention needs to be paid to other variables (depth, temperature, GSI, length, influential contaminants etc.) when interpreting the results.
Soil erodibility variability in laboratory and field rainfall simulations
NASA Astrophysics Data System (ADS)
Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán
2017-04-01
Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?
Yuen, Bonny B H; Au, Doris W T
2006-10-01
Temporal changes of intestinal and hepatic ethoxyresorufin-O-deethylase (EROD) activities and quantitative changes of secondary and tertiary (e.g., 2 degrees/3 degrees) lysosomes in enterocytes were compared for the juvenile grouper (Epinephelus coioides) on chronic exposure to foodborne benzo[a]pyrene (BaP) at two environmentally realistic levels (0.25 and 12.5 microg/g fish/d) over a four-week exposure and four-week depuration period. Intestinal EROD induction was rapid (within 3 d) and sustained in the BaP-exposed fish, while a fast recovery (within one week) was observed on withdrawal of BaP intake. A dose-response relationship was demonstrated between intestinal EROD activities and the levels of foodborne BaP. Conversely, hepatic EROD induction was weak and subsided rapidly in the exposed fish, signifying that hepatic EROD activity is not a good indicator of oral intake of BaP. Significant increase of 2 degrees/3 degrees lysosomes, as measured by Vv(lysosome, mucosa), was detected in young enterocytes of fish in the high-dosing group (12.5 microg/g fish/d) at exposure day 3 and persisted until recovery week 2. Importantly, intestinal EROD activity was significantly correlated to 2 degrees/3 degrees lysosome accumulation in enterocytes (r = 0.571, p < 0.001). These results further corroborate our earlier findings that induction of EROD activities in fish do not merely indicate exposure to BaP but also are correlated to harmful biological effects. We recommend the use of these two biochemical and cytological changes in intestines as specific biomarkers to indicate current and recent exposure of fish to BaP via oral intake.
Stegeman, John J.; Schlezinger, Jennifer J.; Craddock, James E.; Tillitt, Donald E.
2001-01-01
Cytochrome P450 1A (CYP1A) induction is a robust marker for exposure to polynuclear aromatic hydrocarbons and planar halogenated aromatic hydrocarbons that are aryl hydrocarbon receptor agonists. We examined CYP1A expression in mesopelagic fishes from the western North Atlantic. Individuals in 22 species were obtained from slope water and the Sargasso Sea in 1977, 1978, and 1993. Aryl hydrocarbon hydroxylase (AHH), a CYP1A activity, was detected in liver from all species in 1977/78. In some, including Gonostoma elongatum, AHH was inhibited by the CYP1A inhibitor ??-naphthoflavone. CYP1A-dependent ethoxyresorufin O-deethylase (EROD) was detected in liver microsomes of all species in 1993; rates were highest in G. elongatum and Argyropelecus aculeatus. Immunoblot analysis with the CYP1A-specific monoclonal antibody 1-12-3 detected a single microsomal protein band in most 1993 samples; the highest content was in G. elongatum. Immunohistochemical analysis showed CYP1A staining in gill, heart, kidney, and/or liver of several species. Extracts of the 1993 G. elongatum and A. aculeatus, when applied to fish hepatoma cells (PLHC-1) in culture, elicited a significant induction of EROD in those cells. The capacity of the extracts to induce CYP1A correlated with the content of PCBs measured in the same fish (2-4.6 ng/g total body weight). Mesopelagic fish in the western North Atlantic, which experience no direct exposure to surface waters or sediments, are exposed chronically to inducers of CYP1A at levels that appear to be biochemically active in those fish.Cytochrome P450 1A (CYP1A) induction is a robust marker for exposure to polynuclear aromatic hydrocarbons and planar halogenated aromatic hydrocarbons that are awl hydrocarbon receptor agonists. We examined CYP1A expression in mesopelagic fishes from the western North Atlantic. Individuals in 22 species were obtained from slope water and the Sargasso Sea in 1977, 1978, and 1993. Aryl hydrocarbon hydroxylase (AHH), a CYP1A activity, was detected in liver from all species in 1977/78. In some, including Gonostoma elongatum, AHH was inhibited by the CYP1A inhibitor ??-naphthoflavone. CYP1A-dependent ethoxyresorufin O-deethylase (EROD) was detected in liver microsomes of all species in 1993; rates were highest in G. elongatum and Argyropelecus aculeatus. Immunoblot analysis with the CYP1A-specific monoclonal antibody 1-12-3 detected a single microsomal protein band in most 1993 samples; the highest content was in G. elongatum. Immunohistochemical analysis showed CYP1A staining in gill, heart, kidney, and/or liver of several species. Extracts of the 1993 G. elongatum and A. aculeatus, when applied to fish hepatoma cells (PLHC-1) in culture, elicited a significant induction of EROD in those cells. The capacity of the extracts to induce CYP1A correlated with the content of PCBs measured in the same fish (2-4.6 ng/g total body weight). Mesopelagic fish in the western North Atlantic, which experience no direct exposure to surface waters or sediments, are exposed chronically to inducers of CYP1A at levels that appear to be biochemically active in those fish.
Search for Hydrogenated C60 (Fulleranes) in Circumstellar Envelopes
NASA Astrophysics Data System (ADS)
Zhang, Yong; Sadjadi, SeyedAbdolreza; Hsia, Chih-Hao; Kwok, Sun
2017-08-01
The recent detection of fullerene (C60) in space and the positive assignment of five diffuse interstellar bands to {{{C}}}60+ reinforce the notion that fullerene-related compounds can be efficiently formed in circumstellar envelopes and be present in significant quantities in the interstellar medium. Experimental studies have shown that C60 can be readily hydrogenated, raising the possibility that hydrogenated fullerenes (or fulleranes, C60H m , m = 1-60) may be abundant in space. In this paper, we present theoretical studies of the vibrational modes of isomers of C60H m . Our results show that the four mid-infrared bands from the C60 skeletal vibrations remain prominent in slightly hydrogenated C60, but their strengths diminish in different degrees with increasing hydrogenation. It is therefore possible that the observed infrared bands assigned to C60 could be due to a mixture of fullerenes and fulleranes. This provides a potential explanation for the observed scatter of the C60 band ratios. Our calculations suggest that a feature around 15 μm due to the breathing mode of heavily hydrogenated C60 may be detectable astronomically. A preliminary search for this feature in 35 C60 sources is reported.
Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle
NASA Technical Reports Server (NTRS)
Nora, E. H.; Munzenmaier, D. H.; Hansen-Smith, F. M.; Lombard, J. H.; Greene, A. S.; Cowley, A. W. (Principal Investigator)
1998-01-01
Only functional studies have suggested the presence of the ANG II type 2 (AT2) receptor in the microcirculation. To determine the distribution of this receptor in the rat skeletal muscle microcirculation, a polyclonal rabbit anti-rat antiserum was developed and used for immunohistochemistry and Western blot analysis. The antiserum was prepared against a highly specific and antigenic AT2-receptor synthetic peptide and was validated by competition and sensitivity assays. Western blot analysis demonstrated a prominent, single band at approximately 40 kDa in cremaster and soleus muscle. Immunohistochemical analysis revealed a wide distribution of AT2 receptors throughout the skeletal muscle microcirculation in large and small microvessels. Microanatomic studies displayed an endothelial localization of the AT2 receptor, whereas dual labeling with smooth muscle alpha-actin also showed colocalization of the AT2 receptor with vascular smooth muscle cells. Other cells associated with the microvessels also stained positive for AT2 receptors. Briefly, this study confirms previous functional data and localizes the AT2 receptor to the microcirculation. These studies demonstrate that the AT2 receptor is present on a variety of vascular cell types and that it is situated in a fashion that would allow it to directly oppose ANG II type 1 receptor actions.
NASA Astrophysics Data System (ADS)
Inoue, M.; Suzuki, A.; Nohara, M.; Kan, H.; Edward, A.; Kawahata, H.
2002-12-01
Coral reefs are increasingly threatened by human activities such as industrialization, sewage discharge, dredging, deforestation and so on. The annually-banded coral (Porites sp.) collected from Pohnpei Island, Micronesia, recorded fluctuations of copper (Cu) and tin (Sn) contents in ambient seawater for about last 40 years. Both the elements are present in antifouling marine paints. Especially, Sn has often been used in the form of tributyltin (TBT) compound. In general, pretreatment of coral skeleton is conducted in order to remove contaminations due to coral coring and/or sample storage and then lattice-bound metals are determined as a potential proxy for marine pollution. We conducted a preliminary experimental treatment consisting of 9 cleaning steps. Based on a stepwise pretreatment examination, we found that skeletal Sn and Cu, not only inside but also outside of aragonite lattice, have potential for use as pollution indicators. High values of extra-skeletal Cu/Ca and Sn/Ca atomic ratios were found between late 1960s and late 1980s during a period of active use of TBT-based antifouling paints worldwide. However, significant decrease in both the ratios since the beginning of 1990s can be attributed to regulation of use of TBT on cargo ships by the developed countries such as the USA, Japan and Australia.
Rich but poor: life in the Roman period with extreme rheumatoid arthritis.
Bašić, Željana; Jerković, Ivan; Kružić, Ivana; Anđelinović, Šimun
2017-01-01
In a Sidonian sarcophagus, from the Late Antique/early Christian period, skeletal remains of two persons were found. One of them, male, 30-50 years old, was found almost completely ankylosed, with highly osteoporotic bones and prominent erosion of joint surfaces. We diagnosed rheumatoid arthritis based on the eroded odontoid process, mandibular condyles, distal humerus, proximal and distal ulna, as well ankylosed hand and foot bones. Despite the fact that ankyloses of vertebrae and sacroiliac joint could point towards ankylosing spondylitis, the lack of typical vertebral ankyloses and new bone formation led to exclusion. In a practical sense, due to the advanced stage of the disease, the man was fixed in the supine position, on the left, with his head turned to the right. Apparently, he could not move and had problems with chewing and breathing. But, the high standard of provided healthcare probably enabled him to survive in advanced stages of the disease. This case shed light on the antiquity of the disease, its medical, and social context and provided the example of most extreme osteological changes reported in the paleopathological and medical literature.
Arecibo radar imagery of Mars: II. Chryse-Xanthe, polar caps, and other regions
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, Michael C.
2017-01-01
We conclude our radar imaging survey of Mars, which maps spatial variations in depolarized radar reflectivity using Arecibo S-band (λ12.6 cm) observations from 2005-2012. Whereas our earlier paper (Harmon et al., 2012, Arecibo radar imagery of Mars: the major volcanic provinces. Icarus 220, 990-1030) covered the volcanic regions of Tharsis, Elysium, and Amazonis, this paper includes non-volcanic regions where hydrologic and impact processes can be the dominant resurfacing agents affecting radar backscatter. Many of the more prominent and interesting radar-bright features outside the major volcanic provinces are located in and around Chryse Planitia and Xanthe Terra. These features are identified with: a basin in northeast Lunae Planum containing the combined deposits from Maja Vallis and Ganges Catena outflows; channel outwash plains in western and southern Chryse basin; plateaus bordering chasma/chaos zones, where surface modification may have resulted from hydrologic action associated with incipient chaos formation; and some bright-ejecta craters in Chryse basin, of a type otherwise rare on Mars. Dark-halo craters have also been identified in Chryse and elsewhere that are similar to those seen in the volcanic provinces. Although the cratered highlands are relatively radar-bland, they do exhibit some bright depolarized features; these include eroded crater rims, several unusual ejecta flows and impact melts, and terrain-softened plains. The rims of large impact basins (Hellas, Argyre, Isidis) show a variety of radar-bright features provisionally identified with massif slopes, erosion sediments, eroded pyroclastics, impact melts, and glacial deposits. The interiors of these basins are largely radar-dark, which is consistent with coverage by rock-free sediments. Tempe Terra and Acheron Fossae show bright features possibly associated with rift volcanism or eroded tectonic structures, and northwest Tempe Terra shows one very bright feature associated with glacial or other ice processes in the dichotomy boundary region. The first delay-Doppler images of the radar-bright features from the north and south polar icecaps are presented. Both poles show the circular polarization inversion and high reflectivity characteristic of coherent volume backscatter from relatively clean ice. The south polar feature is primarily backscatter from the residual CO2 icecap (with a lesser contribution from the polar layered deposits), whose finite optical depth probably accounts for the feature's strong S/X-band wavelength dependence. Conversely, the north polar radar feature appears to be mostly backscatter from the H2O-ice-rich polar layered deposits rather than from the thin residual H2O cap. The north polar region shows additional radar-bright features from Korolev Crater and a few other outlying circumpolar ice deposits.
Navarrete-Perea, José; Moguel, Bárbara; Bobes, Raúl José; Villalobos, Nelly; Carrero, Julio César; Sciutto, Edda; Soberón, Xavier; Laclette, Juan Pedro
2017-01-01
Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... Wind Erosion Prediction System for Soil Erodibility System Calculations for the Natural Resources... Erosion Prediction System (WEPS) for soil erodibility system calculations scheduled for implementation for... computer model is a process-based, daily time-step computer model that predicts soil erosion via simulation...
Habila, Safia; Leghouchi, Essaid; Valdehita, Ana; Bermejo-Nogales, Azucena; Khelili, Smail; Navas, José M
2017-08-01
EROD and BFCOD activities were measured in liver and gills of barbel (Barbus callensis, a native North African species) captured at Beni Haroun lake, the most important water reservoir in Algeria. This lake receives wastewater from different origins. Thus, we assessed the level of pollution through the induction of detoxification activities in tissues of barbel, evaluating simultaneously the suitability of this species to be used as a sentinel. Fish were collected between March 2015 and January 2016 at three locations taking into account the pollution sources and accessibility. In liver, EROD and BFCOD showed the highest induction in October specially in the location of the dam that received pollutants. In gills, only EROD, but not BFCOD, activity was detected. Maximal EROD induction was noted in samples from January. Fish cell lines (RTG-2 and PLHC-1) were exposed to sediments extracts collected at Beni Haroun lake and enzyme activities (EROD and BFCOD, respectively) were measured. Sediment extracts did not induce BFCOD activity. The EROD induction observed in RTG-2 cells was in line with the results observed in fish tissues. Our results suggest that the lake is at risk from pollution and that Barbus callensis is a good sentinel species. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.
2016-05-01
Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of ≈ 1.0 to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signals differently in each sex. Although these findings relate to one gonochoric brooding species, they may have some implications for the more commonly used gonochoric spawning species such as Porites lutea and Porites lobata.
Burrow-generated false facies and phantom sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanless, H.R.; Tagett, M.
Callianassa (=Ophiomorpha) and other burrowers deeply rework shallow marine sequences. Through in-situ reworking, they create false sedimentary facies and stratigraphic sequences. Callianassa's key to effectiveness is that it expels sand and mud from burrow excavations but concentrates coarse material at the base of the burrow complex. Coarse material can be derived by falling into the burrow entrance, by reworking the existing sediment sequence, or by a combination of both. Examples come from shallow marine carbonate environments of south Florida and the Turks and Caicos Islands, British West Indies. Many mudbanks in south Florida are formed as stacks of layered mudstonemore » units 20-100 cm thick. Between events, seagrasses may recolonize, and a burrowing benthic community may repopulate the substrate. The layered mudstone beneath older areas of mudbank flats can gradually be converted to a bioturbated skeletal wackestone by the deep burrowing community. Burrowing also causes mixing of faunal assemblages. On Caicos Bank, an extensive carbonate tidal flat (3-4 m thick) is slowly being transgressed. About 1 m of tidal-flat sequence is eroded at the shoreline. The remaining 2-3 m could be preserved as part of the transgressive sequence. Callianassa burrowing, however, quickly reworks the sequence, replacing tidal-flat sands and muds with marine peloidal and skeletal sediment. Within 100 m of the shoreline, the only evidence of the tidal-flat sequence is a concentration of high-spired gastropods in Calliannassa burrows at the base of the Holocene sequence and a few patches of tidal-flat sediment that burrowers missed. What looks like a basal transgressive lag is in fact a biogenic concentrate from in-situ reworking of a now phantom sequence.« less
A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength
Baud’huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L.; Underwood, Kathryn W.; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R. Scott; Croucher, Peter I.
2012-01-01
Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A–mFc) in vivo. mBMPR1A–mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A–mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A–mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders. PMID:22761317
NASA Astrophysics Data System (ADS)
Hancock, G. S.; Huettenmoser, J.; Shobe, C. M.; Eppes, M. C.
2016-12-01
Rock erodibility in channels is a primary control on the stresses required to erode bedrock (e.g., Sklar and Dietrich, 2001). Erodibility tends to be treated as a uniform and fixed variable at the scale of channel cross-sections, particularly in models of channel profile evolution. Here we present field data supporting the hypothesis (Hancock et al., 2011) that erodibility is a dynamic variable, driven by the interplay between erosion rate and weathering processes within cross-sections. We hypothesize that rock weathering varies in cross-sections from virtually unweathered in the thalweg, where frequent stripping removes weathered rock, to a degree of weathering determined by the frequency of erosive events higher on the channel margin. We test this hypothesis on three tributaries to the Potomac River underlain by similar bedrock but with varying erosion rates ( 0.01 to 0.8 m/ky). At multiple heights within three cross-sections on three tributaries, we measured compressive strength with a Schmidt hammer, surface roughness with a contour gage, and density and length of visible cracks. Compressive strength decreased with height in all nine cross-sections by 10% to 50%, and surface roughness increased with height in seven cross-sections by 25% - 45%, with the remaining two showing minimal change. Crack density increased with height in the three cross-sections measured. Taken together these data demonstrate increases in weathering intensity, and presumably, rock erodibility, with height. The y-intercept of the relation between height and the three measured variables were nearly identical, suggesting that thalweg erodibility was similar on each channel, as predicted, even though erodibility higher in the cross-section were markedly different. The rate at which the three variables changed with height in each cross-section is strongly related to stream power. Assuming stream power is a reasonable surrogate for erosion rate, this result implies that erosion rate can be a primary influence on the distribution of erodibility within channel cross-sections. We conclude that the interplay between rates of erosion and weathering produces spatial as well as temporal variability in erodibility which, in turn, influences channel form and gradient.
Shaded Relief with Height as Color and Landsat, Yucatan Peninsula, Mexico
NASA Technical Reports Server (NTRS)
2003-01-01
The top picture is a shaded relief image of the northwest corner of Mexico's Yucatan Peninsula generated from Shuttle Radar Topography Mission (SRTM) data, and shows a subtle, but unmistakable, indication of the Chicxulub impact crater. Most scientists now agree that this impact was the cause of the Cretatious-Tertiary Extinction, the event 65 million years ago that marked the sudden extinction of the dinosaurs as well as the majority of life on Earth. The pattern of the crater's rim is marked by a trough, the darker green semicircular line near the center of the picture. This trough is only about 3 to 5 meters (10 - 15 feet) deep and is about 5 km (3 miles) wide; so subtle that if you walked across it you probably would not notice it. It is the surface expression of the buried crater's outer boundary. Scientists believe the impact, which was centered just off the coast in the Caribbean, altered the subsurface rocks such that the overlying limestone sediments, which formed later and erode very easily, would preferentially erode along the crater rim. This formed the trough as well as numerous sinkholes (called cenotes) which are visible as small circular depressions.
The bottom picture is the same area viewed by the Landsat satellite, and was made by displaying the Thematic Mapper's Band 7 (mid-infrared), Band 4 (near-infrared) and Band 2 (green) as red, green and blue. These colors were chosen to maximize the contrast between different vegetation and land cover types, with native vegetation and cultivated land showing as green, yellow and magenta, and urban areas as white. The circular white area near the center of the image is Merida, a city of about 720,000 population. Notice that in the SRTM image, which shows only topography, the city is not visible, while in the Landsat image, which does not show elevations, the trough is not visible.Two visualization methods were combined to produce the SRTM image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: 261 by 162 kilometers (162 by 100 miles) Location: 20.8 degrees North latitude, 89.3 degrees West longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000Leopard frog PCB levels and evaluation of EROD as a biomarker in Green Bay ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.W.; Karasov, W.H.; Patnode, K.P.
1995-12-31
The induction of mixed function oxidases has been shown to be a promising biomarker in many taxa of wildlife, though not yet tested for amphibians. The three hypotheses tested in this study were (1) activities of hepatic EROD of leopard frog (Rana pipiens) are induced following exposure to planar chlorinated PCBs, (2) tissue PCB residue levels of leopard frogs are positively correlated with their wetland sediment PCB levels, and (3) EROD activities are positively correlated with tissue PCB concentrations and sediment PCB. In the laboratory, EROD was increased 2--3 times seven days after i.p. injection with PCB 126 at dosesmore » {ge} 2.3 ppm (wet mass basis). Leopard frogs from seven sites along the Lower Fox River and Green Bay in 1994--1995 were assayed for hepatic EROD activities and total PCB levels in carcasses. Tissue PCB levels ranged from 3 to 152 ppb (including coplanar congeners) and were highest from sites with higher sediment PCB. EROD activity in frogs collected in August--September was not significantly correlated with frog body mass and was similar among sites with one exception. There was no significant correlation between EROD activity and tissue PCB concentration. This result was consistent with the fact that the frogs collected from the Green Bay ecosystem had relatively low PCB levels compared with what was required for induction in the laboratory. The authors conclude that EROD activity is not a sensitive biomarker of PCB exposure in leopard frogs in this ecosystem.« less
USDA-ARS?s Scientific Manuscript database
There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements (eroded upper slope, deposition zone, and eroded waterway) in a strongly eroded agricultural field and segmen...
USDA-ARS?s Scientific Manuscript database
Seepage influences the erodibility of streambanks, streambeds, dams, and embankments. Usually the erosion rate of cohesive soils due to fluvial forces is computed using an excess shear stress model, dependent on two major soil parameters: the critical shear stress (tc) and the erodibility coefficie...
Soil wind erodibility based on dry aggregate-size distribution in the Tarim Basin
USDA-ARS?s Scientific Manuscript database
The Tarim Basin is an important source of airborne particulate matter that contributes to poor air quality in China. However, little attention has been given to estimating wind erodibility of soils in the region. The objective of this study was to determine the soil wind erodibility for six land use...
Bertini, E; Salviati, G; Apollo, F; Ricci, E; Servidei, S; Broccolini, A; Papacci, M; Tonali, P
1994-01-01
We describe clinical, morphological and biochemical findings of a patient with reducing body myopathy (RBM). This 15-year-old patient was affected by severe limb-girdle progressive myopathy with asymmetric distribution. Muscle biopsy showed many fibers with cytoplasmic polymorphic masses, which stained dark purple with modified Gomori's trichrome, associated with proliferation of cytoplasmic bodies. Cytoplasmic polymorphic masses showed marked reducing activity with menadione-nitro blue tetrazolium reaction. Ultrastructurally, there was great amount of highly electron-dense tubular-filamentous structures of 16-17 nm in diameter. Immunohistochemistry showed that many fibers were positive for desmin. Sodium dodecyl sulfate-electrophoresis disclosed an increase in two bands of approximately 53 and 70 kDa, and Western blot demonstrated that the 53-kDa band was desmin. It was not possible to characterize the 70-kDa protein further.
2017-10-09
Geologists aren't quite sure what to make of the dark splotch in the middle of this image from NASA's Mars Reconnaisance Orbiter (MRO) -- one of several similar dark splotches that extend east and west for over 100 kilometers. From measurements made in infrared, this and other dark splotches have what we call "high thermal inertia," meaning that it heats up and cools down slowly. Scientists use thermal inertia to assess how rocky, sandy, or dusty a place is. A higher thermal inertia than the surrounding area means it's less dusty. Wavy, banded patterns in the dark splotch (possibly due to cross bedding from sand dunes that once occupied the area) were lithified into sandstone, and then eroded away. These clues could help geologists figure out what's going on there. https://photojournal.jpl.nasa.gov/catalog/PIA22042
Soil erodibility in Europe: a high-resolution dataset based on LUCAS.
Panagos, Panos; Meusburger, Katrin; Ballabio, Cristiano; Borrelli, Pasqualle; Alewell, Christine
2014-05-01
The greatest obstacle to soil erosion modelling at larger spatial scales is the lack of data on soil characteristics. One key parameter for modelling soil erosion is the soil erodibility, expressed as the K-factor in the widely used soil erosion model, the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). The K-factor, which expresses the susceptibility of a soil to erode, is related to soil properties such as organic matter content, soil texture, soil structure and permeability. With the Land Use/Cover Area frame Survey (LUCAS) soil survey in 2009 a pan-European soil dataset is available for the first time, consisting of around 20,000 points across 25 Member States of the European Union. The aim of this study is the generation of a harmonised high-resolution soil erodibility map (with a grid cell size of 500 m) for the 25 EU Member States. Soil erodibility was calculated for the LUCAS survey points using the nomograph of Wischmeier and Smith (1978). A Cubist regression model was applied to correlate spatial data such as latitude, longitude, remotely sensed and terrain features in order to develop a high-resolution soil erodibility map. The mean K-factor for Europe was estimated at 0.032 thahha(-1)MJ(-1)mm(-1) with a standard deviation of 0.009 thahha(-1)MJ(-1)mm(-1). The yielded soil erodibility dataset compared well with the published local and regional soil erodibility data. However, the incorporation of the protective effect of surface stone cover, which is usually not considered for the soil erodibility calculations, resulted in an average 15% decrease of the K-factor. The exclusion of this effect in K-factor calculations is likely to result in an overestimation of soil erosion, particularly for the Mediterranean countries, where highest percentages of surface stone cover were observed. Copyright © 2014. Published by Elsevier B.V.
Pyrosequencing reveals bacteria carried in different wind-eroded sediments.
Gardner, Terrence; Acosta-Martinez, Veronica; Calderón, Francisco J; Zobeck, Ted M; Baddock, Matthew; Van Pelt, R Scott; Senwo, Zachary; Dowd, Scot; Cox, Stephen
2012-01-01
Little is known about the microbial communities carried in wind-eroded sediments from various soil types and land management systems. The novel technique of pyrosequencing promises to expand our understanding of the microbial diversity of soils and eroded sediments because it can sequence 10 to 100 times more DNA fragments than previous techniques, providing enhanced exploration into what microbes are being lost from soil due to wind erosion. Our study evaluated the bacterial diversity of two types of wind-eroded sediments collected from three different organic-rich soils in Michigan using a portable field wind tunnel. The wind-eroded sediments evaluated were a coarse sized fraction with 66% of particles >106 μm (coarse eroded sediment) and a finer eroded sediment with 72% of particles <106 μm. Our findings suggested that (i) bacteria carried in the coarser sediment and fine dust were effective fingerprints of the source soil, although their distribution may vary depending on the soil characteristics because certain bacteria may be more protected in soil surfaces than others; (ii) coarser wind-eroded sediment showed higher bacterial diversity than fine dust in two of the three soils evaluated; and (iii) certain bacteria were more predominant in fine dust (, , and ) than coarse sediment ( and ), revealing different locations and niches of bacteria in soil, which, depending on wind erosion processes, can have important implications on the soil sustainability and functioning. Infrared spectroscopy showed that wind erosion preferentially removes particular kinds of C from the soil that are lost via fine dust. Our study shows that eroded sediments remove the active labile organic soil particulates containing key microorganisms involved in soil biogeochemical processes, which can have a negative impact on the quality and functioning of the source soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Layzell, Anthony L.; Mandel, Rolfe D.
2014-05-01
Streambanks are the primary source of sediment for watersheds in the Midwestern USA. In much of this region, deposits of fine-grained Holocene alluvium comprising streambanks have been assigned to a single lithostratigraphic unit, the DeForest Formation. This study examines the stratigraphic relationships and measures the erodibility of the different members of the DeForest Formation in three watersheds in northeastern Kansas. Distinct differences in erodibility, measured in terms of critical shear stress (τc) by a submerged jet-test device, were observed between the different members of the DeForest Formation. The most erodible member is the Camp Creek Member (average τc = 1.0 Pa) while the most resistant is the Gunder Member (average τc = 10.4 Pa). Variability in erodibility between and within the members of the DeForest Formation is attributed to the magnitude of post-depositional soil-forming processes, including the presence of buried soils, as well as the inherent natural variability in the different parent materials. A weak positive correlation was found between percent clay and τc. Resistance to erosion by fluid flow was found to be significantly greater where clay contents exceed 28%. Although the Camp Creek Member was found to be the most erodible, it always occurs, stratigraphically, as the uppermost member. Available bankfull stage indicators suggest that bankfull discharges rarely attain elevations sufficient to erode Camp Creek Member deposits. Therefore, other members of the DeForest Formation are able to exert some control on the rate of bank erosion by hydraulic flow. Furthermore, given the observed differences in lithology, soil development and erodibility, the susceptibility to mass wasting processes is also likely to vary between the different members. Therefore, lithostratigraphic and soil-stratigraphic relationships have important implications for streambank erodibility and are crucial for accurately determining areas prone to streambank erosion in alluvial settings.
2018-04-12
split between the upper and lower gates, the tainter gate outflow can cause flow circulations or eddies to form , which requires the use of a multi...determined to not erode were assigned a bed layer thickness of zero. This included the stone weir, fossil beds, non-erodible vegetation, and upstream...606.7 Chute 0.1 606 L 0.4 Erodible Small Vegetation 606.7 Chute 0.1 606 L 0.4 Fossil Bed NA 0 NA 0 Non Erodible Small Vegetation NA 0 NA 0 Non
Cardozo, Adalgiso Coscrato; Gonçalves, Mauro; Dolan, Patricia
2011-12-01
Changes in the mean or median frequency of the electromyographic (EMG) power spectrum are often used to assess skeletal muscle fatigue. A more global analysis of the spectral changes using frequency banding may provide a more sensitive measure of fatigue than changes in mean or median frequency. So, the aim of the present study was to characterize changes in different power spectrum frequency bands and compare these with changes in median frequency. Twenty male subjects performed isometric contractions of the back muscles in an isometric dynamometer at 30%, 40%, 50% and 60% of maximum voluntary contraction. During each contraction, surface EMG signals were recorded from the right and left longissimus thoracis muscles, and endurance time was measured. The EMG power spectra were divided into four frequency bands (20-50 Hz; 50-80 Hz; 80-110 Hz; 110-140 Hz) and changes in power in each band with fatigue were compared with changes in median frequency. The percentage changes in 20-50 Hz band were greater than in all other and the rate of change in power, indicated by the slope, was also greatest in 20-50 Hz band. Also, 20-50 Hz band had a greater change in power than the median frequency. Power in the low frequency part of the EMG power spectrum increases with fatigue in a load-dependent manner. The rate of change in low frequency power may be a useful indicator of fatigue rate or "fatigability" in the back muscles. Also, changes in low frequency power are more evident than changes in the median frequency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.
Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni
2018-03-01
Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.
Value-Eroding Teacher Behaviors Scale: A Validity and Reliability Study
ERIC Educational Resources Information Center
Arseven, Zeynep; Kiliç, Abdurrahman; Sahin, Seyma
2016-01-01
In the present study, it is aimed to develop a valid and reliable scale for determining value-eroding behaviors of teachers, hence their values of judgment. The items of the "Value-eroding Teacher Behaviors Scale" were designed in the form of 5-point likert type rating scale. The exploratory factor analysis (EFA) was conducted to…
Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy)
NASA Astrophysics Data System (ADS)
Stanchi, S.; Falsone, G.; Bonifacio, E.
2015-04-01
Erosion is a relevant soil degradation factor in mountain agrosilvopastoral ecosystems that can be enhanced by the abandonment of agricultural land and pastures left to natural evolution. The on-site and off-site consequences of soil erosion at the catchment and landscape scale are particularly relevant and may affect settlements at the interface with mountain ecosystems. RUSLE (Revised Universal Soil Loss Equation) estimates of soil erosion consider, among others, the soil erodibility factor (K), which depends on properties involved in structure and aggregation. A relationship between soil erodibility and aggregation should therefore be expected. However, erosion may limit the development of soil structure; hence aggregates should not only be related to erodibility but also partially mirror soil erosion rates. The aim of the research was to evaluate the agreement between aggregate stability and erosion-related variables and to discuss the possible reasons for discrepancies in the two kinds of land use considered (forest and pasture). Topsoil horizons were sampled in a mountain catchment under two vegetation covers (pasture vs. forest) and analyzed for total organic carbon, total extractable carbon, pH, and texture. Soil erodibility was computed, RUSLE erosion rate was estimated, and aggregate stability was determined by wet sieving. Aggregation and RUSLE-related parameters for the two vegetation covers were investigated through statistical tests such as ANOVA, correlation, and regression. Soil erodibility was in agreement with the aggregate stability parameters; i.e., the most erodible soils in terms of K values also displayed weaker aggregation. Despite this general observation, when estimating K from aggregate losses the ANOVA conducted on the regression residuals showed land-use-dependent trends (negative average residuals for forest soils, positive for pastures). Therefore, soil aggregation seemed to mirror the actual topsoil conditions better than soil erodibility. Several hypotheses for this behavior were discussed. A relevant effect of the physical protection of the organic matter by the aggregates that cannot be considered in K computation was finally hypothesized in the case of pastures, while in forests soil erodibility seemed to keep trace of past erosion and depletion of finer particles. A good relationship between RUSLE soil erosion rates and aggregate stability occurred in pastures, while no relationship was visible in forests. Therefore, soil aggregation seemed to capture aspects of actual vulnerability that are not visible through the erodibility estimate. Considering the relevance and extension of agrosilvopastoral ecosystems partly left to natural colonization, further studies on litter and humus protective action might improve the understanding of the relationship among erosion, erodibility, and structure.
NASA Astrophysics Data System (ADS)
Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.
2013-10-01
Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.
High Nutrient Load Increases Biostabilization of Sediment by Biofilms
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.
2016-12-01
Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.
Response of Muddy Sediments and Benthic Diatom-based Biofilms to Repeated Erosion Events
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.; Fagherazzi, S.
2016-02-01
Benthic biofilms, microbes aggregated within a matrix of Extracellular Polymeric Substances (EPS), are commonly found in shallow coastal areas and intertidal environments. Biofilms have the potential to stabilize sediments, hence reducing erosion and possibly mitigating land loss. The purpose of this study is to determine how repeated flow events that rework the bed affect biofilm growth and its ability to stabilize cohesive sediments. Natural mud devoid of grazers was used to create placed beds in four annular flumes; biofilms were allowed to grow on the sediment surface. Each flume was eroded at different time intervals (1 or 12 days) to allow for varied levels of biofilm growth and adjustment following erosion. In addition, experiments with abiotic mud were performed by adding bleach to the tank. Each erosion test consisted of step-wise increases in flow that were used to measured erodibility. In the experiments where the bed was eroded every day both the abiotic and biotic flumes exhibited a decrease in erodibility with time, likely due to consolidation, but the decrease in erodibility was greater in the flume with a biofilm. Specifically the presence of biofilm reduced bed erosion at low shear stresses ( 0.1 Pa). We attribute this progressive decrease in erodibility to the accumulation of EPS over time: even though the biofilm was eroded during each erosion event, the EPS was retained within the flume, mixed with the eroded sediment and eventually settled. Less frequent erosion allowed the growth of a stronger biofilm that decreased bed erosion at higher shear stresses ( 0.4 Pa). We conclude that the time between destructive flow events influences the ability of biofilms to stabilize sediments. This influence will likely be affected by biofilm growth conditions such as light, temperature, nutrients, salinity, and the microbial community.
Intracellular targeting of isoproteins in muscle cytoarchitecture
1988-01-01
Part of the muscle creatine kinase (MM-CK) in skeletal muscle of chicken is localized in the M-band of myofibrils, while chicken heart cells containing myofibrils and BB-CK, but not expressing MM-CK, do not show this association. The specificity of the MM-CK interaction was tested using cultured chicken heart cells as "living test tubes" by microinjection of in vitro generated MM-CK and hybrid M-CK/B-CK mRNA with SP6 RNA polymerase. The resulting translation products were detected in injected cells with isoprotein-specific antibodies. M-CK molecules and translation products of chimeric cDNA molecules containing the head half of the B-CK and the tail half of the M-CK coding regions were localized in the M-band of the myofibrils. The tail, but not the head portion of M-CK is essential for the association of M-CK with the M-band of myofibrils. We conclude that gross biochemical properties do not always coincide with a molecule's specific functions like the participation in cell cytoarchitecture which may depend on molecular targeting even within the same cellular compartment. PMID:3283147
2003-03-13
This false-color infrared image was taken by the camera system on the Mars Odyssey spacecraft over part of Ganges Chasma in Valles Marineris (approximately 13 degrees S, 318 degrees E). The infrared image has been draped over topography data obtained by Mars Global Surveyor. The color differences in this image show compositional variations in the rocks exposed in the wall and floor of Ganges (blue and purple) and in the dust and sand on the rim of the canyon (red and orange). The floor of Ganges is covered by rocks and sand composed of basaltic lava that are shown in blue. A layer that is rich in the mineral olivine can be seen as a band of purple in the walls on both sides of the canyon, and is exposed as an eroded layer surrounding a knob on the floor. Olivine is easily destroyed by liquid water, so its presence in these ancient rocks suggests that this region of Mars has been very dry for a very long time. The mosaic was constructed using infrared bands 5, 7, and 8, and covers an area approximately 150 kilometers (90 miles) on each side. This simulated view is toward the north. http://photojournal.jpl.nasa.gov/catalog/PIA04262
Growth of Planted Yellow-Poplar After Vertical Mulching and Fertilization on Eroded Soils
J.B. Baker; B.G. Blackmon
1976-01-01
Fertilization and vertical mulching improved height growth of yellow-poplars planted on eroded soils. A growing demand for hardwood timber accompanied by a diminishing land base has prompted land managers to consider planting hardwoods on marginal sites such as the eroded soils in the Silty Uplands of Arkansas, Louisiana, and Mississippi. Many of these areas were well...
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie; Quinn, Robert D.
2004-01-01
This report deals with hypothetical reentry thermostructural performance of the Space Shuttle orbiter with missing or eroded thermal protection system (TPS) tiles. The original STS-5 heating (normal transition at 1100 sec) and the modified STS-5 heating (premature transition at 800 sec) were used as reentry heat inputs. The TPS missing or eroded site is assumed to be located at the center or corner (spar-rib juncture) of the lower surface of wing midspan bay 3. For cases of missing TPS tiles, under the original STS-5 heating, the orbiter can afford to lose only one TPS tile at the center or two TPS tiles at the corner (spar-rib juncture) of the lower surface of wing midspan bay 3. Under modified STS-5 heating, the orbiter cannot afford to lose even one TPS tile at the center or at the corner of the lower surface of wing midspan bay 3. For cases of eroded TPS tiles, the aluminum skin temperature rises relatively slowly with the decreasing thickness of the eroded central or corner TPS tile until most of the TPS tile is eroded away, and then increases exponentially toward the missing tile case.
Thaveau, Fabien; Zoll, Joffrey; Bouitbir, Jamal; N'guessan, Benoît; Plobner, Philippe; Chakfe, Nabil; Kretz, Jean-Georges; Richard, Ruddy; Piquard, François; Geny, Bernard
2010-06-01
Impaired skeletal muscle energetic participates in peripheral arterial disease (PAD) patient's morbidity and mortality. Angiotensin converting enzyme inhibition (ACEi), cornerstone for pharmacologic risk factor management in PAD patients, might also be interesting by protecting skeletal muscle energetic. We therefore determined whether chronic ACEi might reduce ischemia-induced mitochondrial respiratory chain dysfunction in the frequent setting of hindlimb ischemia-reperfusion. Ischemic legs of rats submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hindlimb followed by reperfusion without (IR, n = 11) or after ACEi (n = 14; captopril 40 mg/kg per day during 28 days before surgery) were studied and compared to that of sham-operated animals (n = 11). The effect of ACEi on the non-ischemic contralateral leg was also determined in the ACEi group. Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the mitochondrial respiratory chain of the gastrocnemius muscle were determined using glutamate-malate, succinate and TMPD-ascorbate substrates. Arterial blood pressure was significantly decreased after ACEi (124 +/- 2.8 vs. 108 +/- 4.19 mmHg; P = 0.01). Ischemia-reperfusion reduced V(max) (4.4 +/- 0.4 vs. 8.7 +/- 0.5 micromol O2/min/g dry weight, -49%, P < 0.001), affecting mitochondrial complexes I, II and IV activities. ACEi failed to modulate ischemia-induced dysfunction (V(max) 5.1 +/- 0.7 micromol O2/min/g dry weight) or the non-ischemic contralateral muscle respiratory rate. Ischemia-reperfusion significantly impaired the mitochondrial respiratory chain I, II and IV complexes of skeletal muscle. Pharmacologic pre-treatment with ACEi did not prevent or increase such alterations. Further studies might be useful to improve the pharmacologic conditioning of PAD patients needing arterial revascularization.
Martina, R; Cioffi, I; Farella, M; Leone, P; Manzo, P; Matarese, G; Portelli, M; Nucera, R; Cordasco, G
2012-08-01
To compare transverse skeletal changes produced by rapid (RME) and slow (SME) maxillary expansion using low-dose computed tomography. The null hypothesis was that SME and RME are equally effective in producing skeletal maxillary expansion in patients with posterior crossbite. This study was carried out at the Department of Oral Sciences, University of Naples Federico II, Italy. Twelve patients (seven males, five females, mean age ± SD: 10.3 ± 2.5 years) were allocated to the SME group and 14 patients (six males, eight females, mean age ± SD: 9.7 ± 1.5 years) to the RME group. All patients received a two-band palatal expander and were randomly allocated to either RME or SME. Low-dose computed tomography was used to identify skeletal and dental landmarks and to measure transverse maxillary changes with treatment. A significant increase in skeletal transverse diameters was found in both SME and RME groups (anterior expansion = 2.2 ± 1.4 mm, posterior expansion = 2.2 ± 0.9 mm, pterygoid expansion = 0.9 ± 0.8 mm). No significant differences were found between groups at anterior (SME = 1.9 ± 1.3 mm; RME = 2.5 ± 1.5 mm) or posterior (SME = 1.9 ± 1.0 mm; RME = 2.4 ± 0.9 mm) locations, while a statistically significant difference was measured at the pterygoid processes (SME = 0.6 ± 0.6 mm; RME = 1.2 ± 0.9 mm, p = 0.04), which was not clinically relevant. Rapid maxillary expansion is not more effective than SME in expanding the maxilla in patients with posterior crossbite. © 2012 John Wiley & Sons A/S.
Ha, Ho Kyung; Ha, Hun Jun; Seo, Jun Young; Choi, Sun Min
2018-06-04
Although the Korean tidal flats in the Yellow Sea have been highlighted as a typical macrotidal system, so far, there have been no measurements of the sediment erodibility and critical shear stress for erosion (τ ce ). Using the Gust erosion microcosm system, a series of field experiments has been conducted in the Ganghwa tidal flat to investigate quantitatively the effects of biogenic materials on the erodibility of intertidal cohesive sediments. Four representative sediment cores with different surficial conditions were analyzed to estimate the τ ce and eroded mass. Results show that τ ce of the "free" sediment bed not covered by any biogenic material on the Ganghwa tidal flat was in the range of 0.1-0.2 Pa, whereas the sediment bed partially covered by vegetation (Phragmites communis) or fecal pellets had enhanced τ ce up to 0.45-0.6 Pa. The physical presence of vegetation or fecal pellets contributed to protection of the sediment bed by blocking the turbulent energy. An inverse relationship between the organic matter included in the eroded mass and the applied shear stress was observed. This suggests that the organic matter enriched in a near-bed fluff layer is highly erodible, and the organic matter within the underlying sediment layer becomes depleted and less erodible with depth. Our study underlines the role of biogenic material in stabilizing the benthic sediment bed in the intertidal zone. Copyright © 2018 Elsevier Ltd. All rights reserved.
This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The STATSGO Layer table specifies two soil erodibility factors for each component layer, KFFACT and KFACT. The STATSGO documentation describes KFFACT as a soil erodibility factor which quanitifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to caluculate soil loss by water. KFACT is described as a soil erodibility factor which is adjusted for the effect of rock fragments. The average value of each of these soil erodibility factors was determined for the top (surface) layer for each map unit of each state.The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Data Source). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The soil erodibility factor was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metri
Soils as sediment: does aggregation skew slope scale SOC balances?
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Fister, Wolfgang; Kuhn, Nikolaus
2014-05-01
The net effect of soil erosion as a source or sink of CO2 in global carbon cycling has been the subject of a heated debate. On one hand, erosion exposes the previously encapsulated soil organic carbon (SOC), which may accelerate the mineralization of eroded SOC. On the other hand, deposition limits the decomposition of SOC upon burial, while incorporation of biomass at eroding sites replaces the lost SOC. So far, effects of erosion on CO2 emissions have largely been assessed by comparing SOC stocks at eroding and depositional sites. The underlying assumption for this approach is a non-selective transport of eroded SOC across a landscape. However, several recent publications showed both an at least temporary on-site enrichment of SOC in sediment as well as a preferential deposition of sediment particles with SOC concentrations that differed from the soil SOC. As a consequence, balances between eroding and depositional sites may over- or underestimate mineralization of eroded SOC during transport. Two Luvisols, from the villages of Möhlin and Movelier in northwest Switzerland, were used in this study. They have different mineral grain size distribution, organic carbon concentration and aggregate stability. Based on the concept of Equivalent Quartz Size (EQS), the eroded sediments were fractionated by a settling tube apparatus into six different size classes, according to their settling velocities and likely transport distances. According to the model developed by Starr et al., 2000, the likely transport distances of six EQS classes were grouped into three likely fates: deposited across landscapes, possibly transferred into rivers, and likely transferred into rivers. Respiration rates of the fractionated sediments were measured by gas chromatograph for 50 days. Our results show that 1) due to aggregation, 60% of the Möhlin eroded fractions and 82% of the Movelier fractions would be re-deposited in the terrestrial system, which strongly contrasts with their grain size distribution; 2) 63% of eroded SOC for the Möhlin soil and 83% for the Movelier soil would be re-deposited in the terrestrial system rather than transferred into the aquatic system. This is much greater than the high concentration of SOC in grain size fraction <32 µm would suggest; 3) the SOC re-deposited in the terrestrial system is more likely to be mineralized than the SOC in fine particles which would be transferred into the aquatic system. Our observations indicate that 1) aggregation reduces the likely transport distances of eroded SOC, and thus decreases the likelihood of eroded SOC to be transferred from eroding hill-slopes to the aquatic system; 2) the re-deposited SOC in the terrestrial system is more likely to be mineralized than the SOC in fine particles that could be transferred into the aquatic system. These findings highlight a potentially higher contribution of erosion to atmospheric CO2 than anticipated by estimating source for sink transfer without considering the effects of aggregation.
Buster, N.A.; Holmes, C.W.
2006-01-01
Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.
Response of High Latitude Coralline Algae to pCO2 and Thermal Stress
NASA Astrophysics Data System (ADS)
Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.
2016-12-01
The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.
Treatment of Class II malocclusion with mandibular skeletal anchorage.
Cakir, Ezgi; Malkoç, Siddik; Kirtay, Mustafa
2017-06-01
The aim of this case report was to present the dentofacial changes obtained with bone anchorage in a Class II patient with moderate to severe crowding. A boy, aged 14.5 years, with a dolichofacial type, convex profile, and skeletal and dental Class II relationships was examined. After evaluation, functional treatment with bone anchorage and 4 first premolar extractions was decided as the treatment approach. Miniplates were placed on the buccal shelves of the mandibular third molars. The hook of the anchor was revealed from the first molar level. After surgery, the 4 first premolars were extracted to retract the protrusive mandibular incisors. The maxillary and mandibular first molars were banded, and a lip bumper was inserted to apply elastics and to help distalize the maxillary first molars. Orthodontic forces of 300 to 500 g were applied immediately after placement, originating from the miniscrews to the hooks of the appliance to advance the mandible. After 20 months of treatment, the patient had a dental and skeletal Class I relationship, the mandible was advanced, the maxilla was restrained, and overjet was decreased. The combination of a bone anchor, Class II elastics, and an inner bow is a promising alternative to functional treatment, along with extractions, in Class II patients. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
NASA Astrophysics Data System (ADS)
Brachert, T. C.; Reuter, M.; Krüger, S.; Kirkerowicz, J.; Klaus, J. S.
2015-10-01
The fast growing calcareous skeletons of zooxanthellate reef corals (z-corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z-corals. The z-corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z-corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion was non-linear and responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from subannually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene where ∼ 2 °C higher than they are in the present-day, intermittent upwelling of cool, nutrient rich water mitigated water temperatures off southwestern Florida in the middle of the Atlantic warm pool and created temporary refuges for z-coral growth. Based on the subannually resolved δ18O and δ13C records, the duration of the upwelling episodes causing the endmember 2 conditions was variable and lasted from a few years to a number of decades. The episodes of upwelling were interrupted by phases without upwelling (endmember 1) which lasted for at least a few years and led to high surface water temperatures. This variable environment is likely one of the reasons why the coral fauna is dominated by the eurytopic genus Solenastrea, also a species resistant to high turbidity. Over a period of ∼ 50 years, the oldest subannually resolved proxy record available (3.2 Ma) documents a persistent occurrence of the HDB during winter. In contrast, the HDB forms in summer in modern z-corals from the Florida reef tract. We suggest this difference to be the expression of a tendency towards decreasing upwelling since the middle Pliocene. The number of z-coral sclerochronological records for this time period is still, however, rather low and requires an improved resolution through data from additional time-slices. These data can contribute to predicting the effects of future ocean warming on z-coral health along the Florida reef tract.
Settling Velocity Specific SOC Distribution along Hillslopes - A field investigation in Denmark
NASA Astrophysics Data System (ADS)
Kuhn, N. J.; Hu, Y.
2015-12-01
The net effects of soil erosion by water, as a sink or source of atmospheric CO2, are decisively affected by the spatial re-distribution and stability of eroded soil organic carbon (SOC). The deposition position of eroded SOC, into terrestrial or aquatic systems, is actually decided by the transport distances of soil fractions where the SOC is stored. In theory, the transport distances of aggregated soil fractions are related to their settling velocities under given layer conditions. Yet, little field investigation has been conducted to examine the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of functional SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events from different topographic positions along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples from difference topographic positions along the slope were fractionated into five settling classes using a settling tube apparatus. The SOC content, 13C signature, and C:N ratios of all settling fractions were measured. Our results show that: 1) the spatial distribution of soil settling classes along the slope clearly shows a coarsening effect at the deposition area immediately below the eroding slope, followed by a fining trend on the deposition area at the slope tail. This proves the validity of the conceptual model in Starr et al. 2000 to predict SOC redistribution patterns along eroding hillslopes. 2) The isotopically enriched 13C on the slope back suggests greater decomposition rates possibly experienced by eroded SOC during transport, while the pronounced respiration rates at the slope tail indicate a great potential of CO2 emissions after deposition. Overall, our results illustrate that immediate deposition of fast settling soil fractions, and the thus induced preferential deposition of SOC at foot slope and potential CO2 emissions during transport, must be appropriately accounted for in current soil carbon balances. To achieve this, a SOC erodibility parameter based on the actual settling velocity distribution of eroded fractions (aggregated or not aggregated) is urgently needed to better parameterize soil erosion models with respect to SOC spatial redistribution.
Biodegradation of lignin by Agaricus Bisporus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vane, C.H.; Abbott, G.D.; Head, I.M.
The lignolytic activity of Agaricus bisporus will be addressed in this paper. Sound and fungally degraded lignins were characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), Fourier Transform Infrared Spectroscopy (FnR) and elemental analysis. Fungally degraded lignins displayed increased wt%N, wt%H and wt%O content and decreased wt%C content The FTIR spectrum of decayed lignin showed an increase in the relative intensity of absorption bands assigned to carbonyl and carboxyl functional groups located on the aliphatic side chain and a decrease in absorption bands assigned to aromatic skeletal vibration modes. Semiquantitative Py-GC-MS revealed an 82% decrease in lignin derived pyrolysis products upon biodegradation.more » No significant increase in pyrolysis products with an oxygenated aliphatic side chain were detected in the fungally degraded lignin however shortening of the aliphatic side chain via cleavage at the {alpha}, {beta} and {gamma} positions was observed.« less
Fragment approach to the electronic structure of τ -boron allotrope
NASA Astrophysics Data System (ADS)
Karmodak, Naiwrit; Jemmis, Eluvathingal D.
2017-04-01
The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.
Study of glyphosate transport through suspended particulate matter
NASA Astrophysics Data System (ADS)
Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz
2014-05-01
The results have been produced in a project aiming to improve the water quality of the Layon localy supported by stakeholders involved in the implementation of the Water Framework Directive as the SAGE-Layon Aubance. The study site is a small vineyard catchment (2.2 ha) of the Loire Valley. The slopes of the study site are between 8 and 40% resulting in strong erosive episodes during rainy event. The main objective is to understand the transfer of pesticide residues to stream. Preliminary results have shown glyphosate can be found with high concentrations during runoff. However this study was realized only in the dissolved phase. The objective is now to understand the glyphosate transport driven by SPM. The methodology developed has been (i) characterization and production of the erodible water fraction from soils aggregates; (ii) achievement of the adsorption of glyphosate on these erodible materials to compare this results with adsorption on soil sieved to 2 mm, (iii) achievement of the desorption of glyphosate on these erodible materials. Measurements have been performed on soil samples distinguishing weed or grassed soils. Soils are sieved to 2 mm or between 2 and 5 mm (to produce the erodible water fraction). Both fractions are then used to glyphosate sorption and desorption. The erodible fraction was produce with a wet sieving machine (eijkelkampt Method Kemper and Rosenau, 1986), using sieve porosity of 250 microns. The fraction obtained at 250 microns is considered to be the erodible water fraction and is used to study the adsorption and desorption of glyphosate. Kinetics has been first carried out then the isotherm to obtain the value of Kd. A ratio soil/solution of 1/5 was used. Successive desorption's method was chosen with a stirring time of 20 min, centrifugation at 6000 g and the supernatant in each desorption of 20 min is analyzed. This step is repeated 25 times. The main results of the study are: (i) adsorption of glyphosate is rapid and almost complete (95% in 2 min). (ii) Kd obtained on the erodible fraction are two times higher than on 2 mm sieved soils. (iii) Desorption showed that glyphosate is desorbed from the erodible fraction at 40% after 25 desorptions. The aim of this study was to show the potential transport of glyphosate through suspended particulate matter. The adsorption on the erodible fraction argued to a significant transport potential of glyphosate on this fraction. The desorption of glyphosate from the erodible water fraction have revealed that the adsorption of glyphosate is reversible but it is much slower. These results demonstrate that glyphosate may be stored on the erodible fraction and be transported by these fractions. Keywords: Adsorption, Desorption, Glyphosate, Suspended Solids, Erosion.
Simulating eroded soil organic carbon with the SWAT-C model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong
The soil erosion and associated lateral movement of eroded carbon (C) have been identified as a possible mechanism explaining the elusive terrestrial C sink of ca. 1.7-2.6 PgC yr(-1). Here we evaluated the SWAT-C model for simulating long-term soil erosion and associated eroded C yields. Our method couples the CENTURY carbon cycling processes with a Modified Universal Soil Loss Equation (MUSLE) to estimate C losses associated with soil erosion. The results show that SWAT-C is able to simulate well long-term average eroded C yields, as well as correctly estimate the relative magnitude of eroded C yields by crop rotations. Wemore » also evaluated three methods of calculating C enrichment ratio in mobilized sediments, and found that errors associated with enrichment ratio estimation represent a significant uncertainty in SWAT-C simulations. Furthermore, we discussed limitations and future development directions for SWAT-C to advance C cycling modeling and assessment.« less
Elastic wave generated by granular impact on rough and erodible surfaces
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime
2018-01-01
The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.
Estimate Soil Erodibility Factors Distribution for Maioli Block
NASA Astrophysics Data System (ADS)
Lee, Wen-Ying
2014-05-01
The natural conditions in Taiwan are poor. Because of the steep slopes, rushing river and fragile geology, soil erosion turn into a serious problem. Not only undermine the sloping landscape, but also created sediment disaster like that reservoir sedimentation, river obstruction…etc. Therefore, predict and control the amount of soil erosion has become an important research topic. Soil erodibility factor (K) is a quantitative index of distinguish the ability of soil to resist the erosion separation and handling. Taiwan soil erodibility factors have been calculated 280 soil samples' erodibility factors by Wann and Huang (1989) use the Wischmeier and Smith nomorgraph. 221 samples were collected at the Maioli block in Miaoli. The coordinates of every sample point and the land use situations were recorded. The physical properties were analyzed for each sample. Three estimation methods, consist of Kriging, Inverse Distance Weighted (IDW) and Spline, were applied to estimate soil erodibility factors distribution for Maioli block by using 181 points data, and the remaining 40 points for the validation. Then, the SPSS regression analysis was used to comparison of the accuracy of the training data and validation data by three different methods. Then, the best method can be determined. In the future, we can used this method to predict the soil erodibility factors in other areas.
Cytochrome P450 1A induction in gudgeon Gobio gobio : Laboratory and Field Studies.
Flammarion, P
1999-01-01
The induction of cytochrome P450 1A was studied in gudgeon (Gobio gobio), a common European cyprinid, using both farm-raised and field-caught fish. The effects of sex, reproductive status and past exposure to xenobiotics were assessed. When exposed to beta-naphthoflavone (bNF), reared gudgeon showed a dose-dependent increase of EROD activity with a plateau observed at doses from 20 mg kg-1 (females) and 5 mg kg-1 (males). The sexual difference in EROD activity was related to the gonadosomatic index (GSI) of the female whatever the level of induction. Dose and sex effects were confirmed by the immunodetection of CYP1A protein. More than 1 month was necessary for EROD activity to decrease to baseline levels. A second bNF injection after 32 days gave similar levels of induction, suggesting that EROD induction by bNF was not impaired by a pretreatment. Wild fish were brought from two sites in the Rhone river basin: a low contaminated site (Ain) and a highly contaminated site (Rhone). Wild gudgeon were highly induced by bNF in laboratory conditions, except males from the Rhone site which exhibited EROD levels as high as the EROD plateau found in laboratory conditions. A 2- month depuration period in clean water was necessary for EROD activity in wild gudgeon to decrease to baseline levels. These results provide better knowledge of the main factors of modulation of the induction in gudgeon as well as on the influence of the history of exposure to inducers.
Impinging Jets and the Erodibility of Cohesive Sediment
NASA Astrophysics Data System (ADS)
Karamigolbaghi, M.; Bennett, S. J.; Ghaneeizad, S. M.; Atkinson, J. F.
2016-12-01
Defining the erodibility of cohesive sediment remains a critical challenge in Earth surface systems. The primary geomorphic law used in such applications relates erosion rate to an erodibility coefficient and an excess shear stress term. To assess erodibility, an inverse modeling approach can be adopted, wherein a known stress is applied to the cohesive sediment, and the erodibility parameters can be deduced through observation of erosion as a function of time. An impinging jet, as used in the jet erosion test, would appear to be an ideal flow (stress) source for erosion assessment. Recent work, however, has demonstrated that jet hydrodynamics can depart significantly from ideal flow conditions when employed for in situ erosion assessment. Here we will review jet theory and the use of jets for assessing the erodibility of cohesive sediment. Our results show that (1) flow confinement and the generation of secondary circulation can significantly change bed shear stress near and downstream of impingement, (2) the evolving scour hole shape, as conditioned by material characteristics and the erosion process, can significantly alter jet hydrodynamics and bed shear stress magnitudes and distributions near and downstream of impingement, and (3) incidental variations in material characteristics in carefully-executed, long-lived experiments can produce markedly different scour hole shapes and derived erodibility indices. Examples from experimental, numerical, and field observations will be used to illustrate these hydrodynamic and material effects on observed and predicted erosion rates. Because such effects are difficult to anticipate, the uncertainty of in situ cohesive sediment assessments using impinging jets can be quite large.
NASA Astrophysics Data System (ADS)
Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.
2017-12-01
Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.
NASA Astrophysics Data System (ADS)
Chilton, K.; Spotila, J. A.
2017-12-01
Bedrock erodibility exerts a primary control on landscape evolution and fluvial morphodynamics, but the relationships between erodibility and the many factors that influence it (rock strength, spacing and orientation of discontinuities, weathering susceptibility, erosive process, etc.) remain poorly defined. This results in oversimplification of erodibility in landscape evolution models, the primary example being the stream power incision model, which groups together factors which may influence erodibility into a single coefficient. There is therefore need to better define how bedrock properties influence erodibility and, in turn, channel form and evolution. This study seeks to deconvolve the relationships between bedrock material properties and erodibility by quantifying empirical relationships between substrate characteristics and bedrock channel morphology (slope, steepness index, width, form) at a high spatial resolution (5-10 m scale) in continuous and mixed alluvial-bedrock channels. We specifically focus on slowly eroding channels with minimal evidence for landscape transience, such that variations in channel morphology are mainly due to bedrock properties. We also use channels cut into sedimentary rock, which exhibit extreme variation (yet predictability and continuity) in discontinuity spacing. Here we present preliminary data comparing the morphology and bedrock properties of 1st through 4th order channels in the tectonically inactive Valley and Ridge province of the Appalachian Mountains, SW Virginia. Field surveys of channel slope, width, substrate, and form consist of 0.5 km long, continuous stream reaches through different intervals of tilted Paleozoic siliciclastic stratigraphy. Some surveys exhibit nearly complete bedrock exposure, whereas others are predominantly mixed, with localized bedrock reaches in high-slope knickzones. We statistically analyze relationships between fluvial morphology and lithology, strength (based on field and laboratory measurements), and discontinuity spacing and orientation. Results are informative for models of landscape evolution, and specifically provide insight into the controls on erosive process dominance (i.e., plucking vs. abrasion) and on the development and evolution of knickpoints in non-transient settings.
Changes in coral reef communities across a natural gradient in seawater pH.
Barkley, Hannah C; Cohen, Anne L; Golbuu, Yimnang; Starczak, Victoria R; DeCarlo, Thomas M; Shamberger, Kathryn E F
2015-06-01
Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.
NASA Technical Reports Server (NTRS)
2005-01-01
5 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust-mantled, wind-eroded landscape in the Medusae Sulci region of Mars. Wind eroded the bedrock in this region, and then, later, windblown dust covered much of the terrain. Location near: 5.7oS, 160.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SpringEsler, Daniel N.; Ballachey, Brenda E.; Bowen, Lizabeth; Miles, A. Keith; Dickson, Rian D.; Henderson, John D.
2017-01-01
The authors quantified hepatic hydrocarbon-inducible cytochrome P4501A (CYP1A) expression, as ethoxyresorufin-O-deethylase (EROD) activity, in wintering harlequin ducks (Histrionicus histrionicus) captured in Prince William Sound, Alaska (USA), during 2011, 2013, and 2014 (22–25 yr following the 1989 Exxon Valdez oil spill). Average EROD activity was compared between birds from areas oiled by the spill and those from nearby unoiled areas. The present study replicated studies conducted from 1998 to 2009 demonstrating that harlequin ducks using areas oiled in 1989 had elevated EROD activity, indicative of oil exposure, up to 2 decades post spill. In the present study, it was found that average EROD activity during March 2011 was significantly higher in wintering harlequin ducks captured in oiled areas relative to unoiled areas, which the authors interpret to indicate that harlequin ducks continued to be exposed to residual Exxon Valdez oil up to 22 yr after the original spill. However, the 2011 results also indicated reductions in exposure relative to previous years. Average EROD activity in birds from oiled areas was approximately 2 times that in birds from unoiled areas in 2011, compared with observations from 2005 to 2009, in which EROD activity was 3 to 5 times higher in oiled areas. It was also found that average EROD activity during March 2013 and March 2014 was not elevated in wintering harlequin ducks from oiled areas. The authors interpret these findings to indicate that exposure of harlequin ducks to residual Exxon Valdez oil abated within 24 yr after the original spill. The present study finalizes a timeline of exposure, extending over 2 decades, for a bird species thought to be particularly vulnerable to oil contamination in marine environments
Au, Doris W T; Chen, Ping; Pollino, Carmel A
2004-04-01
Juvenile areolated grouper (Epinephelus areolatus) were exposed to two levels of dietary benzo[a]pyrene (BaP; 0.25-12.5 microg/g body wt/d) for four weeks, followed by four weeks of depuration. Significant increase in hepatic ethoxyresorufin O-deethylase (EROD) activities was found after one week, preceding an increase in lipopigments (as measured by quantitative transmission electron microscopy) in week 2 of exposure. The EROD activities in the BaP-treated fish subsided at week 4 of exposure and throughout the depuration period. Lipopigments in the high-dose group appeared to be more persistent than that of the EROD activity during the exposure period and remained significantly higher than that of the controls at week 4. Levels of lipopigments, however, rapidly subsided on withdrawal of BaP exposure. These results appear to suggest that changes in EROD activities would precede cytological changes and that both the observed cytological and biochemical changes are reversible. Results of the present study also lend further support to our earlier findings on Solea ovata, that a significant relationship exists between EROD activity and lipopigment accumulation (as measured by volume density, absolute volume, numerical density, and absolute density; r = 0.483-0.358, p < 0.05), regardless of fish species (S. ovata and aerolated grouper) as well as the routes of exposure to BaP (intraperitoneal injection or dietary exposure). This provides strong supporting evidence that elevated EROD activities in fish liver do not merely indicate exposure to polyaromatic hydrocarbons (PAHs) but are also associated with significant biological effects. Our results showed that hepatic EROD activity and lipopigments could be used to indicate recent exposure of the fish to BaP/PAHs.
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.
2016-06-01
Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.
The Effect of SnCl2/AmF Pretreatment on Short- and Long-Term Bond Strength to Eroded Dentin
Zumstein, Katrin; Peutzfeldt, Anne; Lussi, Adrian
2018-01-01
This study investigated the effect of SnCl2/AmF pretreatment on short- and long-term bond strength of resin composite to eroded dentin mediated by two self-etch, MDP-containing adhesive systems. 184 dentin specimens were produced from extracted human molars. Half the specimens (n = 92) were artificially eroded, and half were left untreated. For both substrates, half the specimens were pretreated with SnCl2/AmF, and half were left untreated. The specimens were treated with Clearfil SE Bond or Scotchbond Universal prior to application of resin composite. Microtensile bond strength (μTBS) was measured after 24 h or 1 year. Failure mode was detected and EDX was performed. μTBS results were statistically analyzed (α = 0.05). μTBS was significantly influenced by the dentin substrate (eroded < noneroded dentin) and storage time (24 h > 1 year; p < 0.0001) but not by pretreatment with SnCl2/AmF or adhesive system. The predominant failure mode was adhesive failure at the dentin-adhesive interface. The content of Sn was generally below detection limit. Pretreatment with SnCl2/AmF did not influence short- and long-term bond strength to eroded dentin. Bond strength was reduced after storage for one year, was lower to eroded dentin than to noneroded dentin, and was similar for the two adhesive systems.
Pathiratne, Asoka; Hemachandra, Chamini K
2010-08-01
Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques, José, Jr.
2015-04-01
The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, C.; Trudeau, S.; Kennedy, S.
1995-12-31
Pre-fledgling chicks of tree swallows, double-crested cormorants, herring gulls, common terns and hatchling snapping turtles were collected from contaminated Areas of Concern and reference sites in the Great Lakes and St. Lawrence River to determine the geographic and species variation in biomarker responses. EROD activity in colonial waterbirds was generally an order of magnitude above EROD activity in tree swallows and snapping turtles. Notably, EROD activity in colonial waterbirds did not correlate with organochlorine contamination in livers at one industrialized site suggesting that exposure to other contaminants, possibly PAHs, may be an important factor. Retinol concentrations in cormorants were non-detectablemore » and retinyl palmitate concentrations were equal or greater than those in herring gulls. In tree swallows, there was a significant negative correlation between vitamin A concentration in liver and kidney and EROD activity. In snapping turtles, there was a significant induction in EROD activity and significantly higher cytochrome P450 IAI level in livers from the Great Lakes site relative to a clean inland location. There were no significant differences in porphyrin concentrations between sites.« less
Repeated erosion of cohesive sediments with biofilms
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.; Fagherazzi, S.
2014-04-01
This study aims to explore the interplay between biofilms and erodability of cohesive sediments. Erosion experiments were run in four laboratory annular flumes with natural sediments. After each erosion the sediment was allowed to settle, mimicking intermittent physical processes like tidal currents and waves. The time between consecutive erosion events ranged from 1 to 12 days. Turbidity of the water column caused by sediment resuspension was used to determine the erodability of the sediments with respect to small and moderate shear stresses. Erodability was also compared on the basis of the presence of benthic biofilms, which were quantified using a Pulse-Amplitude Modulation (PAM) Underwater Fluorometer. We found that frequent erosion lead to the establishment of a weak biofilm, which reduced sediment erosion at small shear stresses (around 0.1 Pa). If prolonged periods without erosion were present, the biofilm fully established, resulting in lower erosion at moderate shear stresses (around 0.4 Pa). We conclude that an unstructured extracellular polymeric substances (EPS) matrix always affect sediment erodability at low shear stresses, while only a fully developed biofilm mat can reduce sediment erodability at moderate shear stresses.
Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Moayedi, Hossein; Panjsetooni, Alireza; Nazir, Ramli
2013-01-01
Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
Feng, Qing; Kumagai, Takeshi; Nakamura, Yoshimasa; Uchida, Koji; Osawa, Toshihiko
2003-05-09
Alkyl gallates are widely used as food antioxidants. Methyl, ethyl, propyl, lauryl, and cetyl gallates showed antimutagenicity to activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium TA1535/pSK1002. They also exhibited a suppressive effect on 3-methylcholanthrene (3-MC)-induced cytochrome P450 1A (CYP1A) in human hepatoma HepG2 cells, as indexed by the 7-ethoxyresorufin-O-deethylase (EROD) activity, and on CYP1A protein level. Both antimutagenicity and suppression of CYP1A appeared to be dependent on alkyl chain lengths, which suggested lipophilicity dependence. Based on those results, we investigated 26 other phenolic compounds for their lipophilicity, antimutagenicity and inhibition of EROD activity. The lipophilicity correlated well with the inhibition of EROD activity (r=0.78), and the inhibition of EROD activity correlated with the antimutagenicity of those compounds (r=0.71). The results suggest that the lipophilicity of the phenolic compounds may be an important factor in their ability to inhibit EROD activity.
Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Panjsetooni, Alireza; Nazir, Ramli
2013-01-01
Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow. PMID:24459437
Quantitative evaluation of skeletal muscle defects in second harmonic generation images.
Liu, Wenhua; Raben, Nina; Ralston, Evelyn
2013-02-01
Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.
Quantitative evaluation of skeletal muscle defects in second harmonic generation images
NASA Astrophysics Data System (ADS)
Liu, Wenhua; Raben, Nina; Ralston, Evelyn
2013-02-01
Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.
Animal models of cardiac cachexia.
Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta
2016-09-15
Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
First High Resolution IR Study of the νb{14} (a') A-Type Band Near 421.847 \\wn of 2-^{13}C-PROPENE
NASA Astrophysics Data System (ADS)
Daunt, S. J.; Grzywacz, Robert; Billinghurst, Brant E.
2017-06-01
This is is the first high resolution IR study of any band of the 2-^{13}C-propene species. There have been only two previous high resolution studies of vibration-rotation bands of the normal species. The band examined here is the νb{14} (A') CCC skeletal bending near 421.847 \\wn which has an A-Type asymmetric rotor structure. The spectra were recorded on the FTS at the Far-IR beamline of the Canadian Light Source with a resolution of Δν = 0.0009 \\wn. We have assigned and fitted around 2200 transitions and determined ground and upper state rotational constants. Lines with J up to 49 and K up to 12 were included. The subbands with K greater than 12 were perturbed and show torsional splittings that vary from small to extremely large. The fitting was done with the PGOPHER program of Colin Western. The GS constants are in good agreement with the MW constants reported recently by Craig, Groner and co-workers. Ainetschian, Fraser, Ortigoso & Pate, J. Chem. Phys. 100, 729 ff. (1994); Lafferty, Flaud & Herman, J. Mol. Struct. 780-781, 65 ff. (2006). Western, J. Quant. Spectrosc. Rad. Transf. 186, 221 ff. (2017). Paper M109, 71st ISMS Symposium (2016); J. Mol. Spectrosc. 328, 1-6 (2016).
2007-08-01
includes soil erodibility terms from the Universal Soil Lass Equation ( USLE ) for estimating the overland sediment transport capacity (for both the x and y...q = unit flow rate of water = va h [L2/T] vc = critical velocity for erosion overland [L/T] K = USLE soil erodibility factor C = USLE soil ...cover factor P = USLE soil management practice factor Be = width of eroding surface in flow direction [L]. In channels, sediment particles can be
The Influence of Stratigraphic History on Landscape Evolution
NASA Astrophysics Data System (ADS)
Forte, A. M.; Yanites, B.; Whipple, K. X.
2016-12-01
Variation in rock erodibility can play a significant role in landscape evolution. Using a version of the CHILD landscape evolution model that allows for variations in rock erodibility, we found surprisingly complex landscape evolution in simulations with simple, two unit stratigraphies with contrasting erodibility. This work indicated that the stratigraphic order of units in terms of erodibility, the orientation of the contact with respect to the main drainage direction, and the contact dip angle all have pronounced effects on landscape evolution. Here we expand that work to explore the implications of more complicated stratigraphies on landscape evolution. Introducing multiple units adds additional controls on landscape evolution, namely the thicknesses and relative erodibility of rock layers. In models with a sequence of five alternating hard and soft units embedded within arbitrarily thick over- and underlying units, the number of individual layers that noticeably influence landscape morphology decreases as the thickness of individual layers reduces. Contacts with soft rocks over hard produce the most noticeable effect in model output such as erosion rate and channel steepness. For large contrasts in erodibility of 25 m thick layers, only one soft over hard contact is clearly manifest in the landscape. Between 50 and 75 m, two such contacts are manifest, and by 100 m thickness, all three of these contacts are manifest. However, for a given thickness of layers, more units are manifest in the landscape as the erodibility contrast between units decreases. This is true even though the magnitude of landscape effects away from steady-state erosion rates or channel steepness also decrease with decreasing erodibility contrast. Finally, we explore suites of models with alternating layers reflecting either `hardening-' or `softening-upwards' stratigraphies and find that the two scenarios result in decidedly different landscape forms. Hardening-upwards sections produce a gradational change where as individual layers have more influence in the landscape form in softening-upwards sections. Generally, our modeling highlights that past depositional history can exert a fundamental control on landscape evolution during later erosion through the resulting layered stratigraphy.
Identification of in-sewer sources of organic solids contributing to combined sewer overflows.
Ahyerre, M; Chebbo, G
2002-09-01
Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jie; Han Fangyuan; Pei Linsen
2010-05-20
The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offermore » laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C{sub 22}H{sub 14}), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 {mu}m that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of {approx}7 cm{sup -1}, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the intensity distribution is difficult and may require explicit inclusion of vibronic interactions.« less
Al-Rousan, Saber A; Al-Shloul, Rashid N; Al-Horani, Fuad A; Abu-Hilal, Ahmad H
2007-12-01
In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.
Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina
2012-09-01
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
NASA Astrophysics Data System (ADS)
Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina
2012-09-01
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed
2017-11-15
This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.
Fuentes-Rios, Daniel; Orrego, Rodrigo; Rudolph, Anny; Mendoza, Gonzalo; Gavilán, Juan F; Barra, Ricardo
2005-10-01
Schroederichthys chilensis is a common shark that lives in Chilean coastal environments. In this work, the relationship between liver 7-ethoxyresorufin-O-deethylase dealkylation (EROD) activity and Fluorescent Aromatic Compounds (FAC) in bile of S. chilensis sampled in three bays with different degrees of pollution were performed including a reference area. Sixty individuals were collected, 20 for each site; (10 males and 10 females per site) livers and bile samples were obtained and immediately frozen. EROD activity and FAC were measured according to three standard methods. EROD activity and FAC were higher in polluted areas than in the reference area. Synchronous Fluorescence Spectra of the bile from the fish collected at the most polluted area showed a peak at 347nm representing a metabolite corresponding to 1-hydroxypyrene. The low EROD activity in the reference area is likely related to the low level of PAH in sediments. We propose that this species is a good indicator of exposure to FACs, since it presents a series of characteristics that make it suitable for monitoring PAH exposure in coastal zones.
Hanson, Niklas; Larsson, Åke
2011-06-01
An unexpectedly high frequency of skeletal deformations in brown trout has previously been observed in the brook Vallkärrabäcken in southern Sweden. Environmental pollutants from storm water and leachate from an old landfill have been suggested as responsible for the observed deformations. Biomarkers in farmed rainbow trout, placed in tanks with water supplied from the brook, were used to investigate if exposure to pollutants may induce toxic responses in fish. Furthermore, biomarkers were also measured in wild brown trout that were caught in the brook. The most important finding was that the hepatic ethoxyresorufin-O-deethylase (EROD) activity was five to seven times higher for rainbow trout and brown trout in exposed areas compared to reference sites (P<0.001). Analyses of bile in rainbow trout showed that the concentration of PAH-metabolites was two to three times higher (P<0.001) in the exposed areas. However, due to their smaller size and the feeding status, only insufficient amounts of bile could be retrieved from the wild brown trout. The study provides evidence for pollution in parts of Vallkärrabäcken. It is therefore possible that the previously observed high frequency of skeletal damage have been caused by pollutants. The methodology with farmed rainbow trout in flow through tanks worked well and provided more information about the occurrence of pollutants in Vallkärrabäcken than the data from brown trout. The main reasons for this were that the size and the feeding status of the fish could be controlled. This allowed a total of 21 biomarkers to be analyzed in farmed rainbow trout compared to only five in wild brown trout. Furthermore, the use of farmed fish eliminates the risk of migration, which may otherwise bias the data when wild fish are used. © 2010 Wiley Periodicals, Inc.
Stabilization of erodible slopes with geofibers and nontraditional liquid additives.
DOT National Transportation Integrated Search
2013-05-01
Instability of erodible slopes due to extreme climate events and of permafrost slopes due degradation and thawing is a significant : engineering problem for northern transportation infrastructure. Engineers continually look for mitigation alternative...
Emiliani, C.; Harold, Hudson J.; Shinn, E.A.; George, R.Y.
1978-01-01
Carbon and oxygen isotope analysis through a 30-year (1944 to 1974) growth of Montastrea annularis from Hen and Chickens Reef (Florida Keys) shows a strong yearly variation in the abundances of both carbon-13 and oxygen-18 and a broad inverse relationship between the two isotopes. Normal annual dense bands are formed during the summer and are characterized by heavy carbon and light oxygen. "Stress bands" are formed during particularly severe winters and are characterized by heavy carbon and heavy oxygen. The isotopic effect of Zooxanthellae metabolism dominates the temperature effect on the oxygen-18/oxygen-16 ratio. The isotopic results on the deep-sea solitary coral Bathypsammia tintinnabulum, where Zooxanthellae are nonexistent, indicates that the abundance of the heavy isotopes carbon-13 and oxygen-18 is inversely related to the growth rate, with both carbon and oxygen approaching equilibrium values with increasing skeletal age.
Bioelectric analyses of an osseointegrated intelligent implant design system for amputees.
Isaacson, Brad M; Stinstra, Jeroen G; MacLeod, Rob S; Webster, Joseph B; Beck, James P; Bloebaum, Roy D
2009-07-15
The projected number of American amputees is expected to rise to 3.6 million by 2050. Many of these individuals depend on artificial limbs to perform routine activities, but prosthetic suspensions using traditional socket technology can prove to be cumbersome and uncomfortable for a person with limb loss. Moreover, for those with high proximal amputations, limited residual limb length may prevent exoprosthesis attachment all together. Osseointegrated implant technology is a novel operative procedure which allows firm skeletal attachment between the host bone and an implant. Preliminary results in European amputees with osseointegrated implants have shown improved clinical outcomes by allowing direct transfer of loads to the bone-implant interface. Despite the apparent advantages of osseointegration over socket technology, the current rehabilitation procedures require long periods of restrictive load bearing prior which may be reduced with expedited skeletal attachment via electrical stimulation. The goal of the osseointegrated intelligent implant design (OIID) system is to make the implant part of an electrical system to accelerate skeletal attachment and help prevent periprosthetic infection. To determine optimal electrode size and placement, we initiated proof of concept with computational modeling of the electric fields and current densities that arise during electrical stimulation of amputee residual limbs. In order to provide insure patient safety, subjects with retrospective computed tomography scans were selected and three dimensional reconstructions were created using customized software programs to ensure anatomical accuracy (Seg3D and SCIRun) in an IRB and HIPAA approved study. These software packages supported the development of patient specific models and allowed for interactive manipulation of electrode position and size. Preliminary results indicate that electric fields and current densities can be generated at the implant interface to achieve the homogenous electric field distributions required to induce osteoblast migration, enhance skeletal fixation and may help prevent periprosthetic infections. Based on the electrode configurations experimented with in the model, an external two band configuration will be advocated in the future.
NASA Astrophysics Data System (ADS)
Mayr, Andreas; Rutzinger, Martin; Bremer, Magnus; Geitner, Clemens
2016-06-01
In the Alps as well as in other mountain regions steep grassland is frequently affected by shallow erosion. Often small landslides or snow movements displace the vegetation together with soil and/or unconsolidated material. This results in bare earth surface patches within the grass covered slope. Close-range and remote sensing techniques are promising for both mapping and monitoring these eroded areas. This is essential for a better geomorphological process understanding, to assess past and recent developments, and to plan mitigation measures. Recent developments in image matching techniques make it feasible to produce high resolution orthophotos and digital elevation models from terrestrial oblique images. In this paper we propose to delineate the boundary of eroded areas for selected scenes of a study area, using close-range photogrammetric data. Striving for an efficient, objective and reproducible workflow for this task, we developed an approach for automated classification of the scenes into the classes grass and eroded. We propose an object-based image analysis (OBIA) workflow which consists of image segmentation and automated threshold selection for classification using the Excess Green Vegetation Index (ExG). The automated workflow is tested with ten different scenes. Compared to a manual classification, grass and eroded areas are classified with an overall accuracy between 90.7% and 95.5%, depending on the scene. The methods proved to be insensitive to differences in illumination of the scenes and greenness of the grass. The proposed workflow reduces user interaction and is transferable to other study areas. We conclude that close-range photogrammetry is a valuable low-cost tool for mapping this type of eroded areas in the field with a high level of detail and quality. In future, the output will be used as ground truth for an area-wide mapping of eroded areas in coarser resolution aerial orthophotos acquired at the same time.
Esquivel, Carlos M; Ampudia, Carolina; Fridman, Abraham; Moon, Rena; Szomstein, Samuel; Rosenthal, Raul J
2014-02-01
Circular stapler and hand-sutured esophagojejunostomy has been the most popular technique utilized in patients undergoing proximal gastrectomy through Roux-en-Y reconstruction for disease processes of the gastroesophageal junction. In recent years, with the advent of laparoscopic bariatric surgical techniques and refined linear stapler cutters, surgeons have developed the linear stapler side-to-side technique as a valid option. The aim of this study is to describe our technique and review the outcomes using the Roux-en-Y reconstruction with linear staplers after laparoscopic proximal gastrectomy for malignant and benign disease. After Internal Review Board approval and with adherence to the Health Insurance Portability and Accountability Act guidelines, a retrospective review of a prospectively collected database was conducted. A total of 14 patients underwent proximal laparoscopic gastric resection at our institution during a 3-year period from January 2008 to January 2011. Sex, body mass index, prior surgeries, complications of the prior surgery, intraoperative complications, pathologic findings, postoperative complications, hospital stay, and outpatient follow-up were measured in the preoperative and postoperative period. Our patient population consisted of 9 women and 5 men, with a mean age and body mass index of 45.42 years and 35.64 kg/m, respectively. Indications for proximal gastrectomy was in 4 patients a leak at the angle of His secondary to sleeve gastrectomy for morbid obesity, 1 patient was a stricture after a vertical banded gastroplasty, 1 patient a revision of a eroded gastric band, 1 patient a revision of a eroded mesh secondary to a hiatal hernia repair, 1 patient a conversion of a failed Nissen, 3 patients had a total gastrectomy due to a stage 2 gastric cancer, and 1 patient a gastrointestinal stromal tumor. There were no intraoperative complications. All the procedures were completed laparoscopically. The mean operative time was 137.16 minutes. The mean hospital stay was 7.6 days. One patient had a postoperative stricture at the esophagojejunal anastomosis that required multiple dilatations. All patients with gastric cancer are free of tumor recurrence. The use of a laparoscopic proximal gastrectomy with Roux-en-Y reconstruction through combined side-to-side linear stapler and hand-sewn esophagojejunal anastomosis seems to be a feasible and safe approach.
Implementation of the century ecosystem model for an eroding hillslope in Mississippi
Sharpe, Jodie; Harden, Jennifer W.; Dabney, Seth M.; Ojima, Dennis; Parton, William
1998-01-01
The objective of this study was to parameterize and implement the Century ecosystem model for an eroding, cultivated site near Senatobia, in Panola County, Mississippi, in order to understand the loss and replacement of soil organic carbon on an eroding cropland. The sites chosen for this study are located on highly eroded loess soils where USDA has conducted studies on rates of soil erosion. We used USDA sediment data from the study site and historical erosion estimates from the nearby area as model input for soil loss; in addition, inputs for parametization include particle-size data, climate data, and rainfall/runoff data that were collected and reported in companion papers. A cropping scenario was implemented to simulate a research site at the USDA watershed 2 at the Nelson Farm. Model output was compiled for comparison with data collected and reported in companion reports; interpretive comparisons are reported in Harden et al, in press.
Surface properties of beached plastics.
Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K
2015-07-01
Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.
Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy.
Minogianni, Chrysa; Gatos, Konstantinos G; Galiotis, Costas
2005-09-01
The Raman spectrum of isotactic polypropylene (iPP) has been found to exhibit vibrational peaks in the region of 750 to 880 cm(-1) that are sensitive to the degree of crystallinity. These features are broadly assigned to various modes of methyl group rocking, rho(CH2), and there have been various attempts to assess crystallinity based on the integrated intensities of these bands. Various vibrational analyses performed in the past in combination with experimental studies have concluded that the presence of crystalline order with trans-gauche conformation gives rise to a peak at 809 cm(-1), which is assigned to a rho(CH2) mode coupled with the skeletal stretching mode. However, the presence of additional peaks at 830 cm(-1), 841 cm(-1), and 854 cm(-1), within the same envelope, have been the subject of controversy. In this work isotropic films of iPP derived from the same precursor of identical tacticity have been subjected to various degrees of annealing and the integrated intensities of the Raman bands were measured. The results showed that true 3d crystallinity in isotropic iPP can only be expressed by the 809 cm(-1) band whereas the band at 841 cm(-1) corresponds to an uncoupled rho(CH2) fundamental mode and thus is a measure of the amorphous content. The less intense satellite bands at 830 cm(-1) and 854 cm(-1) of solid iPP cannot be distinguished from the 841 cm(-1) band in the melt and are generally considered as intermediate phases possibly related to non-crystalline components with 3(1)-helical conformations. Independent differential scanning calorimetry (DSC) crystallinity measurements were in broad agreement with the Raman measurements based on the normalized intensity of the 809 cm(-1) Raman band. By comparing the Raman with the DSC data a new value for the theoretical heat of fusion for the 100% crystalline iPP has been proposed.
Tweed Extinct Volcano, Australia, Stereo Pair of SRTM Shaded Relief and Colored Height
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Australia is the only continent without any current volcanic activity, but it hosts one of the world's largest extinct volcanoes, the Tweed Volcano. Rock dating methods indicate that eruptions here lasted about three million years, ending about 20 million years ago. Twenty million years of erosion has left this landform deeply eroded yet very recognizable, appearing as a caldera with a central peak. The central peak is not an old remnant landform but is instead the erosional stub of the volcanic neck (the central pipe that carried the magma upward). It is surrounded by ring dikes, which are circular sheets of magma that solidified and now form erosion-resistant ridges. The central peak is named Mount Warning.
Topography plays a central role in envisioning the volcano at its climax and in deciphering the landscape evolution that has occurred since then. Low-relief uplands interspersed between deeply eroded canyons form a radial pattern that clearly defines the shape and extent of the original volcanic dome. Erosion is most extensive on the eastern side because the eroding streams drained directly to the ocean and therefore had the steepest gradients. This asymmetry of erosion has been extreme enough that the volcano has been hollowed out by the east-flowing drainage, forming an 'erosional caldera'. Calderas usually form as the result of collapse where magmas retreat within an active volcano. If collapse occurred here, erosion may have removed the evidence, but it produced a similar landform itself. Three visualization methods were combined to produce this image: shading, color coding, and synthetic stereoscopy. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The stereoscopic effect was then created by generating two differing perspectives, one for each eye (see Figure 1). The image can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing) or by downloading, printing, and splitting the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Elevations range from sea level (shown in blue) to about 1340 meters (4400 feet) along the northwest caldera rim. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C. Size: 102 kilometers (63 miles) by 74 kilometers (46 miles) Location: 28.4 degrees South latitude, 153.3 degrees East longitude Orientation: North toward the top, cylindrical projection Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000Erosion of water-based cements evaluated by volumetric and gravimetric methods.
Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F
2003-05-01
To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.
Potential fate of eroded SOC after erosion
NASA Astrophysics Data System (ADS)
Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.
2015-04-01
Globally, soils contain more than three times as much carbon as either atmosphere or terrestrial vegetation. Soil erosion moves soil organic carbon (SOC) from the site of soil and SOC formation and to depositional environments. There some SOC might be sequestered. Combined with dynamic replacement at the site of erosion, the effect can significantly influence the carbon cycle. However, the fate of SOC moved by erosion has been subject to an intense controversy. Two opposing views prevail: erosion may contribute to SOC mineralization during transport and thus act as a source for atmospheric CO2; the burial of SOC, on the other hand, can be seen as a sink while dynamic replacement maintains SOC at the eroding site and thus increase the C-stocks in soils and sediments. The debate suffers from a lack of information on the distribution, movement and fate of SOC in terrestrial ecosystems. This study aims to improve our understanding of the transport and subsequent fate of the eroded soil and the associated SOC. The research presented here focused on the SOC content and potential transport distance of erode soil. During a series of simulated rainfall soil eroded on crusted loess soils near Basel, Switzerland, was collected. The sediment was fractionated according to its settling velocity, with classes set to correspond to either a transfer into rivers or a deposition on slopes. The soil mass, SOC concentration and cumulative CO2 emission of each fraction were measured. Our results show that about 50% of the eroded sediment and 60% of the eroded SOC are likely to be deposited on the slopes, even during a high rainfall intensity event. This is 3 times greater than the association of SOC with mineral particles suggests. The CO2 emission of the eroded soil is increased by 40% compared to disturbed bulk soil. This confirms that aggregate breakdown reduces the protection of SOC in aggregates. Both results of this study show that taking (i) the effect of aggregation on SOC redistribution and (ii) the subsequent CO2 emission during the transport have to be considered to achieve a reliable assessment of the effect of soil erosion on the global C-cycle. They also indicate that our current balances may underestimate the CO2 emission caused by soil erosion.
NASA Astrophysics Data System (ADS)
Bruthans, Jiri; Svetlik, Daniel; Soukup, Jan; Schweigstillova, Jana; Valek, Jan; Sedlackova, Marketa; Mayo, Alan L.
2012-12-01
In Strelec Quarry, the Czech Republic, an underground conduit network > 300 m long with a volume of ~ 104 m3 and a catchment of 7 km2 developed over 5 years by groundwater flow in Cretaceous marine quartz sandstone. Similar landforms at natural exposures (conduits, slot canyons, undercuts) are stabilized by case hardening and have stopped evolving. The quarry offers a unique opportunity to study conduit evolution in sandstone at local to regional scales, from the initial stage to maturity, and to characterize the erosion processes which may form natural landforms prior to stabilization. A new technique was developed to distinguish erodible and non-erodible sandstone surfaces. Based on measurements of relative erodibility, drilling resistance, ambient and water-saturated tensile strength (TS) at natural and quarry exposures three distinct kinds of surfaces were found. 1) Erodible sandstone exposed at ~ 60% of surfaces in quarry. This sandstone loses as much as 99% of TS when saturated. 2) Sub-vertical fracture surfaces that are non-erodible already prior to exposure at ground surface and which keep considerable TS if saturated. 3) Case hardened surfaces that start to form after exposure. In favorable conditions they became non-erodible and reach the full TS in just 6 years. An increase in the hydraulic gradient from ~ 0.005 to > 0.02 triggered conduit evolution, based on long-term monitoring of water table in 18 wells and inflows to the quarry. Rapidly evolving major conduits are characterized by a channel gradient of ~ 0.01, a flow velocity ~ 40 cm/s and sediment concentration ~ 10 g/l. Flow in openings with a discharge 1 ml/s and hydraulic gradient > 0.05 exceeds the erosion threshold and initiates piping. In the first phase of conduit evolution, fast concentrated flow mobilizes erodible sandstone between sets of parallel fractures in the shallow phreatic zone. In the second phase the conduit opening mainly expands vertically upward into the vadose zone by mass wasting of undercut sandstone slabs. Mass wasting is responsible for > 90% of mobilized sandstone. Sides of the mature conduits are protected by non-erodible fracture surfaces. Natural landforms were probably formed very rapidly by overland flow, piping and possibly fluidization during or at the end of the glacial periods when sandstone was not yet protected by case hardening.
Space Radar Image of Taal Volcano, Philippines
1999-05-01
This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 "Decade Volcanoes" that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. http://photojournal.jpl.nasa.gov/catalog/PIA01768
NASA Astrophysics Data System (ADS)
Mondal, D. R.; McHugh, C. M.; Mortlock, R. A.; Steckler, M. S.; Seeber, L.; Goodbred, S. L., Jr.; Akhter, S. H.; Mustaque, S.
2015-12-01
Recent studies documented that the northern part of the Sunda subduction zone ruptured several times in the past 1500 years including one in 1762. To better understand megathrust surface ruptures and the hazards associated to them, we surveyed the SE coast of Bangladesh along the Teknaf peninsula and the Saint Martin anticline by dating coral microatolls of Porites lutea species by the U-Th dating method. Porites luteagrows a few centimeters below the low tide level creating a 5-12 mm thick skeletal band per year, which makes them a good indicator of relative sea level change that might be caused during tectonic submergence and uplift. U-Th ages were obtained from coral slabs and their growth bands interpreted from x-rays. The corals and marine terraces uplift were measured with high precision RTK GPS and modeled with high resolution DEM. The coral microatolls along the St. Martin anticline were dated to be ~ 250, 800 and 1300 years old. Since storm and other climatic phenomenon cannot cause uplift, we interpret that 2.5 m uplift was caused by 1762 earthquake that killed the coral microatolls. The coral slabs show three growth interruptions, where skeletal growth bands continued to grow onlapping the older growth bands. These growth onlaps could be the result of smaller uplift events after 1762 that did not result in coral mortality. The subsidence history extracted from vertical growth of the slabs suggests that the island is submerging at a rate of 11 mm/year. Corals growing 250 m from the dead coral colony post date the 1762 earthquake. Today living Porites lutea can be found 2.5 m below the dead coral heads and 9 cm above the spring low tide. The elevation of marine terraces (T1, T2 and T3) along the Teknaf coast is 2.5 m, 5-7 m and 11-13 m above sea level, respectively. A shell bed on top of T1 was dated at 1763 (dated by C14). This and the other two terraces could have been uplifted during the three earthquakes dated from coral microatolls. Considering the fact that this active subduction zone is converging at a rate of 13 mm/year and it ruptured several times in the recent past, this segment of the Sunda Subduction system could rupture again and cause a of 8.5 Mw earthquake which will be devastating for neighboring countries.
Evaluation of scour potential of cohesive soils : final report, August 2009.
DOT National Transportation Integrated Search
2009-08-01
Prediction of scour at bridge river crossings is an evolving process. Hydraulic models to estimate water velocity and, therefore, the shear stresses that erode soil are reasonably well developed. The weak link remains methods for estimating soil erod...
Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars
NASA Astrophysics Data System (ADS)
Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.
2014-07-01
Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.
Long-Term Bond Strength of Two Benzalkonium Chloride-Modified Adhesive Systems to Eroded Dentin
Lussi, Adrian; Peutzfeldt, Anne
2017-01-01
This study investigated the effect of benzalkonium chloride (BAC) modification of two adhesive systems on long-term bond strength to normal and artificially eroded dentin. A total of 128 extracted human molars were sectioned and the buccal and oral surfaces of each molar were ground until the dentin. One half was left untreated (normal dentin) while the other half underwent artificial erosion. Resin composite was bonded to the buccal or oral surface following treatment with Adper Scotchbond 1XT or OptiBond FL without or with 1% BAC incorporation. Shear bond strength (SBS) was measured after 24 h (100% humidity, 37°C) or 1 year (tap water, 37°C). SBS results were statistically analyzed (α = 0.05). SBS was significantly lower to artificially eroded dentin than to normal dentin (p < 0.001). Storage for 1 year had no effect on SBS to normal dentin but led to a significant decrease in SBS to artificially eroded dentin (p < 0.001). BAC incorporation decreased the 24 h SBS to normal dentin (p = 0.018), increased the 24 h SBS to eroded dentin (p = 0.001), and had no effect on the 1-year SBS for either substrate. Consequently, BAC incorporation did not improve bond durability. PMID:28875148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.J.H.; Hempleman, A.J.; Tocher, D.A.
1988-08-31
Extensive Raman studies (1525-40 cm/sup /minus/1/) of Os/sub 2/(O/sub 2/CCH/sub 3/)/sub 4/Cl/sub 2/ have led to the identification of the three strong bands, /nu//sub 1/, /nu//sub 2/, and /nu//sub 3/, at 229, 393, and 292 cm/sup /minus/1/ to the key skeletal stretching modes, /nu/(OsOs), /nu/(OsO), and /nu/(OsCl), respectively. Raman spectra of the complex at resonance with the intense electronic band at /lambda//sub max/ = 383 nm lead to the development of a six-membered overtone progression in /nu//sub 1/ as well as combination band progressions in /nu//sub 1/ based upon one quantum of either /nu//sub 2/ or /nu//sub 3/. This indicatesmore » that the principal structural change attendant upon excitation to the resonant state is along the OsOs coordinate. Fourier transform infrared spectra (3500-40 cm/sup /minus/1/) have also been obtained. Acetate deuteriation provides conclusive evidence for many of the infrared and Raman band assignments. The study provides the first firm identification of /nu/(OsOs) for a multiply bonded species.« less
David, C P
2003-02-01
The impact of copper mining along the western coast of Marinduque Island was investigated. Historic input of mine tailings in the coastal region was traced through variations in heavy metal concentrations in Porites growth bands. Five samples were collected from three reefs showing different modes and extent of exposure to mine tailings. Baseline metal concentrations in Porites were established using a coral from a reef that is least exposed to contamination. The lowest mean values of Cu (0.7 microg/g), Mn (0.8 microg/g), and Zn (1.0 microg/g) were calculated from annual skeletal bands representing five years of growth. Conversely, a sample from a reef adjacent to an old tailings stockpile displayed consistently elevated metal values in its growth bands. Mean Cu, Mn, and Zn values for this coral are 3.1, 1.0 and 1.8 microg/g, respectively. Corals from the Ihatub reef showed a distinct metal concentration peak in their 1996 growth ring. These peaks coincide with a documented release of mine tailings in the Ihatub area during that year. Other metal peaks observed in coral samples correlate with years of high precipitation which may have resulted in increased sediment transport in the region. The metals are presumed to be mostly bound to the aragonite lattice of the coral skeleton, however, contribution from incorporated detrital materials to the observed metal signal (mainly of Fe) could not be easily discounted.
The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation
NASA Astrophysics Data System (ADS)
van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong
2017-02-01
Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.
Changes in coral reef communities across a natural gradient in seawater pH
Barkley, Hannah C.; Cohen, Anne L.; Golbuu, Yimnang; Starczak, Victoria R.; DeCarlo, Thomas M.; Shamberger, Kathryn E. F.
2015-01-01
Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau’s natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification. PMID:26601203
Diffuse Vibrational Signature of a Single Proton Embedded in the Oxalate Scaffold, HO2CCO2(-).
Wolke, Conrad T; DeBlase, Andrew F; Leavitt, Christopher M; McCoy, Anne B; Johnson, Mark A
2015-12-31
To understand how the D2d oxalate scaffold (C2O4)(2-) distorts upon capture of a proton, we report the vibrational spectra of the cryogenically cooled HO2CCO2(-) anion and its deuterated isotopologue DO2CCO2(-). The transitions associated with the skeletal vibrations and OH bending modes are sharp and are well described by inclusion of cubic terms in the normal mode expansion of the potential surface through an extended Fermi resonance analysis. The ground state structure features a five-membered ring with an asymmetric intramolecular proton bond. The spectral signatures of the hydrogen stretches, on the contrary, are surprisingly diffuse, and this behavior is not anticipated by the extended Fermi scheme. We trace the diffuse bands to very strong couplings between the high-frequency OH-stretch and the low-frequency COH bends as well as heavy particle skeletal deformations. A simple vibrationally adiabatic model recovers this breadth of oscillator strength as a 0 K analogue of the motional broadening commonly used to explain the diffuse spectra of H-bonded systems at elevated temperatures, but where these displacements arise from the configurations present at the vibrational zero-point level.
Muscle changes in the neuroleptic malignant syndrome
Behan, W; Madigan, M; Clark, B; Goldberg, J; McLellan, D
2000-01-01
Aims—To characterise the skeletal muscle changes in the neuroleptic malignant syndrome (NMS). Methods—Detailed light and ultrastructural examination was carried out on skeletal muscle from three cases of NMS, two associated with recreational drugs (3,4-methlenedioxymethylamphetamine (MDMA, Ecstasy) and lysergic acid diethylamide (LSD)) and one with antipsychotic drugs (fluoxetine (Prozac) and remoxipride hydrochloride monohydrate (Roxiam)). Results—The muscles were grossly swollen and oedematous in all cases, in one with such severe local involvement that the diagnosis of sarcoma was considered. On microscopy, there was conspicuous oedema. In some fascicles less than 10% of fibres were affected whereas in others more than 50% were pale and enlarged. There was a spectrum of changes: tiny to large vacuoles replaced most of the sarcoplasm and were associated with necrosis. A striking feature in some fibres was the presence of contraction bands separating segments of oedematous myofibrils. Severe endomysial oedema was also detectable. There was a scanty mononuclear infiltrate but no evidence of regeneration. Conclusions—The muscle changes associated with NMS are characteristic and may be helpful in differential diagnosis. Key Words: myopathy • neuroleptic malignant syndrome • fluoxetine • remoxipride hydrochloride monohydrate • Ecstasy • LSD PMID:10823143
Cordasco, Giancarlo; Nucera, Riccardo; Fastuca, Rosamaria; Matarese, Giovanni; Lindauer, Steven J; Leone, Pietro; Manzo, Paolo; Martina, Roberto
2012-11-01
The aim of this retrospective clinical trial was to evaluate the effects of rapid maxillary expansion on skeletal nasal cavity size in growing subjects by use of low dose computer tomography. Eight Caucasian children (three male; five female) with a mean age of 9.7 years (SD±1.41) were the final sample of this research that underwent palatal expansion as a first phase of orthodontic treatment. The maxillary expander was banded to the upper first molars and was activated according a rapid maxillary expansion protocol. Low-dose computer tomography examinations of maxilla and of the low portion of nasal cavity were performed before inserting the maxillary expander (T0) and at the end of retention (T1), 7 months later. A low-dose computer tomography protocol was applied during the exams. Image processing was achieved in 3 steps: reslicing; dental and skeletal measurements; skeletal nasal volume computing. A set of reproducible skeletal and dental landmarks were located in the coronal passing through the first upper right molar furcation. Using the landmarks, a set of transverse linear measurements were identified to estimate maximum nasal width and nasal floor width. To compute the nasal volume the lower portion of the nasal cavity was set as region of interest. Nasal volume was calculated using a set of coronal slices. In each coronal slice, the cortical bone of the nasal cavity was identified and selected with a segmentation technique. Dependent t-tests were used to evaluate changes due to expansion. For all tests, a significance level of P<0.05 was used. Rapid maxillary expansion produced significant increases of linear transverse skeletal measurements, these increments were bigger in the lower portion of the nasal cavities: nasal floor width (+3.15 mm; SD ± 0.99), maximum nasal width (+2.47 mm; SD ± 0.99). Rapid maxillary expansion produced significant increment of the total nasal volume (+1.27 cm(3) ± SD 0.65). The anterior volume increase was 0.58 cm(3) while the posterior one was 0.69 cm(3). In growing subjects RME is able to significantly enlarge the dimension of nasal cavity. The increment is bigger in the lower part of the nose and equally distributed between the anterior e the posterior part of the nasal cavity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Howard, M. J.; Silins, U.; Anderson, A.
2016-12-01
Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.
Ayoubi, Shamsollah; Mokhtari, Javad; Mosaddeghi, Mohammad Reza; Zeraatpisheh, Mojtaba
2018-03-06
The most important properties affecting the soil loss and runoff were investigated, and the effects of land use on the soil properties, together with the erodibility indices in a semiarid zone, central Iran, were evaluated. The locations of 100 positions were acquired by cLHS and 0-5-cm surface soil layer samples were used for laboratory analyses from the Borujen Region, Chaharmahal-Va-Bakhtiari Province, central Iran. To measure in situ runoff and soil erodibility of three different land uses comprising dryland, irrigated farming, and rangeland, a portable rainfall simulator was used. The results showed that the high variations (coefficient of variation, CV) were obtained for electrical conductivity (EC), mean weight diameter (MWD), soil organic carbon (SOC), and soil erodibility indices including runoff volume, soil loss, and sediment concentration (CV ~ 43.6-77.4%). Soil erodibility indices showed positive and significant correlations with bulk density and negative correlations with SOC, MWD, clay content, and soil shear strength in the area under investigation. The values of runoff in the dryland, irrigated farming, and rangeland were found 1.5, 28.9, and 58.7 cm 3 ; soil loss in the dryland, irrigated farming, and rangeland were observed 0.25, 2.96, and 76.8 g; and the amount of sediment concentration in the dryland, irrigated farming, and rangeland were found 0.01, 0.11, and 0.15 g cm -3 . It is suggested that further investigations should be carried out on soil erodibility and the potential of sediment yield in various land uses with varying topography and soil properties in semiarid regions of Iran facing the high risk of soil loss.
Babín, María del Mar; Sanz, Paloma; Concejero, Miguel Angel; Martínez, María Angeles; Tarazona, José Vicente
2010-08-01
High-resolution gas chromatography/mass spectrometry (HRGC/MS) is the standard method for analysing dioxin, furan and polybrominated retardants in hazardous waste. Determination of dioxin-like compounds using in vitro bioassays such as ethoxyresorufin-O-deethylase (EROD) is an important tool to evaluate their Ah receptor-mediated toxic effects, because it detects all arylhydrocarbon receptor ligands in a variety of sample matrices. In the present work, we compared RTG-2 cell line EROD bioassay with HRGC/MS for assessing waste samples (liquid and solid) contaminated with polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls (dioxin-like PCBs) and other xenobiotics. For liquid samples, HRGC/MS-toxic equivalent (HRGC/MS-TEQ) values ranged from 273.26 to 5.84 ng TEQ l(-1) and correlated well (correlation coefficient 0.99) with values obtained by EROD-TEQ, which ranged from 128 to 2.5 ng TEQ l(-1). For solid samples, HRGC/MS-TEQ values ranged from 3.44 to 0.49 ng TEQ g(-1) and correlated less well than liquid samples (correlation coefficient 0.64) with values obtained by EROD-TEQ ranging from 2.27 to 0.93 ng TEQ g(-1). The overestimation of RTG-2 EROD-TEQ (1.2 +/- 0.92 of values established by HRGC/MS) and the absence of false-negative results may limit analytical costs by eliminating the need for follow-up GC/MS analysis on the negative samples. We suggest that RTG-2 EROD bioassay is an inexpensive means for preliminary dioxin and furan positive screenings of waste samples. (c) 2010 John Wiley & Sons, Ltd.
Parente, T.E.M.; Rebelo, M.F.; da-Silva, M.L.; Woodin, B.R.; Goldstone, J. V.; Bisch, P.M.; Paumgartten, F.J.R.; Stegeman, J.J.
2011-01-01
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically-related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acids substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrates. PMID:21840383
Parente, Thiago E M; Rebelo, Mauro F; da-Silva, Manuela L; Woodin, Bruce R; Goldstone, Jared V; Bisch, Paulo M; Paumgartten, Francisco J R; Stegeman, John J
2011-12-10
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acid substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrate. Copyright © 2011 Elsevier B.V. All rights reserved.
Howle, James F.; Alpers, Charles N.; Bawden, Gerald W.; Bond, Sandra
2016-07-28
High-resolution ground-based light detection and ranging (lidar), also known as terrestrial laser scanning, was used to quantify the volume of mercury-contaminated sediment eroded from a stream cutbank at Stocking Flat along Deer Creek in the Sierra Nevada foothills, about 3 kilometers west of Nevada City, California. Terrestrial laser scanning was used to collect sub-centimeter, three-dimensional images of the complex cutbank surface, which could not be mapped non-destructively or in sufficient detail with traditional surveying techniques.The stream cutbank, which is approximately 50 meters long and 8 meters high, was surveyed on four occasions: December 1, 2010; January 20, 2011; May 12, 2011; and February 4, 2013. Volumetric changes were determined between the sequential, three-dimensional lidar surveys. Volume was calculated by two methods, and the average value is reported. Between the first and second surveys (December 1, 2010, to January 20, 2011), a volume of 143 plus or minus 15 cubic meters of sediment was eroded from the cutbank and mobilized by Deer Creek. Between the second and third surveys (January 20, 2011, to May 12, 2011), a volume of 207 plus or minus 24 cubic meters of sediment was eroded from the cutbank and mobilized by the stream. Total volumetric change during the winter and spring of 2010–11 was 350 plus or minus 28 cubic meters. Between the third and fourth surveys (May 12, 2011, to February 4, 2013), the differencing of the three-dimensional lidar data indicated that a volume of 18 plus or minus 10 cubic meters of sediment was eroded from the cutbank. The total volume of sediment eroded from the cutbank between the first and fourth surveys was 368 plus or minus 30 cubic meters.
New insights from coral growth band studies in an era of rapid environmental change
NASA Astrophysics Data System (ADS)
Lough, Janice M.; Cooper, Timothy F.
2011-10-01
The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.
NASA Astrophysics Data System (ADS)
Pierini, Cristina; Mizusaki, Ana M.; Pimentel, Nuno; Faccini, Ubiratan F.; Scherer, Claiton M. S.
2010-03-01
Paleoweathering in the Sergi Formation has been classified and analyzed to ascertain its origin and relationship with stratigraphic evolution. The Sergi Formation belongs to the pre-rift sequence of the Recôncavo Basin (northeastern Brazil) and comprises a complex association of eolian and fluvial sandstones and lacustrine mudstones. This formation can be subdivided into three depositional sequences bounded by regional unconformities. Four paleoweathering types, each one related to a distinct origin, have been described in the Sergi Formation: (1) textural mottling, which is distinguished by alternating rock colors as a result of the iron oxide mobilization within mineral phases that evolved under alternating oxidation (yellowish, brownish and reddish shades) and reduction (grayish or greenish hues) conditions; (2) non-textural mottling, which displays a discoloration pattern that is independent of the original rock texture; (3) carbonate concentrations, usually related to carbonate nodule formation, which display a massive internal structure that reveals their origin through continuous growth or crystallization; and (4) banded carbonates (silicified), associated with the beginning of regular surface formation due to the chemical precipitation of carbonates within lacustrine environments. Both mottling color motifs and carbonate accumulation usually represent groundwater oscillation rather than pedogenesis. Only carbonate intraclasts and banded carbonate (silicified) have their origin ascribed to pedogenesis sensu stricto, although the carbonate intraclasts do not represent soil deposits in situ, but calcretes eroded from areas close to channels, and the banded carbonates (silicified) have strong diagenetic modifications. Therefore, it is reasonable to assume that fluvial and meteoric water have controlled paleoweathering evolution as well as deposition, yet both aspects are ruled by the same mechanisms (relief, sedimentation rate and, above all, climate).
A fluidized bed technique for estimating soil critical shear stress
USDA-ARS?s Scientific Manuscript database
Soil erosion models, depending on how they are formulated, always have erodibilitiy parameters in the erosion equations. For a process-based model like the Water Erosion Prediction Project (WEPP) model, the erodibility parameters include rill and interrill erodibility and critical shear stress. Thes...
Criteria for predicting scour of erodible rock in West Virginia.
DOT National Transportation Integrated Search
2013-09-01
The research project Criteria for Predicting Scour of Erodible Rock in West Virginia (RP-273) was conducted to characterize the hydraulic scour of rock at : 15 selected bridge sites in West Virginia (at least one site in each of WVDOHs ten d...
Schoellhamer, David H.
2011-01-01
The quantity of suspended sediment in an estuary is regulated either by transport, where energy or time needed to suspend sediment is limiting, or by supply, where the quantity of erodible sediment is limiting. This paper presents a hypothesis that suspended-sediment concentration (SSC) in estuaries can suddenly decrease when the threshold from transport to supply regulation is crossed as an erodible sediment pool is depleted. This study was motivated by a statistically significant 36% step decrease in SSC in San Francisco Bay from water years 1991–1998 to 1999–2007. A quantitative conceptual model of an estuary with an erodible sediment pool and transport or supply regulation of sediment transport is developed. Model results confirm that, if the regulation threshold was crossed in 1999, SSC would decrease rapidly after water year 1999 as observed. Estuaries with a similar history of a depositional sediment pulse followed by erosion may experience sudden clearing.
Esler, Daniel; Ballachey, Brenda E; Bowen, Lizabeth; Miles, A Keith; Dickson, Rian D; Henderson, John D
2017-05-01
The authors quantified hepatic hydrocarbon-inducible cytochrome P4501A (CYP1A) expression, as ethoxyresorufin-O-deethylase (EROD) activity, in wintering harlequin ducks (Histrionicus histrionicus) captured in Prince William Sound, Alaska (USA), during 2011, 2013, and 2014 (22-25 yr following the 1989 Exxon Valdez oil spill). Average EROD activity was compared between birds from areas oiled by the spill and those from nearby unoiled areas. The present study replicated studies conducted from 1998 to 2009 demonstrating that harlequin ducks using areas oiled in 1989 had elevated EROD activity, indicative of oil exposure, up to 2 decades post spill. In the present study, it was found that average EROD activity during March 2011 was significantly higher in wintering harlequin ducks captured in oiled areas relative to unoiled areas, which the authors interpret to indicate that harlequin ducks continued to be exposed to residual Exxon Valdez oil up to 22 yr after the original spill. However, the 2011 results also indicated reductions in exposure relative to previous years. Average EROD activity in birds from oiled areas was approximately 2 times that in birds from unoiled areas in 2011, compared with observations from 2005 to 2009, in which EROD activity was 3 to 5 times higher in oiled areas. It was also found that average EROD activity during March 2013 and March 2014 was not elevated in wintering harlequin ducks from oiled areas. The authors interpret these findings to indicate that exposure of harlequin ducks to residual Exxon Valdez oil abated within 24 yr after the original spill. The present study finalizes a timeline of exposure, extending over 2 decades, for a bird species thought to be particularly vulnerable to oil contamination in marine environments. Environ Toxicol Chem 2017;36:1294-1300. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm
NASA Astrophysics Data System (ADS)
Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.
2016-04-01
Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in emissions compared to bulk soil. Overall, this confirms that terrestrial SOC redistribution and the mineralization play an important role in erosion induced C cycling, with major uncertainties to be addressed.
Morphodynamic modeling of erodible laminar channels.
Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane
2007-11-01
A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for the transition between patterns observed in experimental erodible channels.
A study of the role of fillers in silicone rubber compounds for outdoor insulation
NASA Astrophysics Data System (ADS)
Meyer, Luiz Henrique
Polymeric materials are being used as a housing material on high voltage outdoor insulation as an alternative to porcelain or glass in line insulators, surge arresters, station posts, and bushings. Among the polymeric materials in use, silicone rubber has proven to have good aging performance under polluted conditions by keeping low levels of leakage current by virtue of its hydrophobicity. However, the exposure of polymeric materials to contaminated and humid environments can lead to certain surface conditions that reduces hydrophobicity increasing leakage current levels, giving rise to dry band arcing. Dry band arcing produces heat, which can result in tracking or erosion of the housing material. Although this dry band arcing does not harm porcelain or glass housings, it will erode pure silicone rubber to such an extent that its application in outdoor environments is not, practical. Fillers are added to silicone rubber to improve tracking and erosion resistance. Among the filler choices, alumina trihydrate (ATH) and silica have been extensively adopted in the compounding of polymeric housings. ATH is a flame retardant that has a molecular water in its formulation. Whenever the surface temperature of an ATH filled polymer reaches approximately 220°C, the water of hydration is released from the ATH molecule, what is recognized as an efficient way to cool down the surface, for example, in the case of dry band arcing. Alternatively, silica has very good bonding with the polymer backbone, imparting mechanical strength to the composite matrix. In addition, fillers such as ATH or silica increase the thermal conductivity of silicone rubber composites, which facilitates moving the heat away from its source, that is, from the origin of dry band arcing. Although heat is considered to be the main degradation factor when dry band arcing occurs, very little information is available on the thermal performance of filled silicone rubber. The standard methods available to test tracking and erosion resistance of filled silicone rubber do not allow to delineate the fundamentals of the thermal degradation, where the heat from the dry band arcing is the main degradation factor. In this work, a thermal imaging camera is used to investigate the thermal performance of filled silicone rubber in an inclined plane test. Infrared laser based techniques are developed to study the material performance. Furthermore, this thesis addresses the measurement of the thermal conductivity, based on infrared laser and thermal imaging, but using simple concepts. Theoretical and empirical models are developed in support of the experimental investigation.
Effect of water potential and void ratio on erodibility for agricultural soils
USDA-ARS?s Scientific Manuscript database
Soil erodibility has confounded researchers for decades. Difficulties arise with initiation of motion, pore-water status, physical, and perhaps biological, material properties and type of applied energy (i.e. rainfall, runoff, freeze/thaw, wind). Though specific tests have been developed to determin...
Panich, Muratha; Poolthong, Suchit
2009-04-01
The authors conducted an in vitro study to compare the hardness of normal enamel with enamel eroded by a cola soft drink and enamel remineralized by casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) or artificial saliva. The authors immersed 40 extracted sound central and lateral incisors alternately in a cola soft drink or artificial saliva for 10 cycles of five seconds each. They repeated this procedure two times at six-hour intervals. They divided the samples randomly into four groups and applied CPP-ACP to the samples, immersed them in artificial saliva, deionized water or both. They measured the hardness on the labial surface at baseline, after erosion and after remineralization and analyzed the data with one-way repeated-measures analysis of variance and two-way analysis of variance. The cola soft drink significantly decreased enamel hardness. CPP-ACP and CPP-ACP and artificial saliva significantly increased the hardness of eroded enamel. CPP-ACP and CPP-ACP and artificial saliva increased the hardness of eroded enamel significantly more than artificial saliva did. CPP-ACP increased the hardness of eroded enamel. CPP-ACP had a greater effect on enamel hardness than did artificial saliva. Consumption of a cola soft drink can cause tooth erosion. CPP-ACP may significantly remineralize eroded enamel compared with artificial saliva.
Kannan, K; Villeneuve, D L; Blankenship, A L; Giesy, J P
1998-11-13
Interaction of tributyltin (TBT) with 3,3',4,4',5-pentachlorobiphenyl (PCB-126)-induced ethoxyresorufin O-deethylase (EROD) activity was examined in vitro using H4IIE rat hepatoma cells. H4IIE cells were exposed to TBT and PCB-126, individually or in combination, at different concentrations. TBT was cytotoxic at concentrations greater than 98 nM. PCB-126 was not cytotoxic in the concentration range of 49 to 3140 pM. At concentrations greater than 49 nM, PCB-126 enhanced the cytotoxicity of TBT in the 24-98 nM range. In the absence of inducers of EROD activity, TBT significantly inhibited constitutive EROD activity in H4IIE cells in a concentration-dependent manner. EROD activity in H4IIE cells was significantly increased by exposure to PCB-126 alone. This effect was potentiated by coexposure to low, noncytotoxic concentrations of TBT. The induction of cytochrome P-4501A (CYP1A) activity in the presence of both an inducer (PCB-126) and low concentrations of an inhibitor (TBT) indicates that TBT does not interfere with the Ah receptor binding, but acts at the transcriptional level. Potentiation of EROD activity and cytotoxicity as a consequence of coexposure to PCB-126 and TBT is of considerable toxicological significance, given their coaccumulation in a variety of marine organisms.
Stereo Pair, Patagonia, Argentina
NASA Technical Reports Server (NTRS)
2000-01-01
This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 121 kilometers (75 miles) x 83 kilometers (52 miles) Location: 41 deg. South lat., 69 deg. West lon. Orientation: North toward upper left Image Data: Landsat bands 1,4 and 7 shown in blue, green and red Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat)Anaglyph, Patagonia, Argentina
NASA Technical Reports Server (NTRS)
2000-01-01
This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large, dark 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks.At the top center of the image, two halves of a light ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Tonal and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then producing the two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and the right eye with a blue filter.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 121 kilometers (75 miles) x 83 kilometers (52 miles) Location: 41 deg. South lat., 69 deg. West lon. Orientation: North toward upper left Image Data: Landsat band 4 Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat)Soil erodibility for water erosion: A perspective and Chinese experiences
USDA-ARS?s Scientific Manuscript database
Erodibility is a key indicator to evaluate soil’s susceptibility to erosion and crucial for predicting and evaluating soil loss and its environmental effects. This review aims to synthesize almost a century’s worth of research progress on the concept, indicators, and spatio-temporal variations of so...
Designer, acidic biochar influences calcareous soil characteristics
USDA-ARS?s Scientific Manuscript database
An acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 degrees celsius) and steam activation to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0, 1, 2, and 10 percent (by weight) to an eroded Portneuf soil (coarse-silty,...
Societal Forces That ERODE Creativity
ERIC Educational Resources Information Center
Sternberg, Robert; Kaufman, James C.
2018-01-01
Background/Context: Creativity is an indispensable force in intellectual, social, cultural, and economic development. Yet societal forces conspire to erode it. Educators have despaired for many years over how schools often fail to encourage creativity, but society as a whole is just as guilty. But how do schools and society fail to encourage, or…
Yield potential and nitrogen requirements of Miscanthus × giganteus on eroded soil
USDA-ARS?s Scientific Manuscript database
Miscanthus × giganteus yield and fertilizer N requirements have been well studied in Europe and parts of the United States, but few reports have investigated its production on eroded claypan soils economically marginal for grain crops. This study was conducted to evaluate yield potential and fertili...
Soil Properties and Productivity as Affected by Topsoil Movement within an Eroded Landform
USDA-ARS?s Scientific Manuscript database
In hilly landforms subject to long-term cultivation, erosion has denuded upper slope positions of topsoil and accumulated topsoil in lower slope positions. One approach to remediate these eroded landforms is moving soil from areas of topsoil accumulation to areas of topsoil depletion, termed here so...
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Gellert, R.; Ming, D. W.; Morris, R. V.; Schroeder, C.; Yen, A. S.; Farrand, W. H.; Arvidson, R. E.; Franklin, B. J.; Grant, J. A.;
2015-01-01
Mars Exploration Rover Opportunity has been exploring Meridiani Planum since January 2004, and has completed 4227% of its primary mission. Opportunity has been investigating the geology of the rim of 22 km diameter Endeavour crater, first on the Cape York segment and now on Cape Tribulation. The outcrops are divided York; (ii) the Shoemaker fm, impact breccias representing ejecta from the crater; into three formations: (i) the lower Matijevic fm, a pre-impact lithology on Cape and (iii) the upper Grasberg fm, a post-impact deposit that drapes the lower portions of the eroded rim segments. On the Cape Tribulation segment Opportunity has been studying the rocks on Murray Ridge, with a brief sojourn to Wdowiak Ridge west of the rim segment. team member Thomas Wdowiak, who died in 2013.) One region of Murray Ridge has distinctive CRISM spectral characteristics indicating the presence of a small concentration of aluminous smectite based on a 2.2 micron Al-OH combination band (hereafter, the Al-OH region).
Morphology of ductile metals eroded by a jet of spherical particles impinging at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Young, S. G.; Buckley, D. H.
1983-01-01
Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used, together with surface profile measurements, in the present morphological study of the erosion of an aluminum alloy and copper by the normal impact of spherical glass erodent particles. The morphology of the damage pattern is a manifestation of the flow pattern of erodent particles, and yields insight into the mechanisms that may be active at different stages of erosion. The simultaneous appearance of radial cracks and concentric rings is reported, together with wave crests which contain an accumulation of metallic flakes. A preliminary analysis is advanced to explain the formation of the various damage patterns observed.
KHAN, NADEEM; MUPPARAJU, SRIRAM P.; MINTZOPOULOS, DIONYSSIOS; KESARWANI, MEENU; RIGHI, VALERIA; RAHME, LAURENCE G.; SWARTZ, HAROLD M.; TZIKA, A. ARIA
2010-01-01
Using a mouse model, we tested the hypotheses that severe burn trauma causes metabolic disturbances in skeletal muscle, and that these can be measured and repeatedly followed by in vivo electron paramagnetic resonance (EPR). We used a 1.2-GHz (L-band) EPR spectrometer to measure partial pressure of oxygen (pO2) levels, redox status and oxidative stress following a non-lethal burn trauma model to the left hind limbs of mice. Results obtained in the burned mouse gastrocnemius muscle indicated a significant decrease in tissue pO2 immediately (P=0.032) and at 6 h post burn (P=0.004), compared to the gastrocnemius of the unburned hind limb. The redox status of the skeletal muscle also peaked at 6 h post burn (P=0.027) in burned mice. In addition, there was an increase in the EPR signal of the nitroxide produced by oxidation of the hydroxylamine (CP-H) probe at 12 h post burn injury, indicating a burn-induced increase in mitochondrial reactive oxygen species (ROS). The nitroxide signal continued to increase between 12 and 24 h, suggesting a further increase in ROS generation post burn. These results confirm genomic results, which indicate a downregulation of antioxidant genes and therefore strongly suggest the dysfunction of the mitochondrial oxidative system. We believe that the direct measurement of tissue parameters such as pO2, redox and ROS by EPR may be used to complement measurements by nuclear magnetic resonance (NMR) in order to assess tissue damage and the therapeutic effectiveness of antioxidant agents in severe burn trauma. PMID:21179378
Paone, Christoph; Rudeck, Steven; Etard, Christelle; Strähle, Uwe; Rottbauer, Wolfgang; Just, Steffen
2018-02-05
Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly and renewal of sarcomeric units within muscle tissues. The mechanisms regulating these fundamental processes are only poorly understood, but of great clinical importance since many cardiac and skeletal muscle diseases are associated with defective sarcomeric organization. The SET- and MYND domain containing protein 1b (Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting with the myosin chaperones Unc45b and Hsp90α1. In zebrafish, Smyd1b, Unc45b and Hsp90α1 are part of the misfolded myosin response (MMR), a regulatory transcriptional response that is activated by disturbed myosin homeostasis. Genome duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in sarcomere structure resulting in decreased cardiac as well as skeletal muscle function. Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally activated in Smyd1b-deficient fla mutants, demonstrating lack of genetic compensation despite the functional redundancy of both zebrafish Smyd1 paralogs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of tillage and broiler litter on crop productions in an eroded soil
USDA-ARS?s Scientific Manuscript database
Soils in the southeastern United States, where the climate is subtropical, are severely eroded from intense row crop agriculture many years ago. This study was initiated in 2005 at the Plant Material Center, NRCS, in Coffeeville MS, on an Loring silt loam (fine-silty, mixed, thermic, Glossic Fragiud...
USDA-ARS?s Scientific Manuscript database
We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltrati...
Higher Education and European Regionalism.
ERIC Educational Resources Information Center
Paterson, Lindsay
2001-01-01
Speculates about the relationship between two fundamental social changes occurring in Europe: the development of a mass higher education system and the slow decay of the old states that were inherited from the 19th century, eroded from below by various movements for national and regional autonomy, and eroded from above by the growing power and…
Influence of FGD gypsum on the properties of a highly erodible soil under conservation tillage
USDA-ARS?s Scientific Manuscript database
The performance of conservation tillage practices imposed on highly erodible soils may be improved by the use of amendments with a high solubility rate, and whose dissolution products are translocated at depth in the soil profile faster than normally used agricultural lime and fertilizer products. T...
Changes in ethoxyresorufin-O-deethylase (EROD) activity were monitored through an extended 6-month dietary exposure to determine the relationship between EROD activity and uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in brook trout, Salvelinus fontinalis. Brook trout were...
Changes in ethoxyresorufin-0-deethylase (EROD) activity were monitored through an extended 6-month dietary exposure to determine the relationship between EROD activity and uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in brook trout, Salvelinus fontinalis. Brook trout wer...
78 FR 25939 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... Executive Office Building, 725-17th Street NW., Washington, DC 20502. Commenters are encouraged to submit... number. Farm Service Agency Title: Highly Erodible Land Conservation and Wetland Conservation (7 CFR Part... wetland and to reduce the rate at which soil is lost from highly erodible land. In order to ensure that...
Mapping Erosion and Salinity Risk Categories Using GIS and the Rangeland Hydrology Erosion Model
USDA-ARS?s Scientific Manuscript database
Up to fifteen percent of rangelands in the state of Utah in the United States are classified as being in severely eroding condition. Some of these degraded lands are located on saline, erodible soils of the Mancos Shale formation. This results in a disproportionate contribution of sediment, salinity...
Press-coated tablets for time-programmed release of drugs.
Conte, U; Maggi, L; Torre, M L; Giunchedi, P; La Manna, A
1993-10-01
A new dry-coated device for the release of drug after a programmable period of time is proposed. It is intended to be used mainly in the therapy of those diseases which depend on circadian rhythms. Some core formulations, characterized by different release rates and mechanisms (containing diltiazem hydrochloride or sodium diclofenac as model drugs), were coated by compression with different polymeric barrier layers (press-coated systems). The shell formulations tested contained either gellable or erodible polymers. The dissolution profiles of uncoated cores and press-coated devices were compared. The gellable and/or erodible characteristics (properties) of the barrier formulations were also examined by means of a penetrometer. The coatings prevent drug release from the core until the polymeric shell is completely eroded or swollen. This delay in release start is not influenced by the core composition and depends only on the shell formulation. Except for the time-lag, the release kinetics of the drug contained in the core are not significantly influenced by the presence of the erodible barrier, but can be widely modulated using a swellable polymeric shell.
Soil erosion and causative factors at Vandenberg Air Force Base, California
NASA Technical Reports Server (NTRS)
Butterworth, Joel B.
1988-01-01
Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.
Frijolito Watershed: Integrated investigations of a rapidly eroding pinyon-juniper hillslope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, B.P.; Pitlick, J.; Allen, C.D.
1995-12-31
The dramatic acceleration of erosion associated with the expansion of pinyon-juniper woodlands over the past 100 years has been widely recognized, but few process-based studies of this phenomenon have been undertaken. In an attempt to identify the underlying causes, and the factors that affect erosion processes, we have initiated an interdisciplinary study of a rapidly eroding pinyon-juniper woodland in northern New Mexico. Since July 1993, we have collected data on runoff, erosion, and weather conditions from a 1-ha catchment study area and have conducted surveys of topography, soils, and vegetation. Our preliminary results indicate that although runoff makes up lessmore » than 10% of the annual water budget, runoff events - which are frequent in the summer - are capable of moving large amounts of sediment. We estimate that between July 1993 and October 1994, between 25,000 and 50,000 kg of sediment has eroded and been transported from the catchment. The information gained from such studies is essential to our ability to formulate effective strategies for managing these rapidly eroding woodlands.« less
NASA Astrophysics Data System (ADS)
Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.
2018-01-01
Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.
Melancon, M.J.; Russell, J.S.; Estenik, J.F.; Fisher, S.W.; Dabrowska, H.
2000-01-01
Snapping turtles were collected by the Ohio State EPA from six locations in Ohio believed to have different contaminant concentrations. Previously we reported significant correlations among four hepatic microsomal dealkylases and CYP1A in these turtles. Herein we compare ethoxyresorufin-O-dealkylase (EROD) and methoxyROD (MROD) to tissue contaminant concentrations. For Fifty-four of these turtles, muscle, fat body and liver tissues were assessed for PCBs and 20 organochlorine analytes and hepatic microsomal dealkylases. Of the contaminants analyzed, only DDE, dieldrin, oxychlordane, trans-nonachlor and PCB 1260 were detected in >25% of each sample type. When EROD and MROD activities were compared to tissue values for these contaminants, they were found to correlate significantly only to DDE, dieldrin and trans-nonachlor. For an 18 female subset of these turtles, serum PCBs and organochlorine pesticides, egg, fat body and liver dioxins and furans, and hepatic microsomal dealkylases were assessed. EROD and MROD both correlated significantly to serum PCB 105, PCB 138 and DDE, and to egg total PCBs. EROD and MROD did not correlate significantly with liver dioxins and furans, but there were significant correlations between EROD and egg and fat body dioxins and furans, and MROD and fat body dioxins and furans. It is expected that CYP1A-type inducers such as certain PCBs, and halogenated dioxins and furans, but not organochlorine pesticides, would be inducers in turtles. Presumably the correlation of monooxygenase with organochlorine pesticides is fortuitous, and toxic equivalencies are being calculated using a number of systems.
Zapata-Pérez, O; Simá-Alvarez, R; Noreña-Barroso, E; Güemes, J; Gold-Bouchot, G; Ortega, A; Albores-Medina, A
2000-01-01
The effect of environmental pollutants present in sediments obtained from Bahía de Chetumal, a bay on the border between Mexico and Belize, was studied in nile tilapia (Oreochromis niloticus) intraperitoneally injected with sediment extracts from six different sites of the Bay. Sediment samples used for the study contained a variety of organic chemicals such as organochlorine pesticides, polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). Total cytochrome P-450 and EROD activity were measured in fish liver. Haematological and histological analyses were also carried out. Hepatic P-450 content in treated fish increased from 43 to 240%, and EROD activity from 85 to 160% compared to controls. Extracts from two sampling sites inhibited EROD activity. There were positive significant correlations between P-450 content and the levels of PCBs 44 and 128. EROD activity correlated to HCB, op'-DDE, pp'-DDE, pp'-DDD, mirex and PCB 18 concentrations. Blood examination showed cell degeneration and binucleated leukocytes with abnormal chromatin. Extract treatment also resulted in foci of hyperplasia on the basement of gill lamellae, hypertrophy and oedema in gills and liver necrosis. Control fish showed no abnormalities. The results demonstrate that sediments from Bahía of Chetumal have the potential to cause histopathological, haematological and biochemical alterations in fish. The administration of sediment extracts to fish may serve as a useful test to screen the toxicity of sediments from different areas.
Emilie Bigorgne,; Custer, Thomas W.; Dummer, Paul; Erickson, Richard A.; Karouna-Renier, Natalie K.; Schultz, Sandra; Custer, Christine M.; Thogmartin, Wayne E.; Cole W. Matson,
2015-01-01
The health of tree swallows, Tachycineta bicolor, on the Upper Mississippi River (UMR) was assessed in 2010 and 2011 using biomarkers at six sites downriver of Minneapolis/St. Paul, MN metropolitan area, a tributary into the UMR, and a nearby lake. Chromosomal damage was evaluated in nestling blood by measuring the coefficient of variation of DNA content (DNA CV) using flow cytometry. Cytochrome P450 1A activity in nestling liver was measured using the ethoxyresorufin-O-dealkylase (EROD) assay, and oxidative stress was estimated in nestling livers via determination of thiobarbituric acid reacting substances (TBARS), reduced glutathione (GSH), oxidized glutathione (GSSG), the ratio GSSG/GSH, total sulfhydryl, and protein bound sulfhydryl (PBSH). A multilevel regression model (DNA CV) and simple regressions (EROD and oxidative stress) were used to evaluate biomarker responses for each location. Chromosomal damage was significantly elevated at two sites on the UMR (Pigs Eye and Pool 2) relative to the Green Mountain Lake reference site, while the induction of EROD activity was only observed at Pigs Eye. No measures of oxidative stress differed among sites. Multivariate analysis confirmed an increased DNA CV at Pigs Eye and Pool 2, and elevated EROD activity at Pigs Eye. These results suggest that the health of tree swallows has been altered at the DNA level at Pigs Eye and Pool 2 sites, and at the physiological level at Pigs Eye site only.
Bozic, Josko; Markotic, Anita; Cikes-Culic, Vedrana; Novak, Anela; Borovac, Josip A; Vucemilovic, Hrvoje; Trgo, Gorana; Ticinovic Kurir, Tina
2018-02-01
Ganglioside GM3 is found in the plasma membrane, where its accumulation attenuates insulin receptor signaling. Considering the role of skeletal muscles in insulin-stimulated glucose uptake, the aim of the present study was to determine the expression of GM3 and its precursors in skeletal muscles of rat models of type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively). Diabetes was induced in male Sprague-Dawley rats by streptozotocin injection (55 mg/kg, i.p., for T1DM induction; 35 mg/kg, i.p., for T2DM induction), followed by feeding of rats with either a normal pellet diet (T1DM) or a high-fat diet (T2DM). Rats were killed 2 weeks after diabetes induction and samples of skeletal muscle were collected. Frozen quadriceps muscle sections were stained with a primary antibody against GM3 (Neu5Ac) and visualized using a secondary antibody coupled with Texas Red. The muscle content of ganglioside GM3 and its precursors was analyzed by high-performance thin-layer chromatography (HPTLC) followed by GM3 immunostaining. Muscle GM3 content was significantly higher in T2DM compared with control rats (P < 0.001). Furthermore, levels of the GM3 precursors ceramide, glucosylceramide, and lactosylceramide were significantly higher in T2DM compared with control rats (P < 0.05), whereas ceramide content was significantly lower in T1DM rats (P < 0.05). The intensity of the GM3 band on HPTLC was significantly higher in T2DM rats (P < 0.001) and significantly lower in T1DM rats (P < 0.05) compared with control. The expression patterns of GM3 ganglioside and its precursors in diabetic rats suggest that the role of glycosphingolipid metabolism may differ between T2DM and T1DM. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Wang, Yanli; Liu, Weimin; Tang, Longteng; Oscar, Breland; Han, Fangyuan; Fang, Chong
2013-07-25
To understand chemical reactivity of molecules in condensed phase in real time, a structural dynamics technique capable of monitoring molecular conformational motions on their intrinsic time scales, typically on femtoseconds to picoseconds, is needed. We have studied a strong photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS, pK(a)* ≈ 0) in pure methanol and observed that excited-state proton transfer (ESPT) is absent, in sharp contrast with our previous work on HPTS in aqueous solutions wherein ESPT prevails following photoexcitation. Two transient vibrational marker bands at ~1477 (1454) and 1532 (1528) cm(-1) appear in CH3OH (CD3OD), respectively, rising within the instrument response time of ~140 fs and decaying with 390-470 (490-1400) fs and ~200 ps time constants in CH3OH (CD3OD). We attribute the mode onset to small-scale coherent proton motion along the pre-existing H-bonding chain between HPTS and methanol, and the two decay stages to the low-frequency skeletal motion-modulated Franck-Condon relaxation within ~1 ps and subsequent rotational diffusion of H-bonding partners in solution before fluorescence. The early time kinetic isotope effect (KIE) of ~3 upon methanol deuteration argues active proton motions particularly within the first few picoseconds when coherent skeletal motions are underdamped. Pronounced quantum beats are observed for high-frequency modes consisting of strong phenolic COH rocking (1532 cm(-1)) or H-out-of-plane wagging motions (952 cm(-1)) due to anharmonic coupling to coherent low-frequency modes impulsively excited at ca. 96, 120, and 168 cm(-1). The vivid illustration of atomic motions of HPTS in varying H-bonding geometry with neighboring methanol molecules unravels the multidimensional energy relaxation pathways immediately following photoexcitation, and provides compelling evidence that, in lieu of ESPT, the photoacidity of HPTS promptly activates characteristic low-frequency skeletal motions to search phase space mainly concerning the phenolic end and to efficiently dissipate vibrational energy via skeletal deformation and proton shuttling motions within the intermediate, relatively confined excited-state HPTS-methanol complex on a solvent-dependent dynamic potential energy surface.
Predicting risk of rill initiation in a sub-catchment of Lake Balaton, Hungary
NASA Astrophysics Data System (ADS)
Hausner, C.; Sisák, I.
2009-04-01
Rill erosion is an accelerated form of soil degradation. It removes much more soil and nutrients from the agricultural land than sheet erosion. Soils in the southern sub-watershed of Lake Balaton are especially prone to rill erosion and they contribute to siltation of ditches, to muddy floods and to eutrofication of the lake. The parent material in this region is mainly (sandy) loess and the soils are already moderately or strongly eroded thus, the low tolerance of loess against erosion determines erodibility. Identification of soils with high risk of rill erosion is crucial to plan mitigation measures. Soil erodibility has been investigated in this study in the catchment of Tetves stream. The USLE soil erodibility factor and soil slaking are widely accepted indicators for soil erosion. Both of them are published for all soil texture classes in handbooks of soil mapping. We have found that erodibility derived from our physical model has a close linear correlation with the product of the USLE soil erodibility factor and soil slaking grade thus, USLE could be directly used to assess parameters for physical based models. Rill erosion is highly probable if the product of KUSLE X slaking grade is above 2. Digital maps were produced to delineate soils with high potential for rill erosion. The basic data for the soil properties were drawn from the 1:10,000 soil map. Soil texture classes were used to assign KUSLE and slaking grade to the soil units. Beyond soil properties, other factors also influence rill formation: slope, surface cover, rainfall intensity. However, identifying soil properties, which make soils prone to rill erosion, is an important initial step for the reduction of diffuse agricultural loads to Lake Balaton. It might be the objective of River Basin Management Plans in the Water Framework Directive to prevent rill erosion and our study provides scientific evidence for targeting this policy.
NASA Astrophysics Data System (ADS)
Torresani, Loris; Prosdocimi, Massimo; Masin, Roberta; Penasa, Mauro; Tarolli, Paolo
2017-04-01
Grassland and pasturelands cover a vast portion of the Earth surface and are vital for biodiversity richness, environmental protection and feed resources for livestock. Overgrazing is considered one of the major causes of soil degradation worldwide, mainly in pasturelands grazed by domestic animals. Therefore, an in-depth investigation to better quantify the effects of overgrazing in terms of soil loss is needed. At this regard, this work aims to estimate the volume of eroded materials caused by mismanagement of grazing areas in the whole Autonomous Province of Trento (Northern Italy). To achieve this goal, the first step dealt with the analysis of the entire provincial area by means of freely available aerial images, which allowed the identification and accurate mapping of every eroded area caused by grazing animals. The terrestrial digital photogrammetric technique, namely Structure from Motion (SfM), was then applied to obtain high-resolution Digital Surface Models (DSMs) of two representative eroded areas. By having the pre-event surface conditions, DSMs of difference, namely DoDs, was computed to estimate the erosion volume and the average depth of erosion for both areas. The average depths obtained from the DoDs were compared and validated by measures taken in the field. A large amount of depth measures from different sites were then collected to obtain a reference value for the whole province. This value was used as reference depth for calculating the eroded volume in the whole province. In the final stage, the Connectivity Index (CI) was adopted to analyse the existing connection between the eroded areas and the channel network. This work highlighted that SfM can be a solid low-cost technique for the low-cost and fast quantification of eroded soil due to grazing. It can also be used as a strategic instrument for improving the grazing management system at large scales, with the goal of reducing the risk of pastureland degradation.
NASA Astrophysics Data System (ADS)
Asghari Tabrizi, A.; LaRocque, L. A.; Chaudhry, M.; Imran, J.
2013-12-01
Several flood disasters occur every year all over the world, mostly due to levee and dam failure which result in human fatalities as well as devastating economic damages. To model and predict earthen embankment failures for the preparation of emergency action plans and risk assessments, the soil erodibility by flowing water is an essential parameter. The determination of erodibility becomes even more complicated for cohesive soils because of the large number of parameters controlling their erosion behavior (e.g. clay content, plasticity, compaction effort, compaction water content) and the difficulty of estimating these parameters. In this study the effect of the compaction energy and compaction water content on the erodibility of a sandy loam soil was assessed. Soil samples were prepared in a standard diameter compaction mold, 101.6 mm, for three levels of compaction effort and water content (i.e. low, medium, and high) with two replications for each case (18 tests total) and examined using the jet erosion test (JET). Observations from qualitative and statistical analyses of the data are: 1) a wide range of erodibility, from very erodible to very resistant, was produced by changes in the compaction characteristics; 2) for a given compaction energy, the erosion resistance based on the detachment rate coefficient kd tends to become minimum near the optimum compaction water content. On the dry side of optimum compaction water content, kd decreases with steep gradients by increasing the water content, while it increases with a flatter gradient on the wet side; 3) At a given water content, the soil erosion resistance increases with compaction efforts; 4) compaction water content influences soil erosibility more than compaction energy, especially on the dry side of the optimum compaction water content; and 5) for a given compaction effort, the critical shear stress increases with water content up to an optimum water content and then it decreases which is in consistent with the kd trends.
NASA Astrophysics Data System (ADS)
Shrestha Vaidya, G.; Shrestha, K.; Wallander, H.
2009-04-01
Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces erosion. Trees and shrubs on the lower hillsides in Nepal form symbiosis with arbuscular mycorrhizal (AM) fungi and these fungi are important for the uptake of mineral nutrients from the soil. In addition, the mycelia formed by these fungi have an important function in stabilizing the soil. The success of plantations of these eroded slopes is therefore highly dependent on the extent of mycorrhizal colonization of the plants. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant and nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter was placed in mesh bags which were buried around the trees of Bauhinia purpurea and Leucaena diversifolia .This experiment were done in two seasons ( (the wet and the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the six month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the wet and dry seasons. More microbial biomass was produced during wet season than during dry season. Further more, organic matter addition enhanced the production of AM fungal and bacterial biomass during both seasons. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival, growth and nutrient composition in the soil in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded sites.
Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig
2008-01-01
Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the lab with Sedflume, an apparatus for measuring sediment erosion-parameters. In this report, we present results of the characterization of fine-grained sediment erodibility within Capitol Lake. The erodibility data were incorporated into the previously developed hydrodynamic and sediment transport model. Model simulations using the measured erodibility parameters were conducted to provide more robust estimates of the overall magnitudes and spatial patterns of sediment transport resulting from restoration of the Deschutes Estuary.
Historic bluff retreat and stabilization at Flag Harbor, Chesapeake Bay, Maryland
Clark, Inga; Larsen, Curtis E.; McRae, Michele
2002-01-01
Studies of bluff erosion and slope stability along the western shore of Chesapeake Bay suggest relative evolution from steep, eroding coastal bluffs to stable slopes at angles of repose ca. 35 degrees over decades. Because of the dating methods in those studies, it was impossible to precisely define rates of change. The present study provides historic age control. A pair of small harbor structures were constructed in the early 1950's at Chesapeake Beach, MD to maintain a dredged channel to a small marina occupying a ravine in the Calvert Cliffs. Prior to construction, this section of shoreline was comprised of eroding steep bluffs cut into Miocene-age sediments. Downdrift erosion is now apparent south of the structures as is updrift deposition behind the northern jetty. Since construction the updrift sand body has prograded northward and progressively deposited protective beaches along the toes of the bluffs. Former eroding bluffs nearest the harbor are now stable, vegetated slopes at angles near 35 degrees. Slope angles widen to the north and to the northern limit of the sand body. Beyond this are eroding bluffs standing at angles of 70-80 degrees. The relative time required for eroding bluffs to reach stability is estimated by interpolating the distance and time for the sand body to prograde northward since harbor construction. We measured slope angles at intervals northward from the updrift structure for a distance of 2000 feet. A least squares regression of slope angle vs distance showed progressive decrease in angle from north to south. Actively eroding 70-80 degree bluffs gave way to vegetated, but slumping slopes, and finally to stable 35-degree slopes at the harbor. A relationship between time and distance along the shore allowed us to estimate a stabilization time for this location of 35-40 years. The shortness of this time scale allows us to suggest that attempts to artificially stabilize eroding bluffs along this coast is not a simple task of protecting the toes of slopes from wave action. Once shoreline retreat ends, sloughing of sediment from bluff faces gives way to longer-term landslide processes. The bluff top recedes until a stable 35-degree slope is attained. Thus, simple shoreline protection methods may not preserve property at the bluff edge.
Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin
NASA Astrophysics Data System (ADS)
von Huene, R.; Vannucchi, P.; Ranero, C. R.
2010-12-01
A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and perhaps geologically than the Nankai margin. The developing Central American countries do not have the resources to contribute to IODP but this should not deter acquiring the scientific insights proposed in CRISP considering the broader scientific benefits. Such benefits include the first sampling and instrumentation of an actively eroding plate interface and drilling near or into an earthquake asperity. Drilling an eroding margin should significantly advance understanding of subduction zone fault mechanisms and help improve assessment of future hazardous earthquakes and tsunamis.
NASA Astrophysics Data System (ADS)
Petit, J.; Chemenda, A. I.; Jorand, C.
2011-12-01
Terminology on fracture and discontinuities in geological objects mainly relies on distinguishing between tabular and sharp forms of deformation localization/failure structures (Aydin et al, JSG 2006; Shultz and Fossen, AAPG, 2009). On this basis joints (considered as mode I fractures) and dilation bands (very rarely observed) are distinguished among extension discontinuities. The former propagate with the separation of the fracture walls due to strong stress concentration at the fracture tips. The plumose features or hackles typical of joints (these terms cover a wide variety of diverging fractographic features) are believed to result from the fracture front breakdown due to the loading mode change (the origin of this change remains unclear). This view is called into question by recent experimental results of extension tests conducted on a synthetic physical rock analogue (granular, frictional, cohesive and dilatant) material (GRAM1) and by field observations of embryonic (not yet open) joints in highly jointed dolomicrite Chemenda et al., JGR, 2011). The initial porosity and grain size of both materials are very different, but at SEM scale, both experimental and natural unopened discontinuities reveal a comparable dilatancy (dilation) band structure with a porosity increase over a width of several grains. This suggests that the distinction between tabular and sharp is a matter of observation scale. Both axisymetric and poly-axial extension tests show that dilatancy bands form at elevated mean stress and have plumose morphology. Mode I cracking occurs only at very low mean stres and the forming fractures do not bear plumose features. Thus the absence of plumose structures can be considered as the signature of mode I fracturing. Consequently, we propose that non- plumose bearing natural joints (provided their fractography is not eroded) could originate as mode I fractures and call them "mode I joints". We call the joints formed as closed dilatancy bands propagating at relatively high pressure (depth) conditions and generating the plumose fractography "dilatancy joints". These joints obtained in poly-axial experiments can be very tight as is also often observed in nature. Joint spacing was shown to depend on the loading conditions but not on the sample thickness, which is another argument against the mode I mechanism. There are two main reasons for which the dilatancy joints were not detected previously: (1) the dilatancy band tends to open during exhumation (it is a weakness zone) leading to the separation of the two walls with destruction of the dilatancy band texture and mineral infilling; (2) if no opening occurs, as soon as the band of increased permeability is formed, diagenetic/epigenetic processes can rapidly cancel the initial structure, the trace of the band appearing at great magnification as a tiny mineralized vein. Such transformation must be very frequent in sedimentary rocks, but it can be absent when the mineral solubility is limited, as for the dolomicrite example presented.
Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart
2016-01-01
Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...
Acid Thunder: Acid Rain and Ancient Mesoamerica
ERIC Educational Resources Information Center
Kahl, Jonathan D. W.; Berg, Craig A.
2006-01-01
Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…
Initial ecosystem restoration in the highly erodible Kisatchie Sandstone Hills
D. Andrew Scott
2014-01-01
Restoration of the unique and diverse habitats of the Kisatchie Sandstone Hills requires the re-introduction of fire to reduce fuel accumulation and promote herbaceous vegetation, but some soils in the area are extremely erodible, and past fires have resulted in high erosion rates. Overstory and understory vegetation, downed woody fuels, and other stand attributes were...
Seasonal change of WEPP erodibility parameters on a fallow plot
D. K. McCool; S. Dun; J. Q. Wu; W. J. Elliot
2011-01-01
In cold regions, frozen soil has a significant influence on runoff and water erosion. Frozen soil can reduce infiltration capacity, and the freeze-thaw processes degrade soil cohesive strength and increase soil erodibility. In the Inland Pacific Northwest of the USA, major erosion events typically occur during winter from low-intensity rain, snowmelt, or both as frozen...
USDA-ARS?s Scientific Manuscript database
An estimated 100 Mt of dust is eroded by wind from the Australian land surface each year. Wind erosion may be widespread across the arid and semi-arid rangelands, with impacts on soil nutrients, carbon and ecosystem services, human health, and climate. The susceptibility of landscapes to wind erosio...
Novotová, Marta; Tarabová, Bohumila; Tylková, Lucia; Ventura-Clapier, Renée; Zahradník, Ivan
2016-10-01
Creatine kinase content, isoform distribution, and participation in energy transfer are muscle type specific. We analysed ultrastructural changes in slow muscle fibres of soleus due to invalidation of creatine kinase (CK) to reveal a difference in the remodelling strategy in comparison with fast muscle fibres of gastrocnemius published previously. We have employed the stereological method of vertical sections and electron microscopy of soleus muscles of wild type (WT) and CK-/- mice. The mitochondrial volume density was 1.4× higher but that of sarcoplasmic reticulum (SR) was almost 5× lower in slow CK-/- muscles fibres than in WT fibres. The volume density of terminal cisterns and of t-tubules was also lower in CK-/- than in WT fibres. The analysis of organelle environment revealed increased neighbourhood of mitochondria and A-bands that resulted from the decreased volume density of SR, from relocation of mitochondria along myofibrils, and from intrusion of mitochondria to myofibrils. These processes direct ATP supply closer to the contractile machinery. The decreased interaction between mitochondria and SR suggests reduced dependence of calcium uptake on oxidative ATP production. In conclusion, the architecture of skeletal muscle cells is under control of a cellular program that optimizes energy utilization specifically for a given muscle type.
Sanmartín, Esther; Arboleya, Juan Carlos; Iloro, Ibon; Escuredo, Kepa; Elortza, Felix; Moreno, F Javier
2012-09-15
Proteomic approaches have been used to identify the main proteins present in processing by-products generated by the canning tuna-industry, as well as in by-products derived from filleting of skeletal red muscle of fresh tuna. Following fractionation by using an ammonium sulphate precipitation method, three proteins (tropomyosin, haemoglobin and the stress-shock protein ubiquitin) were identified in the highly heterogeneous and heat-treated material discarded by the canning-industry. Additionally, this fractionation method was successful to obtain tropomyosin of high purity from the heterogeneous starting material. By-products from skeletal red muscle of fresh tuna were efficiently fractionated to sarcoplasmic and myofibrillar fractions, prior to the identification based mainly on the combined searching of the peptide mass fingerprint (MALDI-TOF) and peptide fragment fingerprinting (MALDI LIFT-TOF/TOF) spectra of fifteen bands separated by 1D SDS-PAGE. Thus, the sarcoplasmic fraction contained myoglobin and several enzymes that are essential for efficient energy production, whereas the myofibrillar fraction had important contractile proteins, such as actin, tropomyosin, myosin or an isoform of the enzyme creatine kinase. Application of proteomic technologies has revealed new knowledge on the composition of important by-products from tuna species, enabling a better evaluation of their potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sierra, Eva; Fernández, Antonio; Espinosa de los Monteros, Antonio; Arbelo, Manuel; Díaz-Delgado, Josué; Andrada, Marisa; Herráez, Pedro
2014-01-01
Ship strikes are a major issue for the conservation of may cetacean species. Certain gross and microscopic criteria have been previously reported for establishing a diagnosis of death due to ship strikes in these animals. However, some ship-strike injuries may be masked by advanced carcass decomposition and may be undetectable due to restricted access to the animals. In this report we describe histopathological muscular findings in 13 cetaceans with sharp trauma from ship strikes as the cause of death. Skeletal muscle samples were taken from the incision site and from the main locomotor muscle, the longissimus dorsi, in areas not directly affected by the sharp injury. The microscopic findings in tissues from both sites mainly consisted of haemorrhages; oedema; flocculent, granular or/and hyalinised segmentary degeneration; contraction band necrosis; and discoid degeneration or fragmentation of myofibres. We propose that skeletal muscle histopathology provides evidence of ante-mortem injuries even if the sample was taken elsewhere in the carcass and not only within or adjacent to the sharp trauma site and despite the advanced decomposition of some of the carcasses. This method helps to establish the diagnosis of ship strike as the cause of death. PMID:24551162
Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo
2008-01-15
The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped virusesmore » indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.« less
Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.
Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H
2015-06-03
Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.
NASA Astrophysics Data System (ADS)
Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.
2005-12-01
The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.
Outbursts and Gradualism: Megaflood erosion consistent with long-term landscape evolution
NASA Astrophysics Data System (ADS)
Garcia-Castellanos, Daniel; O'Connor, Jim
2017-04-01
Existing models for the development of topography and relief over geological timescales are fundamentally based on semi-empirical laws of the erosion and sediment transport performed by rivers. The prediction power of these laws is hindered by limitations in measuring river incision and by the scant knowledge of the past hydrological conditions, specifically average water flow and its variability. Consequently, models adopt 'gradualistic' (time-averaged) assumptions and the erodability values derived from modelling long-term erosion rates in rivers remain ambiguously tied not only to the lithology and nature of the bedrock but also to uncertainties in the quantification of past climate. This prevents the use of those erodabilities to predict the landscape evolution in different scenarios. Here, we apply the fundamentals of river erosion models to outburst floods triggered by overtopping lakes, for which the hydrograph is intrinsically known from the geomorphological record or from direct measures. We obtain the outlet erodability from the peak water discharge and lake area observed in 86 floods that span over 16 orders of magnitude in water volume. The obtained erodability-lithology correlation is consistent with that seen in 22 previous long-term river incision quantifications, showing that outburst floods can be used to estimate erodability values that remain valid for a wide range of hydrological regimes and for erosion timescales spanning from hours-long outburst floods to million-year-scale landscape evolution. The results constrain the conditions leading to the runaway erosion responsible for outburst floods triggered by overtopping lakes. They also call for the explicit incorporation of climate episodicity to the landscape evolution models. [Funded by CGL2014-59516].
Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Kocurek, Gary
2014-09-01
Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, the simulated vertical mass flux of dust differs greatly among the existing dust models. While most of the models utilize an erodibility factor to characterize dust sources, this factor is assumed to be static, without sufficient characterization of the highly heterogeneous and dynamic nature of dust source regions. We present a high-resolution land cover map of the Middle East and North Africa (MENA) in which the terrain is classified by visually examining satellite images obtained from Google Earth Professional and Environmental Systems Research Institute Basemap. We show that the correlation between surface wind speed and Moderate Resolution Imaging Spectroradiometer deep blue aerosol optical depth (AOD) can be used as a proxy for erodibility, which satisfactorily represents the spatiotemporal distribution of soil-derived dust sources. This method also identifies agricultural dust sources and eliminates the satellite-observed dust component that arises from long-range transport, pollution, and biomass burning. The erodible land cover of the MENA region is grouped into nine categories: (1) bedrock: with sediment, (2) sand deposit, (3) sand deposit: on bedrock, (4) sand deposit: stabilized, (5) agricultural and urban area, (6) fluvial system, (7) stony surface, (8) playa/sabkha, and (9) savanna/grassland. Our results indicate that erodibility is linked to the land cover type and has regional variation. An improved land cover map, which explicitly accounts for sediment supply, availability, and transport capacity, may be necessary to represent the highly dynamic nature of dust sources in climate models.
Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.
Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas
2013-04-01
This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.
Skeletal maturity and body size of teenage Belgian track and field athletes.
Malina, R M; Beunen, G; Wellens, R; Claessens, A
1986-01-01
Attained skeletal maturity (TW2 RUS method), skeletal maturity relative to chronological age, and body size of national-level Belgian track and field athletes 15 to 18 years of age were considered. Among the 47 male athletes, 29 (62%) were skeletally mature, while 15 (52%) of the 29 female athletes were skeletally mature. There appeared to be a predominance of skeletally mature individuals among male sprinters and jumpers, while a majority of female sprinters were not skeletally mature. Both skeletally mature and immature individuals were rather evenly represented in the other track and field categories, with the exception of female throwers, who were skeletally mature. Mean statures and weights of skeletally mature and immature 16-, 17-and 18-year-old male athletes did not differ significantly, though the skeletally mature tended to be heavier. In contrast, the skeletally mature female athletes, on the average, were taller and heavier than the skeletally immature, although the differences among the small groups were not statistically significant.
Tomblyn, Travis; Rogers, Michael; Andrews, Lee; Martin, Chris; Tremont, Timothy; Gunel, Erdogan; Ngan, Peter
2016-11-01
The Herbst appliance has been used in the treatment of Class II malocclusions with deficient mandibles. Various protocols, including different durations of the orthopedic treatment phase and stepwise advancement of the mandible, have been advocated for increasing the orthopedic effects. The objective of this study was to investigate the skeletal and dental changes in patients treated with a reinforced banded Herbst appliance for an extended duration and fixed appliance therapy. The study group consisted of 30 patients (16 boys, 14 girls; mean age, 12.3 ± 2.5 years) with Class II Division 1 malocclusions who were successfully treated with the new Herbst protocol followed by fixed appliances. Lateral cephalometric radiographs were taken before treatment, at the completion of Herbst treatment, and after removal of fixed appliances. The average treatment times were 1.5 ± 0.7 years for the Herbst treatment and 1.8 ± 0.5 years for the fixed appliances. A control Class II sample from the Bolton-Brush study was used to subtract growth from treatment changes to determine the appliance effect. Data were analyzed using analysis of variance and the Tukey-Kramer test. After the Herbst treatment, the incisal relationships of all subjects had been overcorrected to end-to-end relationships. Overjet was reduced by 7.2 mm after subtracting changes from growth. The skeletal contribution was 2.5 mm (35%), and the dental contribution was 4.7 mm (65%). The molar relationship was overcorrected to a more Class I relationship by 7.5 mm. The Wits appraisal was improved by 4.2 mm. Vertically, overbite was decreased by 3.3 mm. The maxillary and mandibular molars were extruded by 1 mm. The occlusal plane rotated clockwise by 5° with little change in the mandibular plane angle. After the treatment with fixed appliances, the overjet correction was maintained at 7.6 mm. The skeletal contribution was 2.9 mm (38%), and the dental contribution was 4.7 mm (62%). The molar relationship was corrected to a Class I relationship by 5.9 mm. The Wits appraisal was improved by 3.2 mm. Vertically, overbite was decreased by 4.2 mm. The maxillary and mandibular molars were extruded by 0.3 and 0.8 mm, respectively. The occlusal plane rotated clockwise by 1.2° with little change in the mandibular plane angle. Doubling the usual orthopedic treatment time with the reinforced Herbst appliance followed by fixed appliance therapy was effective in correcting Class II Division 1 malocclusions with excess overjet and overbite. In this sample of successfully treated patients, most changes after Herbst and fixed appliance therapy were dentoalveolar (62%). However, the skeletal changes attained in the orthopedic phase of treatment were maintained after fixed appliance therapy. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Waliwitiya, Ranil; Nicholson, Russell A; Kennedy, Christopher J; Lowenberger, Carl A
2012-05-01
The biochemical mechanisms underlying the increased toxicity of several plant essential oils (thymol, eugenol, pulegone, terpineol, and citronellal) against fourth instar of Aedes aegypti L. when exposed simultaneously with piperonyl butoxide (PBO) were examined. Whole body biotransformational enzyme activities including cytochrome P450-mediated oxidation (ethoxyresorufin O-dethylase [EROD]), glutathione S-transferase (GST), and beta-esterase activity were measured in control, essential oil-exposed only (single chemical), and essential oil + PBO (10 mg/liter) exposed larvae. At high concentrations, thymol, eugenol, pulegone, and citronellal alone reduced EROD activity by 5-25% 16 h postexposure. Terpineol at 10 mg/liter increased EROD activity by 5 +/- 1.8% over controls. The essential oils alone reduced GST activity by 3-20% but PBO exposure alone did not significantly affect the activity of any of the measured enzymes. All essential oils in combination with PBO reduced EROD activity by 58-76% and reduced GST activity by 3-85% at 16 h postexposure. This study indicates a synergistic interaction between essential oils and PBO in inhibiting the cytochrome P450 and GST detoxification enzymes in Ae. aegypti.
How to explain variations in sea cliff erosion rate?
NASA Astrophysics Data System (ADS)
Prémaillon, Melody; Regard, Vincent; Dewez, Thomas
2017-04-01
Every rocky coast of the world is eroding at different rate (cliff retreat rates). Erosion is caused by a complex interaction of multiple sea weather factors. While numerous local studies exist and explain erosion processes on specific sites, global studies lack. We started to compile many of those local studies and analyse their results with a global point of view in order to quantify the various parameters influencing erosion rates. In other words: is erosion more important in energetic seas? Are chalk cliff eroding faster in rainy environment? etc. In order to do this, we built a database based on literature and national erosion databases. It now contains 80 publications which represents 2500 cliffs studied and more than 3500 erosion rate estimates. A statistical analysis was conducted on this database. On a first approximation, cliff lithology is the only clear signal explaining erosion rate variation: hard lithologies are eroding at 1cm/y or less, whereas unconsolidated lithologies commonly erode faster than 10cm/y. No clear statistical relation were found between erosion rate and external parameters such as sea energy (swell, tide) or weather condition, even on cliff with similar lithology.
Photorefractive keratectomy at 193 nm using an erodible mask
NASA Astrophysics Data System (ADS)
Gordon, Michael; Brint, Stephen F.; Durrie, Daniel S.; Seiler, Theo; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.
1992-08-01
Clinical experience with more than ten thousand sighted eyes has demonstrated great promise for correcting myopia with photorefractive keratectomy (PRK). Previously reported techniques have incorporated computer-controlled irises, diaphragms, and apertures to regulate the desired distribution of 193 nm radiation onto the eye. This paper reports on an entirely new approach for performing PRK which utilizes an erodible mask to control the shape transfer process. Compared to the more traditional techniques, the erodible mask offers promise of correcting a broad range of refractive errors. In this paper the erodible mask and associated hardware are described in detail. We describe the shape transfer experiments used to predict the functional relationship between the desired refractive correction and the mask shape. We report on early clinical results from five patients with myopic astigmatism. We conclude that the early shape transfer experiments overestimated the spherical component of the correction by 1.25 diopters and underestimated the cylindrical component by approximately 0.85 diopters. The data suggest there may be biological effects which evoke different healing responses when myopic PRK corrections are performed with and without astigmatism. Clinical trials are proceeding with the mask shapes adjusted for these observations.
Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility
NASA Astrophysics Data System (ADS)
Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila
2018-02-01
The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.
Wind erosion of waste impoundments in arid climates and mitigation of dust pollution.
Blight, G E
2008-12-01
Wind can erode and disperse fine-grained material from an impoundment of mining, industrial or municipal waste that stands above the level of its surroundings. Such dust dispersion can be a serious nuisance as well as a health hazard to inhabitants and animals in nearby settlements. It can also degrade crops, making them less marketable, and pollute soil, surface water and ground water. Wind can seasonally erode waste impoundments in all types of climate, but the erosion intensifies and persists for more of each year as regional aridity increases. As clouds of dust are often observed billowing across the top surfaces of waste impoundments in dry windy weather, there is a common misconception that dust arises from erosion of the top surface of an impoundment, resulting in much effort and money being misspent on top treatments when in fact the sloped sides of the impoundments are the true source of blown dust. This paper offers a brief review of general waste impoundment wind erosion issues and then focuses in more detail on the mechanics of how wind erodes surfaces of waste impoundments. Recommendations are offered for mitigating the effects of wind-eroded dust.
Deep-water antipatharians: Proxies of environmental change
Williams, B.; Risk, Michael J.; Ross, Steve W.; Sulak, K.J.
2006-01-01
Deep-water (307-697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from -16.4??? to -15.7???; oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7??? to 8.6???. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens. ?? 2006 Geological Society of America.
NASA Technical Reports Server (NTRS)
Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal during reambulation. Thus, under the conditions of this study, the human skeleton appears to respond to unloading by a rapid and sustained increase in bone resorption and a more subtle decrease in bone formation.
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
New Constraints on the Slate Islands Impact Structure, Ontario, Canada
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.; Dressler, Burkhard O.; Herrick, Robert R.; Schnieders, Bernie; Scott, John
1996-01-01
The Slate Islands in northern Lake Superior represent the eroded remains of a complex impact crater, originally approximately 32 km in diameter. New field studies there reveal allogenic crater fill deposits along the eastern and northern portions of the islands indicating that this 500-800 Ma impact structure is not as heavily eroded as previously thought. Near the crater center, on the western side or Patterson Island, massive blocks of target rocks, enclosed within a matrix of fine-grained polymict breccia, record the extensive deformation associated with the central uplift. Shatter cones are a common structural feature on the islands and range from less than 3 cm to over 10 m in length. Although shatter cones are powerful tools for recognizing and analyzing eroded impact craters, their origin remains poorly constrained.
Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi
2014-04-01
Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, L A; Andrews, A H; Cailliet, G M
The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicitymore » with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.« less
Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition
NASA Astrophysics Data System (ADS)
Liu, Shuguang; Bliss, Norman; Sundquist, Eric; Huntington, Thomas G.
2003-06-01
Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystems and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1), intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.
Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition
Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.
2003-01-01
Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.
Natural versus anthropogenic subsidence of Venice: investigation of the present occurrence by PSI
NASA Astrophysics Data System (ADS)
Tosi, Luigi; Strozzi, Tazio; Teatini, Pietro
2014-05-01
We detected land displacements of Venice by Persistent Scatterer Interferometry (PSI) using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. PSI provides the cumulative land displacements (natural plus anthropogenic) of the investigated area independently of the radar band. The natural subsidence rate depends on the reference period and, due to the present elevation of Venice with respect to the sea level, it is much more interesting for the city to evaluate the natural displacement over the last few decades, i.e. the present natural land subsidence, than that averaged over geological periods. Concerning anthropogenic land subsidence the contribution due to activities characterized by large scale and long term effects, e.g., that caused by groundwater withdrawals, ended a few decades ago. Today, the anthropogenic component of the land subsidence is only due to local, short-time interventions such as restoration works and inherent deformations of historical structures. By reason of the larger observation period, the C-band sensors were used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution, short revisiting time X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. The statistical analysis of the displacement distributions measured by PSI points out that the average rates, i.e. the natural component of the subsidence, are almost equal with the C-band and X-band satellites. Conversely, the standard deviation with X-band acquisitions (1.6 mm/yr) is characterized by a value significantly larger than that detected with C-band images (0.7 mm/yr). The larger X-band variability superposes to a background velocity similar to that given by ERS/ENVISAT. It is reasonable to assume that the difference between the movements provided by ERS/ENVISAT and TerraSAR-X/COSMO-SkyMed is likely representative of the effects caused by anthropogenic activities. This hypothesis is supported by a proper processing of the two C and X-band measurements. The two datasets are interpolated by the Kriging method on the same regular grid covering the whole city. The grid spacing, fixed at 50 m, has been appropriately tuned to simultaneously i) filter out the outlier values provided by the C-band analysis; and ii) keep the heterogeneity of the displacements detected by the X-band investigation. Finally, the quantification of man-induced displacements is obtained by removing the C-band interpolated map from the X-band interpolated solution. The results show that a certain variability characterizes the 1992-2010 natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The present anthropogenic displacements occur at very local scale and are heterogeneously distributed with values ranging from -10 and 2 mm/yr in 2008. They are caused by conservation and reconstruction processes to preserve the building heritage together with urban maintenance activities such as restoring the embankment walls to guarantee the stability of the canal edges. Moreover, because the sinking zones are generally concentrated along the main channels bounding and crossing the city, waves induced by the intensive boat and ship traffic likely contribute by waking and eroding the fragile masonry canal banks and the building foundations. Geotechnical applications such as micropiles, anchors, jet grouting aimed at improving the subsoil characteristics are likely responsible for the greater stability locally observed in some portions of the city. References L. Tosi, P. Teatini, and T. Strozzi, Natural versus anthropogenic subsidence of Venice, Nature Scientific Reports, 3:2710, doi:10.1038/srep02710, 2013.
Space Radar Image of Taal Volcano, Philippines
NASA Technical Reports Server (NTRS)
1994-01-01
This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 'Decade Volcanoes' that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
Mexico Burning: Does America Stand Idly By?
2014-06-01
provides case study of US involvement in reestablishing rule of law in Colombia. It details how the narcotics trade funded the Colombian communist...revolutionary group known as the FARC and how expanding violence eroded the Colombian government’s legitimacy and control of territory. He...the Colombian communist revolutionary group known as the FARC and how expanding violence eroded the Colombian government’s legitimacy and control of
Understory Responses to Fertilization to Eroded Kisatchie Soil in Louisiana
Ronald E. Thill; John C. Bellemore
1988-01-01
Responses of native vegetation growing on highly eroded Kisatchie soil to a May 1982 application of 672 kg/ha of 16-30-l 3 fertilizer were monitored on two sites through 1985. Herbage increased from 1,133 kg/ha on control plots to 4,956 kg/ha on fertilized plots by August of the first year. Litter accumulations on treated plots provided excellent soil protection...
Assessing the effect of biochar on erosion by using a high precision rainfall simulator
NASA Astrophysics Data System (ADS)
Goldman, Nina; Mayer, Marius; Fister, Wolfgang
2017-04-01
Numerus studies have explored the effect of biochar as a soil amendment and its beneficial effects on different soil properties. Adding biochar to soils might also act as a long-term carbon sink, which would mitigate the anthropogenic climate change. However, there are limitations regarding the current process knowledge on the effects of biochar on soil erosion and its erodibility. First test results point towards lower erosion rates of the substrates, which were enriched with biochar. In contrast, biochar concurrently shows relatively high erosion rates due to its lower bulk density, which makes it more susceptible to erosion. However, the number of conducted experiments does not yet allow quantitative statements. The overall objectives of this study are to gain insight into the process knowledge of erodibility of soils with incorporated biochar, and to develop new techniques for their observation. A drip type rainfall simulator is used on a microscale flume (0.2m2) to be able to control and monitor the thin surface flows and rainfall characteristics precisely. Two different types of biochars (high and low temperature pyrolysis) are used in combination with different substrates ranging from pure sand to naturally developed soils. Depending on the particle size and density of the biochar, different erosion rates can be observed. Particle analysis of the eroded material produces insights into which particle sizes and forms are preferably eroded. Since differentiation between eroded soil organic matter and biochar is very difficult without the use of heavy acids, two new methods are being developed and tested to monitor erosion rates of biochar. Comparing the original substrate with the eroded sediment by means of photogrammetry and isotope analysis, it should be possible to infer how much biochar was discharged and to assess the actual particle movement on the erosion flume. The results of this study could provide guidelines for the types of biochar that should be incorporated into fields as well as to calculate the potential monetary loss due to biochar discharge through rainfall events.
NASA Astrophysics Data System (ADS)
Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.
2017-06-01
Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium.
Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.
2017-01-01
Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium.
Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.
Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M
2016-08-19
Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Four space application material coatings on the Long-Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Scialdone, John J.; Clatterbuck, Carroll
1995-01-01
Four material coatings of different thicknesses were flown on the LDEF to determine their ability to perform in the harsh space environment. The coatings, located in the ram direction of the spacecraft, were exposed for 10 months to the low-Earth orbit (LEO) environments experienced by the LDEF at an orbit of 260 nautical miles. They consisted of indium oxide (In2O3), silicon oxide (SiO(x)), clear RTV silicone, and silicone with silicate-treated zinc oxide (ZnO). These coatings were flown to assess their behavior when exposed to atomic oxygen and to confirm their good radiative properties, stability, electrical conductivity, and resistance to UV exposure. The flown samples were checked and compared with the reference unflown samples using high-magnification optical inspection, ESCA analysis, weight changes, and dimensional changes. These comparisons indicated the following. The 1000 A SiO(x) coating eroded uniformly, with minor changes in its radiative properties. The 100 A In2O3 coating eroded completely down to the Kapton backing, with resultant losses of reflectance. The RTV-615 showed erosion, with carbon (C) content losses, while the Si remained constant, with a doubling of the oxygen (O) concentration. The RTV-615 silicone with K2SiO3-treated ZnO changed from flat to glossy white in appearance. It lost C, was etched, and increased its O content. The upper layers showed no remaining Zn or K. Losses of reflectance occurred within certain wavelength bands. It was not possible to evaluate the experimental oxygen reaction rate using the calculated atomic oxygen fluence of 2.6 x 10(exp 20) atoms/cm(exp 2) for the exposure of these coatings during the flight. The bakeout of the coatings was not carried out prior to the flight. Hence, the coating weight and dimensional losses included losses by outgassing products.
Investigating Mars: Rabe Crater
2017-12-20
This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52231 Latitude: -43.6665 Longitude: 34.2627 Instrument: VIS Captured: 2013-09-22 14:29 https://photojournal.jpl.nasa.gov/catalog/PIA22146
Investigating Mars: Rabe Crater
2017-12-22
This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67144 Latitude: -43.5512 Longitude: 34.5951 Instrument: VIS Captured: 2017-02-01 12:57 https://photojournal.jpl.nasa.gov/catalog/PIA22148
Investigating Mars: Rabe Crater
2017-12-19
This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 51157 Latitude: -43.6787 Longitude: 34.3985 Instrument: VIS Captured: 2013-06-26 05:33 https://photojournal.jpl.nasa.gov/catalog/PIA22145
Velocity of water flow along saturated loess slopes under erosion effects
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng
2018-06-01
Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.
Nakamura, Maria; Kitasako, Yuichi; Nakashima, Syozi; Sadr, Alireza; Tagami, Junji
2015-10-01
To evaluate the influence of brushing using toothpastes marketed under different categories on abrasion of sound and eroded enamel in vitro at nanometer scale using a white light interferometer (WLI). Enamel surface of resin-embedded bovine incisors were fine polished with diamond slurry and divided into testing area (approximately 2 mm x 4 mm) and reference area using a nail varnish. The enamel specimens were randomly assigned to 10 groups (n = 10 each); six of which were subjected to erosive challenge. The testing area in these eroded groups was exposed to 10 ml of Coca-Cola for 90 seconds and then rinsed for 10 seconds in deionized water (DW). Enamel specimens, except for those in one eroded group, were brushed by an automatic brushing machine with 120 linear motion strokes in 60 seconds under load of 250 g with/without toothpaste slurry. After the toothbrushing abrasion, each specimen was rinsed for 10 seconds with DW followed by immersion in artificial saliva for 2 hours. Toothpaste slurries were prepared containing one of the four toothpastes used and DW in a ratio of 1:2. The erosion-abrasion cycle was repeated three times. Then, the nail varnish was removed and enamel surface loss (SL) was measured by the WLI. Data were statistically analyzed by one-way ANOVA followed by Bonferroni's correction at significance level of 0.05. For eroded specimens, the mean SL values of groups not brushed and brushed with no toothpaste were not significantly different, but were significantly lower than those of whitening, anti-erosion and anti-caries toothpaste groups (P < 0.001). The whitening toothpaste group showed significantly higher SL than all other groups (P < 0.001). For sound enamel specimens, SL was not measured except for the whitening toothpaste group.
Miles, A.K.; Flint, Paul L.; Trust, K.A.; Ricca, M.A.; Spring, S.E.; Arrieta, D.E.; Hollmen, T.; Wilson, B.W.
2007-01-01
Seaducks may be affected by harmful levels of polycyclic aromatic hydrocarbons (PAHs) at seaports near the Arctic. As an indicator of exposure to PAHs, we measured hepatic enzyme 7-ethoxyresorufin-O-deethylase activity (EROD) to determine cytochrome P4501A induction in Steller's eiders (Polysticta stelleri) and Harlequin ducks (Histronicus histronicus) from Unalaska, Popof, and Unga Islands (AK, USA) in 2002 and 2003. We measured PAHs and organic contaminants in seaduck prey samples and polychlorinated biphenyl congeners in seaduck blood plasma to determine any relationship to EROD. Using Akaike's information criterion, species and site differences best explained EROD patterns: Activity was higher in Harlequin ducks than in Steller's eiders and higher at industrial than at nonindustrial sites. Site-specific concentrations of PAHs in blue mussels ([Mytilus trossilus] seaduck prey; PAH concentrations higher at Dutch Harbor, Unalaska, than at other sites) also was important in defining EROD patterns. Organochlorine compounds rarely were detected in prey samples. No relationship was found between polychlorinated biphenyl congeners in avian blood and EROD, which further supported inferences derived from Akaike's information criterion. Congeners were highest in seaducks from a nonindustrial or reference site, contrary to PAH patterns. To assist in interpreting the field study, 15 captive Steller's eiders were dosed with a PAH known to induce cytochrome P4501A. Dosed, captive Steller's eiders had definitive induction, but results indicated that wild Steller's eiders were exposed to PAHs or other inducing compounds at levels greater than those used in laboratory studies. Concentrations of PAHs in blue mussels at or near Dutch Harbor (∼1,180–5,980 ng/g) approached those found at highly contaminated sites (∼4,100–7,500 ng/g).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundy, Lukas J.; Environment Canada, National Wildlife Research Centre, Ottawa, Ontario; Jones, Stephanie P.
Some uncertainty exists regarding the purity of hexachlorobenzene (HCB) used in past toxicity studies. It has been suggested that reported toxic and biochemical effects initially attributed to HCB exposure may have actually been elicited by contamination of HCB by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Herein, primary cultures of chicken embryo hepatocytes (CEH) were used to compare the potencies of two lots of reagent-grade hexachlorobenzene (HCB-old [HCB-O] and HCB-new [HCB-N]), highly purified HCB (HCB-P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A4 (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. The study also compared themore » EROD- and CYP1A4/5 mRNA-inducing potencies of HCB to the potencies of two mono-ortho substituted polychlorinated biphenyls (PCBs), 2,3,3',4,4'-pentachlorobiphenyl (PCB 105) and 2,3'4,4',5-pentachlorobiphenyl (PCB 118). HCB-O, HCB-N and HCB-P all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNAs. Induction was not caused by contamination of HCB with PCDDs or PCDFs. Based upon a comparison of the EC{sub 50} and EC{sub threshold} values for EROD and CYP1A4/5 mRNA concentration-response curves, the potency of HCB relative to the potency of TCDD was 0.0001, and was similar to that of PCB 105 and PCB 118. The maximal EROD activity and CYP1A4/5 mRNA expression differed greatly between HCB and TCDD, and may contribute to an overestimation of the ReP value calculated for highly purified HCB.« less
NASA Technical Reports Server (NTRS)
1985-01-01
These unique weathered volcanic intrusions near Wadi Habawnah, Saudi Arabia (18.0N, 44.0E) are located near Najran, north of the Yemen border. This harsh and rugged desert landscape has been heavily wind eroded and, to a lesser extent, water eroded, as evidenced by the dendritic patterns in this region where rainfall is a seldom occurance. Only a dwindling number of nomadic tribes inhabit this harsh region of few resources.
Climate change and predicting soil loss from rainfall
NASA Astrophysics Data System (ADS)
Kinnell, Peter
2017-04-01
Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes
Wu, Jiang-Ping; Mo, Ling; Zhi, Hui; Peng, Ying; Tao, Lin; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian
2016-06-01
The health effects of exposure to electronic waste (e-waste)-derived pollutants are an important issue. The authors explored the association between the hepatic levels of e-waste-derived halogenated contaminants (including polychlorinated biphenyls [PCBs], polybrominated diphenyl ethers [PBDEs], and polybrominated biphenyls [PBBs]) and hepatic ethoxyresorufin-O-deethylase (EROD) activity of the common kingfisher (Alcedo atthis) from an e-waste site and 2 reference sites in South China. The summed concentrations of PCBs, PBDEs, and PBBs ranged from 620 ng/g to 15 000 ng/g, 25 ng/g to 900 ng/g, and 14 ng/g to 49 ng/g wet weight, respectively, in the kingfishers from the e-waste site, and these values were significantly greater (2-3 orders of magnitude) than those obtained at the 2 reference sites. Correspondingly, significant hepatic EROD induction was observed in the kingfishers from the e-waste site compared with the reference sites. The EROD activity was significantly correlated to the levels of most of the PCB and PBDE congeners examined as well as PBB 153, suggesting that EROD induction may be evoked by these e-waste-derived pollutants. Environ Toxicol Chem 2016;35:1594-1599. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.
2015-02-01
Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.
[Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].
Sorokina, E A; Sibiriak, S V; Sergeeva, S A
2002-01-01
Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.
Time effect of erosion by solid particle impingement on ductile materials
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
Erosion and morphological studies of several metals and alloys eroded by normal impingement jets of spherical glass beads and angular crushed-glass erodent particles were conducted. Erosion morphology (the width, depth, and width-depth ratio of the pit) was studied in order to fully investigate the effect of time on erosion rate. The eroded surfaces were studied with a scanning electron microscope, and surface profiles were measured with a profilometer. A large amount of experimental data reported in the literature was also analyzed in order to understand the effect of variables such as the type of device, the erodent particle size and shape, the impact velocity, and the abrasive charge on erosion-rate-versus-time curves. In the present experiments the pit-width-versus-time or pit-depth-versus-time curves were similar to erosion-versus-time curves for glass-bead impingement. The pit-depth-rate-versus-time curves were similar to erosion-rate-versus-time curves for crushed-glass impingement. Analysis of experimental data with two forms of glass resulted in four types of erosion-rate-versus-time curves: (1) incubation, acceleration, and steady-state periods (type I), (2) incubation, acceleration, deceleration, and steady-state periods (type III), (3) incubation, acceleration, peak rate, and deceleration periods (type IV), and (4) incubation, acceleration, steady-state, and deceleration periods (type V).
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.
1973-01-01
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).
Bilateral en-masse distalization of maxillary posterior teeth with skeletal anchorage: a case report
Noorollahian, Saeed; Alavi, Shiva; Shirban, Farinaz
2016-01-01
ABSTRACT Objective: The aim of this study was to introduce a new method for bilateral distal movement of the entire maxillary posterior segment. Case report: A 17-year-old girl with Class I skeletal malocclusion (end-to-end molar relationships, deviated midline and space deficiency for left maxillary canine) was referred for orthodontic treatment. She did not accept maxillary first premolars extraction. A modified Hyrax appliance (Dentaurum Ispringen, Germany) was used for bilateral distalization of maxillary posterior teeth simultaneously. Expansion vector was set anteroposteriorly. Posterior legs of Hyrax were welded to first maxillary molar bands. All posterior teeth on each side consolidated with a segment of 0.017 × 0.025-in stainless steel wire from the buccal side. Anterior legs of Hyrax were bent into eyelet form and attached to the anterior palate with two mini-screws (2 × 10 mm) (Jeil Medical Corporation Seoul, South Korea). Hyrax opening rate was 0.8 mm per month. Lateral cephalometric radiographs were used to evaluate the extent of distal movement. 3.5-mm distalization of posterior maxillary teeth was achieved in five months. Results: A nearly bodily distal movement without anchorage loss was obtained. Conclusion: The mini-screw-supported modified Hyrax appliance was found to be helpful for achieving en-masse distal movement of maxillary posterior teeth. PMID:27409657
Far infrared spectra of solid state aliphatic amino acids in different protonation states
NASA Astrophysics Data System (ADS)
Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra
2010-03-01
Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.
2006-08-01
demonstrates symmetry of the methodology and capability to represent complex configurations of non -erodible cells. The bathymetric configuration (Figure...Army Engineer Rsearch and Development Center, Coastal and Hydraulics Laboratory. The upgrades chiefly concern capability to calculate sediment...hard bottom ( non -erodible bottom) to represent limestone and rocking coasts, as well as scour blankets at jetties, and (2) bottom avalanching to limit
The Quantification and Evolution of Resilience in Integrated Coastal Systems
2012-08-01
for natural protection when protective beaches and sand dunes are destroyed or overtopped. Protects a beach or sand dune that fronts backshore from...dredged material on a beach, dune , barrier island, or sand berm located in the near- shore zone. Stabilize the location of an eroding beach, dune ...waves will erode beaches and dunes . Table 5. Components and processes that are part of an ecosystem restoration subsystem defined by an oyster
Charles R. Berry
1977-01-01
Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...
Multibiomarker responses in fish from the Moselle River (France).
Flammarion, P; Devaux, A; Nehls, S; Migeon, B; Noury, P; Garric, J
2002-02-01
The response of wild fish to pollutants was studied using two biomarkers in chub (Leuciscus cephalus) at five stations in the Moselle River (France) in 1998 and in 1999. The induction of cytochrome P450 1A was quantified by the ethoxyresorufin O-deethylase (EROD) activity in the liver and the level of DNA single-strand breaks was determined in erythrocytes using the comet assay. EROD activity was observed to be up to 10-fold induced in both males and females from the downstream stations in comparison to the fish from the upstream station. Levels of DNA damage did not parallel EROD induction. Chemical analyses did not clearly explain the responses of the studied biomarkers, confirming the great difficulty in relating chemical and biological information in the field. This study confirms the difficulty in assessing the biological effects of mixtures of pollutants and points out the usefulness of a large array of biomarkers.
NASA Astrophysics Data System (ADS)
Gordon, Michael; Seiler, Theo; Carey, Joseph P.; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.
1993-06-01
This paper reports on our progress using an erodible mask to perform photorefractive keratectomy (PRK) for the correction of myopic astigmatism. We describe modifications to the mask, the mask eye cup and the surgical microscope aimed at simplifying the procedure and improving the ergonomics of the hardware. We report the clinical results of the post-op exam for 20 patients who have undergone PRK for myopic astigmatism under a Phase IIA study. The results compare favorably with an earlier Phase IIA study for performing PRK with a computer-controlled iris. Most important, the clinical data show the absence of any significant corneal haze and no significant decrease in spectacle corrected visual acuity. Although more long term follow-up is needed, the preliminary results support the safety and effectiveness of using an erodible mask to perform PRK for myopic astigmatism.
Major, Jon J.; Spicer, Kurt R.; Collins, Rebecca A.
2010-01-01
In 2007, Marmot Dam on the Sandy River, Oregon, was removed and a temporary cofferdam standing in its place was breached, allowing the river to flow freely along its entire length. Time-lapse imagery obtained from a network of digital single-lens reflex cameras placed around the lower reach of the sediment-filled reservoir behind the dam details rapid erosion of sediment by the Sandy River after breaching of the cofferdam. Within hours of the breaching, the Sandy River eroded much of the nearly 15-m-thick frontal part of the sediment wedge impounded behind the former concrete dam; within 24-60 hours it eroded approximately 125,000 m3 of sediment impounded in the lower 300-meter-reach of the reservoir. The imagery shows that the sediment eroded initially through vertical incision, but that lateral erosion rapidly became an important process.
NASA Astrophysics Data System (ADS)
Williams, B.; Thibodeau, B.; Chikaraishi, Y.; Ohkouchi, N.; Grottoli, A. G.
2014-12-01
Instrumental and proxy data and global climate model experiments indicate a multi-decadal shoaling of the western tropical Pacific (WTP) thermocline potentially related to a shift in ENSO frequency. In the WTP, the nutricline coincides with the thermocline, and a shoaling of the nutricline brings more nitrate-rich seawater higher in the water column and within the sunlit euphotic zone. In the nutrient-poor WTP, this incursion of nitrate-rich water at the bottom of the euphotic zone may stimulate productivity in the water column. However, there is a general paucity of measurements below the surface with which to investigate recent changes in seawater chemistry. Nitrogen isotope (δ15N) measurements of particulate organic matter (POM) can elucidate the source of nitrogen to the WTP and related trophic dynamics. This POM is the food source to the long-lived proteinaceous corals, and drives the nitrogen isotopic composition of their skeleton. Here, we report time series δ15N values from the banded skeletons of proteinaceous corals from offshore Palau in the WTP that provide proxy information about past changes in euphotic zone nitrogen dynamics. Bulk skeletal δ15N values declined between 1977 and 2010 suggesting a progressively increasing contribution of deep water with isotopically-light nitrate to the euphotic zone and/or a shortening of the planktonic food web. Since only some amino acids are enriched in δ15N with each trophic transfer in a food web, we measured the δ15N composition of seven individual amino acids in the same coral skeleton. The δ15N time series of the individual amino acids also declined over time, mirroring the bulk values. These new data indicate that the changes in the source nitrogen to the base of the euphotic zone drives a decline in coral skeletal δ15N values, consistent with the shoaling nutricline, with no coinciding alteration of the trophic structure in the WTP.
The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.
Myhre, J Layne; Hills, Jordan A; Prill, Kendal; Wohlgemuth, Serene L; Pilgrim, David B
2014-03-01
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the "molecular ruler" model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the "premyofibril" model, which proposes that thick filament formation does not require titin, but that a "premyofibril" consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the "molecular ruler" model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy. Copyright © 2013 Elsevier Inc. All rights reserved.
Context of Carbonate Rocks in Heavily Eroded Martian Terrain
NASA Technical Reports Server (NTRS)
2008-01-01
The color coding on this composite image of an area about 20 kilometers (12 miles) wide on Mars is based on infrared spectral information interpreted as evidence of various minerals present. Carbonate, which is indicative of a wet and non-acidic history, occurs in very small patches of exposed rock appearing green in this color representation, such as near the lower right corner. The scene is heavily eroded terrain to the west of a small canyon in the Nili Fossae region of Mars. It was one of the first areas where researchers on the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) science team detected carbonate in Mars rocks. The spectral information comes from infrared imaging by CRISM, one of six science instruments on NASA's Mars Reconnaissance Orbiter. That coloring is overlaid on a grayscale image from the same orbiter's Context Camera. The uppermost capping rock unit (purple) is underlain successively by banded olivine-bearing rocks (yellow) and rocks bearing iron-magnesium smectite clay (blue). Where the olivine is a greenish hue, it has been partially altered by interaction with water. The carbonate and olivine occupy the same level in the stratigraphy, and it is thought that the carbonate formed by aqueous alteration of olivine. The channel running from upper left to lower right through the image and eroding into the layers of bedrock testifies to the past presence of water in this region. That some of the channels are closely associated with carbonate (lower right) indicates that waters interacting with the carbonate were neutral to alkaline because acidic waters would have dissolved the carbonate. Information for the color coding came from CRISM images catalogued as FRT0000B438, FRT0000A4FC, and FRT00003E12. This composite was made using 2.38-micrometer-wavelenghth data as red, 1.80 micrometer as green and 1.15 micrometer as blue. The base black-and-white image, acquired at a resolution of 5 meters (16 feet) per pixel, is catalogued as CTX P03_002176_2024_XI_22N283W_070113 by the Context Camera science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The Johns Hopkins University Applied Physics Laboratory led the effort to build the CRISM instrument and operates CRISM in coordination with an international team of researchers from universities, government and the private sector. Malin Space Science Systems, San Diego, provided and operates the Context Camera.Correlation among chronologic age, skeletal maturity, and dental age.
Sukhia, Rashna H; Fida, Mubassar
2010-01-01
To determine the correlation among chronologic age, skeletal maturity, and dental age in reference to both sexes. In 380 subjects (147 males and 233 females) between 7 and 17 years of age, skeletal maturity was assessed using the cervical vertebral maturation stages described by Baccetti et al. Dental age was determined using the Demirjian method. The correlation between skeletal maturity and chronologic age on one side and between skeletal maturity and dental age on the other was assessed with Spearman rank correlation coefficients. Pearson correlation coefficients were used to assess the correlation between chronologic and dental age. For both sexes, significant correlations among chronologic age, skeletal maturity, and dental age were found. The mandibular first premolar had the highest correlation with skeletal maturation in both sexes. As skeletal maturity and dental age are significantly correlated, tooth development may be used to assess a patient's skeletal maturity at an early age. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.
Erosional origin of drumlins and megaridges
NASA Astrophysics Data System (ADS)
Eyles, Nick; Putkinen, Niko; Sookhan, Shane; Arbelaez-Moreno, Lina
2016-06-01
The erodent layer hypothesis (ELH) proposes that drumlinization leaves no substantial stratigraphic record because it is primarily an erosional process that cuts an unconformity across pre-existing bed materials. Drumlins most commonly have autochthonous cores of antecedent till(s), other stiff and coarse-grained sediment and rock or any combination thereof, and are also found closely juxtaposed with rock drumlins within the same flow sets ('mixed beds'). This is at odds with the suggested growth of drumlins by vertical accretion ('emergence') from deforming subglacial till ('soft beds'). ELH argues that drumlins 'grow down' by erosional carving of pre-existing stiff till, sediment and/or rock by a thin (< 1 m) layer of deforming subglacial debris which abrades its substrate. This process is well known to the science of tribology (the study of wearing surfaces) where remnant micro-drumlins, ridges and grooves comparable to drumlins and megaridges are cut by debris ('erodent layers') between surfaces in relative motion. In the subglacial setting the erodent layer comprises deforming diamict containing harder 'erodents' such as boulders, clast-rich zones or frozen rafts. Similar, till-like erodent layers (cataclasites) cut streamlined surfaces below gravity-driven mass flows such as rock avalanches, landslides and slumps, pyroclastic flows and debris flows; streamlined surfaces including drumlin-like 'ellipsoidal bumps' and ridges are also common on the surfaces of faults. Megadrumlins, drumlins and megaridges comprise an erosional continuum in many flow sets. This records the progressive dissection of large streamlined bedforms to form successively more elongate daughter drumlins and megaridges ('clones') as the bed is lowered to create a low-slip surface that allows fast ice flow and ice streaming. Clones are the 'missing links' in the continuum. ELH predicts preservation within drumlins of antecedent remnant tills and stratigraphies deposited earlier in the glacial cycle under sluggish or steady-state ice flows that were then streamlined by erosion under streaming ice flows. The erodent layer may be preserved as a relatively thin, loosely-consolidated surficial till that drapes the streamlined bedform (the 'upper till', 'cap till', 'till veneer', 'till mantle', 'retreat till', or 'englacial debris' of many previous reports). ELH suggests that there is a fundamental commonality of all forms of erosional wear and streamlining on sliding interfaces from the microscopic scale to the macroscopic scale of ice sheet beds.
NASA Astrophysics Data System (ADS)
Ackerman, T. R.; Pizzuto, J. E.
2016-12-01
Sediment may be stored briefly or for long periods in alluvial deposits adjacent to rivers. The duration of sediment storage may affect diagenesis, and controls the timing of sediment delivery, affecting the propagation of upland sediment signals caused by tectonics, climate change, and land use, and the efficacy of watershed management strategies designed to reduce sediment loading to estuaries and reservoirs. Understanding the functional form of storage time distributions can help to extrapolate from limited field observations and improve forecasts of sediment loading. We simulate stratigraphy adjacent to a modeled river where meander migration is driven by channel curvature. The basal unit is built immediately as the channel migrates away, analogous to a point bar; rules for overbank (flood) deposition create thicker deposits at low elevations and near the channel, forming topographic features analogous to natural levees, scroll bars, and terraces. Deposit age is tracked everywhere throughout the simulation, and the storage time is recorded when the channel returns and erodes the sediment at each pixel. 210 ky of simulated run time is sufficient for the channel to migrate 10,500 channel widths, but only the final 90 ky are analyzed. Storage time survivor functions are well fit by exponential functions until 500 years (point bar) or 600 years (overbank) representing the youngest 50% of eroded sediment. Then (until an age of 12 ky, representing the next 48% (point bar) or 45% (overbank) of eroding sediment), the distributions are well fit by heavy tailed power functions with slopes of -1 (point bar) and -0.75 (overbank). After 12 ky (6% of model run time) the remainder of the storage time distributions become exponential (light tailed). Point bar sediment has the greatest chance (6%) of eroding at 120 years, as the river reworks recently deposited point bars. Overbank sediment has an 8% chance of eroding after 1 time step, a chance that declines by half after 3 time steps. The high probability of eroding young overbank deposits occurs as the river reworks recently formed natural levees. These results show that depositional environment affects river floodplain storage times shorter than a few centuries, and suggest that a power law distribution with a truncated tail may be the most reasonable functional fit.
Mono- & Polyhydrated Sulfates in Aureum Chaos
NASA Technical Reports Server (NTRS)
2008-01-01
This image of layered deposits in Aureum Chaos was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on June 6, 2007 at 0347 UTC (11:47 p.m. EDT on June 5, 2007), near 3.5 degrees south latitude, 333.25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is just over 10 kilometers (6 miles) wide at its narrowest point. Aureum Chaos lies in the eastern part of the Valles Marineris canyon system, southwest of a 280 kilometer (174 mile) diameter, highly modified impact crater called Aram Chaos. Both regions hold examples of chaotic terrain that is characterized by randomly oriented, large-scale mesas and knobs. In this region of Mars, these features range in size from a few kilometers to tens of kilometers wide and tend to be heavily eroded. As its name implies, chaotic terrain is extremely irregular. It is most likely the result of collapsed surface material that settled when subsurface ice, water, or magma was released. The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data cover an area riddled with knobs. The lower two images were constructed by draping CRISM images over topography and exaggerating the vertical scale to better illustrate the region's topography. The upper right is an infrared, false color image that reveals layered deposits of a light-colored material along the flanks of several knobs. The lower-left image reveals the mineralogical composition of these layers, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral) and blue polyhydrated sulfates (sulfates with multiple waters per mineral molecule). There are two possible explanations for the compositional banding. The first is deposition of mono- and polyhydrated sulfates in alternating layers. The second is deposition of just one sulfate type, and subsequently its alteration by weathering at the exposed, eroded surface. Further observations will better determine the origin of these complex banded sulfate deposits. CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie
2017-01-01
Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments. PMID:28169335
NASA Astrophysics Data System (ADS)
Fathallah, S.; Ben Amor, R.; Gueddari, M.
2009-04-01
Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.
Li, Zhi-Hua; Zhong, Li-Qiao; Mu, Wei-Na; Wu, Yan-Hua
2016-01-01
1. The purpose of this study was to compare tributyltin (TBT)-induced cytochrome P450 1 (CYP450 1) regulation in liver, gills and muscle of juvenile common carp (Cyprinus carpio). 2. Fish were exposed to sublethal concentrations of TBT (75, 0.75 and 7.5 μg/L) for 60 days. CYP450 1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, as well as the mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) in fish tissues. 3. Based on the results, the liver displayed the highest absolute levels of EROD activity, both under nonexposed and exposed conditions. Additional, EROD activities and CYP1A gene levels showed a good correlation in all three organs. According to the mRNA expression of CYP450 1 family genes, it suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. 4. Overall, the study revealed both similarities and differences in the concentration-dependent CYP450 1 responses of the three target organs, which could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.
Advances in Skeletal Dysplasia Genetics
Geister, Krista A.; Camper, Sally A.
2017-01-01
Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design. PMID:25939055
Depth-dependent erodibility: representing burnt soils as a two-layered cohesive/non-cohesive system
NASA Astrophysics Data System (ADS)
Nyman, P.; Sheridan, G. J.; Moody, J. A.; Smith, H. G.; Lane, P. N.
2011-12-01
Immediately after wildfire there is an abundant supply of non-cohesive ash, soil and gravel which is easily entrained by overland flow. Under these conditions the sediment flux on hillslopes can be assumed to be equal to the transport capacity of the flow. However, the supply of material is finite and at some point the hillslope could shift towards a system where entrainment is restricted by armouring and soil cohesion. In this study we test the notion that burnt hillslopes can be represented as a two-layered system of non-cohesive and cohesive soils. Using a combination of i) shear vane measurements, ii) confined hillslope flow experiments and iii) a laboratory flume, we demonstrate how erosion on burnt hillslopes primarily takes place in a distinct layer of non-cohesive soil with erosion properties that are very different to the underlying soil matrix. Shear vane measurements were taken at 5 soil depths at more than 50 points along transects in order to quantify the depth and spatial distribution of non-cohesive soil in two small (0.5 ha) and steep (30 deg) convergent basins (SE Australia) that were burnt at high severity. The measurements showed that the recently burnt hillslopes were mantled with non-cohesive soil to an average depth of 18mm and 20mm at the two sites which were situated in different geologic terrain but in similar eucalyptus dominated forests. In the hillslope flow experiments, the rapid entrainment of non-cohesive material resulted in very high sediment concentration (50-60% by volume) in the initial surge from the test area. During the flow experiments the sediment concentration decreased exponentially with time until the erosion rate reached a steady state reflecting the erodibility of the underlying cohesive soil. The formation of shallow rills and the presence of large clasts (>16cm) within the test area resulted in incomplete removal of the non-cohesive material at shear stress < 50 Ncm-2. At shear stress > 50 Ncm-2 all material was removed, and the erosion depth at the end of the experiments was equal to the depth of non-cohesive material measured using the shear vane. In a separate set of experiments, a laboratory flume was used to measure the erodibility at different soil depths using soil cores that were burnt at moderate to high severity. Unlike the field based flow experiments, the erodibility measurements of non-cohesive soils in the flume were not restricted by the transport capacity of the flow. Results from the flume experiments showed a two order of magnitude decrease in erodibility within the top 2cm of the soil profile for soil cores from both chaparral and coniferous forests (western US). In summary, these results indicate that a majority of hillslope sediment may be generated from a relatively shallow layer of non-cohesive and highly erodible material. The depth of this material may be an important property that can help determine the post-fire erosion and debris flow potential, particularly in systems where other sources of sediment are limited. The study confirms that erodibility of burnt soil shows strong variation with depth and that the assumption of a constant erodibility factor may lead to misrepresentation of important processes.
Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome
2011-01-01
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285
Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco
2011-06-01
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.
Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles
Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas
2017-07-24
Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.
NASA Astrophysics Data System (ADS)
Tuukkanen, Tapio; Marttila, Hannu; Kløve, Bjørn
2014-05-01
Peatland drainage and peat extraction operations change soil properties and expose bare peat to erosion forces, resulting in increased suspended sediment (SS) loads to downstream water bodies. SS yields from peat extraction areas are known to vary significantly between sites, but the contribution of peat properties and catchment characteristics to this variation is not well understood. In this study, we investigated peat erosion at 20 Finnish peat extraction sites by conducting in situ and laboratory measurements on peat erodibility and associated peat properties (degree of humification, peat type, bulk density, loss on ignition, porosity, moisture content, and shear strength), and by comparing the results with monitored long-term SS concentrations and loads at each catchment outlet. Here, we used a cohesive strength meter (CSM) to measure direct erosion thresholds for undisturbed soil cores collected from each study site. The results suggested that the degree of peat decomposition clearly affects peat erodibility and explains much of the variation in SS concentration between the study sites. According to CSM tests, critical shear stresses for particle entrainment were lowest (on average) in well-decomposed peat samples, while undecomposed, dry and fiber rich peat generally resisted erosion very well. Furthermore, the results indicated that two separate critical shear stresses often exist in moderately decomposed peat. In these cases, the well-decomposed parts of peat samples eroded first at relatively low shear stresses and remaining peat fibers prevented further erosion until a much higher shear stress was reached. In addition to peat soil properties, the study showed that the erosion of mineral subsoil may play a key role in runoff water SS concentration at peat extraction areas with drainage ditches extending into the mineral soil. The interactions between peat properties and peat erodibility found in this study as well as critical shear stress values obtained can be used for several purposes in e.g. water conservation and sediment management planning for peat extraction areas and other bare peat-covered catchments.
Georgi, Thomas Walter; Kluge, Regine; Kurch, Lars; Chavdarova, Lidia; Hasenclever, Dirk; Stoevesandt, Dietrich; Pelz, Tanja; Landman-Parker, Judith; Wallace, Hamish; Karlen, Jonas; Fernandez-Teijeiro, Ana; Cepelova, Michaela; Fossa, Alexander; Balwierz, Walentyna; Attarbaschi, Andishe; Ammann, Roland A; Pears, Jane; Hraskova, Andrea; Uyttebroeck, Anne; Beishuizen, Auke; Dieckmann, Karin; Leblanc, Thierry; Daw, Stephen; Baumann, Julia; Körholz, Dieter; Sabri, Osama; Mauz-Körholz, Christine
2018-04-13
Purpose: This study focused on skeletal involvement in FDG-PET (PET) in Hodgkin lymphoma (HL). We aimed at a systematic evaluation of the different types of skeletal involvement and their PET response after two cycles of chemotherapy (PET-2), to answer the question whether the current PET response criterion for skeletal involvement is suitable. A secondary objective was to observe the influence of initial uptake intensity and metabolic tumor volume (MTV) of skeletal lesions on the PET-2 response. Methods: Initial PET scans (PET-0) of 1068 pediatric HL patients from the EuroNet-PHL-C1 (C1) trial were evaluated by central review for skeletal involvement. Three types of skeletal lesions were distinguished: skeletal lesions detected only in PET (PETonly), bone marrow (BM) lesions confirmed by MRI or BM biopsy and bone lesions. Uptake intensity (measured as qPET value) and MTV were calculated for each skeletal lesion. All PET-2 scans were assessed for residual tumor activity. The rates of complete metabolic response in PET-2 of skeletal and nodal involvement were compared. Results: 139/1068 (13%) C1 patients showed skeletal involvement (44/139 PETonly patients, 32/139 BM patients and 63/139 bone patients). 101/139 (73%) patients became PET-2 negative in the skeleton while lymph node involvement was PET-2 negative in 94/139 (68%) patients. Highest skeletal PET-2 negative rate was seen in 42/44 (95%) PETonly patients, followed by 22/32 (69%) BM patients and 37/63 (59%) bone patients. Skeletal lesions who became PET-2 negative showed lower median values for initial qPET (2.74) and MTV (2ml) than lesions who remained PET-2 positive (3.84; 7ml). Conclusion: In this study with pediatric HL patients, the complete response rate in PET-2 of skeletal and nodal involvement was similar. Bone flare seemed to be irrelevant. Overall, the current skeletal PET response criterion - comparison with the local skeletal background - is well suited. Initial uptake intensity and MTV of skeletal lesions were predictive for the PET-2 result. Higher values for both parameters were associated with a worse PET-2 response. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Daunt, S. J.; Grzywacz, Robert; Lafferty, Walter; Flaud, Jean-Marie; Billinghurst, Brant E.
2017-06-01
This is the first report in a project to record high resolution IR data of the ^{13}C and D substituted isotopologues of propane. In this talk we will give details on the first high resolution (Δν = 0.0009 \\wn) IR investigation of 2-^{13}C-propane. Spectra of the CCC skeletal bending mode near 336.767 \\wn (B-type) and the wagging mode near 746.615 \\wn (C-type) were recorded using the FTS on the Far-IR beamline of the Canadian Light Source (CLS). The spectra were assigned both traditionally and with the aid of the PGOPHER program of Colin Western. The only available MW data on this molecule are the six K =0 J lines from Lide. We therefore had to use the present data to determine a new set of ground state constants that included centrifugal distortion terms for this molecule. We compare these experimentally determined values with the recent ab initio values of Villa, Senent & Carvajal. Upper state constants for both bands have been found that provide a good simulation of the spectra. The hope is that this data will be useful in identifying isotopic propane lines in Titan and other astrophysical objects. C. Western, J. Quant. Spectrosc. & Rad. Transf. 186, 221 ff. (2017). Lide, J.Chem. Phys. 33, p.1514ff. (1960). Villa, Senent & Carvajal, PCCP 15, 10258 (2013).
2016-07-01
approximately 5 hours (hr) after opening main gates. Multiple channels eroded (Figure 5), moving sediment through the dam throughout the first day...additional sediment evacuation was observed over the next 4 weeks. ERDC/CHL CHETN-XIV-52 July 2016 5 Figure 5. Multiple channels eroded...2015. A physically-based channel - modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS Bank-Stability and Toe-Erosion
2017-01-11
Southern spring on Mars brings sublimation of the seasonal dry ice polar cap. Gas trapped under the seasonal ice sheet carves channels on its way to escaping to the atmosphere. At this site, the channels are wider than we see elsewhere on Mars, perhaps meaning that the spider-like (or more scientifically, "araneiform") terrain here is older, or that the surface is more easily eroded. Seasonal fans of eroded surface material, pointed in two different directions, are deposited on the remaining ice. http://photojournal.jpl.nasa.gov/catalog/PIA13151
Advanced electric propulsion research, 1991
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.
1992-01-01
A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.
NASA Astrophysics Data System (ADS)
Wiebe, R. A.; Jellinek, A. M.; Hodge, K. F.
2017-04-01
Ladder dikes are steep tabular bodies, typically a meter or less thick, composed of moderately dipping, concave upward, alternating dark (i.e. schlieren) and light bands oriented roughly perpendicular to the ladder dike margins. These structures occur widely but sparsely in granitic rocks and are found prominently in the Cathedral Peak granodiorite (CPG) of the Tuolumne Intrusive suite. Previous studies have interpreted that ladder dikes form as a result of processes including the downward flow of crystal mush in cracks within strong crystal mush or by upward flow in steep tubes that migrate within a strong crystal mush. Our new observations indicate that ladder dikes formed by downward flow of crystal mush in troughs or valleys, in a manner potentially comparable to trough bands in mafic layered intrusions. Extensions of the schlieren outward and upward away from the ladder dike margins into the host granite demonstrate that the host granite was deposited as mounds on both sides at the same time as the ladder dikes. Ladder dikes, therefore, record lateral flows of crystal mush on a magma chamber floor. Vertical exposures suggest these flows are on the order of ten meters thick. Some steep exposures on granite domes indicate multiple ladder dikes (and flows) over a stratigraphic height of 80-100 m. Later (stratigraphically higher) flows commonly deform and erode the top of an earlier flow, and granitic material rich in K-feldspar megacrysts has locally engulfed large blocks of ladder dikes, demonstrating that the megacrysts were also transported in flows. Flows in the CPG are directed away from the center of the pluton toward the western and eastern margins and apparently spread along a strong crystal mush floor and into a rheologically complex CPG magma. Whereas established dynamical models for spreading (single phase) gravity currents with simple and complex rheologies explain the elongate geometry, spacing and orientation of the tabular bodies, the origin and character of the downward flows required to explain the trough band schlieren structures is challenging. However, an intermittent and progressive deposition of trough bands, consistent with field observations, is potentially explained if the two-phase (crystals and melt) dynamics governing the response of the CPG magma to a new injection are considered.
Regenerating skeletal muscle in the face of aging and disease.
Jasuja, Ravi; LeBrasseur, Nathan K
2014-11-01
Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review.
Shaded Relief with Height as Color, Yucatan Peninsula, Mexico
NASA Technical Reports Server (NTRS)
2003-01-01
This shaded relief image of Mexico's Yucatan Peninsula show a subtle, but unmistakable, indication of the Chicxulub impact crater. Most scientists now agree that this impact was the cause of the Cretatious-Tertiary Extinction, the event 65 million years ago that marked the sudden extinction of the dinosaurs as well as the majority of life then on Earth.
Most of the peninsula is visible here, along with the island of Cozumel off the east coast. The Yucatan is a plateau composed mostly of limestone and is an area of very low relief with elevations varying by less than a few hundred meters (about 500 feet.) In this computer-enhanced image the topography has been greatly exaggerated to highlight a semicircular trough, the darker green arcing line at the upper left corner of the peninsula. This trough is only about 3 to 5 meters (10 to 15 feet) deep and is about 5 km. wide (3 miles), so subtle that if you walked across it you probably would not notice it, and is a surface expression of the crater's outer boundary. Scientists believe the impact, which was centered just off the coast in the Caribbean, altered the subsurface rocks such that the overlying limestone sediments, which formed later and erode very easily, would preferentially erode on the vicinity of the crater rim. This formed the trough as well as numerous sinkholes (called cenotes) which are visible as small circular depressions.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwestern slopes appear bright and southeastern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.For a smaller, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large image: 1.5 mB jpeg)Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: 261 by 162 kilometers (162 by 100 miles) Location: 20.8 degrees North latitude, 89.3 degrees West longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000Anaglyph of Shaded Relief New York State, Lake Ontario to Long Island
NASA Technical Reports Server (NTRS)
2000-01-01
From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire region as recently as 18,000 years ago.The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.This anaglyph was generated by first creating a shaded relief image from the elevation data, masking the large water bodies, and draping the result back over the elevation model. Two differing perspectives were then calculated, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: North toward the upper right Date Acquired: February 13, 2000Stereo Pair of Height as Color & Shaded Relief, New York State, Lake Ontario to Long Island
NASA Technical Reports Server (NTRS)
2000-01-01
From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire image as recently as 18,000 years ago.The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.This stereoscopic image was generated by first creating and combining a shaded relief image and a height as color image, both of which were derived from the elevation model. Large water bodies were then masked, and the result was then draped back over the elevation model. Two differing perspectives were then calculated, one for each eye. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: North toward the upper right Date Acquired: February 13, 2000Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L
2011-04-01
The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.
Application of skeletal age based on x-ray in selecting sports talents
NASA Astrophysics Data System (ADS)
Mao, Zongzhen; Xu, Guodong; Song, Tao
2012-01-01
Skeletal age has been studied and proved that for most elite athletes, it was coincident with the chronological ages when they were young. In order to explore the application of skeletal age in selecting sports talent, 32 athletes (female, chronological age 5-12 y) were chosen from the Gymnastics Training Base in this study. Their left hand-wrists were photographed with X-rays, and then the skeletal ages were estimated by Chinese version of the Tanner-Whitehouse Skeletal Maturity Assessment System. At the same time, their body shapes, functions, and sports ability were also measured. Results showed that 71.88% of the skeletal age was proportional to their chronological age (+/- 1 y); while 18.75% of the skeletal maturity was retarded by 1- 2 year, 9.37% of those was advanced more than 1 year. On the other hand, the body shape, functions and sports ability of the athletes were positively related with their skeletal maturity. This study proved that the determination of skeletal maturity is a reliable evaluation for selecting sports talent. A further study on the influence of gymnastics on the skeletal age is of great significance.
Skeletal muscle and fetal alcohol spectrum disorder.
Myrie, Semone B; Pinder, Mark A
2018-04-01
Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.
Weinberg, Marc S; Shachar, Shlomit S; Muss, Hyman B; Deal, Allison M; Popuri, Karteek; Yu, Hyeon; Nyrop, Kirsten A; Alston, Shani M; Williams, Grant R
2018-05-01
Skeletal muscle loss, commonly known as sarcopenia, is highly prevalent and prognostic of adverse outcomes in oncology. However, there is limited information on adults with early breast cancer and examination of other skeletal muscle indices, despite the potential prognostic importance. This study characterizes and examines age-related changes in body composition of adults with early breast cancer and describes the creation of a novel integrated muscle measure. Female patients diagnosed with stage I-III breast cancer with abdominal computerized tomography (CT) scans within 12 weeks from diagnosis were identified from local tumor registry (N = 241). Skeletal muscle index (muscle area per height [cm 2 /m 2 ]), skeletal muscle density, and subcutaneous and visceral adipose tissue areas, were determined from CT L3 lumbar segments. We calculated a novel integrated skeletal measure, skeletal muscle gauge, which combines skeletal muscle index and density (SMI × SMD). 241 patients were identified with available CT imaging. Median age 52 years and range of 23-87. Skeletal muscle index and density significantly decreased with age. Using literature based cut-points, older adults (≥65 years) had significantly higher proportions of sarcopenia (63 vs 28%) and myosteatosis (90 vs 11%) compared to younger adults (<50 years). Body mass index was positively correlated with skeletal muscle index and negatively correlated with muscle density. Skeletal muscle gauge correlated better with increasing age (ρ = 0.52) than with either skeletal muscle index (ρ = 0.20) or density (ρ = 0.46). Wide variations and age-related changes in body composition metrics were found using routinely obtained abdominal CT imaging. Skeletal muscle index and density provide independent, complementary information, and the product of the two metrics, skeletal muscle gauge, requires further research to explore its impact on outcomes in women with curable breast cancer. © 2017 Wiley Periodicals, Inc.
Zuo, Changyan; Cong, Chao; Wang, Shihui; Gu, Yan
2015-10-01
To compare the difference of corresponding age at cervical vertebral maturation (CVM) stages among different skeletal malocclusions and provide clinic guideline on optimal treatment timing for skeletal malocclusion. Based on ANB angle, 2 575 cephalograms collected from Department of Orthodontics, Peking University School and Hospital of Stomatology from May, 2006 to November, 2014 were classified into skeletal Class I (ANB 0°~5°, 1 317 subjects), Class II (ANB > 5°, 685 subjects) and Class III (ANB < 0°, 573 subjects) groups. CVM stages were evaluated with the modified version of CVM method. Independent sample t test was performed to analyze the difference of age at different CVM stages among various skeletal groups. Significant gender difference of age was found at CS3 to CS6 for skeletal Class I group (P < 0.05), at CS5 and CS6 for skeletal Class II group (P < 0.05), and at CS3 and CS5 for skeletal Class III group (P < 0.05). At CS3 stage, the average age of male in skeletal Class II and skeletal Class III groups was (11.6 ± 1.5) years old and (10.3 ± 1.9) years old, respectively; the average age of females in those two groups was (11.7 ± 1.3) years old and (9.3 ± 1.5) years old, respectively, and significant difference was found in both comparisons (P < 0.05). Compared average age at CS5 and CS6 between skeletal Class II and skeletal Class III groups [the ages of male was (15.1 ± 1.7) and (16.8 ± 1.6) years old, the ages of male was (14.6 ± 1.2) and (15.7 ± 2.5) years old], significant difference was also found (P < 0.05). Significant gender differences were found when evaluated CVM stage and age in skeletal Class I, II and III groups. Significant differences of age at different CVM stage was noted when skeletal Class II was compared with skeletal Class III groups.
Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.
1990-01-01
To evaluate cytochrome P-450 related parameters as biomarkers of pollutant exposure, rates of arylhydrocarbon hydroxylase (AHH), ethoxyresorufin-O-deethylase (EROD), benzyloxyROD (BROD), pentoxyROD (PROD) and ethoxycoumarinOD (ECOD) were studied in 10-day-old BCNHs (Nycticorax nycticorax). Nestlings were collected from Chincoteague National Wildlife Refuge, VA ('controls') and from polluted sites including. Cat Island, Green Bay, WI, and Bair and West Marin Islands, San Francisco Bay, CA. Livers were frozen (-70.C) for monooxygenase assays and SDS-PAGE. Microsomal AHH and BROD activities were greater (P2 standard deviations from the control mean (induced up to 3-fold). EROD, PROD and ECOD did not differ among sites. Absence of an EROD response with AHH and BROD induction in BCNHs is different than responses in other species. The association of pollutant burdens with P-450 parameters is being studied. These biomarkers may serve as a rapid screen of exposure in a national contaminant biomonitoring program and other assessment activities.
Esler, Daniel; Ballachey, Brenda E; Trust, Kimberly A; Iverson, Samuel A; Reed, John A; Miles, A Keith; Henderson, John D; Woodin, Bruce R; Stegeman, John J; McAdie, Malcolm; Mulcahy, Daniel M; Wilson, Barry W
2011-03-01
We examined hepatic EROD activity, as an indicator of CYP1A induction, in Barrow's goldeneyes captured in areas oiled during the 1989 Exxon Valdez spill and those from nearby unoiled areas. We found that average EROD activity differed between areas during 2005, although the magnitude of the difference was reduced relative to a previous study from 1996/1997, and we found that areas did not differ by 2009. Similarly, we found that the proportion of individuals captured from oiled areas with elevated EROD activity (≥ 2 times unoiled average) declined from 41% in winter 1996/1997 to 10% in 2005 and 15% in 2009. This work adds to a body of literature describing the timelines over which vertebrates were exposed to residual Exxon Valdez oil and indicates that, for Barrow's goldeneyes in Prince William Sound, exposure persisted for many years with evidence of substantially reduced exposure by 2 decades after the spill. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fates of eroded soil organic carbon: Mississippi Basin case study
Smith, S.V.; Sleezer, R.O.; Renwick, W.H.; Buddemeier, R.W.
2005-01-01
We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 ?? 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ???480 t??km -2??yr-1 (???1500 ?? 106 t/yr, across the MS Basin), and a soil organic carbon (SOC) erosion rate of ???7 t??km-2??yr-1 (???22 ?? 106 t/yr). Erosion translocates upland SOC to alluvial deposits, water impoundments, and the ocean. Soil erosion is generally considered to be a net source of CO2 release to the atmosphere in global budgets. However, our results indicate that SOC erosion and relocation of soil apparently can reduce the net SOC oxidation rate of the original upland SOC while promoting net replacement of eroded SOC in upland soils that were eroded. Soil erosion at the MS Basin scale is, therefore, a net CO2 sink rather than a source. ?? 2005 by the Ecological Society of America.
Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.
2015-01-01
Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.
Geomorphology and forest management in New Zealand's erodible steeplands: An overview
NASA Astrophysics Data System (ADS)
Phillips, Chris; Marden, Michael; Basher, Les R.
2018-04-01
In this paper we outline how geomorphological understanding has underpinned forest management in New Zealand's erodible steeplands, where it contributes to current forest management, and suggest where it will be of value in the future. We focus on the highly erodible soft-rock hill country of the East Coast region of North Island, but cover other parts of New Zealand where appropriate. We conclude that forestry will continue to make a significant contribution to New Zealand's economy, but several issues need to be addressed. The most pressing concerns are the incidence of post-harvest, storm-initiated landslides and debris flows arising from steepland forests following timber harvesting. There are three areas where geomorphological information and understanding are required to support the forest industry - development of an improved national erosion susceptibility classification to support a new national standard for plantation forestry; terrain analysis to support improved hazard and risk assessment at detailed operational scales; and understanding of post-harvest shallow landslide-debris flows, including their prediction and management.
Esler, Daniel N.; Ballachey, Brenda E.; Trust, Kimberly A.; Iverson, Samuel A.; Reed, John A.; Miles, A. Keith; Henderson, John D.; Woodin, Bruce R.; Stegeman, John J.; McAdie, Malcolm; Mulcahy, Daniel M.; Wilson, Barry W.
2011-01-01
We examined hepatic EROD activity, as an indicator of CYP1A induction, in Barrow’s goldeneyes captured in areas oiled during the 1989 Exxon Valdez spill and those from nearby unoiled areas. We found that average EROD activity differed between areas during 2005, although the magnitude of the difference was reduced relative to a previous study from 1996/1997, and we found that areas did not differ by 2009. Similarly, we found that the proportion of individuals captured from oiled areas with elevated EROD activity (⩾2 times unoiled average) declined from 41% in winter 1996/1997 to 10% in 2005 and 15% in 2009. This work adds to a body of literature describing the timelines over which vertebrates were exposed to residual Exxon Valdez oil and indicates that, for Barrow’s goldeneyes in Prince William Sound, exposure persisted for many years with evidence of substantially reduced exposure by 2 decades after the spill.
Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A
2016-08-01
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelb, B.D.; Desnick, R.J.; Shevell, M.
1995-08-28
Cleidocranial dysplasia (CCD) is a generalized skeletal dysplasia with autosomal dominant inheritance. Recently, the CCD disease locus was localized to 23 and 17 cM regions of chromosome band 6p21 by linkage studies of seven affected families. Of note, the 23 cM region contained a microdeletion detected in one family at D6S459, an interval that was excluded in the 17 cM overlapping region. Here, linkage of CCD to 6p21 was independently confirmed with a maximal two-point LOD score of Z=5.12 with marker D6S452 at {theta}=0.00. Recombinant events in two affected individuals defined a CCD region of 7 cM from D6S465 tomore » D6S282, which overlapped with the CCD region containing the microdeletion but did not overlap with the 17 cM critical region from D6S282 to D6S291. These results suggest the refined localization of the CCD region to 6 cM spanning markers D6S438 to D6S282, thereby reviving the possibility that the CCD gene lies within the microdeletion at D6S459. 13 refs., 2 figs., 1 tab.« less
Vibert, P; Edelstein, S M; Castellani, L; Elliott, B W
1993-12-01
Invertebrate mini-titins are members of a class of myosin-binding proteins belonging to the immunoglobulin superfamily that may have structural and/or regulatory properties. We have isolated mini-titins from three molluscan sources: the striated and smooth adductor muscles of the scallop, and the smooth catch muscles of the mussel. Electron microscopy reveals flexible rod-like molecules about 0.2 micron long and 30 A wide with a distinctive polarity. Antibodies to scallop mini-titin label the A-band and especially the A/I junction of scallop striated muscle myofibrils by indirect immunofluorescence and immuno-electron microscopy. This antibody crossreacts with mini-titins in scallop smooth and Mytilus catch muscles, as well as with proteins in striated muscles from Limulus, Lethocerus (asynchronous flight muscle), and crayfish. It labels the A/I junction (I-region in Lethocerus) in these striated muscles as well as in chicken skeletal muscle. Antibodies to the repetitive immunoglobulin-like regions and also to the kinase domain of nematode twitchin crossreact with scallop mini-titin and label the A-band of scallop myofibrils. Electron microscopy of single molecules shows that antibodies to twitchin kinase bind to scallop mini-titin near one end of the molecule, suggesting how the scallop structure might be aligned with the sequence of nematode twitchin.
do Reis, Luciene Machado; Kessler, Catherine B.; Adams, Douglas J.; Lorenzo, Joseph; Jorgetti, Vanda; Delany, Anne M.
2008-01-01
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 μg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin-/- mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. PMID:18499553
[Development and prospect on skeletal age evaluation methods of X-ray film].
Wang, Ya-hui; Zhu, Guang-you; Qiao, Ke; Bian, Shi-zhong; Fan, Li-hua; Cheng, Yi-bin; Ying, Chong-liang; Shen, Yan
2007-10-01
The traditional methods of skeletal age estimation mainly include Numeration, Atlas, and Counting scores. In recent years, other new methods were proposed by several scholars. Utilizing image logical characteristics of X-ray film to extrapolate skeletal age is a key means by present forensic medicine workers in evaluating skeletal age. However, there exist some variations when we present the conclusion of skeletal age as an "evidence" directly to the Justice Trial Authority. In order to enhance the accuracy of skeletal age determination, further investigation for appropriate methodology should be undertaken. After a collective study of pertinent domestic and international literatures, we present this review of the research and advancement on skeletal age evaluation methods of X-ray film.
Bergamin, Ana Cláudia Pietrobom; Bridi, Enrico Coser; Amaral, Flávia Lucisano Botelho; Turssi, Cecília Pedroso; Basting, Roberta Tarkany; Aguiar, Flávio Henrique Baggio; França, Fabiana Mantovani Gomes
2016-01-01
The aim of this study was to evaluate the bond strength of different adhesive systems to eroded dentin following toothbrushing with an arginine-containing toothpaste. Sixty standardized 3 × 3 × 2-mm fragments of root dentin (n = 10) were prepared. After all surfaces except the buccal surfaces were impermeabilized, specimens were subjected to an erosive wear protocol and stored for 24 hours at 37°C. The specimens underwent 1000 toothbrushing cycles with an arginine-containing toothpaste, an arginine-free toothpaste (positive control group), or artificial saliva (negative control group). Following application of a self-etching or an etch-and-rinse adhesive to the buccal surfaces of the specimens, 6-mm-high composite resin blocks were built up in 2-mm increments. After 24 hours' storage in 100% relative humidity, microtensile test specimens with an approximate area of 1 mm² were prepared. The test was performed at a speed of 0.5 mm/min until specimen fracture, and the failure patterns were evaluated using a stereoscopic loupe. Two-way analysis of variance revealed no significant difference between the toothpastes, the adhesive systems, or the interactions between toothpaste and adhesive system in terms of the bond strength to eroded dentin (P > 0.05). The predominant failure pattern was adhesive in all groups. It was concluded that a toothpaste containing arginine did not interfere with the bond between either the self-etching or the etch-and-rinse adhesive system and eroded dentin.
Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan
2015-07-15
Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.
Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori
2015-06-01
Interest in erosion and its role in tooth wear has increased considerably. Due to the limited contribution of patients in modifying their dietary habits, therapeutic resources aiming to reduce the progression of erosion-like lesions have been discussed. This study sought to evaluate the effect of TiF4 and CO2 laser in controlling the permeability of in situ eroded enamel. Ten volunteers wore an intraoral palatal device containing two enamel slabs, treated with TiF4 gel and TiF4 gel + CO2 or placebo gel and placebo gel + CO2. After the washout period, volunteers were crossed over to the other treatment. During both phases, specimens were submitted to erosive challenges and then evaluated for permeability measured as the percentage of copper ion penetration over the total enamel thickness. Two-way analysis of variance (ANOVA) revealed that there was a significant interaction between the factors under study (p = 0.0002). Tukey's test showed that TiF4 significantly reduced the enamel permeability of eroded enamel specimens, regardless of whether CO2 laser irradiation was performed. It may be concluded that when the placebo gel was applied, CO2 laser was able to reduce enamel permeability; however, when TiF4 was applied, laser irradiation did not imply a reduction in permeability. TiF4 provided a lower permeability of eroded enamel, regardless of whether the CO2 laser was used. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dialynas, Yannis G.; Bras, Rafael L.; deB. Richter, Daniel
2017-02-01
Attempts to estimate the influence of erosion on the carbon (C) cycle are limited by difficulties in accounting for the fate of mobilized organic material and for the uncertainty associated with land management practices. This study proposes a method to quantify the uncertainty introduced by the influence of land management on soil organic C (SOC) generation and decomposition at eroding soils. The framework is implemented in tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation). tRIBS-ECO is a spatially and depth-explicit model of C dynamics coupled with a process-based hydro-geomorphic model. We assess the impact of soil erosion on the net soil-atmosphere CO2 exchange at the Calhoun Critical Zone Observatory, one of the most severely agriculturally eroded regions in the U.S. Measurements of SOC storage are used from different catena positions. We demonstrate that the spatiotemporal variations of land management practices introduce significant uncertainty in estimates of the erosion-induced CO2 exchange with the atmosphere. Observations and simulations suggest that a substantial portion of eroded organic material is buried in alluvial sediments at the study site. According to results, recent reforestation led to a partial decline in soil and SOC erosion rates. It is suggested that the representation of the fine spatiotemporal variability of the dynamics of eroded C is important in the computation of C budgets in regional and global scales.
Influence of bleaching agents on surface roughness of sound or eroded dental enamel specimens.
Azrak, Birgül; Callaway, Angelika; Kurth, Petra; Willershausen, Brita
2010-12-01
The aim of the present in vitro study was to assess the effect of bleaching agents on eroded and sound enamel specimens. Enamel specimens prepared from human permanent anterior teeth were incubated with different bleaching agents containing active ingredients as 7.5 or 13.5% hydrogen peroxide or 35% carbamide peroxide, ranging in pH from 4.9 to 10.8. The effect of the tooth whitening agents on surface roughness was tested for sound enamel surfaces as well as for eroded enamel specimens. To provoke erosive damage, the enamel specimens were incubated for 10 hours with apple juice (pH = 3.4). Afterwards, pretreated and untreated dental slices were incubated with one of the bleaching agents for 10 hours. The surface roughness (R(a)) of all enamel specimens (N = 80) was measured using an optical profilometric device. A descriptive statistical analysis of the R(a) values was performed. The study demonstrated that exposure to an acidic bleaching agent (pH = 4.9) resulted in a higher surface roughness (p = 0.043) than treatment with a high peroxide concentration (pH = 6.15). If the enamel surface was previously exposed to erosive beverages, subsequent bleaching may enhance damage to the dental hard tissue. Bleaching agents with a high concentration of peroxide or an acidic pH can influence the surface roughness of sound or eroded enamel. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.
Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions
NASA Astrophysics Data System (ADS)
Van Pelt, R. S.; Zhang, G.
2017-12-01
Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.
Sepulveda, M.S.; Gallagher, E.P.; Wieser, C.M.; Gross, T.S.
2004-01-01
The objective of this study was to evaluate the effects of bleached/unbleached kraft mill effluents (B/UKME) on the reproductive parameters of free-ranging Florida largemouth bass (Micropterus salmoides floridanus). The reproductive parameters measured included gonadosomatic index (GSI), histological evaluation of gonads, and plasma concentrations of vitellogenin (VTG), 17??-estradiol, and 11-ketotestosterone (11-KT). Hepatic ethoxyresorufin-O-deethylase (EROD) activity was measured as a marker of exposure to cytochrome P450-inducing agents in these effluents. Endpoints were compared among adult bass sampled from tributary and mainstream effluent-contaminated and reference sites. Females sampled from the site closest to the mill outfall had a significant five-fold increase in EROD activity compared to bass sampled from reference streams. Although sex hormones were significantly reduced in bass from exposed sites, there were no differences in VTG and GSI across sites. The absence of organism-level responses was probably not related to a lack of sensitivity, as previous studies in our laboratory have shown that bass exposed to these effluents exhibit changes in GSI and in other measures associated with reproductive success. In females, inverse relationships were observed between VTG and GSI and EROD activity. These relationship, however, were not consistent within all of the sites studied. Collectively, our findings indicate that hepatic EROD induction is an effective marker of B/UKME exposure in largemouth bass and that it might be associated with antiestrogenic effects in this species. ?? 2003 Elsevier Inc. All rights reserved.
Performance evaluation of CESM in simulating the dust cycle
NASA Astrophysics Data System (ADS)
Parajuli, S. P.; Yang, Z. L.; Kocurek, G.; Lawrence, D. M.
2014-12-01
Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health and visibility. Mineral dust is injected into the atmosphere during dust storms when the surface winds are sufficiently strong and the land surface conditions are favorable. Dust storms are very common in specific regions of the world including the Middle East and North Africa (MENA) region, which contains more than 50% of the global dust sources. In this work, we present simulation of the dust cycle under the framework of CESM1.2.2 and evaluate how well the model captures the spatio-temporal characteristics of dust sources, transport and deposition at global scale, especially in dust source regions. We conducted our simulations using two existing erodibility maps (geomorphic and topographic) and a new erodibility map, which is based on the correlation between observed wind and dust. We compare the simulated results with MODIS satellite data, MACC reanalysis data, and AERONET station data. Comparison with MODIS satellite data and MACC reanalysis data shows that all three erodibility maps generally reproduce the spatio-temporal characteristics of dust optical depth globally. However, comparison with AERONET station data shows that the simulated dust optical depth is generally overestimated for all erodibility maps. Results vary greatly by region and scale of observational data. Our results also show that the simulations forced by reanalysis meteorology capture the overall dust cycle more realistically compared to the simulations done using online meteorology.
Burns, W. Matthew; Hayba, Daniel O.; Rowan, Elisabeth L.; Houseknecht, David W.
2007-01-01
The reconstruction of burial and thermal histories of partially exhumed basins requires an estimation of the amount of erosion that has occurred since the time of maximum burial. We have developed a method for estimating eroded thickness by using porosity-depth trends derived from borehole sonic logs of wells in the Colville Basin of northern Alaska. Porosity-depth functions defined from sonic-porosity logs in wells drilled in minimally eroded parts of the basin provide a baseline for comparison with the porosity-depth trends observed in other wells across the basin. Calculated porosities, based on porosity-depth functions, were fitted to the observed data in each well by varying the amount of section assumed to have been eroded from the top of the sedimentary column. The result is an estimate of denudation at the wellsite since the time of maximum sediment accumulation. Alternative methods of estimating exhumation include fission-track analysis and projection of trendlines through vitrinite-reflectance profiles. In the Colville Basin, the methodology described here provides results generally similar to those from fission-track analysis and vitrinite-reflectance profiles, but with greatly improved spatial resolution relative to the published fission-track data and with improved reliability relative to the vitrinite-reflectance data. In addition, the exhumation estimates derived from sonic-porosity logs are independent of the thermal evolution of the basin, allowing these estimates to be used as independent variables in thermal-history modeling.
Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion
NASA Astrophysics Data System (ADS)
Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.
2017-07-01
Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.
Impacts of peatland restoration on dissolved carbon loss from eroded upland peatlands in the UK
NASA Astrophysics Data System (ADS)
Evans, M.; Stimson, A.; Allott, T. E. H. A.; Holland, N.
2012-04-01
Upland blanket peatlands in the UK are severely degraded by extensive gully erosion. Large areas have experienced complete vegetation loss. In the last decade landscape scale approaches to the restoration of eroded and bare peat have been developed in the Peak District National Park in northern England. Bare peat is re-vegetated with a nurse crop of grasses established by the aerial application of lime, seed, and fertiliser. The approach has successfully re-vegetated large areas of eroded bog a nd has been shown to dramatically reduce particulate carbon losses in runoff. The impacts of the treatment on water quality and dissolved carbon loss have not previously been fully assessed. This paper reports results from a small catchment study assessing the impacts of restoration practice in the Peak District. Data from five small catchments are presented one re-vegetated, one intact and three eroded/bare catchments. Bi-weekly water samples have been taken from the catchments between January 2011 and February 2012 and during July 2012 two of the bare sites were treated with lime, seed, and fertiliser. The data show that there are significant spikes in nutrient flux post treatment and marked effects on dissolved carbon which include initial spikes in in DOC concentration but longer term reductions in DOC concentration. Monitoring is ongoing at these sites but the evidence to date points to at least a short term benefit in DOC flux reduction from this form of peatland restoration.
Oh, Seung-Lyul; Kim, Hee-Jae; Woo, Shinae; Cho, Be-Long; Song, Misoon; Park, Yeon-Hwan; Lim, Jae-Young; Song, Wook
2017-05-01
In the present study, we determined the effect of an integrated health education and elastic band resistance training program on body composition, physical function, muscle strength and quality in community-dwelling elderly women. We recruited participants with eligibility inclusion criteria, and randomly assigned them to either the control group (n = 19) or the intervention group (n = 19). The integrated intervention program comprised of health education and individual counseling, and elastic band training for 18 weeks (8 weeks of supervised training and 10 weeks of self-directed training). We assessed body composition, muscle strength and quality, and physical function at pre-, after 8 weeks (mid-) and 18 weeks (post-training). After the intervention, there were no significant changes in skeletal muscle index, fat free mass, total lean mass and total fat mass for both the control group and intervention group. However, the interaction effect was significantly different in SPPB score (P < 0.05), isokinetic strength (60 deg/s, P < 0.001; 120 deg/s; P < 0.05) and muscle quality (P < 0.05) after 18 weeks of intervention relative to the baseline of the control and intervention groups. The supervised elastic band training of 8 weeks did not improve short physical performance battery score and isokinetic strength, whereas there was a significant increase of those outcomes (10.6% improvement, 9.8~23.5% improvement) after 10 weeks of following self-directed exercise compared with the baseline. These results show the effectiveness of following self-directed resistance training with health education after supervised training cessation in improvement of short physical performance battery and leg muscle strength. This intervention program might be an effective method to promote muscle strength and quality, and to prevent frailty in elderly women. Geriatr Gerontol Int 2017; 17: 825-833. © 2016 Japan Geriatrics Society.
Skeletal injuries in small mammals: a multispecies assessment of prevalence and location
Stephens, Ryan B.; Burke, Christopher B.; Woodman, Neal; Poland, Lily B.; Rowe, Rebecca J.
2018-01-01
Wild mammals are known to survive injuries that result in skeletal abnormalities. Quantifying and comparing skeletal injuries among species can provide insight into the factors that cause skeletal injuries and enable survival following an injury. We documented the prevalence and location of structural bone abnormalities in a community of 7 small mammal species inhabiting the White Mountains of New Hampshire. These species differ in locomotion type and levels of intraspecific aggression. Overall, the majority of injuries were to the ribs or caudal vertebrae. Incidence of skeletal injuries was highest in older animals, indicating that injuries accumulate over a lifetime. Compared to species with ambulatory locomotion, those with more specialized (semi-fossorial, saltatorial, and scansorial) locomotion exhibited fewer skeletal abnormalities in the arms and legs, which we hypothesize is a result of a lesser ability to survive limb injuries. Patterns of skeletal injuries in shrews (Soricidae) were consistent with intraspecific aggression, particularly in males, whereas skeletal injuries in rodents (Rodentia) were more likely accidental or resulting from interactions with predators. Our results demonstrate that both the incidence and pattern of skeletal injuries vary by species and suggest that the ability of an individual to survive a specific skeletal injury depends on its severity and location as well as the locomotor mode of the species involved.
Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N
2018-05-10
Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.
Skeletal and chronological ages in American adolescents: current findings in skeletal maturation.
Calfee, Ryan P; Sutter, Melanie; Steffen, Jennifer A; Goldfarb, Charles A
2010-10-01
This study was designed to assess the relationship between skeletal and chronological ages among current American adolescents using the Greulich and Pyle atlas for skeletal age determination. We used the Greulich and Pyle atlas to prospectively determine skeletal age in a group of 138 otherwise healthy American adolescents from 12 to 18 years of age. 62 males and 76 females were enrolled in this cohort. Paired Student t-tests were used to statistically compare the skeletal and chronological ages in this population. Subgroup analysis examined the effect of gender on differences between chronologic age and skeletal age. For the entire cohort, mean skeletal age was significantly greater than chronological age (mean 0.80 years, P < 0.01). In 29 cases (21%) the skeletal age was at least 2 years greater than the chronologic age. Among females, such cases with marked discrepancy occurred exclusively in those chronologically between 12 and 15 years of age (P < 0.01). Males demonstrated a 2-year or greater discrepancy more commonly than females (26 vs. 17%). In males, 2-year discrepancies were equally likely across chronologic ages (P = 0.82). Current American adolescents are significantly more mature by skeletal age, as determined by the Greulich and Pyle method, than their chronological age would suggest. The skeletal ages of females are most likely to markedly exceed chronologic age between the ages of 12-15 years.
Disease-Induced Skeletal Muscle Atrophy and Fatigue
Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge
2016-01-01
Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients suffering from acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders. PMID:27128663
Al-Dumaini, Abdullsalam Abdulqawi; Halboub, Esam; Alhammadi, Maged Sultan; Ishaq, Ramy Abdul Rahman; Youssef, Mohamed
2018-02-01
The objective of this study was to evaluate the effect of a new approach-bimaxillary miniplates-based skeletal anchorage-in the treatment of skeletal Class II malocclusion compared with untreated subjects. The study (miniplates) group comprised 28 patients (14 boys, 14 girls) with skeletal Class II malocclusion due to mandibular retrusion, with a mean age of 11.83 years. After 0.017 × 0.025-in stainless steel archwires were placed in both arches, 4 miniplates were fixed bilaterally, 2 in the maxillary anterior areas and 2 in the mandibular posterior areas, and used for skeletal treatment with elastics. Twenty-four Class II untreated subjects (11 boys, 13 girls), with a mean age of 11.75 years, were included as controls. Skeletal and dental changes were evaluated using pretreatment and posttreatment or observational lateral cephalometric radiographs. The treatment changes were compared with the growth changes observed in the control group using independent t tests. Compared with the minimal changes induced by growth in the control group, the skeletal changes induced by miniplates were more obvious. The mandibular length increased significantly (3 mm), and the mandible moved forward, with a significant restraint in the sagittal position of the maxilla (P <0.001). The overjet correction (-4.26 mm) was found to be a net result of skeletal changes (A-Y-axis = -1.18 mm and B-Y-axis = 3.83 mm). The mandibular plane was significantly decreased by 2.75° (P <0.001). This new technique, bimaxillary miniplates-based skeletal anchorage, is an effective method for treating patients with skeletal Class II malocclusions through obvious skeletal, but minimal dentoalveolar, changes. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Yoshida, Tadashi; Semprun-Prieto, Laura; Sukhanov, Sergiy
2010-01-01
Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo. PMID:20228261
Quantification of skeletal fraction volume of a soil pit by means of photogrammetry
NASA Astrophysics Data System (ADS)
Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens
2015-04-01
The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.
Liu, GuoJie; Ye, QingFang; Chen, Wei; Zhao, ZhenJuan; Li, Ling; Lin, Ping
2015-07-01
The relationship between fluorosis and the lifestyle of adult residents of areas in which fluorosis is endemic was evaluated. A cross-sectional and case-control analysis was performed to study 289 villagers living in fluorosis endemic areas who drank the local water. Subjects were divided into skeletal fluorosis and non-skeletal fluorosis groups according to whether they were afflicted with skeletal fluorosis. A semi-quantitative food frequency questionnaire, homemade lifestyle questionnaires, and general characteristics were analyzed. The factors that affected the occurrence of skeletal fluorosis were determined by generalized estimating equations. Our results showed that protective factors against skeletal fluorosis included drinking boiled water, storing water in a ceramic tank, and ingesting fruits, vitamin A, thiamine, and folic acid. Risk factors for skeletal fluorosis were overweight status and obesity, drinking tea, drinking water without storage, and ingestion of oils, fats, and phosphorus. Our results demonstrate that skeletal fluorosis has a close relationship with lifestyle. Copyright © 2015 Elsevier B.V. All rights reserved.
Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications
Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu
2014-01-01
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971
Role of FGFs/FGFRs in skeletal development and bone regeneration.
Du, Xiaolan; Xie, Yangli; Xian, Cory J; Chen, Lin
2012-12-01
Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling-related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. Copyright © 2012 Wiley Periodicals, Inc.
The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.
Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R
2018-05-01
The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.
The skeletal endocannabinoid system: clinical and experimental insights.
Raphael, Bitya; Gabet, Yankel
2016-05-01
Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.
Testing times: identifying puberty in an identified skeletal sample.
Henderson, Charlotte Y; Padez, Cristina
2017-06-01
Identifying the onset of puberty in skeletal remains can provide evidence of social changes associated with the onset of adulthood. This paper presents the first test of a skeletal method for identifying stages of development associated with the onset of puberty in a skeletal sample of known age and cause of death. Skeletal methods for assessing skeletal development associated with changes associated with puberty were recorded in the identified skeletal collection in Coimbra, Portugal. Historical data on the onset of menarche in this country are used to test the method. As expected, females mature faster than their male counterparts. There is some side asymmetry in development. Menarche was found to have been achieved by an average age of 15. Asymmetry must be taken into account when dealing with partially preserved skeletons. Age of menarche is consistent, although marginally higher, than the age expected based on historical data for this time and location. Skeletal development in males could not be tested against historical data, due to the lack of counterpart historical data. The ill health known to be present in this prematurely deceased population may have delayed skeletal development and the onset of puberty.
Skeletal maturation in children with cerebral palsy and its relationship with motor functioning.
van Eck, Mirjam; Dallmeijer, Annet J; Voorman, Jeanine M; Becher, Jules G
2008-07-01
The objective of this study was to describe skeletal maturation in relation to chronological age in children with cerebral palsy (CP) aged 9 to 16 years, and to analyze the relationship between skeletal maturation and motor functioning. The skeletal age of 100 children with CP (37 females, 63 males; age 9, 11, or 13 y; 73 ambulant, 27 non-ambulant) was determined over a period of 3 years based on X-rays of the hand (Greulich and Pyle technique). Motor functioning was measured with the Gross Motor Function Measure-66. The skeletal age of females with CP was significantly higher than their chronological age, but this did not apply to males. Longitudinal analysis showed no difference in the course of skeletal age in relation to chronological age over a 3-year period for sex or for level of ambulation. No association was found between changes in skeletal age and changes in gross motor function over the 3-year period. Skeletal age during (pre-)puberty in females with CP is advanced in relation to chronological age. No evidence was found that children with CP are at risk for deterioration in gross motor function as a result of skeletal maturation during puberty.
A unified anatomy ontology of the vertebrate skeletal system.
Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M
2012-01-01
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.
A Unified Anatomy Ontology of the Vertebrate Skeletal System
Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.
2012-01-01
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424
Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S
2006-01-01
Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. Conclusion The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts. PMID:16756651
Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; Macleod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S
2006-06-06
Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.
NASA Technical Reports Server (NTRS)
2005-01-01
14 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a circular depression and a suite of eroding mesas of carbon dioxide. These features occur in the south polar residual cap of Mars. The eroding carbon dioxide creates landforms reminiscent of 'Swiss cheese.' The circular feature might indicate the location of a filled, buried impact crater. Location near: 86.8oS, 111.0oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringUser Instructions for the EPIC-2 Code.
1986-09-01
10 1 TAM IIFAILIDARAC EFAIL 5 MATERIAL CARDS FOR SOLIDS INPUT DATA L45,5X, FSO, A48. R(8FDO.OJ, MATL I WAR I iAIL "EFAILMAtEA :SCRIPT ION DENSITY SPH...failure of the elements must be achieved by the eroding interface algorithm, it is important that EFAIL (a mate- rial property) be much greater than ERODE...If left blank (DFRAC z 0) factor will be set to DFRAC = 1.0 EFAIL = Equivalent plastic strain (true) which, if exceeded, will totally fail the element
Worldwide Emerging Environmental Issues Affecting the U.S. Military. July 2006 Report
2006-07-01
Environmental Changes………………………………….….....5 6.3.4 Burning Fossil Fuels Acidifies Oceans , Erodes Coral Reefs ……………………….……5 6.4 China Creates 11 Independent...drastically affect indigenous communities and polar biodiversity. 6.3.4 Burning Fossil Fuels Acidifies Oceans , Erodes Coral Reefs Impacts of Ocean ... Acidification on Coral Reefs and Other Marine Calcifiers, a report co-authored by scientists from Australia, Canada, France, Germany, Japan, Monaco
Binding of methane to activated mineral surfaces - a methane sink on Mars?
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.
2015-10-01
Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.
A sink for methane on Mars? The answer is blowing in the wind
NASA Astrophysics Data System (ADS)
Knak Jensen, Svend J.; Skibsted, Jørgen; Jakobsen, Hans J.; ten Kate, Inge L.; Gunnlaugsson, Haraldur P.; Merrison, Jonathan P.; Finster, Kai; Bak, Ebbe; Iversen, Jens J.; Kondrup, Jens C.; Nørnberg, Per
2014-07-01
Tumbling experiments that mimic the wind erosion of quartz grains in an atmosphere of 13C-enriched methane are reported. The eroded grains are analyzed by 13C and 29Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250 °C. The NMR findings offer an explanation for the fast disappearance of methane on Mars.
Smith, Loren M.; Euliss, Ned H. "Chip"
2010-01-01
In the wetland science field, sediment deposition is often thought of as being beneficial especially when one thinks of coastal estuarine systems. For example, sediments deposited from streams and rivers are necessary to naturally build and maintain tidal marshes. These sediments come from eroded upland soils in the interior of the continent. When these sediments are diverted from natural coastal deposition areas, such as occurs from river channelization, we lose marshes through subsidence as is happening throughout coastal Louisiana. However, the value of eroded soils is all a matter of hydrogeomorphic perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.; Renaut, R.W.
Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In somemore » cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.« less
Comprehensive Analysis of Tropomyosin Isoforms in Skeletal Muscles by Top-down Proteomics
Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A.; Larsson, Lars; Ge, Ying
2016-01-01
Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236
Skeletal age assessment in children using an open compact MRI system.
Terada, Yasuhiko; Kono, Saki; Tamada, Daiki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Yoshioka, Hiroshi
2013-06-01
MRI may be a noninvasive and alternative tool for skeletal age assessment in children, although few studies have reported on this topic. In this article, skeletal age was assessed over a wide range of ages using an open, compact MRI optimized for the imaging of a child's hand and wrist, and its validity was evaluated. MR images and their three-dimensional segmentation visualized detailed skeletal features of each bone in the hand and wrist. Skeletal age was then independently scored from the MR images by two raters, according to the Tanner-Whitehouse Japan system. The skeletal age assessed by MR rating demonstrated a strong positive correlation with chronological age. The intrarater and inter-rater reproducibilities were significantly high. These results demonstrate the validity and reliability of skeletal age assessment using MRI. Copyright © 2012 Wiley Periodicals, Inc.
Guedon, Jean-Marc G; Longo, Geraldine; Majuta, Lisa A; Thomspon, Michelle L; Fealk, Michelle N; Mantyh, Patrick W
2016-06-01
Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy were then measured on days 21, 28, and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hind paw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors, whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that although bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive end points for clinical trials.
Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.
Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki
2015-11-01
Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.
Huang, Jinyu; Jiao, Jinzhen; Tan, Zhi-Liang; He, Zhixiong; Beauchemin, Karen A; Forster, Robert; Han, Xue-Feng; Tang, Shao-Xun; Kang, Jinghe; Zhou, Chuanshe
2016-09-14
Thirty-six Xiangdong black goats were used to investigate age-related mRNA and protein expression levels of some genes related to skeletal muscle structural proteins, MRFs and MEF2 family, and skeletal muscle fiber type and composition during skeletal muscle growth under grazing (G) and barn-fed (BF) feeding systems. Goats were slaughtered at six time points selected to reflect developmental changes of skeletal muscle during nonrumination (days 0, 7, and 14), transition (day 42), and rumination phases (days 56 and 70). It was observed that the number of type IIx in the longissimus dorsi was increased quickly while numbers of type IIa and IIb decreased slightly, indicating that these genes were coordinated during the rapid growth and development stages of skeletal muscle. No gene expression was affected (P > 0.05) by feeding system except Myf5 and Myf6. Protein expressions of MYOZ3 and MEF2C were affected (P < 0.05) by age, whereas PGC-1α was linearly decreased in the G group, and only MYOZ3 protein was affected (P < 0.001) by feeding system. Moreover, it was found that PGC-1α and MEF2C proteins may interact with each other in promoting muscle growth. The current results indicate that (1) skeletal muscle growth during days 0-70 after birth is mainly myofiber hypertrophy and differentiation, (2) weaning affects the expression of relevant genes of skeletal muscle structural proteins, skeletal muscle growth, and skeletal muscle fiber type and composition, and (3) nutrition or feeding regimen mainly influences the expression of skeletal muscle growth genes.
Guedon, Jean-Marc G.; Longo, Geraldine; Majuta, Lisa A.; Thomspon, Michelle L.; Fealk, Michelle N.; Mantyh, Patrick W.
2016-01-01
Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy was then measured on days 21, 28 and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hindpaw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors. Whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that while bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive endpoints for clinical trials. PMID:27186713
Emerging impact of skeletal muscle in health and disease
USDA-ARS?s Scientific Manuscript database
It has been over 60 years since Huxley first described the essential force transmitting properties of voluntary striated skeletal muscle. At no time since then has the importance of skeletal muscle integrity been more pronounced. Although skeletal muscle comprises 40-50% of total body mass, this tis...
Inflicted Skeletal Trauma: The Relationship of Perpetrators to Their Victims
ERIC Educational Resources Information Center
Starling, Suzanne P.; Sirotnak, Andrew P.; Heisler, Kurt W.; Barnes-Eley, Myra L.
2007-01-01
Objective: Although inflicted skeletal trauma is a very common presentation of child abuse, little is known about the perpetrators of inflicted skeletal injuries. Studies exist describing perpetrators of inflicted traumatic brain injury, but no study has examined characteristics of perpetrators of inflicted skeletal trauma. Methods: All cases of…
Cytochrome P450 induction in mallard duck (MD), black-crowned night heron (BCNH) and Fisher-344 rat
Melancon, M.J.; Rattner, B.A.; Stegeman, John J.
1991-01-01
P450 induction was studied in adult and pipping MDs, pipping BCNHs, and rats. Adult MDs and rats received i.p. injection of corn oil, 3-methylcholanthrene (MC) in corn oil (20 mg/kg), saline or phenobarbital (PB) in saline (80 mg/kg) for 3 days. MD and BCNH embryos received MC and PB by injection into the aircell approximately 2 days before pipping and were sacrificed at pipping. Hepatic microsomes were assayed for protein, arylhydrocarbon hydroxylase (AHH), benzphetamine-N-demethylase (BEND), ethoxy-resorufin-O-dealkylase (EROD), pentoxyresorufin-O-dealkylase (PROD), benzyloxyresorufin-O-dealkylase (BROD), ethoxycoumarin-O-dealkylase (ECOD), and by SDS-PAGE with western blot using a polyclonal anti-P4S0IIB antibody and a monoclonal anti-P450IA antibody (MAb 1-12-3). Although species and age caused substantial differences in responses, all treated groups showed an increase in one or more monooxygenase assays. All animals treated with MC showed a strong induction of a protein recognized by anti-P450IA, and all those treated with PB showed strong induction of a band recognized by anti-P450IIB.
Rainfall Generated Debris flows on Mount Shasta: July 21, 2015
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.
2015-12-01
Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash flood events and possible effective road designs for stream crossings and road surface drainage.
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud
2016-04-01
The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazard monitoring. Indeed, as natural flows travel down the slope, they apply stresses on the ground, generating seismic waves in a wide frequency band. Our ultimate objective is to relate the granular flow properties to the generated signals that result from the different physical processes involved. We investigate here the more simple process: the impact of a single bead on a rough surface. Farin et al. [2015] have already shown theoretically and experimentally the existence of a link between the properties of an impacting bead (mass and velocity) on smooth surfaces, and the emitted signal (radiated elastic energy and mean frequency). This demonstrates that the single impactor properties can be deduced from the form of the emitted signal. We extend this work here by investigating the impact of single beads and gravels on rough and erodible surfaces. Experimentally, we drop glass and steel beads of diameters from 2 mm to 10 mm on a PMMA plate. The roughness of this last is obtained by gluing 3mm-diameter glass beads on one of its face. Free beads have been also added to get erodible beds. We track the dropped impactor motion, times between impacts and the generated acoustic waves using two fast cameras and 8 accelerometers. Cameras are used in addition to estimate the impactor rotation. We investigate the energy balance during the impact process, especially how the energy restitution varies as a function of the energy lost through acoustic waves. From these experiments, we clearly observe that even if more dissipative processes are involved (friction, grain reorganization, etc.), the single bead scaling laws obtained on smooth surfaces remain valid. A main result of this work is to quantify the fluctuations of the characteristic quantities such as the bounce angle, the seismic energy and frequency induced by the plate roughness.
Investigating Mars: Rabe Crater
2017-12-21
This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. This VIS image crosses the entire crater and demonstrates how extensive the dunes are on the floor of Rabe Crater. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67013 Latitude: -43.2572 Longitude: 34.5875 Instrument: VIS Captured: 2017-01-21 18:25 https://photojournal.jpl.nasa.gov/catalog/PIA22147
Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading
NASA Technical Reports Server (NTRS)
Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.
1994-01-01
Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.
NASA Astrophysics Data System (ADS)
Wiegand, C.; Geitner, C.; Heinrich, K.; Rutzinger, M.
2012-04-01
Small and shallow eroded areas characterize the landscape of many pastures and meadows in the Alps. The extent of such erosion phenomena varies between 2 m2 and 200 m2. These patches tend to be only a few decimetres thick, with a maximum depth of 2 m. The processes involved are shallow landslides, superficial erosion by snow and livestock trampling. Key parameters that influence the emergence of shallow erosion are the geological, topographical and climatic circumstances in an area as well as its soils, vegetation and land use. The negative impact of this phenomenon includes not only the loss of soil but also the reduced attractiveness of the landscape, especially in tourist regions. One approach identifying and mapping geomorphological elements is remote sensing. The analysis of aerial images is a suitable method for identifying the multi-temporal dynamics of shallow eroded areas because of the good spatial and temporal resolution. For this purpose, we used a pixel-based approach to detect these areas semi-automatically in an orthophoto. In a first step, each aerial image was classified using dynamic thresholds derived from the histogram of the orthophoto. In a second step, the identified areas of erosion were filtered and visually in-terpreted. Based on this procedure, eroded areas with a minimum size of 5 m2 were detected in a test site located in the Inner Schmirn Valley (Tyrol, Austria). The altitude of the test site ranges between 1,980 m and 2,370 m, with a mean inclination of 36°, facing E to SE. Geologically, the slope is part of the "Hohe Tauern Window", characterized by "Bündner schists" deficient in lime and regolith. Until the 1960s, the slope was used as a hay meadow. Orthophotos from 2000, 2003, 2007 and 2010 were used for this investigation. Older aerial images were not suitable because of their lower resolution and poor ortho-rectification. However, they are useful for relating the results of the ten-year time-span to a larger temporal context. No significant increase of erosion could be observed for the investigated ten-year period. The majority of the eroded areas show no distinct trend but rather an irregular pattern of increase and decrease. The results fit well in a larger temporal context: in aerial images of the 1950s, the slope already shows several eroded patches, which did not change until the year 2000. The owners also confirm that erosion was even a problem before abandonment. In this case, the inclination of the terrain seems to exceed the influence of land-use activities. With the semi-automated detection of such eroded areas, a more objective and time-saving method was found. The results contribute to an improved understanding of the process and can initiate a long-term observation. In subsequent studies we will apply the approach to further test sites and adapt it for the detection of smaller eroded areas.
Amino Acid Sensing in Skeletal Muscle
Moro, Tatiana; Ebert, Scott M.; Adams, Christopher M.; Rasmussen, Blake B.
2016-01-01
Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mTORC1- and ATF4-mediated amino acid sensing pathways, triggered by impaired amino acid delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle amino acid delivery, mTORC1 activity and/or ATF4 activity. An improved understanding of the mechanisms and roles of amino acid sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia. PMID:27444066
Spatial patterns and controls of soil chemical weathering rates along a transient hillslope
Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.
2009-01-01
Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable minerals and intense coating of the primary minerals by secondary clay and iron oxides. We showed that both the morphologic disequilibrium of the hillslope and the spatial heterogeneity of soil properties are due to spatial variations in the physical and chemical processes that removed mass from the soil. ?? 2009 Elsevier B.V.
Herzog, Martha; Larsen, Curtis E.; McRae, Michele
2002-01-01
Despite a long history of geomorphic studies, it is difficult to ascertain the time required for slopes to change from near vertical exposures to relatively stable slopes due to inadequate age control. Actively eroding coastal bluffs along the western shore of the Chesapeake Bay provide a key for understanding the centennial-scale development of stable slopes from eroding bluff faces. The Calvert Cliffs are composed of sandy silts, silty sands, and clayey silts of Miocene-age. Active wave erosion at the bluff toes encourages rapid sloughing from bluff faces and maintains slope angles of 70-80 degrees and relatively constant bluff-retreat rates. Naturally stabilized slopes are preserved as a fossil bluff line inland from a prograding cuspate foreland at Cove Point. The foreland is migrating southward at a rate of ca. 1.5 m/yr. As it moves south, it progressively protects bluffs from wave action as new beaches are deposited at their toes. Wave erosion is reinitiated at the northern end of the complex as the landform passes. An incremental record of slope change is preserved along the fossil bluff line. 14C dating of swales between beach ridges shows the complex to span 1700 years of progressive migration history. We hypothesized that slopes would change from steep, eroding faces to low-angle slopes covered with vegetation and sought to document the rate of change. Our team measured slope angles at intervals along the fossil bluff line and dated profiles by interpolating 14C ages of adjacent beach ridges. There was no progressive decrease in slope with age. All slopes along the fossil bluff line were 30-40 degrees with a mean of 35 degrees. Constancy in slope angle suggests that steep, actively eroding bluffs were quickly changed to stable slopes by landslides and slumping once they were protected. Given the accuracy of our age control, we conclude that the time required to attain a stable slope under natural processes is less than one century. This indicates that once toe erosion is ended (naturally or through engineering) slopes are reduced to 35-degrees over a period of decades and not centuries.
Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle
Longwei, Xu
2012-01-01
Summary Diffusion tensor magnetic resonance imaging (DTI) is increasingly applied in the detection and characterization of skeletal muscle. This promising technique has aroused much enthusiasm and generated high expectations, because it is able to provide some specific information of skeletal muscle that is not available from other imaging modalities. Compared with conventional MRI, DTI could reconstruct the trajectories of skeletal muscle fibers. It makes it possible to non-invasively detect several physiological values (diffusion values), like fractional anisotropy (FA) and apparent diffusion coefficient (ADC), which have a great association with the muscle physiology and pathology. Furthermore, other advantages of DTI are the capability of investigating the muscle biomechanics and also investigate the pathological condition of skeletal muscle. Finally, several challenges, which limit the wide application of DTI in skeletal muscle, were discussed. It is believed that this review may arouse in-depth studies on the clinical application of DTI in skeletal muscle in future. PMID:23738269
Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.
McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M
2016-08-01
The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. Copyright © 2016 Elsevier Inc. All rights reserved.
Bala, M; Pathak, A; Jain, R L
2010-01-01
The purpose of the study was to assess skeletal age using MP3 and hand-wrist radiographs and to find the correlation amongst the skeletal, dental and chronological ages. One hundred and sixty North-Indian healthy children in the age group 8-14 years, comprising equal number of males and females were included in the study. The children were radiographed for middle phalanx of third finger (MP3) and hand-wrist of the right hand and intra oral periapical X-ray for right permanent maxillary canine. Skeletal age was assessed from MP3 and hand-wrist radiographs according to the standards of Greulich and Pyle. The dental age was assessed from IOPA radiographs of right permanent maxillary canine based on Nolla's calcification stages. Skeletal age from MP3 and hand-wrist radiographs shows high correlation in all the age groups for both sexes. Females were advanced in skeletal maturation than males. Skeletal age showed high correlation with dental age in 12-14 years age group. Chronological age showed inconsistent correlation with dental and skeletal ages.
Yield of skeletal survey by age in children referred to abuse specialists.
Lindberg, Daniel M; Berger, Rachel P; Reynolds, Maegan S; Alwan, Riham M; Harper, Nancy S
2014-06-01
To determine rates of skeletal survey completion and injury identification as a function of age among children who underwent subspecialty evaluation for concerns of physical abuse. This was a retrospective secondary analysis of an observational study of 2609 children <60 months of age who underwent evaluation for possible physical abuse. We measured rates of skeletal survey completion and fracture identification for children separated by age into 6-month cohorts. Among 2609 subjects, 2036 (78%) had skeletal survey and 458 (18%) had at least one new fracture identified. For all age groups up to 36 months, skeletal survey was obtained in >50% of subjects, but rates decreased to less than 35% for subjects >36 months. New fracture identification rates for skeletal survey were similar between children 24-36 months of age (10.3%, 95% CI 7.2-14.2) and children 12-24 months of age (12.0%, 95% CI 9.2-15.3) CONCLUSIONS: Skeletal surveys identify new fractures in an important fraction of children referred for subspecialty consultation with concerns of physical abuse. These data support guidelines that consider skeletal survey mandatory for all such children <24 months of age and support a low threshold to obtain skeletal survey in children as old as 36 months. Copyright © 2014 Elsevier Inc. All rights reserved.
Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W
2016-04-01
In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.
Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting
Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.
2011-01-01
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824
Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen
2018-05-01
Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.
Stem cells and bone diseases: new tools, new perspective
Riminucci, Mara; Remoli, Cristina; Robey, Pamela G.; Bianco, Paolo
2017-01-01
Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. PMID:25240458
Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.
Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M
2015-01-01
Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.
Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.
2012-01-01
Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness. PMID:22745735
Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay
2011-09-01
Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.
Esler, Daniel; Trust, Kimberly A; Ballachey, Brenda E; Iverson, Samuel A; Lewis, Tyler L; Rizzolo, Daniel J; Mulcahy, Daniel M; Miles, A Keith; Woodin, Bruce R; Stegeman, John J; Henderson, John D; Wilson, Barry W
2010-05-01
Hydrocarbon-inducible cytochrome P4501A (CYP1A) expression was measured, as ethoxyresorufin-O-deethylase (EROD) activity, in livers of wintering harlequin ducks (Histrionicus histrionicus) captured in areas of Prince William Sound, Alaska, USA, oiled by the 1989 Exxon Valdez spill and in birds from nearby unoiled areas, during 2005 to 2009 (up to 20 years following the spill). The present work repeated studies conducted in 1998 that demonstrated that in harlequin ducks using areas that received Exxon Valdez oil, EROD activity was elevated nearly a decade after the spill. The present findings strongly supported the conclusion that average levels of hepatic EROD activity were higher in ducks from oiled areas than those from unoiled areas during 2005 to 2009. This result was consistent across four sampling periods; furthermore, results generated from two independent laboratories using paired liver samples from one of the sampling periods were similar. The EROD activity did not vary in relation to age, sex, or body mass of individuals, nor did it vary strongly by season in birds collected early and late in the winter of 2006 to 2007, indicating that these factors did not confound inferences about observed differences between oiled and unoiled areas. We interpret these results to indicate that harlequin ducks continued to be exposed to residual Exxon Valdez oil up to 20 years after the original spill. This adds to a growing body of literature suggesting that oil spills have the potential to affect wildlife for much longer time frames than previously assumed. Copyright (c) 2010 SETAC.
A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.
1996-09-01
Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This proceduremore » was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).« less
Dynamic replacement and loss of soil carbon on eroding cropland
Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.
1999-01-01
Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.
Yakupoglu, Tugrul; Gundogan, Recep; Dindaroglu, Turgay; Kara, Zekeriya
2017-10-29
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin's instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.
NASA Astrophysics Data System (ADS)
Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.
2017-11-01
Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.
Clinical spectrum of patients with erosion of the inner ear by jugular bulb abnormalities.
Friedmann, David R; Le, B Thuy; Pramanik, Bidyut K; Lalwani, Anil K
2010-02-01
Anatomic variants of the jugular bulb (JB) are common; however, abnormalities such as large high riding JB and JB diverticulum (JBD) are uncommon. Rarely, the abnormal JB may erode into the inner ear. The goal of our study is to report a large series of patients with symptomatic JB erosion into the inner ear. Retrospective review in an academic medical center. Eleven patients with JB abnormality eroding into the inner ear were identified on computed tomography (CT) scan of the temporal bone. Age at presentation was from 5 years to 82 years with six males and five females. The large JB or JBD eroded into the vestibular aqueduct (n = 9) or the posterior semicircular canal (n = 4). The official radiology report usually identified the JB abnormality; however, erosion into these structures by the JB was not mentioned in all but one case. All patients were symptomatic with five having conductive hearing loss (CHL) and three complaining of pulsatile tinnitus. Those with pulsatile tinnitus and four of five with CHL had erosion into the vestibular aqueduct. Vestibular evoked myogenic potential (VEMP) findings in three of six patients were consistent with dehiscence of the inner ear. High riding large JB or JBD can erode into the inner ear and may be associated with CHL and/or pulsatile tinnitus. CT scan is diagnostic and should be examined specifically for these lesions. As patients with pulsatile tinnitus may initially undergo a magnetic resonance imaging scan, identification of JB abnormality should prompt CT scan or VEMP testing to evaluate for inner ear erosion.
Celikoglu, Mevlut; Buyuk, Suleyman Kutalmis; Ekizer, Abdullah; Unal, Tuba
2016-03-01
To evaluate the skeletal, dentoalveolar, and soft tissue effects of the Forsus FRD appliance with miniplate anchorage inserted in the mandibular symphyses and to compare the findings with a well-matched control group treated with a Herbst appliance for the correction of a skeletal Class II malocclusion due to mandibular retrusion. The sample consisted of 32 Class II subjects divided into two groups. Group I consisted of 16 patients (10 females and 6 males; mean age, 13.20 ± 1.33 years) treated using the Forsus FRD EZ appliance with miniplate anchorage inserted in the mandibular symphyses. Group II consisted of 16 patients (9 females and 7 males; mean age, 13.56 ± 1.27 years) treated using the Herbst appliance. Seventeen linear and 10 angular measurements were performed to evaluate and compare the skeletal, dentoalveolar, and soft tissue effects of the appliances using paired and Student's t-tests. Both appliances were effective in correcting skeletal class II malocclusion and showed similar skeletal and soft tissue changes. The maxillary incisor was statistically significantly more retruded in the skeletally anchored Forsus FRD group (P < .01). The mandibular incisor was retruded in the skeletally anchored Forsus FRD group (-4.09° ± 5.12°), while it was protruded in the Herbst group (7.50° ± 3.98°) (P < .001). Although both appliances were successful in correcting the skeletal Class II malocclusion, the skeletally anchored Forsus FRD EZ appliance did so without protruding the mandibular incisors.
A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle.
James, Rob S
2013-08-01
Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.
Ahn, Jaechan; Kim, Sung-Jin; Lee, Ji-Yeon; Chung, Chooryung J; Kim, Kyung-Ho
2017-01-01
The purposes of this study were to compare the buccolingual inclinations of the posterior teeth in skeletal Class III patients with and without facial asymmetry with those of skeletal Class I patients and to investigate their relationships with sagittal and transverse skeletal discrepancies. Sixty-three skeletal Class III adult patients were divided into 2 groups according to the degree of menton deviation: a symmetry group with deviation less than 2 mm (n = 30), and an asymmetry group with deviation greater than 4 mm (n = 33). The control group comprised 25 skeletal Class I patients. The buccolingual inclinations of the posterior teeth measured on cone-beam computed tomography images were compared among the 3 groups, and regression analysis was performed to investigate the relationships between the inclinations and the sagittal and transverse skeletal discrepancies. The symmetry group showed greater buccal inclinations of the maxillary posterior teeth and lingual inclinations of the mandibular second molars than did the control, and this was correlated with the ANB angles. The deviated sides in the asymmetry group showed the greatest transverse dental compensation, which was correlated with menton deviation, whereas the nondeviated sides showed no significant transverse dental compensation. Transverse dental compensation is closely related to sagittal and transverse skeletal discrepancy in skeletal Class III patients. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Kawaguchi, Tatsuya; Niba, Emma Tabe Eko; Rani, Abdul Qawee Mahyoob; Onishi, Yoshiyuki; Koizumi, Makoto; Awano, Hiroyuki; Matsumoto, Masaaki; Nagai, Masashi; Yoshida, Shinobu; Sakakibara, Sachiko; Maeda, Naoyuki; Sato, Osamu; Nishio, Hisahide; Matsuo, Masafumi
2018-05-23
Dystrophin Dp71 is one of the isoforms produced by the DMD gene which is mutated in patients with Duchenne muscular dystrophy (DMD). Although Dp71 is expressed ubiquitously, it has not been detected in normal skeletal muscle. This study was performed to assess the expression of Dp71 in human skeletal muscle. Human skeletal muscle RNA and tissues were obtained commercially. Mouse skeletal muscle was obtained from normal and DMD mdx mice. Dp71 mRNA and protein were determined by reverse-transcription PCR and an automated capillary Western assay system, the Simple Western, respectively. Dp71 was over-expressed or suppressed using a plasmid expressing Dp71 or antisense oligonucleotide, respectively. Full-length Dp71 cDNA was PCR amplified as a single product from human skeletal muscle RNA. A ca. 70 kDa protein peak detected by the Simple Western was determined as Dp71 by over-expressing Dp71 in HEK293 cells, or suppressing Dp71 expression with antisense oligonucleotide in rhabdomyosarcoma cells. The Simple Western assay detected Dp71 in the skeletal muscles of both normal and DMD mice. In human skeletal muscle, Dp71 was also detected. The ratio of Dp71 to vinculin of human skeletal muscle samples varied widely, indicating various levels of Dp71 expression. Dp71 protein was detected in human skeletal muscle using a highly sensitive capillary Western blotting system.
Pigna, Eva; Renzini, Alessandra; Greco, Emanuela; Simonazzi, Elena; Fulle, Stefania; Mancinelli, Rosa; Moresi, Viviana; Adamo, Sergio
2018-02-24
Denervation triggers numerous molecular responses in skeletal muscle, including the activation of catabolic pathways and oxidative stress, leading to progressive muscle atrophy. Histone deacetylase 4 (HDAC4) mediates skeletal muscle response to denervation, suggesting the use of HDAC inhibitors as a therapeutic approach to neurogenic muscle atrophy. However, the effects of HDAC4 inhibition in skeletal muscle in response to long-term denervation have not been described yet. To further study HDAC4 functions in response to denervation, we analyzed mutant mice in which HDAC4 is specifically deleted in skeletal muscle. After an initial phase of resistance to neurogenic muscle atrophy, skeletal muscle with a deletion of HDAC4 lost structural integrity after 4 weeks of denervation. Deletion of HDAC4 impaired the activation of the ubiquitin-proteasome system, delayed the autophagic response, and dampened the OS response in skeletal muscle. Inhibition of the ubiquitin-proteasome system or the autophagic response, if on the one hand, conferred resistance to neurogenic muscle atrophy; on the other hand, induced loss of muscle integrity and inflammation in mice lacking HDAC4 in skeletal muscle. Moreover, treatment with the antioxidant drug Trolox prevented loss of muscle integrity and inflammation in in mice lacking HDAC4 in skeletal muscle, despite the resistance to neurogenic muscle atrophy. These results reveal new functions of HDAC4 in mediating skeletal muscle response to denervation and lead us to propose the combined use of HDAC inhibitors and antioxidant drugs to treat neurogenic muscle atrophy.
van Vugt, Jeroen L A; Buettner, Stefan; Levolger, Stef; Coebergh van den Braak, Robert R J; Suker, Mustafa; Gaspersz, Marcia P; de Bruin, Ron W F; Verhoef, Cornelis; van Eijck, Casper H C; Bossche, Niek; Groot Koerkamp, Bas; IJzermans, Jan N M
2017-01-01
Low skeletal muscle mass is associated with poor postoperative outcomes in cancer patients. Furthermore, it is associated with increased healthcare costs in the United States. We investigated its effect on hospital expenditure in a Western-European healthcare system, with universal access. Skeletal muscle mass (assessed on CT) and costs were obtained for patients who underwent curative-intent abdominal cancer surgery. Low skeletal muscle mass was defined based on pre-established cut-offs. The relationship between low skeletal muscle mass and hospital costs was assessed using linear regression analysis and Mann-Whitney U-tests. 452 patients were included (median age 65, 61.5% males). Patients underwent surgery for colorectal cancer (38.9%), colorectal liver metastases (27.4%), primary liver tumours (23.2%), and pancreatic/periampullary cancer (10.4%). In total, 45.6% had sarcopenia. Median costs were €2,183 higher in patients with low compared with patients with high skeletal muscle mass (€17,144 versus €14,961; P<0.001). Hospital costs incrementally increased with lower sex-specific skeletal muscle mass quartiles (P = 0.029). After adjustment for confounders, low skeletal muscle mass was associated with a cost increase of €4,061 (P = 0.015). Low skeletal muscle mass was independently associated with increased hospital costs of about €4,000 per patient. Strategies to reduce skeletal muscle wasting could reduce hospital costs in an era of incremental healthcare costs and an increasingly ageing population.
Evaluation of cervical posture of children in skeletal class I, II, and III.
D'Attilio, Michele; Caputi, Sergio; Epifania, Ettore; Festa, Felice; Tecco, Simona
2005-07-01
Previous studies on the relationship between morphological structure of the face and cervical posture have predominantly focused on vertical dimensions of the face. The aim of this study was to investigate whether there are significant differences in cervical posture in subjects with a different sagittal morphology of the face, i.e., a different skeletal class. One hundred twenty (120) children (60 males and 60 females, average age 9.5 yrs., SD+/-0.5) were admitted for orthodontic treatment. Selection criteria was: European ethnic origin, date of birth, considerable skeletal growth potential remaining and an absence of temporomandibular joint dysfunction (TMD). Lateral skull radiographs were taken in mirror position. Subjects were divided into three groups based on their skeletal class. The cephalometric tracings included postural variables. The most interesting findings were: 1. children in skeletal class III showed a significantly lower cervical lordosis angle (p<0.001) than the children in skeletal class I and skeletal class II; 2. children in skeletal class II showed a significantly higher extension of the head upon the spinal column compared to children in skeletal class I and skeletal class III (p<0.001 and p<0.01, respectively). This is probably because the lower part of their spinal column was straighter than those of subjects in skeletal class I and II (p<0.01 and p<0.001, respectively). Significant differences among the three groups were also observed in the inclination of maxillary and mandibular bases to the spinal column. The posture of the neck seems to be strongly associated with the sagittal as well as the vertical structure of the face.
Determinants of relative skeletal maturity in South African children.
Hawley, Nicola L; Rousham, Emily K; Johnson, William; Norris, Shane A; Pettifor, John M; Cameron, Noël
2012-01-01
The variation of skeletal maturity about chronological age is a sensitive indicator of population health. Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social conditions, whereas delayed maturation suggests inadequate conditions for optimal development. There remains a paucity of data, however, to indicate which specific biological and environmental factors are associated with advancement or delay in skeletal maturity. The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of relative skeletal maturity (RSM) in early adolescence. A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. Longitudinal data on growth, socio-economic position and pubertal development were entered into sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal age-chronological age) as the outcome. At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to chronological age. Females showed an average of 1.00 year delay relative to chronological age. In males, being taller at 2 years (p<0.01) and heavier at 2 years (p<0.01) predicted less delay in RSM at age 9/10 years, independent of current size and body composition. In females, both height at 2 years and conditional weight at 2 years predicted less delay in RSM at 9/10 years (p<0.05) but this effect was mediated by current body composition. Having greater lean mass at 9/10 years was associated with less delayed RSM in females (p<0.01) as was pubertal status at the time of skeletal maturity assessment (p<0.01). This study identifies several predictors of skeletal maturation at 9/10 years, indicating a role for early life exposures in determining the rate of skeletal maturation during childhood independently of current stature. Copyright © 2011 Elsevier Inc. All rights reserved.
An Assessment of Correlation between Dermatoglyphic Patterns and Sagittal Skeletal Discrepancies
Philip, Biju; Madathody, Deepika; Mathew, Manu; Paul, Jose; Dlima, Johnson Prakash
2017-01-01
Introduction Investigators over years have been fascinated by dermatoglyphic patterns which has led to the development of dermatoglyphics as a science with numerous applications in various fields other than being the best and most widely used method for personal identification. Aim To assess the correlation between dermatoglyphic patterns and sagittal skeletal discrepancies. Materials and Methods A total of 180 patients, aged 18-40 years, were selected from those who attended the outpatient clinic of the Deparment of Orthodontics and Dentofacial Orthopedics, Mar Baselios Dental College, Kothamangalam, Kerala, India. The fingerprints of both hands were taken by ink and stamp method after proper hand washing. The patterns of arches, loops and whorls in fingerprints were assessed. The total ridge count was also evaluated. Data was also sent to the fingerprint experts for expert evaluation. The sagittal jaw relation was determined from the patient’s lateral cephalogram. The collected data was then statistically analyzed using Chi-square tests, ANOVA and Post-hoc tests and a Multinomial regression prediction was also done. Results A significant association was observed between the dermatoglyphic pattern exhibited by eight fingers and the sagittal skeletal discrepancies (p<0.05). An increased distribution of whorl pattern was observed in the skeletal Class II with maxillary excess group and skeletal Class II with mandibular deficiency group while an increased distribution of loop pattern was seen in the skeletal Class III with mandibular excess group and skeletal Class III with maxillary deficiency group. Higher mean of total ridge count was also seen in the groups of skeletal Class II with maxillary excess and skeletal Class II with mandibular deficiency. Multinomial regression predicting skeletal pattern with respect to the fingerprint pattern showed that the left thumb impression fits the best model for predicting the skeletal pattern. Conclusion There was a significant association between dermatoglyphic patterns and sagittal skeletal discrepancies. Dermatoglyphics could serve as a cost effective screening tool of these craniofacial problems. PMID:28511506
NASA Astrophysics Data System (ADS)
Barnes, S.; Williams, B.; Etnoyer, P. J.
2016-02-01
Found across the world's oceans and with ages up to hundreds of years, deep-sea gorgonian octocorals represent valuable archives of past oceanic climate change. Similar to the rings of trees, deep-sea gorgonian octocorals form their skeletons in distinct growth increments, and the chemical composition of these growth bands record changes in their environment over time. The ratios of carbon and nitrogen stable isotopes in the sinking particulate organic matter (POM) that the corals feed upon drive the δ13C and δ15N of the organic material in their growth bands. Changes in the coral skeletal δ13C and δ15N therefore reflect changes in surface water nutrient levels and primary productivity. Here, we measured δ13C and δ15N across the growth bands of three Acanthogorgia sp. and two Eugoria rubens specimens collected from the Channel Islands National Marine Sanctuary in California in 2015 to study inter- and intraspecies variability and develop these species as archives of surface water processes. The taxa represent two different depth strata in the Southern California Bight; Acanthogorgia are typically observed 150-400 meters deep, while Eugorgia corals occur in relatively shallower waters between 50-100 meters deep. Results will be interpreted in the context of eastern Pacific POM values and local environmental influences to examine changes in the corals' food source. Results will also provide information on subsequent alteration of carbon and nitrogen after their incorporation into Acanthogorgia and Eugoria skeletons to aid future study of these corals as proxy records of oceanic climate change.
Clostridium difficile the hospital plague.
Czepiel, J; Kozicki, M; Panasiuk, P; Birczyńska, M; Garlicki, A; Wesełucha-Birczyńska, A
2015-04-07
Clostridium difficile infection (CDI) has become one of the major public health threats in the last two decades. An increase has been observed not only in the rate of CDI, but also in its severity and mortality. Symptoms caused by this pathogen are accompanied by intense local and systemic inflammation. We confirmed that Raman microspectroscopy can help us in understanding CDI pathogenesis. A single erythrocyte of patients with CDI shows a difference, approximately 10 times, in the intensity of the Raman spectra at the beginning of hospitalization and after one week of treatment. The intensity level is an indicator of the spread of the inflammation within the cell, confirmed by standard laboratory tests. Many of the observed bands with enormously enhanced intensity, e.g. 1587, 1344, 1253, 1118 and 664 cm(-1), come from the symmetric vibration of the pyrrole ring. Heme variation of recovered cells in the acute CDI state between the first and the seventh day of treatment seems to show increased levels of oxygenated hemoglobin. Intense inflammation alters the conformation of the protein which is reflected in the significant changes in the amide I, II and III bands. There is an observed shift and a significant intensity increase of 1253 and 970 cm(-1) amide III and skeletal protein backbone CC stretching vibration bands, respectively. Principal Component Analysis (PCA) was used to find the variance in the data collected on the first and seventh day. PC2 loading in the 1645-1500 cm(-1) range shows an increase of heme, Tyr, Trp, or Phe vibrations because of changes in the protein microenvironment due to their exposure. Positive maxima at 1621, 1563 and 1550 in the PC2 loading originated from the ring vibrations. These observations indicate that Clostridium difficile toxins induce cytopathogenicity by altering cellular proteins.
Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.
1991-01-01
Black-crowned night-heron (Nvcticorax nvcticorax) pipping embryos were studied from undisturbed (Chincoteague National Wildl ife Refuge, VA) and industrialized (Cat Island, Green Bay WI, and Bair and W. Marin Islands, San Francisco Bay, CA) locations. Hepatic aryl hydrocarbon hydroxylase (AHH) , ethoxyresorufin-O-dealkylase, (EROD), benzyloxyROD (BROD), pentoxyROD (PROD) and ethoxycoumarinOD (ECOD) activities and burdens of organochlorines (embryo + yolk sac - liver) were quantified. AHH, BROD, ECOD and EROD were induced up to 100-fold (P<.O5) in embryos from Cat Island compared to the other sites. Greatest burdens of total PCBs and p,p?DDE were detected in Cat Island embryos. Monooxygenase activities (AHH, BROD, ECOD and EROD) and PCB concentrations were significantly correlated (r=O.50 to 0.72). These and other data indicate that monooxygenases may be rapid and inexpensive biomarkers of exposure to some PCB congeners. Current efforts include determination of PCB congeners and other contaminants in these embryos, additional characterization of the induced P-450 isozymes, and expanding the study to include heron embryos and nestlings at other estuaries.
NASA Astrophysics Data System (ADS)
Gase, Andrew C.; Brand, Brittany D.; Bradford, John H.
2017-03-01
The causes and effects of erosion are among the least understood aspects of pyroclastic density current (PDC) dynamics. Evidence is especially limited for erosional self-channelization, a process whereby PDCs erode a channel that confines the body of the eroding flow or subsequent flows. We use ground-penetrating radar imaging to trace a large PDC scour and fill from outcrop to its point of inception and discover a second, larger PDC scour and fill. The scours are among the largest PDC erosional features on record, at >200 m wide and at least 500 m long; estimated eroded volumes are on the order of 106 m3. The scours are morphologically similar to incipient channels carved by turbidity currents. Erosion may be promoted by a moderate slope (5-15°), substrate pore pressure retention, and pulses of increased flow energy. These findings are the first direct evidence of erosional self-channelization by PDCs, a phenomenon that may increase flow velocity and runout distance through confinement and substrate erosion.
Induction of Fish Biomarkers by Synthetic-Based Drilling Muds
Gagnon, Marthe Monique; Bakhtyar, Sajida
2013-01-01
The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs. PMID:23894492
2012-01-01
Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city. PMID:23369323
Parente, Thiago E M; De-Oliveira, Ana C A X; Paumgartten, Francisco J R
2008-03-01
The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ("Nile tilapia", Oreochromis niloticus and "acará", Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepaguá Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes.
Persistence of soil organic matter in eroding versus depositional landform positions
Berhe, Asmeret Asefaw; Harden, Jennifer W.; Torn, Margaret S.; Kleber, Markus; Burton, Sarah D.; Harte, John
2012-01-01
Soil organic matter (SOM) processes in dynamic landscapes are strongly influenced by soil erosion and sedimentation. We determined the contribution of physical isolation of organic matter (OM) inside aggregates, chemical interaction of OM with soil minerals, and molecular structure of SOM in controlling storage and persistence of SOM in different types of eroding and depositional landform positions. By combining density fractionation with elemental and spectroscopic analyses, we showed that SOM in depositional settings is less transformed and better preserved than SOM in eroding landform positions. However, which environmental factors exert primary control on storage and persistence of SOM depended on the nature of the landform position considered. In an annual grassland watershed, protection of SOM by physical isolation inside aggregates and chemical association of organic matter (complexation) with soil minerals, as assessed by correlation with radiocarbon concentration, were more effective in the poorly drained, lowest-lying depositional landform positions, compared to well-drained landform positions in the upper parts of the watershed. Results of this study demonstrated that processes of soil erosion and deposition are important mechanisms of long-term OM stabilization.
Erosion of iron-chromium alloys by glass particles
NASA Technical Reports Server (NTRS)
Salik, J.; Buckley, D. H.
1984-01-01
The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.
NASA Astrophysics Data System (ADS)
Munshi, Soumika; Datta, A. K.
2003-03-01
A technique of optically detecting the edge and skeleton of an image by defining shift operations for morphological transformation is described. A (2 × 2) source array, which acts as the structuring element of morphological operations, casts four angularly shifted optical projections of the input image. The resulting dilated image, when superimposed with the complementary input image, produces the edge image. For skeletonization, the source array casts four partially overlapped output images of the inverted input image, which is negated, and the resultant image is recorded in a CCD camera. This overlapped eroded image is again eroded and then dilated, producing an opened image. The difference between the eroded and opened image is then computed, resulting in a thinner image. This procedure of obtaining a thinned image is iterated until the difference image becomes zero, maintaining the connectivity conditions. The technique has been optically implemented using a single spatial modulator and has the advantage of single-instruction parallel processing of the image. The techniques have been tested both for binary and grey images.
Phase diagrams of dune shape and orientation depending on sand availability
Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech
2015-01-01
New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614
Distribution of desert varnish in Arizona
NASA Technical Reports Server (NTRS)
Elvidge, Christopher D.
1989-01-01
Desert varnish is the dark coat of clay and ferromanganese oxides developed on exposed rock surfaces in arid regions. It forms from the accretion of material from windblown dust. The distribution of desert varnish was mapped in Arizona. It was discovered that desert varnish could be mapped on a regional scale. Well developed desert varnish is common on stable rock surfaces in areas having alkaline soils and less than about 25 cm of annual precipitation. Rock surfaces in areas having more than 40 cm of annual precipitation are generally devoid of desert varnish. An experiment was conducted with varnished desert pavement stone. The stones were broken in half and half was set on a roof in central Illinois from April until October. Removed from the alkaline desert environment, it only took seven months for the varnish to develop an eroded appearance. This experiment graphically illustrates the dependency of desert varnish on alkalinity. In this context, the zones of eroded desert varnish in Arizona indicate that the area of active desert varnish formation has fluctuated, expanding in drier times and contracting/eroding in wetter times.
Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska
NASA Astrophysics Data System (ADS)
Roark, E. Brendan; Guilderson, Thomas P.; Flood-Page, Sarah; Dunbar, Robert B.; Ingram, B. Lynn; Fallon, Stewart J.; McCulloch, Malcolm
2005-02-01
Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present Δ14C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletal carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.
The sarcomeric cytoskeleton: from molecules to motion.
Gautel, Mathias; Djinović-Carugo, Kristina
2016-01-01
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise. © 2016. Published by The Company of Biologists Ltd.
Fodstad, O; Brøgger, A; Bruland, O; Solheim, O P; Nesland, J M; Pihl, A
1986-07-15
An osteosarcoma cell line, OHS, was established from a patient with multiple skeletal manifestations of osteosarcoma, developing after bilateral retinoblastoma. The tumor cells expressed sarcoma-associated antigens and showed rapid growth in monolayers and as multicellular spheroids. They formed distinct colonies in soft agar, and subcutaneous tumors in nude mice. Morphological studies indicated that OHS cells had retained important characteristics of the cells of origin. No deletion of the retinoblastoma genes on chromosome 13q14 could be demonstrated with the banding techniques used. However, cytogenetic studies revealed double minute chromosomes, as evidence of gene amplification, as well as translocations involving chromosomes 1,6,11 and 13. The OHS line can be used to study the genetic basis of tumor initiation and growth, and to elucidate factors predisposing for second primary cancers in retinoblastoma patients.
Utility of Follow-Up Skeletal Surveys in Suspected Child Physical Abuse Evaluations
ERIC Educational Resources Information Center
Zimmerman, Stephanie; Makoroff, Kathi; Care, Marguerite; Thomas, Amy; Shapiro, Robert
2005-01-01
Objective: To evaluate the utility of a follow-up skeletal survey in suspected child physical abuse evaluations. Methods: In this prospective study, follow-up skeletal surveys were recommended for 74 children who, after an initial skeletal survey and evaluation by the Child Abuse Team, were suspected victims of physical abuse. The number and…
Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon
2015-01-01
Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias.
Skeletal muscle mitochondria: a major player in exercise, health and disease.
Russell, Aaron P; Foletta, Victoria C; Snow, Rod J; Wadley, Glenn D
2014-04-01
Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research. Copyright © 2013 Elsevier B.V. All rights reserved.
Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.
Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve
2015-05-01
Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.
Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm
2013-01-01
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2017-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
User Instructions for the EPIC-3 Code.
1987-05-01
MATERIAL CARDS FOR SOLIDS FROM LIBRARY (4M5 2F5,0) IMATLI 0 10AM IFAIL PFRAC[ EFAIL 5 MATERIAL CARDS FOR SOLUDS INPUT DATA: (415, 5X. F5.0. A4...21S, 15X, F5.0) LMAIL. 0 EFAIL 4 MATERIAL CARDS FOR CRUSHABLE SOLUDS INPUT DATA 1215.1l5Y, F5.0, A48/310.0W2(8F10.o)j MATL. 3 T EFAIL MATERIAL...elements must be achieved by the eroding interface algorithm, it is important that EFAIL (a material property) be much greater than ERODE. Master Definition
Does Aggregation Affect the Redistribution and Quality of Eroded SOC?
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Kuhn, Nikolaus
2015-04-01
A substantial amount of literature has discussed the impacts of soil erosion on global carbon cycling. However, numerous gaps in our knowledge remain unaddressed, for instance, the biogeochemical fate of displaced SOC during transport being one of them. The transport distance and the quality of eroded SOC are the two major factors that determine its fate. Previous laboratory-based research had demonstrated that the effects of aggregation can potentially shorten the transport distance of eroded SOC. The mineralization potential of SOC also differs in sediment fractions of different likely transport distances. It is therefore essential to examine the transport distance and quality of eroded SOC under field conditions with natural rainfall as the agent of erosion. Soil samples from a silty clay soil from Switzerland and a sandy soil from Denmark, were collected in the field this summer after natural rainfall events. The soil from Switzerland was sampled from a field of maize in St. Ursanne (47°20' N 7°09' E) on August 6th, 2014 after a natural rainfall event. A depositional fan consisting of aggregated sediment was formed outside the lower edge of the field. The sandy soil from Denmark was sampled from a farm in Foulum (56°30' N, 9°35' W) on September 4, 2014, after a series of natural rainfall events. Soil samples were collected at different topographic positions along the two slopes. All the soil samples from the two farms were fractionated by a settling tube. Bulk soil from Switzerland and Denmark was also dispersed by ultrasound. The SOC contents of all bulk soils and associated fractions were determined using a carbon analyzer Leco 612 at 1000°C. The quality of SOC in different settling fractions collected from various topographic positions were also determined by stable isotopes of C and N (13C and 15N). Our results show that 1) the aggregate specific SOC distribution evidently differs from the mineral particle specific SOC distribution, indicating that re-distribution of eroded SOC is determined by actual aggregate size distribution rather than mineral particle size distribution. 2) The aggregate specific distributions of SOC content from different positions along hillslopes demonstrate that preferential deposition of SOC-enrich sediment along hillslopes is much more pronounced than the mineral particle specific SOC would suggest. 3) The quality of SOC differs significantly in various settling fractions. The fast settling fractions consist of more of labile SOC, and thus is very likely to be mineralized during transport across landscapes, thereby likely contributing as a source of atmospheric CO2. Overall, effects of aggregation can potentially change the transport distance of eroded SOC and thus skew its redistribution towards the terrestrial deposition.
Stem cells and bone diseases: new tools, new perspective.
Riminucci, Mara; Remoli, Cristina; Robey, Pamela G; Bianco, Paolo
2015-01-01
Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix that they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. This article is part of a Special Issue entitled Stem cells and Bone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M
2004-12-01
Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.
Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases
Ultimo, Simona; Zauli, Giorgio; Martelli, Alberto M.; Vitale, Marco; McCubrey, James A.; Capitani, Silvano; Neri, Luca M.
2018-01-01
Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth. PMID:29682218
Ocean acidification affects coral growth by reducing skeletal density.
Mollica, Nathaniel R; Guo, Weifu; Cohen, Anne L; Huang, Kuo-Fang; Foster, Gavin L; Donald, Hannah K; Solow, Andrew R
2018-02-20
Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.
Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio
NASA Astrophysics Data System (ADS)
Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.
2011-12-01
The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.
Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.
Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H
1980-10-01
Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.
Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V
2016-11-18
Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4 , the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration.
Aberrant and alternative splicing in skeletal system disease.
Fan, Xin; Tang, Liling
2013-10-01
The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.
Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon
2015-01-01
Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias. PMID:26488291
Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Firdous, Shamaraz; Anwar, Shahzad
2015-08-01
Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm-1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C-C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery.
NASA Astrophysics Data System (ADS)
Xu, Xiaofen; Wang, Ling; Guo, Shengrong; Lei, Lei; Tang, Tingting
2011-10-01
An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm -1 (-OH vibration), 1664 cm -1 (Amide I), 1165 cm -1 ( νas, C-O-C bridge), and the broad absorption bands between 958 cm -1 and 1155 cm -1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.